Science.gov

Sample records for achieve human exploration

  1. Achieving a balance - Science and human exploration

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1991-01-01

    The linkage between science and human exploration is close. Currently, proponents of science and human presence themes identified by the Synthesis Group as the most important themes of Mars exploration, tend to have reservations about the other camp. Mechanisms that integrate the program themes are essential, to gain the advocacies of the exploration communities and find optimal solutions to the technical problems. Without such mechanisms, it will be difficult to gain widespread acceptance of the SEI as the strategic horizon for the U.S. civilian space program.

  2. Achieving a balance - Science and human exploration

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1992-01-01

    An evaluation is made of the opportunities for advancing the scientific understanding of Mars through a research program, conducted under the egis of NASA's Space Exploration Initiative, which emphasizes the element of human exploration as well as the requisite robotic component. A Mars exploration program that involves such complementary human/robotic components will entail the construction of a closed ecological life-support system, long-duration spacecraft facilities for crews, and the development of extraterrestrial resources; these R&D imperatives will have great subsequent payoffs, both scientific and economic.

  3. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  4. Exploring the Psychological Predictors of Programming Achievement

    ERIC Educational Resources Information Center

    Erdogan, Yavuz; Aydin, Emin; Kabaca, Tolga

    2008-01-01

    The main purpose of this study is to explore the predictors of programming achievement. With this aim in mind, the students' success in the programming courses is specified as the dependent variable and creativity, problem solving, general aptitudes, computer attitudes and mathematics achievement are specified as the independent variables. A…

  5. Exploring Causal Models of Educational Achievement.

    ERIC Educational Resources Information Center

    Parkerson, Jo Ann; And Others

    1984-01-01

    This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…

  6. Mars Human Exploration Objectives

    NASA Technical Reports Server (NTRS)

    Briggs, Geoff

    1998-01-01

    This paper reviews the objectives and other considerations of Human exploration of Mars. The objectives of human exploration of Mars are: (1) to learn how Mars is similar to, and different from, Earth; (2) to explore possible life, past and present; (3) to discover what Mars is like now from the perspective of Geoscience and geologic history; and (4) how did Mars form and how did its formation differ from Earth. Considerations of human Martian exploration involve: (1) having a capable base laboratory; (2) having long range transportation; (3) having operational autonomy of the crew, and the requirement of the crew to possess a range of new cognitive processes along with easy communications with terrestrial colleagues; and finally (4) creating the human habitat along with human factors which involve more than just survivability.

  7. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  8. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1990-01-01

    This paper describes several case studies of human space exploration, considered by the NASA's Office of Exploration in 1988. Special attention is given to the mission scenarios, the critical technology required in these expeditions, and the extraterrestrial power requirements of significant system elements. The cases examined include a manned expedition to Phobos, the inner Martian moon; a human expedition to Mars; the Lunar Observatory; and a lunar outpost to early Mars evolution.

  9. Preparing for Human Exploration

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Joosten, B. Kent

    1998-01-01

    NASA's Human Exploration and Development of Space (HEDS) Enterprise is defining architectures and requirements for human exploration that radically reduce the costs of such missions through the use of advanced technologies, commercial partnerships and innovative systems strategies. In addition, the HEDS Enterprise is collaborating with the Space Science Enterprise to acquire needed early knowledge about Mars and to demonstrate critical technologies via robotic missions. This paper provides an overview of the technological challenges facing NASA as it prepares for human exploration. Emphasis is placed on identifying the key technologies including those which will provide the most return in terms of reducing total mission cost and/or reducing potential risk to the mission crew. Top-level requirements are provided for those critical enabling technology options currently under consideration.

  10. Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen; McKay, Chris; Zubrin, Robert

    1991-06-01

    Novel approaches to the human exploration of Mars are considered with emphasis on a space suit design, extraterrestrial surface mobility, and water supply. A possible way of transporting personnel on the surface of Mars uses a suborbital rocket that will hop from one site to the next, refuelling each time it lands and giving the Martian explorers effective global mobility. Telepresence could be used to avoid limiting the people on Mars to a small exploration area as a result of a lack of transportation infrastructure. Drawings and photographs are included.

  11. Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony

    2014-01-01

    The Mars probe, launched by India a few months ago, is on its way to Mars. At this juncture, it is appropriate to talk about the opportunities presented to us for the Human Exploration of Mars. I am planning to highlight some of the challenges to take humans to Mars, descend, land, stay, ascend and return home safely. The logistics of carrying the necessary accessories to stay at Mars will be delivered in multiple stages using robotic missions. The primary ingredients for human survival is air, water, food and shelter and the necessity to recycle the primary ingredients will be articulated. Humans have to travel beyond the van Allen radiation belt under microgravity condition during this inter-planetary travel for about 6 months minimum one way. The deconditioning of human system under microgravity conditions and protection of humans from Galactic cosmic radiation during the travel should be taken into consideration. The multi-disciplinary effort to keep the humans safe and functional during this journey will be addressed.

  12. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  13. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; Hoffman, S.; Grunsfeld, J.; Seery, B. D.

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  14. Human Challenges in Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.

    2007-01-01

    This viewgraph presents an overview using pictures some of the history of human exploration of the new frontiers of Earth and then examines some of the challenges to human exploration of space. Particular attention is given to the environmental factors and to the social and human factors that effect humans in space environments.

  15. The Mechanics of Human Achievement

    PubMed Central

    Duckworth, Angela L.; Eichstaedt, Johannes C.; Ungar, Lyle H.

    2015-01-01

    Countless studies have addressed why some individuals achieve more than others. Nevertheless, the psychology of achievement lacks a unifying conceptual framework for synthesizing these empirical insights. We propose organizing achievement-related traits by two possible mechanisms of action: Traits that determine the rate at which an individual learns a skill are talent variables and can be distinguished conceptually from traits that determine the effort an individual puts forth. This approach takes inspiration from Newtonian mechanics: achievement is akin to distance traveled, effort to time, skill to speed, and talent to acceleration. A novel prediction from this model is that individual differences in effort (but not talent) influence achievement (but not skill) more substantially over longer (rather than shorter) time intervals. Conceptualizing skill as the multiplicative product of talent and effort, and achievement as the multiplicative product of skill and effort, advances similar, but less formal, propositions by several important earlier thinkers. PMID:26236393

  16. Exploring Processes Linking Shyness and Academic Achievement in Childhood

    ERIC Educational Resources Information Center

    Hughes, Kathleen; Coplan, Robert J.

    2010-01-01

    The goal of the current study was to explore the relations between shyness, academic engagement, and academic achievement in childhood. Participants were (n = 125) children (aged 9-13 years) attending public school boards in Canada. Children completed self reports of shyness and were administered a test of nonverbal IQ. Academic achievement was…

  17. Mars Human Exploration Reference Mission

    NASA Technical Reports Server (NTRS)

    Drake, Bret

    1998-01-01

    This presentation proposes the next steps for human exploration of Mars. The presentation reviews the reasons for human exploration of Mars. Two different trajectories are proposed: (1) for a long stay mission, and (2) for a short term mission, which could also include a swing by Venus. A reference mission scenario is investigated, which includes forward deployment of two cargo missions, followed by a human piloted mission. The power needs of such a mission include nuclear thermal propulsion, and the possible use of Mars in situ resources. The exploration will require electric propulsion, stationary power source, and a mobile power source. The trajectories required for electric propulsion of earth are shown, and the engineering of a Mars Transportation Habitat are reviewed.

  18. Robots and humans: synergy in planetary exploration.

    PubMed

    Landis, Geoffrey A

    2004-12-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. PMID:15795977

  19. Robots and humans: synergy in planetary exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  20. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  1. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  2. Human space exploration the next fifty years.

    PubMed

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration. PMID:22363199

  3. Human Space Exploration The Next Fifty Years

    PubMed Central

    Williams, David R.; Turnock, Matthew

    2011-01-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration. PMID:22363199

  4. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; McGuire, Jill; Pellegrino, Joseph; Strube, Matthew; Aranyos, Thomas; Reed, Benjamin

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface samples, and equipment to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In space servicing is a means to achieving these goals. By designing a mission architecture that relies on the concept of in space servicing (robotic and manned), maximum supportability can be achieved.

  5. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  6. Human Factors in Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  7. The Future of Human Exploration

    NASA Technical Reports Server (NTRS)

    Cooke, Doug

    2001-01-01

    This slide presentation reviews the near term future of human space exploration in terms of possible mission scenarios, propulsion technologies, orbital dynamics that lead to Low-Energy Transfer from Earth-Moon LI to Solar Libration Points and Return Potential Staging Point for Human Mars Missions. It also examines the required evolution of mission architecture, solar electric propulsion concept, vehicle concepts for future Mars missions, and an overview of a Mars Mission, Also in this presentation are pictures of several historic personages and occasions, and a view of a Mars Meteorite (i.e., ALH84001.0)

  8. A Human Achievement: Mathematics without Boundaries.

    ERIC Educational Resources Information Center

    Terzioglu, Tosun

    This paper describes three fundamental principles, dictated by Wilhelm von Humboldt, that were widely adapted as the basic philosophy of higher education in the United States, and proposes to revise the unfulfilled dream of von Humboldt to make it come true. This paper stresses the achievements of humanity not only in technology, health, or the…

  9. Automation and robotics for Human MARS Exploration

    NASA Astrophysics Data System (ADS)

    von Richter, L. A. J.; Griethe, W.; Hofmann, P.; Putz, P.

    2002-01-01

    for a human exploration mission. The Human Exploration Mission (HEM) will establish an infrastructure on the surface of Mars co- operating with a tele-communication system located in an orbit around Mars. The landed elements of the Mars Base will be scattered on the Mars surface and they need to be transported by a dedicated system to the Mars Base i.e. by the so called Utility Truck. Furthermore the Utility Truck shall support the assembly of the Mars base elements infrastructure and the subsequent operations on the Martian surface. The infrastructure on Mars shall consist of habitation and laboratory modules, a bio/greenhouse, a mobile pressurised laboratory, landers, an astronaut return vehicle, an in-situ resources utilisation facility and a power generation unit. Besides these elements constituting the human base infrastructure it will comprise astronaut remotely-controlled rovers and rovers with various degrees of autonomy. Figure 1: The Mobile Pressurised Laboratory (by Astrium) The following A&R systems and subsystems are considered to be key elements for a Robotic and finally a Human Exploration of Mars: Europe has to achieve a key role within the A&R devices. It has to be pointed out, however, that it will be essential for the success of future European Mars exploration activities that this effort will be conducted in co-ordination with other space agencies around the world.

  10. Astrobiological benefits of human space exploration.

    PubMed

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered. PMID:20735249

  11. Astrobiological Benefits of Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, Ian A.

    2010-08-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  12. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface samples, and equipment to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, re-use and or re-purpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that relies on the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  13. Strategic Map for Achieving Enceladus Ocean Exploration in Our Time

    NASA Astrophysics Data System (ADS)

    Sherwood, B.

    2015-12-01

    At AGU 2014, the author presented a decomposition and sequencing of science questions and technical capabilities that define viable programmatic pathways to enable sample return and advanced in situ exploration of the Enceladan ocean, consistent with NASA mission-opportunity constraints. Elaborated and refined in 2015 via JpGU, AbSciCon, IAC, and COSPAR Water, this plan is now specific: discrete and integrated analyses and coordination actions that, if acted on by the community over the next 45 months, could result in Enceladus ocean exploration appearing in the next Planetary Decadal Survey's mission priorities, issued in 2021. At AGU 2015, a product-based, outcome-measurable, stepwise milestone plan is presented to catalyze the next level of community discussion. Topics covered by the action plan include: hypothesis-driven science questions; mission cost as a function of mission capability; mission selectability as a function of programmatic constraints and evaluation process; exploration technologies as a function of funding and schedule; international consensus on forward and backward planetary protection requirements and solutions for exploring worlds with astrobiologically significant liquid water; and strategic balance among major NASA planetary science initiatives. Key Decadal-runup milestones are analyzed with respect to stakeholders, success criteria, and - critically - calendar and precedence. These results then inform a multi-year action plan to generate, vet, and socialize throughout the community a set of technically and fiscally viable mission concepts, respectively enabled by an achievable technology development roadmap also detailed in the presentation. This can begin to align advocate actions toward a broad community goal of exploring the Enceladan ocean. Without such coordination, which must reach fruition by Sep 2019, the probability that the next Decadal could explicitly prioritize mission objectives for Enceladus ocean exploration - as one of

  14. Designing for Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles M.

    2004-02-01

    This presentation addresses a concept-level model that produces technical design parameters and economic feasibility information addressing future human spaceflight exploration platforms. This paper uses a design methodology and analytical tools to create feasible concept design information for these space platforms. The design tool has been validated against a number of actual facility designs, and appropriate modal variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is then employed in the examination of the impact of various payloads on the power, size (volume), and mass of the platform proposed. The development of the analytical tool employed an approach that accommodated possible payloads characterized as simplified parameters such as power, weight, volume, crew size, and endurance. In creating the approach, basic principles are employed and combined with parametric estimates as necessary. Key system parameters are identified in conjunction with overall system design. Typical ranges for these key parameters are provided based on empirical data extracted from actual human spaceflight systems. In order to provide a credible basis for a valid engineering model, an extensive survey of existing manned space platforms was conducted. This survey yielded key engineering specifications that were incorporated in the engineering model. Data from this survey is also used to create parametric equations and graphical representations in order to establish a realistic range of engineering quantities used in the design of manned space platforms.

  15. Exploring Students' Conception and Expectations of Achievement in Physical Education

    ERIC Educational Resources Information Center

    Zhu, Xihe

    2013-01-01

    Achievement in a domain is normally defined by the experts within the curricula. This exploratory study reported student conception of achievement in physical education, attempting to address two questions: (1) what do students expect to achieve and (2) how do students view the achievement in physical education. Students (N = 48) purposefully…

  16. Human Exploration and Avionic Technology Challenges

    NASA Technical Reports Server (NTRS)

    Benjamin, Andrew L.

    2005-01-01

    For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.

  17. Future Visions for Scientific Human Exploration

    NASA Technical Reports Server (NTRS)

    Garvin, James

    2005-01-01

    Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological

  18. Future of Human Space Exploration

    NASA Video Gallery

    Now that the Space Shuttle era is over, NASA is writing the next chapters in human Spaceflight with its commercial and international partners. It is advancing research and technology on the Interna...

  19. A methodology to assess performance of human-robotic systems in achievement of collective tasks

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna M.

    2005-01-01

    In this paper, we present a methodology to assess system performance of human-robotic systems in achievement of collective tasks such as habitat construction, geological sampling, and space exploration.

  20. Applied Nanotechnology for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  1. Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEA) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, before sending human explorers to NEAs, robotic investigations of these bodies would be required to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Dr. Paul Abell discussed some of the physical characteristics of NEOs that will be relevant for EVA considerations, reviewed the current data from previous NEA missions (e.g., Near-Earth Asteroid Rendezvous (NEAR) Shoemaker and Hayabusa), and discussed why future robotic and human missions to NEAs are important from space exploration and planetary defense perspectives.

  2. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  3. Students' Goal Achievement: Exploring Individual and Situational Factors

    ERIC Educational Resources Information Center

    Derrer-Rendall, Nicola; Wesson, Caroline; Anderson, Lindsey; Bould, Emma

    2009-01-01

    Introduction: This paper reports a preliminary investigation of the individual and situational factors affecting goal achievement in a psychology student population. The impact of normative information on goal achievement is considered in relation to goal commitment, optimism, gender and academic setting. Method: Psychology students (n=121) from…

  4. Astrobiology and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  5. Reconstructing human evolution: Achievements, challenges, and opportunities

    PubMed Central

    Wood, Bernard

    2010-01-01

    This contribution reviews the evidence that has resolved the branching structure of the higher primate part of the tree of life and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret the taxonomy and systematics of the human fossil record. How do you to tell an early human taxon from one in a closely related clade? How do you determine the number of taxa represented in the human clade? How can homoplasy be recognized and factored into attempts to recover phylogeny? PMID:20445105

  6. Requirements for Human Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Conley, Catharine

    In the exploration of other planets and the search for life outside of Earth, the unique capabilities provided by human astronauts will only be advantageous if the biological contamination associated with human presence is understood and controlled. Thus, Planetary Protection is a critical element in the human exploration of other solar system bodies, and should be incorporated from the earliest stages of mission planning and development. The issues covered by Planetary Protection involve both 'forward contamination,' or the contamination of other solar system bodies by Earth microbes and organic materials, and 'backward contamination,' which is the contamination of Earth systems by potential alien life. Forward contamination concerns include contamination that might invalidate current or future scientific exploration of a particular solar system body, and/or might disrupt the planetary environment or a potential endogenous (alien) ecosystem. Backward contamination concerns include both immediate and long-term effects on the health of the astronaut explorers from possible biologically-active materials encountered during exploration, as well as the possible contamination of the Earth. Although some degree of forward contamination associated with human astronaut explorers is inevitable, the principles and policies of Planetary Protection that have been imposed on robotic missions by the 1967 Outer Space Treaty should be followed to the greatest extent possible when humans are exploring space. A number of national and international workshops held over the last six years have generated a consensus framework on Planetary Protetction policies and requirements for human missions to Mars, and a 2007 workshop held by NASA has considered the issues and benefits to Planetary Protection that might be offered by a return to the Moon. Conclusions from these workshops are presented and synthesized in the context of future international missions of human exploration.

  7. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  8. Curriculum Alignment: Exploring Student Perception of Learning Achievement Measures

    ERIC Educational Resources Information Center

    Kuhn, Kerri-Ann L.; Rundle-Thiele, Sharyn R.

    2009-01-01

    The importance of constructively aligned curriculum is well understood in higher education. Based on the principles of constructive alignment, this research considers whether student perception of learning achievement measures can be used to gain insights into how course activities and pedagogy are assisting or hindering students in accomplishing…

  9. Robotic Follow-Up for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matthew C.; Adams, Byron; Allan, Mark; Altobelli, Martha; Bouyssounouse, Xavier; Cohen, Tamar; Flueckiger, Lorenzo; Garber, Joshua; Palmer, Elizabeth; Heggy, Essam; Jurgens, Frank; Kennedy, Tim; Kobayashi, Linda; Lee, Pascal; Lee, Susan Y.; Lees, David; Lundy, Mike; Park, Eric; Pedersen, Liam; Smith, Trey; To, Vinh; Utz, Hans; Wheeler, Dawn

    2010-01-01

    We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing.

  10. Models to explore genetics of human aging.

    PubMed

    Karasik, David; Newman, Anne

    2015-01-01

    Genetic studies have bestowed insight into the biological mechanisms underlying inter-individual differences in susceptibility to (or resistance to) organisms’ aging. Recent advances in molecular and genetic epidemiology provide tools to explore the genetic sources of the variability in biological aging in humans. To be successful, the genetic study of a complex condition such as aging requires the clear definition of essential traits that can characterize the aging process phenotypically. Phenotypes of human aging have long relied on mortality rate or exceptional longevity. Genome-wide association studies (GWAS) have been shown to present an unbiased approach to the identification of new candidate genes for human diseases. The GWAS approach can also be used for positive health phenotypes such as longevity or a delay in age-related chronic disease, as well as for other age related changes such as loss of telomere length or lens transparency. Sequencing, either in targeted regions or across the whole genome can further identify rare variation that may contribute to the biological aging mechanisms. To date, the results of the GWAS for longevity are rather disappointing, possibly in part due to the small number of individuals with GWAS data who have reached advanced old age.Human aging phenotypes are needed that can be assessed prior to death, and should be both heritable and validated as predictors of longevity. Potentially, phenotypes that focus on “successful” or “healthy” aging will be more powerful as they can be measured in large numbers of people and also are clinically relevant.We postulate that construction of an integrated phenotype of aging can be achieved capitalizing on multiple traits that may have weak correlations, but a shared underlying genetic architecture. This is based on a hypothesis that convergent results from multiple individual aging-related traits will point out the pleiotropic signals responsible for the overall rate of aging of

  11. Human-Robot Planetary Exploration Teams

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  12. Bringing the Humanities to the Lower Achiever.

    ERIC Educational Resources Information Center

    Ross, Kathleen

    1989-01-01

    Describes a humanities program for senior high school basic classes. Notes that the course covers Greek drama, poetry, art, classical music, and Shakespearean plays. Asserts that giving lower-ability students a chance to study the classics makes them feel less alienated from the mainstream. (MM)

  13. Exploration Atmospheres for Beyond-LEO Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Henninger, Donald, L.

    2013-01-01

    Atmospheric pressure and oxygen concentration of human-occupied space vehicles and habitats are an important life support parameter. The atmosphere is critical in terms of not only safety but also in terms of maximizing human capabilities at the point of scientific discovery. Human exploration missions beyond low earth orbit (LEO) will include extravehicular activity (EVA). EVAs are carried out in low pressure (4.3 psi/29.6 kilopascals) space suits running at 100 percent oxygen. New suits currently in development will be capable of running at a range of pressures between approximately 8.2 psi/56.5 kilopascals and 4.3 psi/29.6 kilopascals. In order to carry out high-frequency EVA phases of a mission safely and more efficiently, it is advantageous to have cabin or vehicle atmospheres at lower total pressure and higher oxygen concentrations. This allows for much reduced pre-breathe times for a fixed risk of decompression sickness and thus more efficient EVAs. The recommended oxygen concentration is 32% and represents a trade with respect to controlling the risk of decompression sickness and risk of fire. Work carried out by NASA in 2006 and continued in 2012 established an atmospheric pressure and oxygen concentration to optimize EVA. This paper will review previous work and describe current recommendations for beyond-LEO human exploration missions.

  14. Human regeneration: An achievable goal or a dream?

    PubMed

    Ghosh, Sukla

    2016-03-01

    The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration. PMID:26949097

  15. Human Research Program Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina

    2010-01-01

    NASA s Human Research Program (HRP) conducts and coordinates research projects that provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The Program is divided into 6 major elements, which a) Provide the Program s knowledge and capabilities to conduct research, addressing the human health and performance risks. b) Advance the readiness levels of technology and countermeasures to the point of transfer to the customer programs and organizations. The National Space Biomedical Research Institute (NSBRI) is a partner with the HRP in developing a successful research program. 3

  16. The Achievements of the Student Nitric Oxide Explorer

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.

    2005-12-01

    The Student Nitric Oxide Explorer (SNOE) completed nearly six years of continuous observation before it reentered the Earth's atmosphere on December 13, 2003. The primary goals of SNOE were to determine the magnitude and variability of nitric oxide in the lower thermosphere and to determine the relationship between NO and the energetic inputs to the atmosphere that create it. SNOE observations confirmed previously held suspicions that the solar soft X-ray irradiance was stronger than the prior sparsely available data and empirical models suggested. SNOE demonstrated that solar soft X-ray irradiance and auroral energy deposition control the abundance of NO over the globe, but provided the very surprising results that wintertime midlatitude NO is controlled by auroral energy while summertime polar NO is controlled by solar irradiance. The morphology of NO is also providing clues to the processes in the magnetospheric which lead to the auroral energy deposition. Serendipitous observations of polar mesospheric clouds by SNOE have provided an excellent database for climatological studies of these clouds, showing that there is a strong hemispheric asymmetry in their distribution and that they are strongly influenced by local dynamics. Many students contributed greatly toward SNOE's design, development, testing, launch, operations, and data analysis. SNOE was managed for NASA by the Universities Space Research Association (USRA) under the Student Explorers Demonstration Initiative (STEDI). The goal of STEDI was to show that small relevant research satellite missions could be developed at low cost and with high educational benefit by giving students a large involvement. SNOE was developed and operated through its primary mission for under five million dollars (excluding only launch vehicle costs). The SNOE development team consisted primarily of students working closely with a small number of experienced professionals. Students had significant responsibilities in all areas

  17. ILEWG roadmap Robotic and Human Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We shall discuss the rationale and roadmap of ongoing Moon missions, and how they can prepare for future human exploration. Various fundamental scientific investigations can be performed with robots and humans: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The roadmap includes also enabling technologies that prepare for the best syenrgies between robots and humans: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package;Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector, Support equipment for astronaut sorties; life science precursors for life support systems. We shall adddress requirements for robotic precursor programmes, global robotic village, technology development, resource utilisation, human aspects, science and exploration from lunar sorties, transition towards permanent settlements and lunar bases.

  18. Exploring Placentophagy in Humans: Problems and Recommendations.

    PubMed

    Marraccini, Marisa E; Gorman, Kathleen S

    2015-01-01

    Placentophagy, the practice of afterbirth ingestion among humans, has grown among middle-class, white women in Western societies. Although the reasons for placentophagy are varied, it is generally promoted as a means to help postpartum women stabilize mood, enhance recovery, and increase milk production. Virtually no studies have explored the effects of placentophagy on humans, and several researchers have called for studies examining the effects of human placentophagy. However, prior to examining the effects of placentophagy, a number of methodological issues need to be addressed. The present review explores research examining the effects of placentophagy in animals and humans and presents the theoretical assumptions behind placentophagy and its effects. Methodological issues related to placentophagy research are clarified, and existing research related to the nutritional and hormonal components of the placenta and their effects on milk production and postpartum depression are reviewed. Finally, implications and recommendations for future research are discussed. PMID:26255799

  19. Connecting Robots and Humans in Mars Exploration

    NASA Astrophysics Data System (ADS)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  20. Exploring the Relationship between Literacy Coaching and Student Reading Achievement in Grades K-1

    ERIC Educational Resources Information Center

    Elish-Piper, Laurie; L'Allier, Susan K.

    2010-01-01

    This study explored the relationship between literacy coaching and student reading achievement in grades K-1 in a school district that received a Reading First grant. The study analyzed how literacy coaches spent their time and explored the relationship between the amount and content of coaching and student reading achievement at the teacher level…

  1. Science strategy for human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Mckay, C. P.; Haberle, R. M.; Andersen, D. T.

    1992-01-01

    The Martian potential for supporting life is considered in this discussion of scientific exploration objectives related to exobiology, climatology, and geology. Two significant areas of research are identified - the habitability of Mars and the general relationship between planetary parameters and life - and an exploration strategy is developed. Four phases of human exploration are determined including: (1) precursor missions for evaluating the Martian environment; (2) emplacement missions for studying specific landing sites; (3) consolidation missions for the development of permanent exploratory-mission bases; and (4) a final utilization phase in which global Martian exploration is conducted. The logistical considerations related to each phase are discussed with specific references to types of vehicles and technology required.

  2. Returners and explorers dichotomy in human mobility.

    PubMed

    Pappalardo, Luca; Simini, Filippo; Rinzivillo, Salvatore; Pedreschi, Dino; Giannotti, Fosca; Barabási, Albert-László

    2015-01-01

    The availability of massive digital traces of human whereabouts has offered a series of novel insights on the quantitative patterns characterizing human mobility. In particular, numerous recent studies have lead to an unexpected consensus: the considerable variability in the characteristic travelled distance of individuals coexists with a high degree of predictability of their future locations. Here we shed light on this surprising coexistence by systematically investigating the impact of recurrent mobility on the characteristic distance travelled by individuals. Using both mobile phone and GPS data, we discover the existence of two distinct classes of individuals: returners and explorers. As existing models of human mobility cannot explain the existence of these two classes, we develop more realistic models able to capture the empirical findings. Finally, we show that returners and explorers play a distinct quantifiable role in spreading phenomena and that a correlation exists between their mobility patterns and social interactions. PMID:26349016

  3. Returners and explorers dichotomy in human mobility

    NASA Astrophysics Data System (ADS)

    Pappalardo, Luca; Simini, Filippo; Rinzivillo, Salvatore; Pedreschi, Dino; Giannotti, Fosca; Barabási, Albert-László

    2015-09-01

    The availability of massive digital traces of human whereabouts has offered a series of novel insights on the quantitative patterns characterizing human mobility. In particular, numerous recent studies have lead to an unexpected consensus: the considerable variability in the characteristic travelled distance of individuals coexists with a high degree of predictability of their future locations. Here we shed light on this surprising coexistence by systematically investigating the impact of recurrent mobility on the characteristic distance travelled by individuals. Using both mobile phone and GPS data, we discover the existence of two distinct classes of individuals: returners and explorers. As existing models of human mobility cannot explain the existence of these two classes, we develop more realistic models able to capture the empirical findings. Finally, we show that returners and explorers play a distinct quantifiable role in spreading phenomena and that a correlation exists between their mobility patterns and social interactions.

  4. Returners and explorers dichotomy in human mobility

    PubMed Central

    Pappalardo, Luca; Simini, Filippo; Rinzivillo, Salvatore; Pedreschi, Dino; Giannotti, Fosca; Barabási, Albert-László

    2015-01-01

    The availability of massive digital traces of human whereabouts has offered a series of novel insights on the quantitative patterns characterizing human mobility. In particular, numerous recent studies have lead to an unexpected consensus: the considerable variability in the characteristic travelled distance of individuals coexists with a high degree of predictability of their future locations. Here we shed light on this surprising coexistence by systematically investigating the impact of recurrent mobility on the characteristic distance travelled by individuals. Using both mobile phone and GPS data, we discover the existence of two distinct classes of individuals: returners and explorers. As existing models of human mobility cannot explain the existence of these two classes, we develop more realistic models able to capture the empirical findings. Finally, we show that returners and explorers play a distinct quantifiable role in spreading phenomena and that a correlation exists between their mobility patterns and social interactions. PMID:26349016

  5. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  6. Human Exploration Science Office (KX) Overview

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  7. Heavy Ion Carcinogenesis and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durante, Marco

    2008-01-01

    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  8. Human Exploration of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Abell, P. A.; Barbee, B. W.; Chodas, P. W.; Kawaguchi, J.; Landis, R. R.; Mazanek, D. D.; Michel, P.

    Due to a number of factors, including a recent U.S. presidential directive, the successful return of an asteroid sample by the Japanese spacecraft Hayabusa in 2010, and the high-visibility airburst impact event over Chelyabinsk, Russia, in 2013, scientific and exploration interest in near-Earth asteroids (NEAs) has never been greater. In particular, NASA and the Japanese and European space agencies have begun expending serious effort to discover and identify appropriate NEA targets for a wide variety of spaceflight activities, including both robotic and human missions. These missions are particularly attractive as they will yield an unprecedented amount of knowledge about the formation of the solar system, provide a stepping-stone approach for future human exploration missions to Mars and beyond, identify materials for in situ resource utilization (ISRU), and test techniques for deflecting potentially hazardous objects that threaten Earth.

  9. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  10. Human Exploration Framework Team: Strategy and Status

    NASA Technical Reports Server (NTRS)

    Muirhead, Brian K.; Sherwood, Brent; Olson, John

    2011-01-01

    Human Exploration Framework Team (HEFT) was formulated to create a decision framework for human space exploration that drives out the knowledge, capabilities and infrastructure NASA needs to send people to explore multiple destinations in the Solar System in an efficient, sustainable way. The specific goal is to generate an initial architecture that can evolve into a long term, enterprise-wide architecture that is the basis for a robust human space flight enterprise. This paper will discuss the initial HEFT activity which focused on starting up the cross-agency team, getting it functioning, developing a comprehensive development and analysis process and conducting multiple iterations of the process. The outcome of this process will be discussed including initial analysis of capabilities and missions for at least two decades, keeping Mars as the ultimate destination. Details are provided on strategies that span a broad technical and programmatic trade space, are analyzed against design reference missions and evaluated against a broad set of figures of merit including affordability, operational complexity, and technical and programmatic risk.

  11. Morpheus: Advancing Technologies for Human Exploration

    NASA Technical Reports Server (NTRS)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  12. Human space exploration - From surviving to performing

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Bukley, Angelia P.

    2014-07-01

    This paper explores the evolution of human spaceflight by examining the space programs of the United States, Russia, including the former Soviet Union, and China. A simple analysis of the numbers of humans who have flown into space, the durations of the missions flown, and the accumulated flight time of the individuals reveals that spaceflight is decidedly male-dominated and that approximately one out of six individuals flown was a non-career astronaut. In addition, 31 individuals have accumulated long-duration flight experience equivalent to a round trip to Mars. An examination of the evolution of spacecraft that have made these missions possible indicates that the time to accomplish the first four to five flights of a new human space vehicle has increased from less than one year to nearly 10 years.

  13. Mission Architecture Comparison for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Geffre, Jim; Robertson, Ed; Lenius, Jon

    2006-01-01

    The Vision for Space Exploration outlines a bold new national space exploration policy that holds as one of its primary objectives the extension of human presence outward into the Solar System, starting with a return to the Moon in preparation for the future exploration of Mars and beyond. The National Aeronautics and Space Administration is currently engaged in several preliminary analysis efforts in order to develop the requirements necessary for implementing this objective in a manner that is both sustainable and affordable. Such analyses investigate various operational concepts, or mission architectures , by which humans can best travel to the lunar surface, live and work there for increasing lengths of time, and then return to Earth. This paper reports on a trade study conducted in support of NASA s Exploration Systems Mission Directorate investigating the relative merits of three alternative lunar mission architecture strategies. The three architectures use for reference a lunar exploration campaign consisting of multiple 90-day expeditions to the Moon s polar regions, a strategy which was selected for its high perceived scientific and operational value. The first architecture discussed incorporates the lunar orbit rendezvous approach employed by the Apollo lunar exploration program. This concept has been adapted from Apollo to meet the particular demands of a long-stay polar exploration campaign while assuring the safe return of crew to Earth. Lunar orbit rendezvous is also used as the baseline against which the other alternate concepts are measured. The first such alternative, libration point rendezvous, utilizes the unique characteristics of the cislunar libration point instead of a low altitude lunar parking orbit as a rendezvous and staging node. Finally, a mission strategy which does not incorporate rendezvous after the crew ascends from the Moon is also studied. In this mission strategy, the crew returns directly to Earth from the lunar surface, and is

  14. Research on Human-Robot Joint System for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The lunar exploration in China is in progress. In order to reduce human workload and costs, and conduct researches more effectively and efficiently, human-robot joint systems are necessary for lunar exploration. The concept of human-robot joint system for lunar exploration is studied in this paper. The possible collaborative ways between human and robots and the collaborative activities which can be conducted for lunar exploration are discussed. Moreover, the preliminary configuration of a human-robot joint system is presented.

  15. Science Driven Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  16. To Master or Perform? Exploring Relations between Achievement Goals and Conceptual Change Learning

    ERIC Educational Resources Information Center

    Ranellucci, John; Muis, Krista R.; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M.

    2013-01-01

    Background: Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. Aims: To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Sample and Method:…

  17. Student Achievement and the Distribution of Human and Fiscal Resources in Mississippi Public School Districts

    ERIC Educational Resources Information Center

    Johnson, Jerry

    2005-01-01

    In an effort to explore whether resources matter in Mississippi, this study investigates the relationship between: (1) student achievement; and (2) human and fiscal resources among school districts. In considering these relationships, it is important to recognize that the cost of providing an adequate education may vary with the socioeconomic…

  18. Strategies For Human Exploration Leading To Human Colonization of Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  19. Developing Advanced Human Support Technologies for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

    2004-01-01

    The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a

  20. Radiation exposure for human Mars exploration.

    PubMed

    Simonsen, L C; Wilson, J W; Kim, M H; Cucinotta, F A

    2000-11-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human space flight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle events was of great concern. A new challenge appears in deep-space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays since the missions are of long duration, and accumulated exposures can be high. Because cancer induction rates increase behind low to moderate thicknesses of aluminum shielding, according to available biological data on mammalian exposures to galactic cosmic ray-like ions, aluminum shield requirements for a Mars mission may be prohibitively expensive in terms of mission launch costs. Alternative materials for vehicle construction are under investigation to provide lightweight habitat structures with enhanced shielding properties. In the present paper, updated estimates for astronaut exposures on a Mars mission are presented and shielding properties of alternative materials are compared with aluminum. PMID:11045525

  1. Human Exploration and Development of Space: Strategic Plan

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell (Editor); Allen, Marc (Editor); Bihner, William (Editor); Cooke, Douglas (Editor); Craig, Mark (Editor); Crouch, Matthew (Editor); Crouch, Roger (Editor); Flaherty, Chris (Editor); Haynes, Norman (Editor); Horowitz, Steven (Editor)

    2001-01-01

    In order to make possible the permanent extension of human presence beyond the bounds of Earth and enable historic improvements in our understanding of our solar system and the universe, and the quality of life, NASA must: (1) Undertake, in partnership with the scientific community, sustained international explorations throughout the inner solar system by integrated human/robotic expeditions; (2) Achieve breakthrough discoveries and technology developments through basic, applied, and commercial research in the unique venue of space--exploiting characteristics such as microgravity, vacuum, radiation, and location; (3) Establish safe and routine access to space in support of permanent commercial human operations in low-Earth orbit and ongoing exploration activities at one or more sites beyond Earth orbit; (4) Engage the private sector in the commercial development of space and enable the creation of new space industries generating new wealth for the US economy; and (5) Communicate the excitement and importance of the discovery of new worlds and the profound insights we will gain into the origins of life and the universe. In order to guide planning, the Human Exploration and Development of Space (HEDS) Enterprise has identified some potential future targets and goals (e.g. 'Design Reference Points') beginning with the near-term and extending to the far-term and beyond.

  2. Shielding Strategies for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)

    1997-01-01

    A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.

  3. Affordability Approaches for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Smith, David Alan

    2012-01-01

    The design and development of historical NASA Programs (Apollo, Shuttle and International Space Station), have been based on pre-agreed missions which included specific pre-defined destinations (e.g., the Moon and low Earth orbit). Due to more constrained budget profiles, and the desire to have a more flexible architecture for Mission capture as it is affordable, NASA is working toward a set of Programs that are capability based, rather than mission and/or destination specific. This means designing for a performance capability that can be applied to a specific human exploration mission/destination later (sometime years later). This approach does support developing systems to flatter budgets over time, however, it also poses the challenge of how to accomplish this effectively while maintaining a trained workforce, extensive manufacturing, test and launch facilities, and ensuring mission success ranging from Low Earth Orbit to asteroid destinations. NASA Marshall Space Flight Center (MSFC) in support of Exploration Systems Directorate (ESD) in Washington, DC has been developing approaches to track affordability across multiple Programs. The first step is to ensure a common definition of affordability: the discipline to bear cost in meeting a budget with margin over the life of the program. The second step is to infuse responsibility and accountability for affordability into all levels of the implementing organization since affordability is no single person s job; it is everyone s job. The third step is to use existing data to identify common affordability elements organized by configuration (vehicle/facility), cost, schedule, and risk. The fourth step is to analyze and trend this affordability data using an affordability dashboard to provide status, measures, and trends for ESD and Program level of affordability tracking. This paper will provide examples of how regular application of this approach supports affordable and therefore sustainable human space exploration

  4. Toxicological Risks During Human Space Exploration

    NASA Technical Reports Server (NTRS)

    James, John T.; Limero, T. F.; Lam, C. W.; Billica, Roger (Technical Monitor)

    2000-01-01

    The goal of toxicological risk assessment of human space flight is to identify and quantify significant risks to astronaut health from air pollution inside the vehicle or habitat, and to develop a strategy for control of those risks. The approach to completing a toxicological risk assessment involves data and experience on the frequency and severity of toxicological incidents that have occurred during space flight. Control of these incidents depends on being able to understand their cause from in-flight and ground-based analysis of air samples, crew reports of air quality, and known failures in containment of toxic chemicals. Toxicological risk assessment in exploration missions must be based on an evaluation of the unique toxic hazards presented by the habitat location. For example, lunar and Martian dust must be toxicologically evaluated to determine the appropriate control measures for exploration missions. Experience with near-earth flights has shown that the toxic products from fires present the highest risk to crew health from air pollution. Systems and payload leaks also present a significant hazard. The health risk from toxicity associated with materials offgassing or accumulation of human metabolites is generally well controlled. Early tests of lunar and Martian dust simulants have shown that each posses the potential to cause fibrosis in the lung in a murine model. Toxicological risks from air pollutants in space habitats originate from many sources. A number of risks have been identified through near-earth operations; however, the evaluation of additional new risks present during exploration missions will be a challenge.

  5. Modeling Operations Costs for Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  6. Scientific objectives of human exploration of Mars

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.

  7. Robots and Humans in Planetary Exploration: Working Together?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  8. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    NASA Astrophysics Data System (ADS)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  9. Exploring the Middle School Science Achievement Gap: Influences of Curriculum, Instruction and Students' Perceptions

    ERIC Educational Resources Information Center

    Winning, Rosalie Anne

    2012-01-01

    Students' science achievement has been subject to scrutiny and criticism in the United States. The decline in rankings on standardized international assessments has been the focus of concern for educators, policy makers, parents and society at large. This study, designed as an action research, explored the factors contributing to the decrease…

  10. Student Conscientiousness, Self-Regulated Learning, and Science Achievement: An Explorative Field Study

    ERIC Educational Resources Information Center

    Eilam, Billie; Zeidner, Moshe; Aharon, Irit

    2009-01-01

    This explorative field study examined the mediating role of self-regulated learning (SRL) in the relationship between the personality trait of conscientiousness, SRL, and science achievement in a sample of junior high school students. Over the course of an entire academic year, data on enacted SRL were collected each week for 52 eighth-grade…

  11. Exploring the Role of Motivational Factors in the Academic Achievement of EFL Learners

    ERIC Educational Resources Information Center

    Solak, Ekrem

    2012-01-01

    The purpose of this research is to explore the role of motivational factors in the academic achievement of EFL learners. The research was conducted at a State University, Faculty of Education in Turkey. The participants were 230 freshman prospective teachers from four different academic majors taking English class. Attitude/Motivation Test Battery…

  12. Cultural Competency and Achieving Styles in Clinical Social Work: A Conceptual and Empirical Exploration.

    ERIC Educational Resources Information Center

    Lu, Yuhwa Eva; Lum, Doman; Chen, Sheying

    2001-01-01

    A study explored the relationship between linguistic/cultural differences and individual achieving styles among 900 clinical social workers, including Asian Americans, Latinos, American Indians, African Americans, Jewish Americans, and Whites. Findings are related to a model of cultural competency in which cross-cultural counselor-client…

  13. Exploring the Complex Relations between Achievement Emotions and Self-Regulated Learning Behaviors in Online Learning

    ERIC Educational Resources Information Center

    Artino, Anthony R., Jr.; Jones, Kenneth D., II

    2012-01-01

    Online learning continues to grow, but there is limited empirical research on the personal factors that influence success in online contexts. This investigation addresses this research gap by exploring the relations between several discrete achievement-related emotions (boredom, frustration, and enjoyment) and self-regulated learning behaviors…

  14. Exploring the Relationship between Students' Self-Regulated Learning Ability and their ePortfolio Achievement

    ERIC Educational Resources Information Center

    Cheng, Gary; Chau, Juliana

    2013-01-01

    This study explores the relationship between students' self-regulated learning (SRL) ability and their ePortfolio achievement in a language enhancement programme. Undergraduate students (N = 26) were asked to create several ePortfolio showcases to demonstrate their English language learning experience over a period of three months. Upon completion…

  15. Benefits of Microalgae for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  16. Insight into error hiding: exploration of nursing students' achievement goal orientations.

    PubMed

    Dunn, Karee E

    2014-02-01

    An estimated 50% of medication errors go unreported, and error hiding is costly to hospitals and patients. This study explored one issue that may facilitate error hiding. Descriptive statistics were used to examine nursing students' achievement goal orientations in a high-fidelity simulation course. Results indicated that although this sample of nursing students held high mastery goal orientations, they also held moderate levels of performance-approach and performance-avoidance goal orientations. These goal orientations indicate that this sample is at high risk for error hiding, which places the benefits that are typically gleaned from a strong mastery orientation at risk. Understanding variables, such as goal orientation, that can be addressed in nursing education to reduce error hiding is an area of research that needs to be further explored. This article discusses the study results and evidence-based instructional practices for this sample's achievement goal orientation profile. PMID:24444007

  17. Exploring NASA Human Spaceflight and Pioneering Scenarios

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Wilhite, Alan

    2015-01-01

    The life cycle cost analysis of space exploration scenarios is explored via a merger of (1) scenario planning, separating context and (2) modeling and analysis of specific content. Numerous scenarios are presented, leading to cross-cutting recommendations addressing life cycle costs, productivity, and approaches applicable to any scenarios. Approaches address technical and non-technical factors.

  18. Transition in the Human Exploration of Space at NASA

    NASA Technical Reports Server (NTRS)

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  19. INTEGRITY - Integrated Human Exploration Mission Simulation Facility

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2002-01-01

    It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the

  20. Human Exploration and Development of Space: Strategic Plan

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell (Editor); Allen, Marc (Editor); Bihner, William (Editor); Craig, Mark (Editor); Crouch, Matthew (Editor); Crouch, Roger (Editor); Flaherty, Chris (Editor); Haynes, Norman (Editor); Horowitz, Steven (Editor)

    2000-01-01

    The five goals of the Human Exploration and Development of Space include: 1) Explore the Space Frontier; 2) Expand Scientific Knowledge; 3) Enable Humans to Live and Work Permanently in Space; 4) Enable the Commercial Development of Space; and 5) Share the Experience and Benefits of Discovery.

  1. Understanding Movement: A Sociocultural Approach to Exploring Moving Humans

    ERIC Educational Resources Information Center

    Larsson, Hakan; Quennerstedt, Mikael

    2012-01-01

    The purpose of the article is to outline a sociocultural way of exploring human movement. Our ambition is to develop an analytical framework where moving humans are explored in terms of what it means to move as movements are performed by somebody, for a certain purpose, and in a certain situation. We find this approach in poststructural…

  2. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  3. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    Reasons for mounting the Space Exploration Initiative, the variables facing U.S. planners, and the developmental technologies that will be needed to support this initiative are discussed. The three more advanced technological approaches in the field of power generation described include a lunar-based solar power system, a geosynchronous-based earth orbit solar power satellite system, and the utilization of helium-3/deuterium fusion reaction to create a nuclear fuel cycle. It is noted that the major elements of the SEI will include a heavy-lift launch vehicle, a transfer vehicle and a descent/ascent vehicle for use on lunar missions and adaptable to Mars exploration.

  4. Human System Drivers for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Steinberg, Susan; Charles, John B.

    2010-01-01

    Evaluation of DRM4 in terms of the human system includes the ability to meet NASA standards, the inclusion of the human system in the design trade space, preparation for future missions and consideration of a robotic precursor mission. Ensuring both the safety and the performance capability of the human system depends upon satisfying NASA Space Flight Human System Standards.1 These standards in turn drive the development of program-specific requirements for Near-earth Object (NEO) missions. In evaluating DRM4 in terms of these human system standards, the currently existing risk models, technologies and biological countermeasures were used. A summary of this evaluation is provided below in a structure that supports a mission architecture planning activities. 1. Unacceptable Level of Risk The duration of the DRM4 mission leads to an unacceptable level of risk for two aspects of human system health: A. The permissible exposure limit for space flight radiation exposure (a human system standard) would be exceeded by DRM4. B. The risk of visual alterations and abnormally high intracranial pressure would be too high. 1

  5. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    NASA Astrophysics Data System (ADS)

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-01

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for ``all propulsive'' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  6. Requirements for a common nuclear propulsion and power reactor for human exploration missions to Mars

    SciTech Connect

    Cataldo, Robert L.; Borowski, Stanley K.

    1998-01-15

    Requirements for propulsion and power systems capable of achieving a safe, reliable, robust and affordable human Mars exploration mission have been identified. Nuclear systems have been identified that can meet the challenges of short trip times, reduced number of launch vehicles, potential for 'all propulsive' maneuvers, abundant in-space power and low mass, volume and deployed area, and energy rich surface power. Reduced total systems cost will also be mandatory to achieve affordable human exploration of Mars. Hence, it is desirable to design a space propulsion and surface power reactor with the greatest degree of commonality as possible with the goal of reducing total system costs.

  7. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark A.; Rogers, James H.

    2015-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  8. The contamination impact of human exploration to a subterranean environment and the implications for further crewed space exploration

    NASA Astrophysics Data System (ADS)

    Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa

    2016-07-01

    The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.

  9. Deep Space Design Environments for Human Exploration

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; DeAngelis, G.

    2002-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed.

  10. Deep space environments for human exploration

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Clowdsley, M. S.; Cucinotta, F. A.; Tripathi, R. K.; Nealy, J. E.; De Angelis, G.

    2004-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. Published by Elsevier Ltd on behalf of COSPAR.

  11. Deep space environments for human exploration.

    PubMed

    Wilson, J W; Clowdsley, M S; Cucinotta, F A; Tripathi, R K; Nealy, J E; De Angelis, G

    2004-01-01

    Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed. PMID:15880915

  12. Human exploration of space and power development

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1991-01-01

    The possible role of Solar Power Satellites (SPS) in advancing the goals of the Space Exploration Initiative is considered. Three approaches are examined: (1) the use of lunar raw materials to construct a large SPS in GEO, (2) the construction of a similar system on the lunar surface, and (3) a combination of (1) and (2). Emphasis is given to the mining of He-3 from the moon and its use by the SPS.

  13. Interaction Challenges in Human-Robot Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  14. Workshop on Science and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    2001-01-01

    The exploration of Mars will be a multi-decadal activity. Currently, a scientific program is underway, sponsored by NASA's Office of Space Science in the United States, in collaboration with international partners France, Italy, and the European Space Agency. Plans exist for the continuation of this robotic program through the first automated return of Martian samples in 2014. Mars is also a prime long-term objective for human exploration, and within NASA, efforts are being made to provide the best integration of the robotic program and future human exploration missions. From the perspective of human exploration missions, it is important to understand the scientific objectives of human missions, in order to design the appropriate systems, tools, and operational capabilities to maximize science on those missions. In addition, data from the robotic missions can provide critical environmental data - surface morphology, materials composition, evaluations of potential toxicity of surface materials, radiation, electrical and other physical properties of the Martian environment, and assessments of the probability that humans would encounter Martian life forms. Understanding of the data needs can lead to the definition of experiments that can be done in the near-term that will make the design of human missions more effective. This workshop was convened to begin a dialog between the scientific community that is central to the robotic exploration mission program and a set of experts in systems and technologies that are critical to human exploration missions. The charge to the workshop was to develop an understanding of the types of scientific exploration that would be best suited to the human exploration missions and the capabilities and limitations of human explorers in undertaking science on those missions.

  15. Automation and Robotics for Human Mars Exploration (AROMA).

    PubMed

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. PMID:14649261

  16. Exploring human inactivity in computer power consumption

    NASA Astrophysics Data System (ADS)

    Candrawati, Ria; Hashim, Nor Laily Binti

    2016-08-01

    Managing computer power consumption has become an important challenge in computer society and this is consistent with a trend where a computer system is more important to modern life together with a request for increased computing power and functions continuously. Unfortunately, previous approaches are still inadequately designed to handle the power consumption problem due to unpredictable workload of a system caused by unpredictable human behaviors. This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. Human inactivity is handled by adapting the behavioral changes of the users. This paper observes human inactivity in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption. An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to others.

  17. The Exploration of Mars by Humans: Why Mars? Why Humans?

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    2011-01-01

    As we commemorate the 50th anniversary of Yuri Gagarin's historic flight in 1961, the first flight of a human in space, plans are underway for another historic human mission. Plans are being developed for a human mission to Mars. Once we reach Mars, the human species will become the first two-planet species. Both the Bush Administration (in 2004) and the Obama Administration (in 2010) proposed a human mission to Mars as a national goal of the United States.

  18. Estimating the costs of human space exploration

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt C., Jr.

    1994-01-01

    The plan for NASA's new exploration initiative has the following strategic themes: (1) incremental, logical evolutionary development; (2) economic viability; and (3) excellence in management. The cost estimation process is involved with all of these themes and they are completely dependent upon the engineering cost estimator for success. The purpose is to articulate the issues associated with beginning this major new government initiative, to show how NASA intends to resolve them, and finally to demonstrate the vital importance of a leadership role by the cost estimation community.

  19. Human Outer Solar System Exploration via Q-Thruster Technology

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  20. Mars Ascent Vehicle Design for Human Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Thomas, Dan; Sutherlin, Steven; Stephens, Walter; Rucker, Michelle

    2015-01-01

    In NASA's evolvable Mars campaign, transportation architectures for human missions to Mars rely on a combination of solar electric propulsion and chemical propulsion systems. Minimizing the Mars ascent vehicle (MAV) mass is critical in reducing the overall lander mass and also eases the requirements placed on the transportation stages. This paper presents the results of a conceptual design study to obtain a minimal MAV configuration, including subsystem designs and mass summaries.

  1. Human Centered Computing for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2005-01-01

    The science objectives are to determine the aqueous, climatic, and geologic history of a site on Mars where conditions may have been favorable to the preservation of evidence of prebiotic or biotic processes. Human Centered Computing is a development process that starts with users and their needs, rather than with technology. The goal is a system design that serves the user, where the technology fits the task and the complexity is that of the task not of the tool.

  2. A Flexible Path for Human and Robotic Space Exploration

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Landis, Robert; Merrill, Raymond Gabriel; Mazanek, Daniel D.; Falck, Robert D.; Adams, Robert B.

    2010-01-01

    During the summer of 2009, a flexible path scenario for human and robotic space exploration was developed that enables frequent, measured, and publicly notable human exploration of space beyond low-Earth orbit (LEO). The formulation of this scenario was in support of the Exploration Beyond LEO subcommittee of the Review of U.S. Human Space Flight Plans Committee that was commissioned by President Obama. Exploration mission sequences that allow humans to visit a wide number of inner solar system destinations were investigated. The scope of destinations included the Earth-Moon and Earth-Sun Lagrange points, near-Earth objects (NEOs), the Moon, and Mars and its moons. The missions examined assumed the use of Constellation Program elements along with existing launch vehicles and proposed augmentations. Additionally, robotic missions were envisioned as complements to human exploration through precursor missions, as crew emplaced scientific investigations, and as sample gathering assistants to the human crews. The focus of the flexible path approach was to gain ever-increasing operational experience through human exploration missions ranging from a few weeks to several years in duration, beginning in deep space beyond LEO and evolving to landings on the Moon and eventually Mars.

  3. Exploring the folkbiological conception of human nature

    PubMed Central

    Linquist, Stefan; Machery, Edouard; Griffiths, Paul E.; Stotz, Karola

    2011-01-01

    Integrating the study of human diversity into the human evolutionary sciences requires substantial revision of traditional conceptions of a shared human nature. This process may be made more difficult by entrenched, ‘folkbiological’ modes of thought. Earlier work by the authors suggests that biologically naive subjects hold an implicit theory according to which some traits are expressions of an animal's inner nature while others are imposed by its environment. In this paper, we report further studies that extend and refine our account of this aspect of folkbiology. We examine biologically naive subjects' judgments about whether traits of an animal are ‘innate’, ‘in its DNA’ or ‘part of its nature’. Subjects do not understand these three descriptions to be equivalent. Both innate and in its DNA have the connotation that the trait is species-typical. This poses an obstacle to the assimilation of the biology of polymorphic and plastic traits by biologically naive audiences. Researchers themselves may not be immune to the continuing pull of folkbiological modes of thought. PMID:21199848

  4. Robotic Assistance for Human Planetary and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly S.

    2004-01-01

    Human exploration of space will need robotic assistance in many areas. The type and functionality of such robots needs to be more clearly defined as we resume human missions to the moon and begin human missions to Mars. This paper will identify possible robotic assistants, including their control modes, workplaces, and physical attributes. Current JSC human-robot interaction projects are described, and lessons learned from extensive field tests are given. Future scenario considerations are then detailed. Earth-based testing of varied robotic assistants will provide a means of defining what capabilities are needed for future exploration.

  5. Robonaut 2 Maps The Way For Human Exploration

    NASA Video Gallery

    Robonaut 2 is one of the advanced robotic capabilities being developed by NASA to survey deep space and planetary surfaces, and to map the way for future human exploration. From working onboard the...

  6. Space Exploration as a Human Enterprise: The Scientific Interest

    ERIC Educational Resources Information Center

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  7. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  8. NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies

    NASA Technical Reports Server (NTRS)

    Mueller, Rob P.

    2012-01-01

    NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

  9. Robotic and Human Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. space exploration policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.

  10. Exploring the Relationship between Human Resource Development Functions and the Mentoring Process: A Qualitative Study

    ERIC Educational Resources Information Center

    Cole, Ann F.; McArdle, Geri; Clements, Kimberly D.

    2005-01-01

    Human resource development professionals are in a unique position to help organizations achieve maximum positive impact and avoid legal difficulties when implementing mentoring programs. This case study explored a formal mentoring program that was data-based and linked to HRD in order to advance the mentoring process as an effective individual and…

  11. Radiation risk and human space exploration

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.

  12. Radiation risk and human space exploration.

    PubMed

    Schimmerling, W; Cucinotta, F A; Wilson, J W

    2003-01-01

    Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. PMID:12577903

  13. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    NASA Technical Reports Server (NTRS)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  14. Human Space Exploration architecture study in TAS-I

    NASA Astrophysics Data System (ADS)

    Perino, M. A.

    The international space exploration plans foresee in the next decades multiple robotic and human missions to Moon, Mars and asteroids. The US Space Exploration program addresses the objective "to explore space and extend a human presence across the Solar System". Main steps include the completion of the International Space Station and its utilization in support of space exploration goals, "as the launching point for missions beyond the Low Earth Orbit". Along a parallel matching path, Europe has developed a roadmap for exploration - Aurora - and has supported design activities on combined Moon-Mars Exploration Architectures. Thales Alenia Space - Italia has been involved in the major European activities related to exploration and it is currently analyzing the different exploration scenarios considered by the major Space Agencies with the objective to identify an international reference scenario for exploration taking into account the need to balance collaboration at international level due to the highly demanding nature of planetary exploration missions, and the development of autonomous key capabilities considered of strategic importance.

  15. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark; Rogers, James H.

    2015-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These risk assessments typically cover the concept phase of a DRM, i.e. when little more than a general idea of the mission is known and are used to help establish "best estimates" for proposed program and agency level risk requirements. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  16. Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development

    NASA Technical Reports Server (NTRS)

    Boyer, Roger L.; Bigler, Mark; Rogers, James H.

    2014-01-01

    Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These risk assessments typically cover the concept phase of a DRM, i.e. when little more than a general idea of the mission is known and are used to help establish "best estimates" for proposed program and agency level risk requirements. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

  17. Accessing the Lunar Poles for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2004-01-01

    The National Vision for Space Exploration calls for an American return to the Moon in preparation for the human exploration of Mars and other destinations. The surface environment of the Moon is a challenge for human operations, but recent findings from robotic and Earth-based studies have indicated that the polar regions of the Moon may offer advantages in terms of thermal conditions, availability of solar energy, and access to local resources. While accessing these regions represents a challenge due to orbital dynamics and propulsive performance, methods for accessing the regions with humans are being actively pursued, and environmental data gathering is planned through future robotic missions.

  18. Architectures for Human Exploration of Near Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The presentation explores human exploration of Near Earth Asteroid (NEA) key factors including challenges of supporting humans for long-durations in deep-space, incorporation of advanced technologies, mission design constraints, and how many launches are required to conduct a round trip human mission to a NEA. Topics include applied methodology, all chemical NEA mission operations, all nuclear thermal propulsion NEA mission operations, SEP only for deep space mission operations, and SEP/chemical hybrid mission operations. Examples of mass trends between datasets are provided as well as example sensitivity of delta-v and trip home, sensitivity of number of launches and trip home, and expected targets for various transportation architectures.

  19. Teleoperation from Mars Orbit: A proposal for Human Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    For a human expedition to Mars, a case can be made that the best strategy for initial exploration is not to actually land the humans on Mars, but to put the humans into Mars orbit and operate on the surface by the technology of teleoperation. This will provide the results of human exploration, but at greatly reduced risk and cost. Teleoperation of Mars surface robots from a Mars-orbital habitat will operation near real time operation with minimum time delay, giving a virtual presence on the surface. By use of teleoperation, it is possible to vastly simplify the surface exploration mission. We now have no need to develop a human-rated Mars Lander and Mars Ascent Vehicle, and we can send geologists & biologists on the mission; not VTOL pilots. It is a cheaper, simpler, and safer way to explore, and hence it will be a faster way to explore. It has the excitement of being there, at a fraction of the price. Tele-exploration from Mars orbit also allows human (virtual) presence at a wide variety of locations. With an orbital base controlling surface telerobotics, human explorers are not stuck with one base location, but can explore all over Mars. They can explore the polar caps and also near-equatorial canyon regions, from the same orbiting base. This frees the mission from landing site constraints. With no need to select a "grab bag" site that contains a large number of geologically diverse features at or near a single location; it is now possible go to all the best sites-- paleolake sites, river beds, volcanic calderas, lava tube sites, layered terrain, canyons, possible shoreline features, the North and South poles. A near-polar inclination 24-hr 39-minute period Mars orbit, for example, will put the orbital station in line-of-sight of a given region for about 8 hours per day-- one teleoperation shift. Since present day life could exist on Mars, planetary protection is also needed to preserve the (possible) fragile Mars biosphere from competition from ferocious Earth

  20. Mars scientific investigations as a precursor for human exploration.

    PubMed

    Ahlf, P; Cantwell, E; Ostrach, L; Pline, A

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. PMID:11708369

  1. "STEPS" Avionics for Exploration Systems the Achieved Results and the Next "STEPS-2"

    NASA Astrophysics Data System (ADS)

    Martelli, Andrea; Perino, Maria Antonietta; Gaia, Enrico; Paccagnini, Carlo

    2013-08-01

    This paper presents the STEPS project reached results in the avionics domains like: vision-based GNC for Mars Descent & Landing, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on perception, 3D map reconstruction and path planning; Mobility & Mechanisms providing an Integrated Ground Mobility System, Rendezvous & Docking equipment, and protection from Environment effects; Human-machine interface features of a predictive Command and Control System;; novel Design & Development Tools, such as a Rover S/W simulator and prototypes of the DEM viewer and of a S/W Rock Creator/visualizator. This paper presents also the STEPS 2 project that started January 2013 and is aimed at improving the development of the most promising technologies, selected from the results of the first STEP phase, and addressing the needs of the exploration missions as defined in the 2012 ministerial conference, with the ultimate goal of an in-flight validation within next five years.

  2. Exploring the Relationships among Mirror Neurons, Theory of Mind, and Achievement Goals: Towards a Model of Achievement Goal Contagion in Educational Settings

    ERIC Educational Resources Information Center

    Eren, Altay

    2009-01-01

    This article aimed to examine the relationship between mirror neuron and theory of mind functions and to explore their possible roles in the emergence of an achievement goal contagion in educational settings such as classrooms. Based on the evidence from different lines of research such as neurobiology, neuropsychology, social psychology, and…

  3. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  4. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  5. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  6. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  7. Integrating Human Factors into Crew Exploration Vehicle Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup

  8. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  9. Planetary Protection Issues in the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  10. Robust and Fragile Mathematical Identities: A Framework for Exploring Racialized Experiences and High Achievement among Black College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2015-01-01

    I introduce the construct of fragile and robust identities for the purpose of exploring the experiences that influenced the mathematical and racial identities of high-achieving Black college students in mathematics and engineering. These students maintained high levels of academic achievement in these fields while enduring marginalization,…

  11. Student Voices: A Phenomenological Exploration of Minority Girls' Experiences and Beliefs Related to Academic Achievement

    ERIC Educational Resources Information Center

    Alpren, Kathleen

    2012-01-01

    For decades, measures of academic outcomes have demonstrated the underachievement of minority students. The purpose of this study was to include student voices in a discussion of achievement by exploring the experiences and beliefs of minority girls that related to academic achievement in one single-sex urban high school. Moreover, the research…

  12. Automation and Robotics for Human Mars Exploration (AROMA)

    NASA Technical Reports Server (NTRS)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  13. An argument for human exploration of the moon and Mars.

    PubMed

    Spudis, P D

    1992-01-01

    A debate of the merits of human space travel as opposed to robots is presented. While robotic space travel would be considerably less expensive, the author takes the position that there are certain skills and research abilities that only humans possess. Human contributions to past lunar exploration are considered, along with a discussion of the interaction of humans with robotics or other artificial intelligence or computer driven technologies. The author concludes that while robots and machines are tools which should be incorporated into space travel, they are not adequate substitutes for people. PMID:11539591

  14. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  15. Role of Fundamental Physics in Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  16. The Asteroid Redirect Mission and sustainable human exploration

    NASA Astrophysics Data System (ADS)

    Gates, Michele; Stich, Steve; McDonald, Mark; Muirhead, Brian; Mazanek, Dan; Abell, Paul; Lopez, Pedro

    2015-06-01

    We present the importance of the Asteroid Redirect Mission (ARM) in the context of the Global Exploration Roadmap and NASA's strategy for sustainable human exploration. We also provide status toward baseline of the ARM, including evolution of concept development based on internal NASA analysis and risk reduction, as well as external inputs received. This includes development of mission concept options, key trade studies, and analysis of drivers for both the robotic and crewed mission segments.

  17. The ROSSI X-Ray Timing Explorer: Capabilities, Achievements and Aims

    NASA Technical Reports Server (NTRS)

    Swank, J. H.

    2007-01-01

    The prime scientific objectives of the Rossi X-Ray Timing Explorer (RXTE) were the study of astrophysical compact objects: black holes (galactic and extragalactic), many types of neutron stars, and accreting white dwarfs. RXTE was successful in achieving its original observing objectives of large area and high time resolution observations with broadband (2-200 keV) spectra, scheduled flexibly enough to enable observations of targets of opportunity on any timescale greater than a few hours. These capabilities enabled qualitatively new discoveries about dynamical timescale phenomena related to neutron stars and black holes, phenomena which probe basic physics in the most extreme environments of gravity, density, and magnetic fields. RXTE has extended its lifetime by applying the proportional counter area selectively and maintains schedule flexibility by making use of the distribution of targets around the sky. Proposed future observations emphasize opportunity to discover and study additional millisecond pulsars, pursue the high frequency quasi-periodic oscillations in black hole transients, and connect high frequency phenomena with longer term characteristics. RXTE will continue to strongly support, for both galactic and extragalactic targets, combining RXTE observations with other wavelengths (from IR to TeV) or with other capabilities, such as high spectral resolution.

  18. DDESC: Dragon database for exploration of sodium channels in human

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Dawe, Adam; Seshadri, Sundararajan Vijayaraghava; Christoffels, Alan; Schaefer, Ulf; Radovanovic, Aleksandar; Bajic, Vladimir B

    2008-01-01

    Background Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information. Results We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC), which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses. Conclusion DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web . PMID:19099596

  19. Human haptic perception is interrupted by explorative stops of milliseconds

    PubMed Central

    Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A.

    2014-01-01

    Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these “explorative stops” (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Methods: Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. Results: In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory. PMID:24782797

  20. The Effects of Fiscal and Human Capital on Student Achievement

    ERIC Educational Resources Information Center

    Koligian, Sarah Lynne

    2012-01-01

    The purpose of this study was to examine the effects of per-pupil funding, the amount allocated to fund students in K-12 public education, and how this funding related to student achievement. This is one of the most contentious issues in education, especially in light of the current economy in California, where the state budget crisis has…

  1. Overview of the Human Exploration Research Analog (HERA)

    NASA Technical Reports Server (NTRS)

    Neigut, J.

    2015-01-01

    In 2013, the Human Research Program at NASA began developing a new confinement analog specifically for conducting research to investigate the effects of confinement on the human system. The HERA (Human Exploration Research Analog) habitat has been used for both 7 and 14 day missions to date to examine and mitigate exploration risks to enable safe, reliable and productive human space exploration. This presentation will describe how the Flight Analogs Project developed the HERA facility and the infrastructure to suit investigator requirements for confinement research and in the process developed a new approach to analog utilization and a new state of the art analog facility. Details regarding HERA operations will be discussed including specifics on the mission simulation utilized for the current 14-day campaign, the specifics of the facility (total volume, overall size, hardware), and the capabilities available to researchers. The overall operational philosophy, mission fidelity including timeline, schedule pressures and cadence, and development and implementation of mission stressors will be presented. Research conducted to date in the HERA has addressed risks associated with behavioral health and performance, human physiology, as well as human factors. This presentation will conclude with a discussion of future research plans for the HERA, including infrastructure improvements and additional research capabilities planned for the upcoming 30-day missions in 2016.

  2. The ISECG* Global Exploration Roadmap as Context for Robotic and Human Exploration Operations

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark

    2015-01-01

    The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) provides a broad international context for understanding how robotic missions and robotic assets can enable future human exploration of multiple destinations. This presentation will provide a brief high-level review of the GER with a focus on key robotic missions and robotic assets that can provide enabling technology advancements and that also raise interesting operational challenges in both the near-term and long-term. The GER presently features a variety of robotic missions and robotic assets that can provide important technology advancements as well as operational challenges and improvements, in areas ranging from: (a) leveraging the International Space Station, (b) planetary science robotic missions to potential human destinations, (c) micro-g body proximity operations (e.g. asteroids), (d) autonomous operations, (e) high and low-latency telerobotics, (f) human assisted sample return, and (g) contamination control. This presentation will highlight operational and technology challenges in these areas that have feed forward implications for human exploration.

  3. Planetary protection issues in advance of human exploration of Mars.

    PubMed

    McKay, C P; Davis, W L

    1989-01-01

    Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension. PMID:11537372

  4. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  5. Comparison of Human Exploration Architecture and Campaign Approaches

    NASA Technical Reports Server (NTRS)

    Goodliff, Kandyce; Cirillo, William; Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary

    2015-01-01

    As part of an overall focus on space exploration, National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). In addition, various external organizations are studying options for beyond LEO exploration. Recent studies include NASA's Evolvable Mars Campaign and Design Reference Architecture (DRA) 5.0, JPL's Minimal Mars Architecture; the Inspiration Mars mission; the Mars One campaign; and the Global Exploration Roadmap (GER). Each of these potential exploration constructs applies unique methods, architectures, and philosophies for human exploration. It is beneficial to compare potential approaches in order to better understand the range of options available for exploration. Since most of these studies were conducted independently, the approaches, ground rules, and assumptions used to conduct the analysis differ. In addition, the outputs and metrics presented for each construct differ substantially. This paper will describe the results of an effort to compare and contrast the results of these different studies under a common set of metrics. The paper will first present a summary of each of the proposed constructs, including a description of the overall approach and philosophy for exploration. Utilizing a common set of metrics for comparison, the paper will present the results of an evaluation of the potential benefits, critical challenges, and uncertainties associated with each construct. The analysis framework will include a detailed evaluation of key characteristics of each construct. These will include but are not limited to: a description of the technology and capability developments required to enable the construct and the uncertainties associated with these developments; an analysis of significant operational and programmatic risks associated with that construct; and an evaluation of the extent to which exploration is enabled by the construct, including the destinations

  6. Exploration planning in the context of human exploration and development of the Moon

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Morrison, Donald A.

    1993-01-01

    It is widely believed that the next step beyond low Earth orbit in attaining the United States' stated goal of 'Expanding human presence beyond the Earth' should be to reestablish a lunar capability, building on the Apollo program, and preparing the way for eventual human missions to Mars. The Moon offers important questions in planetary and Earth science, can provide a unique platform for making astronomical observations of high resolution and sensitivity, and can be in the development path for unlocking resources of the inner solar system to support space activities and return benefits to Earth. NASA's Office of Exploration has undertaken the planning of future lunar exploration missions with the assistance of the Solar System Exploration Division in matters dealing with the quality of scientific data and the manner in which it will be made available to the scientific community. The initial elements of the proposed program include the Lunar Scout missions, which consist of two small identical spacecraft in polar orbit around the Moon, which can accomplish most of the objectives associated with previous proposals for Lunar Polar Orbiters. These missions would be followed by 'Artemis' landers, capable of emplacing up to 200 kg payloads anywhere on the Moon. In addition, the exploration program must incorporate data obtained from other missions, including the Galileo lunar flybys, the Clementine high orbital observations, and Japanese penetrator missions. In the past year, a rather detailed plan for a 'First Lunar Outpost (FLO)' which would place 4 astronauts on the lunar surface for 45 days has been developed as a possible initial step of a renewed human exploration program. In the coming year, the FLO concept will be reviewed and evolved to become more highly integrated with planning for the initial human exploration of Mars, which could come perhaps 5 years after the reestablishment of lunar capability. Both programs could benefit from the common development of

  7. Exploring the middle school science achievement gap: Influences of curriculum, instruction and students' perceptions

    NASA Astrophysics Data System (ADS)

    Winning, Rosalie Anne

    Students' science achievement has been subject to scrutiny and criticism in the United States. The decline in rankings on standardized international assessments has been the focus of concern for educators, policy makers, parents and society at large. This study, designed as an action research, explored the factors contributing to the decrease in the number of students attaining advanced proficiency in science learning as measured by state assessments in grades four and eight in a New Jersey school district. Specifically, this study addressed the degree to which the middle school curriculum reflected the national science framework standards for 21st century leaning and the New Jersey Core Curriculum Content Standards; the pedagogical approaches regularly planned and implemented in the middle school science classrooms; and the students' perceptions of their science learning. Research data were collected by teacher and student surveys, focus group discussions, student interviews, document reviews of written curricula, and classroom observations. An important disparity emerged between the document analysis of the local curriculum and the teachers' views that 21st century learning skills are reflected in the written curriculum and classroom pedagogy. Further, classroom observations revealed the prevalence of a traditional pedagogy, focused on repetition of teacher-disseminated information and featuring limited differentiation, inquiry-based or constructivist learning strategies. The students expressed a value for discovery and collaboration with peers in order to develop, share and refine their understanding of science. The research concluded with recommendations for a revised curriculum process, sustained and collaborative professional development, on-going formative assessments of student learning and the formal integration of an online student science blog as a means of encouraging the co-construction of deep and enduring science knowledge.

  8. Medical and technology requirements for human solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen

    1989-01-01

    Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.

  9. Integrated network architecture for sustained human and robotic exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Cesarone, Robert; Deutsch, Leslie; Edwards, Charlie; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazzolla, Sabino; Hastrup, Rolf; Abraham, Douglas

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require telecommunication and navigation services. This paper sets forth presumed requirements for such services and presents strawman lunar and Mars telecommunications network architectures to satisfy the presumed requirements.

  10. An ESA precursor mission to human exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Berengere; Pradier, Alain; de Rossa, Diego; Vanoutryve, Benjamin; Jojaghaian, Aliac; Espinasse, Sylvie; Gardini, Bruno

    2010-05-01

    The coming decades will once again see humans on the surface of the Moon. Unlike the Apollo missions of the 1960s this new lunar exploration will be an international effort, with long duration missions and a goal to pave the way for further human expansion into the solar system. Ensuring the success and sustainability of this exploration poses significant challenges for all involved. ESA is currently preparing its first contribution to this international lunar exploration effort; a lunar lander mission, which will be a precursor to a future, Ariane V launched, ESA cargo and logistics capability to the Moon. The precursor mission will demonstrate soft precision landing with hazard avoidance capabilities, which will be required by a future cargo lander. In addition the mission can be applied as a preparation for future human exploration activities and help to ensure the sustainability of future exploration efforts. Activities have included Phase A and B1 mission design studies and technology development activities (both reported in another paper) and the definition of mission objectives and a model payload. The mission objectives have been derived by the Lunar Exploration Definition Team, a group derived of European specialists in various areas of exploration related science and technology, supported by ESA. Major inputs to the definition process were the 195 responses received to a request for information for potential payload contributions to the mission. The group was tasked with establishing how such a mission could best prepare for future human exploration. It was determined that the mission's goal should be to enable sustainable exploration and objectives were identified within a number of themes: health, habitation, resources, mobility and scientific preparations for future human activities. Investigations seek to characterise the lunar environment (e.g. radiation, dust etc.) and its effects and the properties of a landing site (potential resources, geological

  11. An ESA precursor mission to human exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Berengere; Pradier, Alain; de Rossa, Diego; Vanoutryve, Benjamine; Jojaghaian, Aliac; Espinasse, Sylvie; Gardini, Bruno

    The coming decades will once again see humans on the surface of the Moon. Unlike the Apollo missions of the 1960s this new lunar exploration will be an international effort, with long duration missions and a goal to pave the way for further human expansion into the solar system. Ensuring the success and sustainability of this exploration poses significant challenges for all involved. ESA is currently preparing its first contribution to this international lunar exploration effort; a lunar lander mission, which will be a precursor to a future, Ariane V launched, ESA cargo and logistics capability to the Moon. The precursor mission will demonstrate soft precision landing with hazard avoidance capabilities, which will be required by a future cargo lander. In addition the mission can be applied as a preparation for future human exploration activities and help to ensure the sustainability of future exploration efforts. Activities have included Phase A and B1 mission design studies and technology development activities (both reported in another paper) and the definition of mission objectives and a model payload. The mission objectives have been derived by the Lunar Exploration Definition Team, a group derived of European specialists in various areas of exploration related science and technology, supported by ESA. Major inputs to the definition process were the 195 responses received to a request for information for potential payload contributions to the mission. The group was tasked with establishing how such a mission could best prepare for future human exploration. It was determined that the mission's goal should be to enable sustainable exploration and objectives were identified within a number of themes: health, habitation, resources, mobility and scientific preparations for future human activities. Investigations seek to characterise the lunar environment (e.g. radiation, dust etc.) and its effects and the properties of a landing site (potential resources, geological

  12. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  13. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  14. Boredom in Achievement Settings: Exploring Control-Value Antecedents and Performance Outcomes of a Neglected Emotion

    ERIC Educational Resources Information Center

    Pekrun, Reinhard; Goetz, Thomas; Daniels, Lia M.; Stupnisky, Robert H.; Perry, Raymond P.

    2010-01-01

    The linkages of achievement-related boredom with students' appraisals and performance outcomes were examined in a series of 5 exploratory, cross-sectional, and predictive investigations. Studies 1 and 2 assessed students' boredom in a single achievement episode (i.e., state achievement boredom); Studies 3, 4, and 5 focused on their habitual…

  15. Human Collective Intelligence under Dual Exploration-Exploitation Dilemmas

    PubMed Central

    Toyokawa, Wataru; Kim, Hye-rin; Kameda, Tatsuya

    2014-01-01

    The exploration-exploitation dilemma is a recurrent adaptive problem for humans as well as non-human animals. Given a fixed time/energy budget, every individual faces a fundamental trade-off between exploring for better resources and exploiting known resources to optimize overall performance under uncertainty. Colonies of eusocial insects are known to solve this dilemma successfully via evolved coordination mechanisms that function at the collective level. For humans and other non-eusocial species, however, this dilemma operates within individuals as well as between individuals, because group members may be motivated to take excessive advantage of others' exploratory findings through social learning. Thus, even though social learning can reduce collective exploration costs, the emergence of disproportionate “information scroungers” may severely undermine its potential benefits. We investigated experimentally whether social learning opportunities might improve the performance of human participants working on a “multi-armed bandit” problem in groups, where they could learn about each other's past choice behaviors. Results showed that, even though information scroungers emerged frequently in groups, social learning opportunities reduced total group exploration time while increasing harvesting from better options, and consequentially improved collective performance. Surprisingly, enriching social information by allowing participants to observe others' evaluations of chosen options (e.g., Amazon's 5-star rating system) in addition to choice-frequency information had a detrimental impact on performance compared to the simpler situation with only the choice-frequency information. These results indicate that humans groups can handle the fundamental “dual exploration-exploitation dilemmas” successfully, and that social learning about simple choice-frequencies can help produce collective intelligence. PMID:24755892

  16. A mars communication constellation for human exploration and network science

    NASA Astrophysics Data System (ADS)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  17. An International Strategy for Human Exploration of the Moon: The International Space Exploration Coordination Group (ISECG) Reference Architecture for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim

    2010-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start

  18. Planetary protection issues in advance of human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Davis, Wanda L.

    1989-01-01

    The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

  19. Human papillomavirus vaccine delivery strategies that achieved high coverage in low- and middle-income countries

    PubMed Central

    Barge, Sandhya; Le, Nga Thi; Mugisha, Emmanuel; Penny, Mary E; Gandhi, Sanjay; Janmohamed, Amynah; Kumakech, Edward; Mosqueira, N Rocio; Nguyen, Nghi Quy; Paul, Proma; Tang, Yuxiao; Minh, Tran Hung; Uttekar, Bella Patel; Jumaan, Aisha O

    2011-01-01

    Abstract Objective To assess human papillomavirus (HPV) vaccination coverage after demonstration projects conducted in India, Peru, Uganda and Viet Nam by PATH and national governments and to explore the reasons for vaccine acceptance or refusal. Methods Vaccines were delivered through schools or health centres or in combination with other health interventions, and either monthly or through campaigns at fixed time points. Using a two-stage cluster sample design, the authors selected households in demonstration project areas and interviewed over 7000 parents or guardians of adolescent girls to assess coverage and acceptability. They defined full vaccination as the receipt of all three vaccine doses and used an open-ended question to explore acceptability. Findings Vaccination coverage in school-based programmes was 82.6% (95% confidence interval, CI: 79.3–85.6) in Peru, 88.9% (95% CI: 84.7–92.4) in 2009 in Uganda and 96.1% (95% CI: 93.0–97.8) in 2009 in Viet Nam. In India, a campaign approach achieved 77.2% (95% CI: 72.4–81.6) to 87.8% (95% CI: 84.3–91.3) coverage, whereas monthly delivery achieved 68.4% (95% CI: 63.4–73.4) to 83.3% (95% CI: 79.3–87.3) coverage. More than two thirds of respondents gave as reasons for accepting the HPV vaccine that: (i) it protects against cervical cancer; (ii) it prevents disease, or (iii) vaccines are good. Refusal was more often driven by programmatic considerations (e.g. school absenteeism) than by opposition to the vaccine. Conclusion High coverage with HPV vaccine among young adolescent girls was achieved through various delivery strategies in the developing countries studied. Reinforcing positive motivators for vaccine acceptance is likely to facilitate uptake. PMID:22084528

  20. Strategic Implications of Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2011-01-01

    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  1. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  2. The Challenges and Achievements in 50 Years of Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawley, Steven A.

    2012-01-01

    On April 12, 1961 the era of human spaceflight began with the orbital flight of Cosmonaut Yuri Gagarin. On May 5, 1961 The United States responded with the launch of Alan Shepard aboard Freedom 7 on the first flight of Project Mercury. The focus of the first 20 years of human spaceflight was developing the fundamental operational capabilities and technologies required for a human mission to the Moon. The Mercury and Gemini Projects demonstrated launch and entry guidance, on-orbit navigation, rendezvous, extravehicular activity, and flight durations equivalent to a round-trip to the Moon. Heroes of this epoch included flight directors Chris Kraft, Gene Kranz, and Glynn Lunney along with astronauts like John Young, Jim Lovell, Tom Stafford, and Neil Armstrong. The "Race to the Moon” was eventually won by the United States with the landing of Apollo 11 on July 20, 1969. The Apollo program was truncated at 11 missions and a new system, the Space Shuttle, was developed which became the focus of the subsequent 30 years. Although never able to meet the flight rate or cost promises made in the 1970s, the Shuttle nevertheless left a remarkable legacy of accomplishment. The Shuttle made possible the launch and servicing of the Hubble Space Telescope and diverse activities such as life science research and classified national security missions. The Shuttle launched more than half the mass ever put into orbit and its heavy-lift capability and large payload bay enabled the on-orbit construction of the International Space Station. The Shuttle also made possible spaceflight careers for scientists who were not military test pilots - people like me. In this talk I will review the early years of spaceflight and share my experiences, including two missions with HST, from the perspective of a five-time flown astronaut and a senior flight operations manager.

  3. Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor)

    2002-01-01

    Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

  4. Mars scientific investigations as a precursor for human exploration

    NASA Technical Reports Server (NTRS)

    Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  5. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2015-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  6. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  7. Cognitive Functioning in Space Exploration Missions: A Human Requirement

    NASA Technical Reports Server (NTRS)

    Fiedler, Edan; Woolford, Barbara

    2005-01-01

    Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

  8. Exploring the Transformation of Actorship among Students at a Small Swedish University: Background, Actorship and Achievement

    ERIC Educational Resources Information Center

    Nelson, Anders

    2016-01-01

    With an aim to better understand higher education's potential for fostering personal development and social change, this study explores how students' actorship in studies and civic engagement changed over time while enrolled in undergraduate programs at Halmstad University, Sweden. Additionally, it explores the relation among these students'…

  9. Science Literacy: Exploring Middle-Level Science Curriculum Structure and Student Achievement

    ERIC Educational Resources Information Center

    Faulkner, Sarah Ford

    2012-01-01

    The purpose of this quantitative study was to explore and describe the relationship between middle-level science curriculum structure and student science literacy. Although national and state science curriculum standards are based on an integrated model, there is little quantitative data supporting integration. This study explored the use of…

  10. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Status Space Launch System/Multi-Purpose Crew Vehicle Status Overall Human Exploration and Operations... Crew Development Global Exploration Roadmap Space Life and Physical Science Research and...

  11. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

    1997-01-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  12. A Mars Communication Constellation For Human Exploration and Network Science

    NASA Astrophysics Data System (ADS)

    Castellini, Francesco; Lavagna, Michèle; Simonetto, Andrea

    Mars is perhaps the primary target of all space exploration programs, and a massive robotic and human exploration will ask for a suitable communication link between Earth and the Red planet. The paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to offer a complete and continuous coverage of possible elements on the planet, taking advantage of optical transmission techniques. Since the first human expedition will most likely not be launched in the next 15-20 years, the study foresees such a communications mission to be implemented after 2020, and in light of the future presence of explorers on the surface a high data rate requirement is imposed, in order to allow video transmissions. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of the feasibility study for the primary communications mission, and secondary scientific opportunities are suggested. The proposed communication architecture is quite complex and includes six 530kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet's surface; communications between the satellites and Earth are achieved through optical links, that allow high data rates with lower mass and power consumption with respect to traditional radio-frequency technology (1) (2), while inter-satellite links and spacecrafts-to- Mars connections are ensured by radio transmissions. The worst-case optical link data rate varies from 10.2 Mbps in downlink to 13.7 Mbps in uplink. Inter-satellites data rate stays the 4.3-7.8 Mbps range on Ka-band, while spacecraft-Mars surface communications occur on the X band offering a 4.3 Mbps data rate. A complete trade-off analysis has been performed in terms of on board subsystems design

  13. Exploring the Effect of a Non-Residential Learning Community on Academic Achievement and Institutional Persistence

    ERIC Educational Resources Information Center

    Heaton, Patrick Michael

    2011-01-01

    The purpose of this study was to examine what effect the Freshmen Interest Group (FIG) program, a variation of a non-residential learning community had on academic achievement scores and institutional rates of persistence. Study variables included: gender; race; pre-collegiate academic achievement (GPA scores); educational preferences (major…

  14. Exploring the Impacts of Accelerated Delivery on Student Learning, Achievement and Satisfaction

    ERIC Educational Resources Information Center

    Wilkins, Stephen; Martin, Susan; Walker, Ian

    2010-01-01

    This case study examines the impacts on student learning, achievement and satisfaction when year 13 (final year) students at a large UK sixth-form college take a GCE A level in one year instead of the usual two years. Data relating to the entry qualifications and final A level grades achieved by 879 students on both accelerated and non-accelerated…

  15. Exploring Gains in Reading and Mathematics Achievement among Regular and Exceptional Students Using Growth Curve Modeling

    ERIC Educational Resources Information Center

    Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.; Chan, Chi-Keung; Heistad, David

    2013-01-01

    Using four-wave longitudinal reading and mathematics data (4th to 7th grades) from a large urban school district, growth curve modeling was used as a tool for examining three research questions: Are achievement gaps closing in reading and mathematics? What are the associations between prior-achievement and growth across the reading and mathematics…

  16. Addressing Educational Reform: Exploring PE Metrics as a System to Measure Student Achievement in Physical Education

    ERIC Educational Resources Information Center

    Hushman, Glenn; Hushman, Carolyn; Carbonneau, Kira

    2015-01-01

    The current educational reform movement in the United States is focused on measuring the effectiveness of teachers. One component of teacher effectiveness is student achievement. The effectiveness of using PE Metrics as a measure of student achievement in a physical activity setting with a low socioeconomic, culturally diverse population was…

  17. Integrating Turkish Work and Achievement Goals With Schwartz's Human Values.

    PubMed

    Tevrüz, Suna; Turgut, Tülay; Çinko, Murat

    2015-05-01

    The purpose of this study was to examine the integration of indigenous values developed in Turkey to Schwartz's universal values. Students (N = 593) from six universities in Istanbul responded the value scale, which consists of 10 etic PVQ items (each item representing one of 10 main Schwartz values) and 23 emic WAG items (representing work-achievement goals). PROXSCAL, a multidimensional scaling method, was used to test whether etic and emic sets of values integrate and form the universal circular structure proposed in Schwartz value theory. The motivational continuum of values as a circular structure was similar to pan-cultural results, but adding another value type to the openness to change pole. While some of the items in this region represent autonomy of thought, remaining items diverge. The principle of conflicting values on opposite poles was not supported in relation to openness to change-conservation dimension. These two poles had similar priorities, contrasting with pan-cultural results, and demonstrating a culture-specific aspect of responding to motivational goals. Insights gained by emic studies will be functional in enriching understanding values, and contributing to the comprehensiveness and universality of Schwartz value theory. PMID:27247656

  18. Lunar science strategy: Exploring the Moon with humans and machines

    NASA Astrophysics Data System (ADS)

    Morrison, Donald A.; Hoffman, Stephen J.

    1993-01-01

    Important scientific questions that can be addressed from the lunar surface are reviewed for a number of scientific disciplines. A successful strategy for human exploration of the Moon is outlined. It consists of several elements: thorough preparation; a means of extending the human reach; measurement of the mobility of both human and robotic components; and flexible technologies so as to be able to take the most effective path as successive decision points occur. Part of thorough preparation involves concurrent development of a set of science goals and objectives as well as a supporting information base; neither can evolve independently of the other. This matched set will drive the definition of missions and technologies used to satisfy the requirements of various science disciplines. No single site on the Moon will satisfy all requirements. Thus, global accessibility is a goal of the current Lunar and Mars Exploration Program science strategy. Human mobility on the surface is limited to a few kilometers without the use of vehicles. Unpressurized crew carrying rovers could take explorers to distances tens of kilometers from an outpost; the distance is primarily limited by health and safety concerns. Pressurized rovers could extend the range to hundreds of kilometers, but size, mass, and costs limit such vehicles to missions beyond current planning horizons. The establishment of several outposts instead of one would provide opportunities for effective use of the unique capabilities of humans. Extending the human reach to global dimensions may be accomplished through teleoperation or telepresence. The most effective mix of these techniques is a decision that will evolve as experience is gained on the surface. Planning and technology must be flexible enough to allow a variety of options to be selected.

  19. Science opportunities in the human exploration of moon

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.; O'Handley, Douglas A.; Nash, Douglas B.

    1989-01-01

    Human exploration of the moon will open up science opportunities not only in lunar science, but also in astronomy and astrophysics, life science, solar and space physics, earth science, and even evolutionary biology. These opportunities may be categorized as those involving study of the moon itself, those in which the moon is used as a platform for investigations, and those conducted in transit between earth and the moon. This paper describes some of these opportunities, and calls on the science community to continue and expand its efforts to define the opportunities, and to work toward their inclusion in plans to return humans permanently to the moon.

  20. Micro-Logistics Analysis for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cirillo, William; Stromgren, Chel; Galan, Ricardo

    2008-01-01

    Traditionally, logistics analysis for space missions has focused on the delivery of elements and goods to a destination. This type of logistics analysis can be referred to as "macro-logistics". While the delivery of goods is a critical component of mission analysis, it captures only a portion of the constraints that logistics planning may impose on a mission scenario. The other component of logistics analysis concerns the local handling of goods at the destination, including storage, usage, and disposal. This type of logistics analysis, referred to as "micro-logistics", may also be a primary driver in the viability of a human lunar exploration scenario. With the rigorous constraints that will be placed upon a human lunar outpost, it is necessary to accurately evaluate micro-logistics operations in order to develop exploration scenarios that will result in an acceptable level of system performance.

  1. Enabling human exploration of space - A life sciences overview

    NASA Technical Reports Server (NTRS)

    Gaiser, Karen K.; Sulzman, Frank M.

    1989-01-01

    In the transition from the short-duration missions of the Space Shuttle era to long-duration exploration missions, the health and safety of crewmembers must be ensured. The body undergoes many complex physiological changes as a result of its adaptation to a microgravity environment and U.S. and Soviet experiences have shown that time is required for readaptation to gravity. The consequences of these changes for the extended exploration missions envisioned for the future are unknown. A Mars mission may require crewmembers to spend many months in microgravity, and then work effectively in a one-third gravity environment. Other problems may arise when returning crewmembers must readapt to earth's gravity. Life Sciences activities are being planned to systematically address the physiological issues involved with long-term manned exploration missions, through ground-based studies and flight investigations on the Shuttle and Space Station Freedom. The areas of focus are artificial gravity, radiation, health care, and space human factors.

  2. The Framework for Participation: A Research Tool for Exploring the Relationship between Achievement and Inclusion in Schools

    ERIC Educational Resources Information Center

    Black-Hawkins, Kristine

    2010-01-01

    This article examines the Framework for Participation: a research tool established to support a recently completed study. The research was undertaken to explore the relationship between achievement and inclusion because headteachers and teachers in some schools continue to resist becoming more inclusive in their student intake on the grounds that…

  3. Exploring and Understanding the Benefits of Tutoring Software on Urban Students' Science Achievement: What Are Baltimore City Practitioners' Perspectives?

    ERIC Educational Resources Information Center

    Pinder, Patrice Juliet

    2008-01-01

    Historically, very little research that meets the scientifically based standards as defined by the No Child Left Behind Act has been conducted on the effectiveness of educational technology on student achievement. The purpose of this study was to explore and seek to understand urban city teachers' perspectives on the benefits or effects of…

  4. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  5. ESA strategy for human exploration and the Lunar Lander Mission

    NASA Astrophysics Data System (ADS)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  6. Trade Space Assessment for Human Exploration Mission Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2006-01-01

    Many human space exploration mission architecture assessments have been performed over the years by diverse organizations and individuals. Direct comparison of metrics among these studies is extremely difficult due to widely varying assumptions involving projected technology readiness, mission goals, acceptable risk criteria, and socio-political environments. However, constant over the years have been the physical laws of celestial dynamics and rocket propulsion systems. A finite diverse yet finite architecture trade space should exist which captures methods of human exploration - particularly of the Moon and Mars - by delineating technical trades and cataloging the physically realizable options of each. A particular architectural approach should then have a traceable path through this "trade tree". It should be pointed out that not every permutation of paths will result in a physically realizable mission approach, but cataloging options that have been examined by past studies should help guide future analysis. This effort was undertaken in two phases by multi-center NASA working groups in the spring and summer of 2004 using more than thirty years of past studies to "flesh out" the Moon-Mars human exploration trade space. The results are presented, not as a "trade tree", which would be unwieldy, but as a "menu" of potential technical options as a function of mission phases. This is envisioned as a tool to aid future mission designers by offering guidance to relevant past analyses.

  7. Human and Robotic Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2010-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the

  8. We can't explore space without it - Common human space needs for exploration spaceflight

    NASA Technical Reports Server (NTRS)

    Daues, K. R.; Erwin, H. O.

    1992-01-01

    An overview is conducted of physiological, psychological, and human-interface requirements for manned spaceflight programs to establish common criteria. Attention is given to the comfort levels relevant to human support in exploration mission spacecraft and planetary habitats, and three comfort levels (CLs) are established. The levels include: (1) CL-1 for basic crew life support; (2) CL-2 for enabling the nominal completion of mission science; and (3) CL-3 which provides for enhanced life support and user-friendly interface systems. CL-2 support systems can include systems for EVA, workstations, and activity centers for repairs and enhanced utilization of payload and human/machine integration. CL-3 supports can be useful for maintaining crew psychological and physiological health as well as the design of comfortable and earthlike surroundings. While all missions require CL-1 commonality, CL-2 commonality is required only for EVA systems, display nomenclature, and restraint designs.

  9. The Nexus of Space Science and Human Space Exploration (Invited)

    NASA Astrophysics Data System (ADS)

    Burns, J. O.

    2013-12-01

    The NLSI Lunar University Network for Astrophysical Research (LUNAR) consortium is pursuing research to advance the space sciences and to strengthen the bond between science and human exploration of the Moon. Our science is derived from the three recent NRC Decadal Surveys in astrophysics, heliophysics, and planetary science. Four research themes were developed that are uniquely facilitated by human exploration: Heliophysics and Space Radiation, Lunar Laser Ranging, Low Radio Frequency Astrophysics and Cosmology, and Exploration Science. In this talk, we describe some of the fundamental problems which our team is investigating including the acceleration of high energy particles in the heliosphere that are potentially harmful for humans and spacecraft beyond low Earth orbit, the nature of gravity beyond Einstein's Relativity and the cores of airless bodies using laser ranging, and the origins of the first stars and galaxies in the Universe using low frequency radio telescopes on the radio-quiet lunar farside. In addressing these issues, we are developing technologies that are likely to have a dual purpose, serving both exploration and science. Our team has proposed compelling science for a 'waypoint' mission involving human telerobotics at the Earth-Moon L2 Lagrange point. Astronauts aboard the Orion Crew Vehicle will operate lunar farside surface assets for the first time which also serves as an important proving ground for future exploration missions in deep space. The science objectives include returning rock samples from the ancient South Pole-Aitken basin and deployment of a low frequency radio telescope for cosmological observations of the early Universe's Cosmic Dawn. We will describe the first recently-completed simulation of a human waypoint mission where astronauts aboard the International Space Station interactively controlled a high fidelity planetary rover at an outdoor analog testbed at NASA/Ames to deploy a prototype radio antenna. LUNAR is funded by

  10. Space Station Freedom accommodation of the Human Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.; Peach, Lewis L., Jr.; Ahlf, Peter R.; Saucillo, Rudolph J.

    1990-01-01

    The design requirements of the Space Station Freedom (SSF) are proposed based on the requirements and assumptions of the Human Exploration Initiative. In this summary of a NASA study consideration is given to the mission-supporting capabilities needed to sustain support of a continuous human presence in earth orbit for scientific activities. The initial SSF configuration (called Assembly Complete) is found to be insufficient in terms of the optimal provisions for crew size, power, pressurized volume, and truss structure. Specific design requirements are also given for the Lunar Transfer Vehicle, and the checkout of this vehicle creates additional demands on the SSF facilities. General specifications are given for the SSF modules, vehicle processing, remote manipulator, and mobile transporter within the context of a continuous human presence in orbit.

  11. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    NASA's Human Exploration Plans: A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to

  12. An exploration of the impact of reform-based science instruction on second graders' academic achievement

    NASA Astrophysics Data System (ADS)

    Ellis, Valeisha Michelle

    The purpose of this study was to examine whether possible relationships might exist between the quality of reform-based science instruction and science and reading achievement in second grade. The study also examined separately possible interactions between quality of instruction and gender and race. The study involved an analysis of data previously collected in a larger one-group pre/post test study of a science instructional intervention (ISI Science) (Connor et al., 2010). In the original study, six teachers and two graduate assistants taught two science units designed based upon constructivist principles and reform-based practices. Using the 5-E Learning Cycle (Bybee, 1997), reading and science were integrated into each lesson. Videotapes were made of all lessons and science and reading achievement data were collected. For the current study, dependent achievement variables were science achievement measured by the Iowa Science Test; reading comprehension, by the Woodcock Passage Comprehension; and vocabulary, by the Iowa Vocabulary. Pre- and post-tests scores on the dependent measures were available for 96 children from the original study. Quality of instruction was measured using the Reformed Teaching Observation Protocol (RTOP) (Sawanda & Piburn, 2000). Videotapes of 24 science lessons from the larger study were analyzed using the RTOP. Reliability of ratings for the RTOP in the study was determined to be .96. No significant results were found for relations between instructional quality (RTOP) and any of the achievement variables although significant pre to post increases on all three measures were observed. No differences by race or gender were found. This latter finding was noteworthy given the research in science identifying both gender and race differences in science achievement. Recommendations for future research and teacher education are discussed.

  13. Exploring Alignment of Community College Students for Preparedness and Achievement of Basic Skills

    ERIC Educational Resources Information Center

    Jeffcoat, Kendra; Weisblat, Irina A.; Bresciani, Marilee J.; Sly, Robert W.; Tucker, Mark; Herrin, Bridget; Cao, LiuHui

    2014-01-01

    This mixed-method study explored the alignment of expected student learning outcomes (SLOs) and expected student entrance skills, as stated within "course outlines of record" (CORs), for basic skills courses in one California community college district. Researchers evaluated consistencies and discrepancies in course alignment. There were…

  14. Exploring the Role and Influence of Expectations in Achieving VLE Benefit Success

    ERIC Educational Resources Information Center

    Jackson, Stephen; Fearon, Colm

    2014-01-01

    The aim of this paper is to investigate the role and influence of expectations management in realising benefit success when adopting a virtual learning environment (VLE). Based on a discussion of findings from a further and higher education college in the UK, a conceptual expectations management model is developed that explores the factors…

  15. An Exploration of How School District Leaders Are Responding to the Connecticut Academic Achievement Test (CAPT).

    ERIC Educational Resources Information Center

    Negroni, Italia A.; Iwanicki, Edward F.

    This study focused on how school district leaders in Connecticut are translating educational reform policies into instructional practice. It explored how school improvement initiatives were being implemented to improve student performance on the Connecticut Academic Performance Test (CAPT) and examined the ways in which these initiatives were…

  16. Measuring Teacher Effectiveness through Hierarchical Linear Models: Exploring Predictors of Student Achievement and Truancy

    ERIC Educational Resources Information Center

    Subedi, Bidya Raj; Reese, Nancy; Powell, Randy

    2015-01-01

    This study explored significant predictors of student's Grade Point Average (GPA) and truancy (days absent), and also determined teacher effectiveness based on proportion of variance explained at teacher level model. We employed a two-level hierarchical linear model (HLM) with student and teacher data at level-1 and level-2 models, respectively.…

  17. School Achievement and Family Background in Greece: A New Exploration of an Omnipresent Relationship

    ERIC Educational Resources Information Center

    Gouvias, Dionysios; Katsis, Athanassios; Limakopoulou, Aristea

    2012-01-01

    This paper presents some of the findings that emerged out of a national survey carried out in the school year 2005-2006 in various parts of Greece. The main aim of the study was to explore the effects of various "family" factors on the "student performance" in the (national) higher education entrance examinations. From the analysis of data it…

  18. The Use of Nanomaterials to Achieve NASA's Exploration Program Power Goals

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2009-01-01

    This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.

  19. Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...

  20. Planetary protection issues and human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1991-01-01

    A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial microbes which could interfere with exobiological analyses; and (2) back contamination of Earth by species that may be present in returned Mars samples. The United States is also signatory to an international treaty designed to protect Earth and planets from harmful cross-contamination during exploration. Therefore, it is timely to assess the necessity for, and impact of, PP procedures on the mission set comprising the human exploration of Mars. The ground-rules adopted at a recent workshop which addressed PP questions of this type are presented. In addition, the workshop produced several recommendations for dealing with forward and back contamination concerns for non-scientific perspectives, including public relations, legal, regulatory, international, and environmental.

  1. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    ERIC Educational Resources Information Center

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  2. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  3. Exploring Relationships between Student Achievement and the Intensity and Specificity of Individual Student Goals in Mathematics

    ERIC Educational Resources Information Center

    Saunders, Melissa Ann

    2010-01-01

    The application of goal theory in the classroom can be a link between the articulation of personal responsibility and adolescent academic performance. Consistent with goal theory, this research posits that adolescents who set intense and specific goals (i.e., high goal commitment) will have higher self-efficacy and higher achievement in the math…

  4. Exploring Family, Neighborhood and School Factors in Racial Achievement Gap Dissertation

    ERIC Educational Resources Information Center

    Montoya, Silvia

    2010-01-01

    The racial achievement gap has been at the center of the educational debate for decades in the United States. Although disparities in educational outcomes have declined in part of the 20th century, the process has stalled in this decade. For instance, in mathematics the gap in raw scores for students aged 13 has decline from 41 points in 1978 to…

  5. Exploring Pathways from Television Viewing to Academic Achievement in School Age Children

    ERIC Educational Resources Information Center

    Shin, Nary

    2004-01-01

    The author's purpose in this study was to test 4 hypotheses that proposed different paths for the influences of children's television viewing on their academic achievement. Data were drawn from the 1997 Child Development Supplement (CDS) to the Panel Study of Income Dynamics (PSID). The population for this study included 1,203 children between the…

  6. An Exploration of the Impact of Reform-Based Science Instruction on Second Graders' Academic Achievement

    ERIC Educational Resources Information Center

    Ellis, Valeisha Michelle

    2013-01-01

    The purpose of this study was to examine whether possible relationships might exist between the quality of reform-based science instruction and science and reading achievement in second grade. The study also examined separately possible interactions between quality of instruction and gender and race. The study involved an analysis of data…

  7. Exploring Parental Factors, Adjustment, and Academic Achievement among White and Hispanic College Students

    ERIC Educational Resources Information Center

    Yazedjian, Ani; Toews, Michelle L.; Navarro, Alice

    2009-01-01

    The purpose of this study was to examine whether college adjustment mediated the relationship between parental factors, such as parental attachment, parental education, and parental expectations, and academic achievement among White and Hispanic first-year college students. We found that adjustment mediated the relationship between parental…

  8. Exploring Students' Reflective Thinking Practice, Deep Processing Strategies, Effort, and Achievement Goal Orientations

    ERIC Educational Resources Information Center

    Phan, Huy Phuong

    2009-01-01

    Recent research indicates that study processing strategies, effort, reflective thinking practice, and achievement goals are important factors contributing to the prediction of students' academic success. Very few studies have combined these theoretical orientations within one conceptual model. This study tested a conceptual model that included, in…

  9. Exploring the Relationship between Student Approaches to Learning and Reading Achievement at the School Level

    ERIC Educational Resources Information Center

    Musu-Gillette, Lauren E.; Barofsky, Meryl Y.; List, Alexandra

    2015-01-01

    Using the Early Childhood Longitudinal Study, Kindergarten Cohort of 1998 (ECLS-K, 98), a nationally representative sample of kindergarteners in the United States, we investigated the relationship between approaches to learning and spring reading achievement with particular emphasis on classroom and school-level differences. We employed…

  10. Not Just a "Boy Problem": An Exploration of the Complexities Surrounding Literacy Under-Achievement

    ERIC Educational Resources Information Center

    Watson, Anne

    2011-01-01

    This paper examines literacy under-achievement and the limitations of gender-based literacy reforms grounded in essentialist notions of masculinity. It draws on qualitative case-study research conducted in one Ontario secondary school in a working-class community. It focuses on two grade 9 students and their teacher who participated in a larger…

  11. An Exploration of Young Adolescents' Social Achievement Goals and Social Adjustment in Middle School

    ERIC Educational Resources Information Center

    Ryan, Allison M.; Shim, S. Serena

    2008-01-01

    Two studies investigated the proposition that social achievement goals (different orientations toward social competence) are an important aspect of young adolescents' social motivation. Study 1 (N = 153 6th-grade students) established that different orientations toward developing or demonstrating social competence can be seen in young adolescents'…

  12. Reading Recovery: Exploring the Effects on First-Graders' Reading Motivation and Achievement

    ERIC Educational Resources Information Center

    Bates, Celeste C.; D'Agostino, Jerome V.; Gambrell, Linda; Xu, Meling

    2016-01-01

    This study examined the effects of Reading Recovery on children's motivational levels, and how motivation may contribute to the effect of the intervention on literacy achievement. Prior studies concluded that Reading Recovery was positively associated with increased student motivation levels, but most of those studies were limited…

  13. Removing the Barriers: Raising Achievement Levels for Minority Ethnic Pupils. Exploring Good Practice.

    ERIC Educational Resources Information Center

    Department for Education and Skills, London (England).

    This resource kit, which can be used with an accompanying videotape and written materials, shows how three English secondary schools have succeeded in raising the achievement of their ethnic minority students by increasing expectations of what each student is capable of, valuing diversity, working in partnership with parents, and encouraging…

  14. It Takes a School: Exploring the Relationship between Professional Learning Communities and Student Achievement

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Harm, Eian; Croft, Glen; McClay, Kerry; Ennis, Kimberly; Winslow, Rob

    2012-01-01

    Professional learning communities (PLCs) are a widespread phenomenon in K-12 education, as they are perceived as a mechanism for enhancing teacher effectiveness and, therefore, student achievement. However, there is a dearth of empirical research on PLCs--particularly, the primary focus that the communities take, teachers' perceptions and…

  15. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  16. Innovations in Mission Architectures for Human and Robotic Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, Douglas R.; Joosten, B. Kent; Lo, Martin W.; Ford, Ken; Hansen, Jack

    2002-01-01

    Through the application of advanced technologies, mission concepts, and new ideas in combining capabilities, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to discovery driven, technology enabled exploration. Numbers and masses of vehicles required are greatly reduced, yet enable the pursuit of a broader range of objectives. The scope of missions addressed range from the assembly and maintenance of arrays of telescopes for emplacement at the Earth-Sun L2, to Human missions to asteroids, the moon and Mars. Vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities; allowing for decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.

  17. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  18. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; Hastrup, Rolf; Abraham, Douglas; Miles, Sue; Manshadi, Farzin

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  19. Exploring the existence and potential underpinnings of dog-human and horse-human attachment bonds.

    PubMed

    Payne, Elyssa; DeAraugo, Jodi; Bennett, Pauleen; McGreevy, Paul

    2016-04-01

    This article reviews evidence for the existence of attachment bonds directed toward humans in dog-human and horse-human dyads. It explores each species' alignment with the four features of a typical attachment bond: separation-related distress, safe haven, secure base and proximity seeking. While dog-human dyads show evidence of each of these, there is limited alignment for horse-human dyads. These differences are discussed in the light of the different selection paths of domestic dogs and horses as well as the different contexts in which the two species interact with humans. The role of emotional intelligence in humans as a potential mediator for human-animal relationships, attachment or otherwise, is also examined. Finally, future studies, which may clarify the interplay between attachment, human-animal relationships and emotional intelligence, are proposed. Such avenues of research may help us explore the concepts of trust and bonding that are often said to occur at the dog-human and horse-human interface. PMID:26470887

  20. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    NASA Technical Reports Server (NTRS)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  1. Groundbreaking Mars Sample Return for Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  2. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration

  3. Students' Achievement in Human Circulatory System Unit: The Effect of Reasoning Ability and Gender.

    ERIC Educational Resources Information Center

    Sungur, Semra; Tekkaya, Ceren

    2003-01-01

    Investigates the effect of gender and reasoning ability on the human circulatory system concepts achievement and attitude toward biology. Reports a statistically significant mean difference between concrete and formal students with regard to achievement and attitude toward biology. (Contains 24 references.) (Author/YDS)

  4. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  5. Human Exploration Missions - Maturing Technologies to Sustain Crews

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.

  6. Revolutionary Concepts for Human Outer Planet Exploration (HOPE)

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L., Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A.

    2003-01-01

    This paper summarizes the content of a NASA-led study performed to identify revolutionary concepts and supporting technologies for Human Outer Planet Exploration (HOPE). Callisto, the fourth of Jupiter's Galilean moons, was chosen as the destination for the HOPE study. Assumptions for the Callisto mission include a launch year of 2045 or later, a spacecraft capable of transporting humans to and from Callisto in less than five years, and a requirement to support three humans on the surface for a minimum of 30 days. Analyses performed in support of HOPE include identification of precursor science and technology demonstration missions and development of vehicle concepts for transporting crew and supplies. A complete surface architecture was developed to provide the human crew with a power system, a propellant production plant, a surface habitat, and supporting robotic systems. An operational concept was defined that provides a surface layout for these architecture components, a list of surface tasks, a 30-day timeline, a daily schedule, and a plan for communication from the surface.

  7. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  8. Exploring the Solar System with a Human Orrery

    NASA Astrophysics Data System (ADS)

    Newbury, Peter R.; Gendre, M. A.; Gladman, B.; Kasian, L. E.; Meger, N.

    2009-05-01

    Astronomy instructors, and those teaching other sciences, are slowly coming to the realization that it's not what the instructor does that matters - it's what the students do for themselves. To foster this approach to learning, the instructor's role is to provide an environment - an engaging task, a target for the students' focus and guidance - in which the students discover the concepts for themselves. With this role in mind, for a large class of undergraduate non-Science majors, we adapted the human orrery designed by the Armagh Observatory in Northern Ireland into one that can be easily built and explored by a class of 30-40 students in a 1-hour tutorial. Students actively and individually explore the scale of the Solar System and the motion of the planets. As the human orrery requires a large, open space, we staged the activity in the foyer of the University library as a public outreach event celebrating IYA2009, generating tremendous enthusiasm and support from students, faculty, library staff and University administration. This work is supported by the Carl Wieman Science Education Initiative at the University of British Columbia.

  9. ENGINES: exploring single nucleotide variation in entire human genomes

    PubMed Central

    2011-01-01

    Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to

  10. 78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration Operations Committee; Research... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the Human Exploration and Operations Committee (HEOC) of the NASA Advisory Council (NAC). This Subcommittee reports...

  11. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    NASA Astrophysics Data System (ADS)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  12. Addressing Human System Risks to Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  13. ISRU in the Context of Future European Human Mars Exploration

    NASA Astrophysics Data System (ADS)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  14. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    NASA Astrophysics Data System (ADS)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  15. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  16. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  17. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  18. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  19. The Evolution of Mission Architectures for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  20. In Situ Geophysical Exploration by Humans in Mars Analog Environments

    NASA Technical Reports Server (NTRS)

    Shiro, B. R.; Ferrone, K. L.

    2010-01-01

    We carried out three geophysical experiments in Mars analog environments in order to better understand the challenges future astronauts will face when conducting similar surveys on Mars or the Moon. The experiments included a passive seismometer deployment and a time-domain electromagnetic survey at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada and a seismic refraction survey in southeastern Utah at the Mars Desert Research Station (MDRS). FMARS is located on the rim of the 23 Ma Haughton Crater in a polar desert environment. MDRS is located in an area with sedimentary plateaus and canyons of Jurassic to Cretaceous age. Both facilities were built by The Mars Society to help develop key knowledge about human Mars exploration. Crews of six spend 2-4 weeks in the habitats and conduct eld research on simulated extravehicular activities (EVAs) wearing mock spacesuits. The work reported here was conducted in July 2009 at FMARS and February 2010 at MDRS.

  1. Human exploration of near Earth Asteroids: Architecture of proximity operations

    NASA Astrophysics Data System (ADS)

    Tardivel, Simon; Takahashi, Yu; Zimmer, Aline K.; Herman, Jonathan F. C.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Scheeres, Daniel J.

    2015-05-01

    This paper outlines the strategic approach to realize a human mission to an asteroid, focusing specifically on the proximity operations. The risks and challenges posed by asteroid surfaces to in-situ investigations force the proximity operations to be done by the intermediary of robotic explorers. In this architecture, a precursor is sent years in advance to a potential target asteroids. Its main goals are the characterization of the gravity field and of the surface behavior. If the target is found suitable, the manned mission then proceeds. With their main spacecraft stationed on a stable orbit around the asteroid, the astronauts are transported to the surface via a small, unpressurized spacecraft. Hovering a few meters above the surface, they deploy and command small robotic landers that perform scientific operations at the surface.

  2. Introduction to the session on `Human Space Exploration'

    NASA Astrophysics Data System (ADS)

    Messidoro, P.

    When Schiaparelli tried to interpret the surface of Mars as it appeared from his telescope, in particular with reference to the famous "channels", he formulated the hypothesis that they would have been the product of some intelligent Mars population. Today we know that this interpretation was not correct, but we would like to consider his idea as a sort of vision for a future when the humankind will export our civilization on Mars. In fact the objective of the international plans of "Space Exploration" is exactly to land the humans on Mars to start its colonization. Although a new approach is proposed which includes International Space Station, Moon, Asteroids, etc. in a sort of "flexible path" to look for "new worlds in the Solar System where is possible for the humankind to live and operate", it is confirmed that the "final destination" is Mars.

  3. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  4. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  5. Human Space Exploration: The Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  6. Environmental effects of human exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Mendell, Wendell

    Aerospace engineers use the term Environment to designate a set of externally imposed bound-ary conditions under which a device must operate. Although the parameters may be time-varying, the engineer thinks of the operating environment as being fixed. Any effect the device might have on the environment generally is neglected. In the case where the device is intended to measure the environment, its effect on the measured quantities must be considered. For example, a magnetometer aboard a spacecraft must be extended on a boom to minimize the disturbing influence of the spacecraft on the magnetic field, particularly if the field is weak. In contrast, Environment has taken on political and even ethical connotations in modern Western society, referring to human-induced alterations to those aspects of the terrestrial environment that are required for a healthy and productive life. The so-called Green Movement takes preservation of the environment as its mantra. Scientists are at the center of the debate on environmental issues. However, the concern of scientists over irreversible consequences of hu-man activity extend beyond ecology to preservation of cultural artifacts and to effects that alter the ability to conduct investigations such as light pollution in astronomy. The policy of Planetary Protection applied to science and exploration missions to other bodies in the solar system arises from the concern for deleterious effects in terrestrial ecology from hypothetical extraterrestrial life forms as well as overprints of extraterrestrial environments by terrestrial biology. Some in the scientific community are advocating extension of the planetary protection concept beyond exobiology to include fragile planetary environments by might be permanently altered by human activity e.g., the lunar exosphere. Beyond the scientific community, some environmentalists argue against any changes to the Moon at all, including formation of new craters or the alteration of the natural

  7. Cislunar Near Rectilinear Halo Orbit for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Martinez, Roland; Condon, Gerald; Williams, Jacob; Lee, David; Davis, Diane; Barton, Gregg; Bhatt, Sagar; Jang, Jiann-Woei; Clark, Fred; Hinkel, Heather

    2016-01-01

    In order to conduct sustained human exploration beyond Low Earth Orbit (LEO), spacecraft systems are designed to operate in a series of missions of increasing complexity. Regardless of the destination, Moon, Mars, asteroids or beyond, there is a substantial set of common objectives that must be met. Many orbit characterization studies have endeavored to evaluate the potential locations in cislunar space that are favorable for meeting common human exploration objectives in a stepwise approach. Multiple studies, by both NASA and other international space agencies, have indicated that Earth-­-moon libration point orbits are attractive candidates for staging operations in the proving ground and beyond. In particular, the Near Rectilinear Orbit (NRO) has been demonstrated to meet multi-­-mission and multi-­-destination architectural constraints. However, a human mission to a selected NRO presents a variety of new challenges for mission planning. While a growing number of robotic missions have completed successful operations to various specific libration point orbits, human missions have never been conducted to orbits of this class. Human missions have unique challenges that differ significantly from robotic missions, including a lower tolerance for mission risk and additional operational constraints that are associated only with human spacecraft. In addition, neither robotic nor human missions have been operated in the NRO regime specifically, and NROs exhibit dynamical characteristics that can differ significantly as compared to other halo orbits. Finally, multi-­-body orbits, such as libration point orbits, are identified to exist in a simplified orbit model known as the Circular Restricted Three Body Problem (CRTBP) and must then be re-­-solved in the full ephemeris model. As a result, the behavior of multi-­-body orbits cannot be effectively characterized within the classical two-­-body orbit dynamics framework more familiar to the human spaceflight community

  8. Microbial Impact on Success of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Groves, T. O.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The purpose of this study is to identify microbiological risks associated with space exploration and identify potential countermeasures available. Identification of microbial risks associated with space habitation requires knowledge of the sources and expected types of microbial agents. Crew data along with environmental data from water, surfaces, air, and free condensate are utilized in risk examination. Data from terrestrial models are also used. Microbial risks to crew health include bacteria, fungi, protozoa, and viruses. Adverse effects of microbes include: infections, allergic reactions, toxin production, release of volatiles, food spoilage, plant disease, material degradation, and environmental contamination. Risk is difficult to assess because of unknown potential changes in microbes (e.g., mutation) and the human host (e.g., immune changes). Prevention of adverse microbial impacts is preferred over remediation. Preventative measures include engineering measures (e.g., air filtration), crew microbial screening, acceptability standards, and active verification by onboard monitoring. Microbiological agents are important risks to human health and performance during space flight and risks increase with mission duration. Acceptable risk level must be defined. Prevention must be given high priority. Careful screening of crewmembers and payloads is an important element of any risk mitigation plan. Improved quantitation of microbiological risks is a high priority.

  9. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  10. Report of the 90-day study on human exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The basic mission sequence to achieve the President's goal is clear: begin with Space Station Freedom in the 1990's, return to the Moon to stay early in the Next century, and then journey to Mars. Five reference approaches are modeled building on past programs and recent studies to reflect wide-ranging strategies that incorporate varied program objectives, schedules, technologies, and resource availabilities. The reference approaches are (1) balance and speed; (2) the earliest possible landing on Mars; (3) reduce logistics from Earth; (4) schedule adapted to Space Station Freedom; and (5) reduced scales. The study and programmatic assessment have shown that the Human Exploration Initiative is indeed a feasible approach to achieving the President's goals. Several reasonable alternatives exist, but a long-range commitment and significant resources will be required. However, the value of the program and the benefits to the Nation are immeasurable.

  11. A cost and risk analysis of human exploration missions to Mars

    NASA Astrophysics Data System (ADS)

    Merrihew, Steven Carl

    1997-11-01

    cost and risk for the Apollo and Space Shuttle programs are made to build confidence in the results. The resulting values for mission cost and risk show that with appropriate modifications, human exploration missions to Mars can be designed to achieve reasonable levels of risk and cost.

  12. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  13. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    NASA Technical Reports Server (NTRS)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  14. Future Human Precursor Mission Missions and Architectures to Achieve Humans to Mars

    NASA Astrophysics Data System (ADS)

    Beegle, L. W.; Kinnett, R.; Klien, E.

    2012-06-01

    We have studied a series of payload options that are in response to measurements identified by MEPAG as vital to human precursor activity. These payloads have the ability to make a significant dent in the needed measurements to send humans to Mars.

  15. Will the US remain the real leader of human space exploration? A comparative assessment of space exploration policies

    NASA Astrophysics Data System (ADS)

    Grimard, Max

    2012-06-01

    Human space exploration is at a turning point which should find its outcome during the coming decade: Shuttle is being retired, ISS will be exploited up to 2020 minimum. Today the US exploration plans are sucked down into political battles, Europe and Japan are nearly nowhere, Russia's plans are hazy, China's ambitions are clear and implemented, and new actors such as India are raising their profile. In this uncertain environment, the question might be asked: who will be the leaders of human space exploration in 10-15 years from now? The assumption of the paper is that some key enabling factors are essential for a country to play a substantial role in human space exploration: There should be some long term political stability or continuity The domain should be high in the political agenda of the country's decision makers The global budget environment of the country should be positive Space should not be too much competed by other budget "catchers" The paper will propose a tentative comparison of the main space faring countries plans, ambitions and likely positioning, for human space exploration. Starting from the today situation and recent past evolutions, we will try to establish future trends for these key factors, and through that to identify which countries might be the most dynamically engaged in human space exploration.

  16. Visual exploration and analysis of human-robot interaction rules

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  17. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  18. Social Capital, Human Capital and Parent-Child Relation Quality: Interacting for Children's Educational Achievement?

    ERIC Educational Resources Information Center

    von Otter, Cecilia; Stenberg, Sten-Åke

    2015-01-01

    We analyse the utility of social capital for children's achievement, and if this utility interacts with family human capital and the quality of the parent-child relationship. Our focus is on parental activities directly related to children's school work. Our data stem from a Swedish cohort born in 1953 and consist of both survey and register data.…

  19. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  20. Exploring human epileptic activity at the single-neuron level.

    PubMed

    Tankus, Ariel

    2016-05-01

    Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions. PMID:26994366

  1. Incremental Scheduling Engines for Human Exploration of the Cosmos

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  2. Strategies for the sustained human exploration of Mars

    NASA Astrophysics Data System (ADS)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for

  3. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    NASA Technical Reports Server (NTRS)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  4. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    NASA Astrophysics Data System (ADS)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  5. 78 FR 20358 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the... Advancement of Science in Space/Status of Research Subcommittee --Status of Exploration Systems...

  6. 78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the... Operations --Status of Exploration Systems Development --Status of International Space Station --Status...

  7. Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.

  8. Strategic considerations for support of humans in space and Moon/Mars exploration missions. Life sciences research and technology programs, volume 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During the next several decades, our nation will embark on human exploration in space. In the microgravity environment we will learn how human physiology responds to the absence of gravity and what procedures and systems are required to maintain health and performance. As the human experience is extended for longer periods in low Earth orbit, we will also be exploring space robotically. Robotic precursor missions, to learn more about the lunar and Martian environments will be conducted so that we can send crews to these planetary surfaces to further explore and conduct scientific investigations that include examining the very processes of life itself. Human exploration in space requires the ability to maintain crew health and performance in spacecraft, during extravehicular activities, on planetary surfaces, and upon return to Earth. This goal can only be achieved through focused research and technological developments. This report provides the basis for setting research priorities and making decisions to enable human exploration missions.

  9. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  10. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  11. Ethanol Consumption: How Should We Measure It? Achieving Consilience between Human and Animal Phenotypes

    PubMed Central

    Leeman, Robert F.; Heilig, Markus; Cunningham, Christopher L.; Stephens, David N.; Duka, Taheodora; O’Malley, Stephanie S.

    2010-01-01

    There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: 1) abstinence/the decision to drink or abstain; 2) the actual amount of alcohol consumed and 3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical trials should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies provides one means of achieving greater consilience of alcohol consumption phenotypes. PMID:20148775

  12. Integrating Human Factors into Crew Exploration Vehicle (CEV) Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina; Baggerman, Susan; Campbell, Paul

    2007-01-01

    The purpose of this design process is to apply Human Engineering (HE) requirements and guidelines to hardware/software and to provide HE design, analysis and evaluation of crew interfaces. The topics include: 1) Background/Purpose; 2) HE Activities; 3) CASE STUDY: Net Habitable Volume (NHV) Study; 4) CASE STUDY: Human Modeling Approach; 5) CASE STUDY: Human Modeling Results; 6) CASE STUDY: Human Modeling Conclusions; 7) CASE STUDY: Human-in-the-Loop Evaluation Approach; 8) CASE STUDY: Unsuited Evaluation Results; 9) CASE STUDY: Suited Evaluation Results; 10) CASE STUDY: Human-in-the-Loop Evaluation Conclusions; 11) Near-Term Plan; and 12) In Conclusion

  13. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  14. The roles of humans and robots in exploring the solar system.

    PubMed

    Mendell, W W

    2004-07-01

    Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity. PMID:15791731

  15. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Duke, Michael B.

    1993-10-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  16. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    NASA Technical Reports Server (NTRS)

    Marov, Mikhail YA.; Duke, Michael B.

    1993-01-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  17. Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.

    2010-01-01

    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities.

  18. Human Exploration Missions Study Launch Window from Earth Orbit

    NASA Technical Reports Server (NTRS)

    Young, Archie

    2001-01-01

    The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric

  19. Human support issues and systems for the space exploration initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Aroesty, J.; Zimmerman, R.; Logan, J.

    1991-01-01

    The analyses and evaluations of the Human Support panel are discussed. The Human Support panel is one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program. Submissions to the Human Support panel were in the following areas: radiation protection; microgravity; life support systems; medical care; and human factors (behavior and performance).

  20. Balancing Life & Work: The Humanities as an Essential Part of Career Exploration.

    ERIC Educational Resources Information Center

    Haynes, Leslie; Blake, Amy

    This guide explains why the humanities are important in school-to-work systems and how high schools can develop one of two types of programs integrating humanities coursework and career exploration: the study of humanities as a way to enrich individuals' work lives and the study of humanities as career fields in their own right. The first half of…

  1. Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.

    2015-01-01

    The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.

  2. Are Strengths the Solution? An Exploration of the Relationships among Teacher-Rated Strengths, Classroom Behaviour, and Academic Achievement of Young Students

    ERIC Educational Resources Information Center

    Whitley, Jessica; Rawana, Edward P.; Pye, Melissa; Brownlee, Keith

    2010-01-01

    Strength-based approaches are being increasingly validated for use in clinical settings with children and youth. However, the role that strengths play in educational settings with typically-achieving students has yet to be examined. The present study explored the relationship among strengths, classroom behaviour, and academic achievement for a…

  3. The Role of Stanford Achievement Test 10[TM] Subtests in Sixth Grade as a Predictor of Success on ACT's Eighth Grade Explore Exam[TM

    ERIC Educational Resources Information Center

    Potts, Jeffrey D.

    2011-01-01

    The purpose of this study was to determine if there was a predictive correlation between a specific sixth grade achievement test known as the Stanford Achievement Test 10 and the eighth grade college readiness assessment instrument known as the Explore Exam for a group of North Texas students. Following an assessment during sixth grade, via the…

  4. Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)

    2012-01-01

    Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.

  5. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Administration announces a meeting of the Human Exploration and Operations Committee of the NASA Advisory Council..., 300 E Street SW., Washington, DC 20546, 202-358-2245; bette.siegel@nasa.gov ....

  6. Exploring the Value Added of a Guided, Silent Reading Intervention: Effects on Struggling Third-Grade Readers’ Achievement

    PubMed Central

    Reutzel, D. Ray; Spichtig, Alexandra N.; Petscher, Yaacov

    2015-01-01

    The authors’ purpose was to explore the effects of a supplementary, guided, silent reading intervention with 80 struggling third-grade readers who were retained at grade level as a result of poor performance on the reading portion of a criterion referenced state assessment. The students were distributed in 11 elementary schools in a large, urban school district in the state of Florida. A matched, quasi-experimental design was constructed using propensity scores for this study. Students in the guided, silent reading intervention, Reading Plus, evidenced higher, statistically significant mean scores on the Florida Comprehensive Assessment Test criterion assessment measure of reading at posttest. The effect size, favoring the guided, silent reading intervention group was large, 1 full standard deviation, when comparing the 2 comparison groups’ mean posttest scores. As such, the results indicate a large advantage for providing struggling third-grade readers guided silent reading fluency practice in a computer-based practice environment. No significant difference was found between the treatment and control group on the Stanford Achievement Test–10 (SAT-10) posttest scores, although posttest scores for the treatment group trended higher than the control. After conducting a power analysis, it was determined that the sample size (n = 80) was too small to provide sufficient statistical power to detect a difference in third-grade students’ SAT-10 scores. PMID:26346539

  7. Solar Power System Evaluated for the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  8. Transpersonal Psychology: Exploring the Frontiers in Human Resource Development.

    ERIC Educational Resources Information Center

    Brown, Michael H.

    Important insights about how to develop human potential are being discovered these days in a field called transpersonal psychology. This new field is called the fourth force in psychology because like psychoanalysis, behaviorism, and humanistic psychology before it, it is on the cutting edge of what it means to be fully human. It seeks to develop…

  9. 300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Gershman, Robert; Strange, Nathan; Landau, Damon; Merrill, Raymond Gabriel; Kerslake, Thomas

    2011-01-01

    The use of Solar Electric Propulsion (SEP) can provide significant benefits for the human exploration of near-Earth asteroids. These benefits include substantial cost savings - represented by a significant reduction in the mass required to be lifted to low Earth orbit - and increased mission flexibility. To achieve these benefits, system power levels of 100's of kW are necessary along with the capability to store and process tens of thousands of kilograms of xenon propellant. The paper presents a conceptual design of a 300-kW SEP vehicle, with the capability to store nearly 40,000 kg of xenon, to support human missions to near-Earth asteroids.

  10. A Situation Awareness Assistant for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  11. How specific is second language-learning ability? A twin study exploring the contributions of first language achievement and intelligence to second language achievement.

    PubMed

    Rimfeld, K; Dale, P S; Plomin, R

    2015-01-01

    Learning a second language is crucially important in an increasingly global society, yet surprisingly little is known about why individuals differ so substantially in second language (SL) achievement. We used the twin design to assess the nature, nurture and mediators of individual differences in SL achievement. For 6263 twin pairs, we analyzed scores from age 16 UK-wide standardized tests, the General Certificate of Secondary Education (GCSE). We estimated genetic and environmental influences on the variance of SL for specific languages, the links between SL and English and the extent to which the links between SL and English are explained by intelligence. All SL measures showed substantial heritability, although heritability was nonsignificantly lower for German (36%) than the other languages (53-62%). Multivariate genetic analyses indicated that a third of genetic influence in SL is shared with intelligence, a third with English independent of intelligence and a further third is unique to SL. PMID:26393484

  12. Exploring the Cytoskeleton During Intracytoplasmic Sperm Injection in Humans

    NASA Astrophysics Data System (ADS)

    Rawe, Vanesa Y.; Chemes, Héctor

    Understanding the cellular events during fertilization in mammals is a major challenge that can contribute to the improvement of future infertility treatments in humans and reproductive performance in farm animals. Of special interest is the role of the oocyte and sperm cytoskeleton during the initial interaction between gametes. The aim of this chapter is to describe methods for studying cytoskeletal features during in vitro fertilization after intracytoplasmic sperm injection (ICSI) in humans. The following protocols will provide a detailed description of how to perform immunodetection and imaging of human eggs, zygotes, and sperm by fluorescence (confocal and epifluorescence) and electron microscopy.

  13. Human-Robot Site Survey and Sampling for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  14. Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.

    2010-01-01

    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities. Historically, engineering-dominated organizations have tended to view good Human Factors (HF) as a desire rather than a requirement in system design and development. Our field has made significant gains in the past decade, however; the Department of Defense, for example, now recognizes Human-System Integration (HSI), of which HF is a component, as an integral part of their divisions hardware acquisition processes. And our own agency was far more accepting of HF/HSI requirements during the most recent vehicle systems definition than in any prior cycle. Nonetheless, HF subject matter experts at NASA often find themselves in catch up mode... coping with legacy systems (hardware and software) and procedures that were designed with little regard for the human element, and too often with an attitude of we can deal with any operator issues during training. Our challenge, then, is to segregate the true knowledge gaps in Space Human Factors from the prior failures to incorporate best (or even good) HF design principles. Further, we strive to extract the overarching core HF issues from the point-design-specific concerns that capture the operators (and managers) attention. Generally, our approach embraces a 3M approach to Human Factors: Measurement, Modeling, and Mitigation. Our first step is to measure human performance, to move from subjective anecdotes to objective, quantified data. Next we model the phenomenon, using appropriate methods in

  15. Taking a "Giant Tour" to Explore the Human Body

    ERIC Educational Resources Information Center

    Davies, Dan

    2013-01-01

    Helping children to visualise what is inside them and how their bodies work can be a challenge, since teachers are often reliant on secondary sources or investigations that can only measure outward signs (such as pulse rate). Another way is to involve the children in an imaginative role-play exercise where they explore the insides of a…

  16. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  17. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  18. Human figure drawings: validity in assessing intellectual level and academic achievement.

    PubMed

    Aikman, K G; Belter, R W; Finch, A J

    1992-01-01

    In a sample of 216 child and adolescent psychiatric inpatients, significant but low correlations were found between Goodenough-Harris (GH) drawing scores and both Full Scale IQs and academic achievement. The percentage of subjects correctly classified in appropriate IQ categories ranged from 35 to 44%; the percentage of misclassified subjects ranged from 56 to 65%. Consideration of visual-motor integration, using the Bender-Gestalt, did not improve the accuracy of G-H scores in predicting IQ scores in this sample. These results indicate that human figure drawings should not be substituted for other well-established intelligence and achievement tests nor used as an additional measure of these constructs when one is evaluating psychiatric patients. PMID:1556206

  19. Exploration Life Support Technology Challenges for the Crew Exploration Vehicle and Human Lunar Missions

    NASA Astrophysics Data System (ADS)

    Kliss, Mark; Jones, Harry; Kliss, Mark

    As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost missions from a mass cost perspective. The two practical approaches to providing space life support are 1) open loop direct supply of atmosphere, water, and food, and 2) physical/chemical regeneration of air and water with direct supply of food. Open loop air and water is cost effective for short missions, but recycling these resources saves costly launch mass on longer missions. Because of short mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost share a planned ten year operational life, the Lunar Outpost life support system should be regenerative like that for ISS, and it could utilize similar technologies. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, improve reliability, incorporate lessons learned, and take advantage of technology advances over the last twenty years. The design should also take advantage of partial gravity and the potential utilization of lunar resources.

  20. Exploration life support technology challenges for the Crew Exploration Vehicle and future human missions

    NASA Astrophysics Data System (ADS)

    Jones, Harry W.; Kliss, Mark H.

    2010-04-01

    As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.

  1. Towards AN Integrated Scientific and Social Case for Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2004-06-01

    I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.

  2. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    NASA Technical Reports Server (NTRS)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  3. Safety Characteristics in System Application Software for Human Rated Exploration

    NASA Technical Reports Server (NTRS)

    Mango, E. J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development.

  4. A Preliminary Exploration of Occupations in the Arts and the Humanities.

    ERIC Educational Resources Information Center

    Hansen, Mary Lewis; And Others

    Summary information on arts and humanities occupational clusters, obtaining occupational information, career ladder and lattice possibilities, job projections, and job competencies for arts and humanities careers is presented in this report of research, which resulted in a series of 11 arts and humanities career exploration resource guides for…

  5. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  6. [Affective computing--a mysterious tool to explore human emotions].

    PubMed

    Li, Xin; Li, Honghong; Dou, Yi; Hou, Yongjie; Li, Changwu

    2013-12-01

    Perception, affection and consciousness are basic psychological functions of human being. Affection is the subjective reflection of different kinds of objects. The foundation of human being's thinking is constituted by the three basic functions. Affective computing is an effective tool of revealing the affectiveness of human being in order to understand the world. Our research of affective computing focused on the relation, the generation and the influent factors among different affections. In this paper, the affective mechanism, the basic theory of affective computing, is studied, the method of acquiring and recognition of affective information is discussed, and the application of affective computing is summarized as well, in order to attract more researchers into this working area. PMID:24645628

  7. NASA'S Solar System Exploration Research Virtual Institute: An international approach toward bringing science and human exploration together for mutual benefit

    NASA Astrophysics Data System (ADS)

    Schmidt, Gregory

    2016-07-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and

  8. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  9. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  10. Young Scientists Explore the Human Body. Book 11 Primary Level.

    ERIC Educational Resources Information Center

    Penn, Linda

    Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on the human body and encourage a positive self-concept. The theme of the first section is air--the breath of…

  11. Exploring the Relevance of Holocaust Education for Human Rights Education

    ERIC Educational Resources Information Center

    Eckmann, Monique

    2010-01-01

    Can Holocaust education be considered a tool for human rights education? If so, to what extent? These questions elicit discussions among a wide range of educators, and interest among politicians, educational planners, and ministries in charge of memorials. At first glance the obvious answer seems to be yes; both educators and students have strong…

  12. Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Seibert, Marc A.

    2003-01-01

    Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during the first 2 weeks of September 2002, involved a diverse team of researchers from several NASA centers and academic institutions.

  13. Exploring human brain lateralization with molecular genetics and genomics.

    PubMed

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. PMID:25950729

  14. Round trip trajectory options for human exploration of Mars

    NASA Astrophysics Data System (ADS)

    Hoffman, Stephen J.; McAdams, James V.; Niehoff, John C.

    The study deals with round-trip trajectory options as they are related to a phased exploration of Mars. Trajectory types covered include flyby, flyby-rendezvous, opposition, sprint, conjuction, Versatile International Station for Interplanetary Transport (VISIT), and escalator. For each trajectory type, a sample trajectory plot and data for opportunities beginning in the early 2000s are presented in order to provide a comparison of the launch and return dates, flight times, and energy requirements. The potential for combining different trajectory types to accomplish mission goals is illustrated.

  15. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  16. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors

    PubMed Central

    Teixeira, Vitor H; Nadarajan, Parthiban; Graham, Trevor A; Pipinikas, Christodoulos P; Brown, James M; Falzon, Mary; Nye, Emma; Poulsom, Richard; Lawrence, David; Wright, Nicholas A; McDonald, Stuart; Giangreco, Adam; Simons, Benjamin D; Janes, Sam M

    2013-01-01

    Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to “neutral drift” of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI: http://dx.doi.org/10.7554/eLife.00966.001 PMID:24151545

  17. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina.

    PubMed

    An, Lin; Shen, Tueng T; Wang, Ruikang K

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm(2) with single scan and 7 × 8 mm(2) for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm(2) with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration. PMID:22029360

  18. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina

    NASA Astrophysics Data System (ADS)

    An, Lin; Shen, Tueng T.; Wang, Ruikang K.

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

  19. Near-Earth Asteroids: Destinations for Human Exploration

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  20. Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2016-07-01

    The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA

  1. The Importance of Apollo to Solar-System Science and Future Human Exploration

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Shearer, C. K.

    2012-12-01

    December 14, 2012 marks 40 years since humans walked on the Moon, and the demise of the Apollo program. Apollo will be remembered for America's response to the President's ambitious plan to go to the Moon that was fueled by cold-war "competition". However, the importance of Apollo goes far beyond that because it represents an achievement that spacefaring nations, including the USA, still aspire to. This presentation focuses on the Apollo influence on our understanding of the Moon and the Solar-System, as well as future human exploration activities. Apollo gave 2 things that continue to yield surprises and (re)shape our thinking about the Moon: ALSEP data sets and the Apollo lunar sample collection. The ALSEPs gave us data on the radiation and dust environment, as the nature of the lunar interior, and how the Moon interacts with the solar wind and Earth's magnetotail. Many of ALSEP datasets are STILL not available in the Planetary Data System, but those that are yield surprises, such as the direct detection of the Moon's core from Apollo seismic data (Weber et al., 2011, Science 331, 309). This is now possible because of the more sophisticated computing systems that are available. Apollo samples have shown the unequivocal presence of indigenous lunar water (Saal et al., 2008, Nature 454, 192). ALSEP data, Apollo samples, and the Apollo experience itself are still critical in shaping human space exploration, and showing the knowledge gaps that need to be filled to facilitate long-term human lunar exploration and beyond. ALSEP data are the only data we have regarding dust activity on the lunar surface. This coupled with the Apollo astronaut experience shows that systems (e.g., space suits) need to be engineered differently if a permanent human lunar presence is ever to be established. Seismic data show the magnitude of some moonquakes exceed 5 on the Richter scale and the maximum ground movement lasts several minutes and takes over an hour to dissipate. Any habitat

  2. Temperatures Achieved in Human and Canine Neocortex During Intraoperative Passive or Active Focal Cooling

    PubMed Central

    Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo

    2015-01-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  3. Temperatures achieved in human and canine neocortex during intraoperative passive or active focal cooling.

    PubMed

    Smyth, Matthew D; Han, Rowland H; Yarbrough, Chester K; Patterson, Edward E; Yang, Xiao-Feng; Miller, John W; Rothman, Steven M; D'Ambrosio, Raimondo

    2015-06-01

    Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6-2°C was achieved both actively and passively to a depth of 10-15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001

  4. Human-centric intelligent systems for exploration and knowledge discovery.

    PubMed

    Parmee, I C

    2005-01-01

    This speculative article discusses research and development relating to computational intelligence (CI) technologies comprising powerful machine-based search and exploration techniques that can generate, extract, process and present high-quality information from complex, poorly understood biotechnology domains. The integration and capture of user experiential knowledge within such CI systems in order to support and stimulate knowledge discovery and increase scientific and technological understanding is of particular interest. The manner in which appropriate user interaction can overcome problems relating to poor problem representation within systems utilising evolutionary computation (EC), machine-learning and software agent technologies is investigated. The objective is the development of user-centric intelligent systems that support an improving knowledge-base founded upon gradual problem re-definition and reformulation. Such an approach can overcome initial lack of understanding and associated uncertainty. PMID:15614348

  5. Exploring Human Growth: Using a Calculator to Integrate Mathematics and Science.

    ERIC Educational Resources Information Center

    Wandersee, James H.

    1992-01-01

    Presents integrated activities for mathematics and biology appropriate for various levels from grades five through eight. Explores interesting aspects of human fingernails and hair growth and their mathematical relationship to time. Provides suggestions to integrate the activities with technology. (MDH)

  6. The Role of Lunar Development in Human Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1999-01-01

    Human exploration of the solar system can be said to have begun with the Apollo landings on the Moon. The Apollo Project was publicly funded with the narrow technical objective of landing human beings on the Moon. The transportation and life support systems were specialized technical designs, developed in a project management environment tailored to that objective. Most scenarios for future human exploration assume a similar long-term commitment of public funds to a narrowly focused project managed by a large, monolithic organization. Advocates of human exploration of space have not yet been successful in generating the political momentum required to initiate such a project to go to the Moon or to Mars. Alternative scenarios of exploration may relax some or all of the parameters of organizational complexity, great expense, narrow technical focus, required public funding, and control by a single organization. Development of the Moon using private investment is quite possibly a necessary condition for alternative scenarios to succeed.

  7. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    NASA Astrophysics Data System (ADS)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  8. 77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ..., Human Exploration and Operations Mission Directorate, NASA Headquarters, 300 E Street SW., Washington... --Joint Session with the NAC Science Committee on the Mars Program Planning Group final report and...

  9. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the...

  10. A Resource-Rich, Scientifically Compelling Exploration Zone for Human Missions at Deuteronilus Mensae, Mars

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    2015-10-01

    The Deuteronilus Mensae region of Mars is promising as a potential landing site for human exploration because it contains vast, readily accessible deposits of water ice in a setting of key scientific importance.

  11. Exploring the Human Fabric through an Analyst's Eyes

    NASA Astrophysics Data System (ADS)

    Belov, Nadya; Patti, Jeff; Wilcox, Saki; Almanzar, Rafael; Kim, Janet; Kellogg, Jennifer; Dang, Steven

    The nature and type of conflicts drastically changed in the last half of the twentieth century. Wars are no longer limited to the field; they are supplemented with guerrilla warfare and other asymmetric warfare tactics including domestic terrorism. Domestic terrorism has demonstrated a need for improved homeland security capabilities. Establishing and maintaining the understanding of the key players and the underlying social networks is essential to combating asynchronous warfare tactics. Herein, we identify the key challenges addressed by our Collection/Exploitation Decision System (CEDS) that assist analysts in maintaining an up-to-date understanding of dynamic human networks.

  12. Exploring human freeze responses to a threat stressor.

    PubMed

    Schmidt, Norman B; Richey, J Anthony; Zvolensky, Michael J; Maner, Jon K

    2008-09-01

    Despite the fundamental nature of tonic immobility in anxiety responses, surprisingly little empirical research has focused on the "freeze" response in humans. The present report evaluated the frequency and predictors of a freeze response in the context of a biological challenge. A nonclinical sample (N=404) underwent a 20-s inhalation of 20% CO(2)/balance O(2). Perceptions of immobility in the context of the challenge were reported in 13% of the sample, compared with 20% reporting a significant desire to flee. Subjective anxiety and panic during the challenge were associated with the freeze response, as were a number of anxiety symptom dimensions. PMID:17880916

  13. Human Exploration of Near-Earth Objects Accessibility Study

    NASA Technical Reports Server (NTRS)

    Abell, Paul; Drake, Bret; Friedensen, Victoria; Mazanek, Dan

    2011-01-01

    Key questions addressed: How short can the trip times be reduced in order to reduce crew exposure to the deep-space radiation and microgravity environment? Are there options to conduct easy, early missions?. What is the affect of infusion of advanced propulsion technologies on target availability When do the departure opportunities open up, how frequent and how long are they? How many launches are required to conduct a round trip human mission to a NEA? And, based on the above, how many Near-Earth Asteroids are available

  14. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  15. Human Exploration Systems and Mobility Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Taylor, Jeff

    2005-01-01

    Contents include the following: Capability Roadmap Team. Capability Description and Capability Breakdown Structure. Benefits of the Human Systems and Mobility Capability. Roadmap Process and Approach. Drivers and Assumptions for the whole team. Current State-of-the-Art, Assumptions and Requirements will be covered in the appropriate sections. Capability Presentations by Leads under Roadmap (Repeated for each capability under roadmap). Capability Description, Benefits, Current State-of-the-Art. Capability Requirements and Assumptions. Roadmap for Capability. Capability Readiness Level. Technology Readiness Level. Figures of Merit. Summary of Top Level Capability. Significant Technical Challenges. Summary and Forward Work.

  16. Exploring the Solar System with a Human Orrery

    NASA Astrophysics Data System (ADS)

    Newbury, Peter

    2010-12-01

    One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper1 or across a school grounds or campus.2 Other activities that investigate the motion of the planets are often computer based,34 hiding the awe-inspiring distances between the planets. Our human orrery activity, adapted from the design at the Armagh Observatory in Ireland,567 combines the best of both approaches by creating a working model of the solar system that mimics both the scale and the motion of the planets.

  17. Exploring the School Climate--Student Achievement Connection: Making Sense of Why the First Precedes the Second

    ERIC Educational Resources Information Center

    Jones, Albert; Shindler, John

    2016-01-01

    Many educators view school climate and student achievement as separate considerations. For some, the idea of promoting a high quality climate can seem like a luxury in the face of the current high stakes assessment climate in which student achievement gains are the paramount consideration. However, the results of this study suggest that climate…

  18. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  19. A goal and strategy for human exploration of the moon and Mars

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna Shirley

    1990-01-01

    Eventual settlement of the solar system, beginning with the moon and Mars, is proposed, and a strategy for the exploration of and initial settlement of the moon and Mars, based on the model of European settlement of the Americas, is discussed. Strategies suggest an allocation of functions between humans and telerobots to conduct the exploration and initial settlement.

  20. 77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Exploration and Operations Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-2245, fax... meeting includes the following topics: --Status of the Human Exploration and Operations Mission... Advancement of Science in Space --Joint Session with the NAC Science Committee on Mars Program Planning...

  1. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  2. Exploring the world of human development and reproduction.

    PubMed

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation. PMID:25023674

  3. Exploring Entrainment Patterns of Human Emotion in Social Media

    PubMed Central

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  4. Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2012-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.

  5. Exploring the bacterial assemblages along the human nasal passage.

    PubMed

    Wos-Oxley, Melissa L; Chaves-Moreno, Diego; Jáuregui, Ruy; Oxley, Andrew P A; Kaspar, Ursula; Plumeier, Iris; Kahl, Silke; Rudack, Claudia; Becker, Karsten; Pieper, Dietmar H

    2016-07-01

    The human nasal passage, from the anterior nares through the nasal vestibule to the nasal cavities, is an important habitat for opportunistic pathogens and commensals alike. This work sampled four different anatomical regions within the human nasal passage across a large cohort of individuals (n = 79) comprising individuals suffering from chronic nasal inflammation clinically known as chronic rhinosinusitis (CRS) and individuals not suffering from inflammation (CRS-free). While individuals had their own unique bacterial fingerprint that was consistent across the anatomical regions, these bacterial fingerprints formed into distinct delineated groups comprising core bacterial members, which were consistent across all four swabbed anatomical regions irrespective of health status. The most significant observed pattern was the difference between the global bacterial profiles of swabbed and tissue biopsy samples from the same individuals, being also consistent across different anatomical regions. Importantly, no statistically significant differences could be observed concerning the global bacterial communities, any of the bacterial species or the range of diversity indices used to compare between CRS and CRS-free individuals, and between two CRS phenotypes (without nasal polyps and with nasal polyps). Thus, the role of bacteria in the pathogenesis of sinusitis remains uncertain. PMID:27207744

  6. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES

  7. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  8. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be

  9. Pesticides and human diabetes: a link worth exploring?

    PubMed

    Swaminathan, K

    2013-11-01

    It is no exaggeration to claim that the 'diabetes epidemic' has become a 'runaway train' causing huge health and economic consequences, especially in the developing nations. Traditionally, the risk factors for diabetes have largely focused on genetics and lifestyle. Great emphasis is placed on lifestyle measures and finding novel pharmacological treatment options to combat diabetes, but there is increasing evidence linking environmental pollutants, especially pesticides, to the development of insulin resistance and Type 2 diabetes. Pesticide use has increased dramatically worldwide and the effects of pesticides on glucose metabolism are too significant for a possible diabetogenic link to be dismissed. The aim of this review article was to assess the links between pesticides and human diabetes with the goal of stimulating further research in this area. PMID:23587011

  10. Bioastronautics Roadmap: A Risk Reduction Strategy for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Bioastronautics Critical Path Roadmap is the framework used to identify and assess the risks to crews exposed to the hazardous environments of space. It guides the implementation of research strategies to prevent or reduce those risks. Although the BCPR identifies steps that must be taken to reduce the risks to health and performance that are associated with human space flight, the BCPR is not a "critical path" analysis in the strict engineering sense. The BCPR will evolve to accommodate new information and technology development and will enable NASA to conduct a formal critical path analysis in the future. As a management tool, the BCPR provides information for making informed decisions about research priorities and resource allocation. The outcome-driven nature of the BCPR makes it amenable for assessing the focus, progress and success of the Bioastronautics research and technology program. The BCPR is also a tool for communicating program priorities and progress to the research community and NASA management.

  11. Human Exploration of Space: why, where, what for?

    PubMed Central

    Vernikos, J

    2008-01-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives" – Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market". PMID:19048086

  12. Exploring the Relationships between Learning Styles, Online Participation, Learning Achievement and Course Satisfaction: An Empirical Study of a Blended Learning Course

    ERIC Educational Resources Information Center

    Cheng, Gary; Chau, Juliana

    2016-01-01

    The purpose of this study was twofold: first, to explore the relationship between students' learning styles and their online participation in a blended learning course, and second, to investigate the relationships of students' online participation with their learning achievement and with course satisfaction. A total of 78 undergraduate students…

  13. Spatially Referenced Educational Achievement Data Exploration: A Web-Based Interactive System Integration of GIS, PHP, and MySQL Technologies

    ERIC Educational Resources Information Center

    Mulvenon, Sean W.; Wang, Kening; Mckenzie, Sarah; Anderson, Travis

    2006-01-01

    Effective exploration of spatially referenced educational achievement data can help educational researchers and policy analysts speed up gaining valuable insight into datasets. This article illustrates a demo system developed in the National Office for Research on Measurement and Evaluation Systems (NORMES) for supporting Web-based interactive…

  14. A Longitudinal Exploration of the Relationship between Oral Reading Fluency and Reading Comprehension Achievement among a Sample of Diverse Young Learners

    ERIC Educational Resources Information Center

    Acquavita, Teri L.

    2012-01-01

    Exploring the relationship between early oral reading fluency ability and reading comprehension achievement among an ethnically and racially diverse sample of young learners from low-income families, attending elementary school within a large public school district in southeast Florida is the purpose of this longitudinal study. Although many…

  15. A Hierarchical Examination of the Immigrant Achievement Gap: The Additional Explanatory Power of Nationality and Educational Selectivity over Traditional Explorations of Race and Socioeconomic Status

    ERIC Educational Resources Information Center

    Simms, Kathryn

    2012-01-01

    This study compared immigrant and nonimmigrant educational achievement (i.e., the immigrant gap) in math by reexamining the explanatory power of race and socioeconomic status (SES)--two variables, perhaps, most commonly considered in educational research. Four research questions were explored through growth curve modeling, factor analysis, and…

  16. Testing Two Path Models to Explore Relationships between Students' Experiences of the Teaching-Learning Environment, Approaches to Learning and Academic Achievement

    ERIC Educational Resources Information Center

    Karagiannopoulou, Evangelia; Milienos, Fotios S.

    2015-01-01

    The study explores the relationships between students' experiences of the teaching-learning environment and their approaches to learning, and the effects of these variables on academic achievement. Two three-stage models were tested with structural equation modelling techniques. The "Approaches and Study Skills Inventory for…

  17. Human Exploration of Near-Earth Asteroids and Sample Collection Considerations

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. Subsequently, the U.S. presidential administration directed NASA on April 15, 2010 to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Sample Science Benefits: Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a

  18. Achieving human and machine accessibility of cited data in scholarly publications

    PubMed Central

    Starr, Joan; Castro, Eleni; Crosas, Mercè; Dumontier, Michel; Downs, Robert R.; Duerr, Ruth; Haak, Laurel L.; Haendel, Melissa; Herman, Ivan; Hodson, Simon; Hourclé, Joe; Kratz, John Ernest; Lin, Jennifer; Nielsen, Lars Holm; Nurnberger, Amy; Proell, Stefan; Rauber, Andreas; Sacchi, Simone; Smith, Arthur; Taylor, Mike; Clark, Tim

    2015-01-01

    Reproducibility and reusability of research results is an important concern in scientific communication and science policy. A foundational element of reproducibility and reusability is the open and persistently available presentation of research data. However, many common approaches for primary data publication in use today do not achieve sufficient long-term robustness, openness, accessibility or uniformity. Nor do they permit comprehensive exploitation by modern Web technologies. This has led to several authoritative studies recommending uniform direct citation of data archived in persistent repositories. Data are to be considered as first-class scholarly objects, and treated similarly in many ways to cited and archived scientific and scholarly literature. Here we briefly review the most current and widely agreed set of principle-based recommendations for scholarly data citation, the Joint Declaration of Data Citation Principles (JDDCP). We then present a framework for operationalizing the JDDCP; and a set of initial recommendations on identifier schemes, identifier resolution behavior, required metadata elements, and best practices for realizing programmatic machine actionability of cited data. The main target audience for the common implementation guidelines in this article consists of publishers, scholarly organizations, and persistent data repositories, including technical staff members in these organizations. But ordinary researchers can also benefit from these recommendations. The guidance provided here is intended to help achieve widespread, uniform human and machine accessibility of deposited data, in support of significantly improved verification, validation, reproducibility and re-use of scholarly/scientific data. PMID:26167542

  19. Integrating social networks and human social motives to achieve social influence at scale.

    PubMed

    Contractor, Noshir S; DeChurch, Leslie A

    2014-09-16

    The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the "who" and the "how" of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India. PMID:25225373

  20. Integrating social networks and human social motives to achieve social influence at scale

    PubMed Central

    Contractor, Noshir S.; DeChurch, Leslie A.

    2014-01-01

    The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person’s attitudes and behaviors affect another’s) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the “who” and the “how” of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India. PMID:25225373

  1. Robosphere: Self Sustaining Robotic Ecologies as Precursors to Human Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    2003-01-01

    The present sequential mission oriented approach to robotic planetary exploration, could be changed to an infrastructure building approach where a robotic presence is permanent, self sustaining and growing with each mission. We call this self-sustaining robotic ecology approach robosphere and discuss the technological issues that need to be addressed before this concept can be realized. One of the major advantages of this approach is that a robosphere would include much of the infrastructure required by human explorers and would thus lower the preparation and risk threshold inherent in the transition from robotic to human exploration. In this context we discuss some implications for space architecture.

  2. CREME: Cis-Regulatory Module Explorer for the Human Genome

    SciTech Connect

    Loots, G G; Sharan, R; Ovcharenko, I; Ben-Hur, A

    2004-02-11

    The binding of transcription factors to specific regulatory sequence elements is a primary mechanism for controlling gene transcription. Eukaryotic genes are often regulated by several transcription factors, whose binding sites are tightly clustered and form cis-regulatory modules. In this paper we present a web-server, CREME, for identifying and visualizing cis-regulatory modules in the promoter regions of a given set of potentially co-regulated genes. CREME relies on a database of putative transcription factor binding sites that have been annotated across the human genome using a library of position weight matrices and evolutionary conservation with the mouse and rat genomes. A search algorithm is applied to this dataset to identify combinations of transcription factors whose binding sites tend to co-occur in close proximity in the promoter regions of the input gene set. The identified cis-regulatory modules are statistically scored and significant combinations are reported and graphically visualized. Our web-server is available at http://creme.dcode.org/.

  3. Exploration of the normal human bronchoalveolar lavage fluid proteome

    PubMed Central

    Chen, Jinzhi; Ryu, Soyoung; Gharib, Sina A.; Goodlett, David R.; Schnapp, Lynn M.

    2015-01-01

    We obtained insight into normal lung function by proteome analysis of bronchoalveolar lavage fluid (BALF) from six normal human subjects using a “Lyse-N-Go’ shotgun proteomic protocol. Intra-sample variation was calculated using three different label-free methods, (i) protein sequence coverage; (ii) peptide spectral counts and (iii) peptide single-ion current areas (PICA), which generates protein expression data by summation of the area under the curve for a given peptide single-ion current trace and then adding values for all peptides from that same parent protein. PICA gave the least intra-subject variability and was used to calculate differences in protein expression between the six subjects. We observed an average threefold inter-sample variability, which affects analysis of changes in protein expression that occur in different diseases. We detected 167 unique proteins with >100 proteins detected in each of the six individual BAL samples, 42 of which were common to all six subjects. Gene ontology analysis demonstrated enrichment of several biological processes in the lung, reflecting its expected role in gas exchange and host defense as an immune organ. The same biological processes were enriched compared to either plasma or total genome proteome, suggesting an active enrichment of plasma proteins in the lung rather than passive capillary leak. PMID:21136857

  4. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  5. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  6. Seeking Asylum: Adolescents Explore the Crossroads of Human Rights Education and Cosmopolitan Critical Literacy

    ERIC Educational Resources Information Center

    Dunkerly-Bean, Judith; Bean, Thomas; Alnajjar, Khaled

    2014-01-01

    The purpose of this study was to explore middle school (grade 6-8) students' understanding and interpretation of human rights issues with local and global implications as they engaged in the process of creating a film after reading print and multimedia texts and participating in human rights education activities. As the students explored…

  7. Paving the Path for Human Space Exploration: The Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hansen, Lauri

    2016-01-01

    Lauri Hansen, Director of Engineering at NASA Johnson Space Center will discuss the challenges of human space exploration. The future of human exploration begins with our current earth reliant missions in low earth orbit. These missions utilize the International Space Station to learn how to safely execute deep space missions. In addition to serving as an exploration test bed and enabling world class research, the International Space Station enables NASA to build international and commercial partnerships. NASA's next steps will be to enable the commercialization of low earth orbit while concentrating on developing the spacecraft and infrastructure necessary for deep space exploration and long duration missions. The Orion multi-purpose crew vehicle and the Space Launch System rocket are critical building blocks in this next phase of exploration. There are many challenges in designing spacecraft to perform these missions including safety, complex vehicle design, and mass challenges. Orion development is proceeding well, and includes a significant partnership with the European Space Agency (ESA) to develop and build the Service Module portion of the spacecraft. Together, NASA and ESA will provide the capability to take humans further than we have ever been before - 70,000 km past the moon. This will be the next big step in expanding the frontiers of human exploration, eventually leading to human footprints on Mars.

  8. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis.

    PubMed

    Ehrenreich, Hannelore; Fischer, Benjamin; Norra, Christine; Schellenberger, Felix; Stender, Nike; Stiefel, Michael; Sirén, Anna-Leena; Paulus, Walter; Nave, Klaus-Armin; Gold, Ralf; Bartels, Claudia

    2007-10-01

    The neurodegenerative aspects of chronic progressive multiple sclerosis (MS) have received increasing attention in recent years, since anti-inflammatory and immunosuppressive treatment strategies have largely failed. However, successful neuroprotection and/or neuroregeneration in MS have not been demonstrated yet. Encouraged by the multifaceted neuroprotective effects of recombinant human erythropoietin (rhEPO) in experimental models, we performed an investigator-driven, exploratory open label study (phase I/IIa) in patients with chronic progressive MS. Main study objectives were (i) evaluating safety of long-term high-dose intravenous rhEPO treatment in MS, and (ii) collecting first evidence of potential efficacy on clinical outcome parameters. Eight MS patients, five randomly assigned to high-dose (48,000 IU), three to low-dose (8000 IU) rhEPO treatment, and, as disease controls, two drug-naïve Parkinson patients (receiving 48,000 IU) were followed over up to 48 weeks: A 6-week lead-in phase, a 12-week treatment phase with weekly EPO, another 12-week treatment phase with bi-weekly EPO, and a 24-week post-treatment phase. Clinical and electrophysiological improvement of motor function, reflected by a reduction in expanded disability status scale (EDSS), and of cognitive performance was found upon high-dose EPO treatment in MS patients, persisting for three to six months after cessation of EPO application. In contrast, low-dose EPO MS patients and drug-naïve Parkinson patients did not improve in any of the parameters tested. There were no adverse events, no safety concerns and a surprisingly low need of blood-lettings. This first pilot study demonstrates the necessity and feasibility of controlled trials using high-dose rhEPO in chronic progressive MS. PMID:17728357

  9. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    NASA Technical Reports Server (NTRS)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  10. Crew systems: integrating human and technical subsystems for the exploration of space

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  11. Science Enabled by the ISECG Reference Architecture for Human Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Carey, William; Culbert, Christopher; Hipkin, Victoria; Hufenbach, Bernhard; Kim, Hae-Dong; Laurini, Kathy; Matsumoto, Kohtaro; Rhatigan, Jennifer

    1. Reference Utilisation Activities Description of science utilisation considered. . . .. TBC 1. Conclusions TheWe intend to demonstrate that the resulteding ISECG Reference Architecture for Human Lunar Exploration (, as gPODJJennifer Rhatigan-2031957417Don't use unless you define it (not sure it's needed in an abstract) (Global Point Of Departure),) offers a technological and programmatic balance for thea significant level of sustainable scientific investigation of the Moon and sustainable human space exploration through a coordinated human-robotic partnership. 1. http://www.globalspaceexploration.org/

  12. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual

  13. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  14. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  15. A Twin and Adoption Study of Reading Achievement: Exploration of Shared-Environmental and Gene-Environment-Interaction Effects.

    PubMed

    Kirkpatrick, Robert M; Legrand, Lisa N; Iacono, William G; McGue, Matt

    2011-08-01

    Existing behavior-genetic research implicates substantial influence of heredity and modest influence of shared environment on reading achievement and reading disability. Applying DeFries-Fulker analysis to a combined sample of twins and adoptees (N = 4,886, including 266 reading-disabled probands), the present study replicates prior findings of considerable heritability for both reading achievement and reading disability. A simple biometric model adequately described parent and offspring data (combined N = 9,430 parents and offspring) across differing types of families present in the sample Analyses yielded a high heritability estimate (around 0.70) and a negligible shared-environmentality estimate for both reading achievement and reading disability. No evidence of gene × environment interaction was found for parental reading ability and parental educational attainment, the two moderators analyzed. PMID:21743785

  16. A Twin and Adoption Study of Reading Achievement: Exploration of Shared-Environmental and Gene-Environment-Interaction Effects

    PubMed Central

    Kirkpatrick, Robert M.; Legrand, Lisa N.; Iacono, William G.; McGue, Matt

    2011-01-01

    Existing behavior-genetic research implicates substantial influence of heredity and modest influence of shared environment on reading achievement and reading disability. Applying DeFries-Fulker analysis to a combined sample of twins and adoptees (N = 4,886, including 266 reading-disabled probands), the present study replicates prior findings of considerable heritability for both reading achievement and reading disability. A simple biometric model adequately described parent and offspring data (combined N = 9,430 parents and offspring) across differing types of families present in the sample Analyses yielded a high heritability estimate (around 0.70) and a negligible shared-environmentality estimate for both reading achievement and reading disability. No evidence of gene × environment interaction was found for parental reading ability and parental educational attainment, the two moderators analyzed. PMID:21743785

  17. Exploring the Value Added of a Guided, Silent Reading Intervention: Effects on Struggling Third-Grade Readers' Achievement

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Petscher, Yaacov; Spichtig, Alexandra N.

    2012-01-01

    The authors' purpose was to explore the effects of a supplementary, guided, silent reading intervention with 80 struggling third-grade readers who were retained at grade level as a result of poor performance on the reading portion of a criterion referenced state assessment. The students were distributed in 11 elementary schools in a large, urban…

  18. Exploring the Relationship between Time Management Skills and the Academic Achievement of African Engineering Students--A Case Study

    ERIC Educational Resources Information Center

    Swart, Arthur James; Lombard, Kobus; de Jager, Henk

    2010-01-01

    Poor academic success by African engineering students is currently experienced in many higher educational institutions, contributing to lower financial subsidies by local governments. One of the contributing factors to this low academic success may be the poor time management skills of these students. This article endeavours to explore this…

  19. Exploring the Relationship between Experienced Students' Preference for Open- and Closed-Book Examinations, Approaches to Learning and Achievement

    ERIC Educational Resources Information Center

    Karagiannopoulou, Evangelia; Milienos, Fotios S.

    2013-01-01

    The relationship between university students' approaches to learning and preference for the open- and closed-book examinations was investigated for 144 Greek undergraduate (56 third- and 88 fourth-year) students attending a Philosophy, Education and Psychology Department. The approaches were explored by the Approaches and Study Skills Inventory…

  20. It's Not Always Just about the Grade: Exploring the Achievement Goal Orientations of Pre-Med Students

    ERIC Educational Resources Information Center

    Horowitz, Gail

    2010-01-01

    This qualitative study investigated the achievement goal orientations of a group of all male pre-med students attending a small, urban undergraduate college. Semi-structured interviews examined under what circumstances students adopted extrinsic goals, mastery goals, or a mixture of the two. Findings indicated that while nearly all students…

  1. In Their Own Words: Erasing Deficits and Exploring What Works to Improve K-12 and Postsecondary Black Male School Achievement

    ERIC Educational Resources Information Center

    Warren, Chezare A.; Douglas, Ty-Ron M. O.; Howard, Tyrone C.

    2016-01-01

    This article outlines the imperative for strengths-based research to counter deficit perceptions and perspectives of Black males in contemporary discussions of their school achievement in the United States. The importance of young men of color in shaping research agendas, practice, and public policy is argued followed by a brief overview of the…

  2. Striving for Success: A Qualitative Exploration of Competing Theories of High-Achieving Black College Students' Academic Motivation

    ERIC Educational Resources Information Center

    Griffin, Kimberly

    2006-01-01

    Research on the academic performance of Black students has focused on low-achievers, framing their academic motivation as maladaptive and driven by externally (e.g., competition or compliance) rather than internally (e.g., love of learning) generated forces. This qualitative study challenges this mono-dimensional deficit framework, examining the…

  3. A Twin and Adoption Study of Reading Achievement: Exploration of Shared-Environmental and Gene-Environment-Interaction Effects

    ERIC Educational Resources Information Center

    Kirkpatrick, Robert M.; Legrand, Lisa N.; Iacono, William G.; McGue, Matt

    2011-01-01

    Existing behavior-genetic research implicates substantial influence of heredity and modest influence of shared environment on reading achievement and reading disability. Applying DeFries-Fulker analysis to a combined sample of twins and adoptees (N = 4886, including 266 reading-disabled probands), the present study replicates prior findings of…

  4. Exploring Patterns of Latino/a Children's School Readiness at Kindergarten Entry and Their Relations with Grade 2 Achievement

    ERIC Educational Resources Information Center

    Quirk, Matthew; Nylund-Gibson, Karen; Furlong, Michael

    2013-01-01

    This study contributed to the school readiness literature by taking an intrachild perspective that examined the relations between Latino/a children's school readiness profiles and later academic achievement. Teachers rated the school readiness of 781 Latino/a kindergartners during the first month of school using the Kindergarten Student Entrance…

  5. An Exploration of the Psychosocial Characteristics of High Achieving Students and Identified Gifted Students: Implications for Practice

    ERIC Educational Resources Information Center

    Ritchotte, Jennifer A.; Suhr, Diana; Alfurayh, Naif F.; Graefe, Amy K.

    2016-01-01

    High achieving students or "bright children" are often denied access to gifted services because they do not meet "gifted" criteria. Although psychosocial factors play an integral role in academic success, and can be useful in providing a clearer picture of student need, they are seldom considered in the decision to identify a…

  6. High-Achieving Black Students, Biculturalism, and Out-of-School STEM Learning Experiences: Exploring Some Unintended Consequences

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    In this article, the author discusses the complex challenges of high-achieving Black students who are successful in becoming immersed in predominately White STEM (science, technology, engineering, and mathematics) spaces and how such immersion can exacerbate their experiences of racial stereotyping and other forms of racial bias. The author…

  7. Precursor Asteroid Missions and Synergies to Human Exploration of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025 and then on to the Martian system in the 2030s. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. space exploration policy. These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and its moons, as well as other Solar System destinations. Robotic precursor missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, which may play a vital role in leveraging potential resources from the Martian moons that in turn could enable robotic and human exploration of Mars.

  8. Exploring the alignment of writing self-efficacy with writing achievement using rasch measurement theory and qualitative methods.

    PubMed

    Engelhard, George; Behizadeh, Nadia

    2012-01-01

    Alignment of writing self-efficacy and writing achievement is defined as the congruence between student confidence regarding writing skills (writing self-efficacy) and the actual performance on these writing skills as reflected in teacher grades (achievement). One purpose of this study is to examine the relationship between these two variables. A second purpose is to demonstrate a mixed-methods approach to investigating relationships between affective variables using Rasch measurement and interviews. Participants were eighth grade students (N = 94) from an ethnically and socioeconomically diverse school in the southeastern United States. Our results suggest that students who struggle with the mechanics of writing yet appreciate the expressive capacity of writing, may have higher senses of writing self-efficacy that are not predictive of performance. PMID:22805358

  9. A Path to Planetary Protection Requirements for Human Exploration: A Literary Analysis and Systems Engineering Approach

    NASA Astrophysics Data System (ADS)

    Johnson, James; Conley, Catharine; Siegel, Bette

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literary analysis of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current ‘state of knowledge’. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection. Keywords: planetary protection, human spaceflight requirements, human space exploration, human space operations, systems engineering, literature analysis

  10. International note: exploring differences in native and immigrant adolescents' mathematics achievement and dispositions towards mathematics in Qatar.

    PubMed

    Areepattamannil, Shaljan; Melkonian, Michael; Khine, Myint Swe

    2015-04-01

    The burgeoning immigrant population in major immigrant-receiving countries in North America and Europe has necessitated researchers and policymakers in these countries to examine the academic success of children of immigration and the factors contributing to their academic success. However, there is sparse research on the academic trajectories of children of immigration in other continents, such as Asia. Hence, the purpose of the present study was to examine first- and second-generation immigrant adolescents' mathematics achievement and dispositions towards mathematics in comparison to their native peers in one of the Middle Eastern countries in Asia, Qatar. The results of the study indicated that both first- and second-generation immigrant adolescents tended to have higher mathematics achievement, intrinsic motivation to learn mathematics, instrumental motivation to learn mathematics, mathematics self-efficacy, and mathematics self-concept than did their native counterparts. Moreover, immigrant adolescents tended to have lower mathematics anxiety than did their native peers. The study also revealed significant differences between first- and second-generation immigrant adolescents with respect to their mathematics achievement and dispositions towards mathematics. PMID:25600511

  11. A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce

    2008-01-01

    Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.

  12. The Weak Stability Boundary, A Gateway for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2000-01-01

    NASA plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized Weak Stability Boundary in the Earth-Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.

  13. Chemical Achievers: The Human Face of the Chemical Sciences (by Mary Ellen Bowden)

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1999-02-01

    Chemical Heritage Foundation: Philadelphia, PA, 1997. viii + 180 pp. 21.6 x 27.8 cm. ISBN 0-941901-15-1. Paper. 20.00 (10.00 for high school teachers who provide documentation). At a 1991 summer workshop sponsored by the Chemical Heritage Foundation and taught by Derek A. Davenport and William B. Jensen, high school and college teachers of introductory chemistry requested a source of pictorial material about famous chemical scientists suitable as a classroom aid. CHF responded by publishing this attractive, inexpensive paperback volume, which reflects the considerable research effort needed to locate appropriate images and to write the biographical essays. Printed on heavy, glossy paper and spiral bound to facilitate conversion to overhead transparencies, it contains 157 images from pictorial collections at CHF and many other institutions on two types of achievers: the historical "greats" most often referred to in introductory courses, and scientists who made contributions in areas of the chemical sciences that are of special relevance to modern life and the career choices students will make. The pictures are intended to provide the "human face" of the book's subtitle- "to point to the human beings who had the insights and made the major advances that [teachers] ask students to master." Thus, for example, Boyle's law becomes less cold and abstract if the student can connect it with the two portraits of the Irish scientist even if his face is topped with a wig. Marie Curie can be seen in the role of wife and mother as well as genius scientist in the photographs of her with her two daughters, one of whom also became a Nobel laureate. And students are reminded of the ubiquity of the contribution of the chemical scientists to all aspects of our everyday life by the stories and pictures of Wallace Hume Carothers' path to nylon, Percy Lavon Julian's work on hormones, and Charles F. Chandler and Rachel Carson's efforts to preserve the environment. In addition to portraits

  14. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  15. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; Dickson, J. T.; Elphic, R. C.; Eppler, D. B.; Fernandez-Remolar, D. C.; Head, J. W.; Helper, M.; Gruener, J. E.; Heldmann, J.; Hipkin, V.; Lane, M. D.; Levy, J.; Moersch, J.; Ori, G. G.; Peach, L.; Poulet, F.

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  16. Surface Support Systems for Co-Operative and Integrated Human/Robotic Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2006-01-01

    Human and robotic partnerships to realize space goals can enhance space missions and provide increases in human productivity while decreasing the hazards that the humans are exposed to. For lunar exploration, the harsh environment of the moon and the repetitive nature of the tasks involved with lunar outpost construction, maintenance and operation as well as production tasks associated with in-situ resource utilization, make it highly desirable to use robotic systems in co-operation with human activity. A human lunar outpost is functionally examined and concepts for selected human/robotic tasks are discussed in the context of a lunar outpost which will enable the presence of humans on the moon for extended periods of time.

  17. Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durant, marco

    2006-01-01

    Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.

  18. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  19. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most effect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space explorations.

  20. Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations

    NASA Technical Reports Server (NTRS)

    Lin, Zi-Wei

    2004-01-01

    Space radiation from cosmic ray particles is one of the main challenges for long-term human space explorations such as a permanent moon base or a trip to Mars. Material shielding may provide significant radiation protection to astronauts, and models have been developed in order to evaluate the effectiveness of different shielding materials and to predict radiation environment inside the spacecraft. In this study we determine the nuclear fragmentation cross sections which will most affect the radiation risk behind typical radiation shielding materials. These cross sections thus need more theoretical studies and accurate experimental measurements in order for us to more precisely predict the radiation risk in human space exploration.

  1. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  2. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  3. Human factors research as part of a Mars exploration analogue mission on Devon Island

    NASA Astrophysics Data System (ADS)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  4. Prenatal Transmission of Syphilis and Human Immunodeficiency Virus in Brazil: Achieving Regional Targets for Elimination

    PubMed Central

    Cerda, Rodrigo; Perez, Freddy; Domingues, Rosa Maria S.M.; Luz, Paula M.; Grinsztejn, Beatriz; Veloso, Valdilea G.; Caffe, Sonja; Francke, Jordan A.; Freedberg, Kenneth A.; Ciaranello, Andrea L.

    2015-01-01

    Background. The Pan-American Health Organization has called for reducing (1) human immunodeficiency virus (HIV) mother-to-child transmission (MTCT) to ≤0.30 infections/1000 live births (LB), (2) HIV MTCT risk to ≤2.0%, and (3) congenital syphilis (CS) incidence to ≤0.50/1000 LB in the Americas by 2015. Methods. Using published Brazilian data in a mathematical model, we simulated a cohort of pregnant women from antenatal care (ANC) through birth. We investigated 2 scenarios: “current access” (89.1% receive one ANC syphilis test and 41.1% receive 2; 81.7% receive one ANC HIV test and 18.9% receive birth testing; if diagnosed, 81.0% are treated for syphilis and 87.5% are treated for HIV) and “ideal access” (95% of women undergo 2 HIV and syphilis screenings; 95% receive appropriate treatment). We conducted univariate and multivariate sensitivity analyses on key inputs. Results. With current access, we projected 2.95 CS cases/1000 LB, 0.29 HIV infections/1000 LB, 7.1% HIV MTCT risk, and 11.11 intrauterine fetal demises (IUFD)/1000 pregnancies, with significant regional variation. With ideal access, we projected improved outcomes: 1.00 CS cases/1000 LB, 0.10 HIV infections/1000 LB, HIV MTCT risk of 2.4%, and 10.65 IUFD/1000 pregnancies. Increased testing drove the greatest improvements. Even with ideal access, only HIV infections/1000 LB met elimination goals. Achieving all targets required testing and treatment >95% and reductions in prevalence and incidence of HIV and syphilis. Conclusions. Increasing access to care and HIV and syphilis antenatal testing will substantially reduce HIV and syphilis MTCT in Brazil. In addition, regionally tailored interventions reducing syphilis incidence and prevalence and supporting HIV treatment adherence are necessary to completely meet elimination goals. PMID:26180825

  5. Prenatal Transmission of Syphilis and Human Immunodeficiency Virus in Brazil: Achieving Regional Targets for Elimination.

    PubMed

    Cerda, Rodrigo; Perez, Freddy; Domingues, Rosa Maria S M; Luz, Paula M; Grinsztejn, Beatriz; Veloso, Valdilea G; Caffe, Sonja; Francke, Jordan A; Freedberg, Kenneth A; Ciaranello, Andrea L

    2015-04-01

    Background.  The Pan-American Health Organization has called for reducing (1) human immunodeficiency virus (HIV) mother-to-child transmission (MTCT) to ≤0.30 infections/1000 live births (LB), (2) HIV MTCT risk to ≤2.0%, and (3) congenital syphilis (CS) incidence to ≤0.50/1000 LB in the Americas by 2015. Methods.  Using published Brazilian data in a mathematical model, we simulated a cohort of pregnant women from antenatal care (ANC) through birth. We investigated 2 scenarios: "current access" (89.1% receive one ANC syphilis test and 41.1% receive 2; 81.7% receive one ANC HIV test and 18.9% receive birth testing; if diagnosed, 81.0% are treated for syphilis and 87.5% are treated for HIV) and "ideal access" (95% of women undergo 2 HIV and syphilis screenings; 95% receive appropriate treatment). We conducted univariate and multivariate sensitivity analyses on key inputs. Results.  With current access, we projected 2.95 CS cases/1000 LB, 0.29 HIV infections/1000 LB, 7.1% HIV MTCT risk, and 11.11 intrauterine fetal demises (IUFD)/1000 pregnancies, with significant regional variation. With ideal access, we projected improved outcomes: 1.00 CS cases/1000 LB, 0.10 HIV infections/1000 LB, HIV MTCT risk of 2.4%, and 10.65 IUFD/1000 pregnancies. Increased testing drove the greatest improvements. Even with ideal access, only HIV infections/1000 LB met elimination goals. Achieving all targets required testing and treatment >95% and reductions in prevalence and incidence of HIV and syphilis. Conclusions.  Increasing access to care and HIV and syphilis antenatal testing will substantially reduce HIV and syphilis MTCT in Brazil. In addition, regionally tailored interventions reducing syphilis incidence and prevalence and supporting HIV treatment adherence are necessary to completely meet elimination goals. PMID:26180825

  6. GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.

    2011-01-01

    In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.

  7. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit

  8. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of

  9. A perspective on space exploration technology catalysis: A rationale for initiating 21st Century expansion of human civilization into outer space

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1988-01-01

    The rationale for human exploration of space is examined. Observations of the technocatalytic potential are presented. Transferability to the terrestrial environment of 21st Century Earth is discussed. The many threats to future survival of this planet's sensitive ecosystem are also discussed in relation to the technoecological harmony that might be achievable due to the extreme demands that are naturally imposed on the development of (civilian/human) space technology. The human attempt to inhabit the inner solar system (the Moon, Mars, etc.) is proposed as the ultimate and most appropriate technology driver for the myriad of socioeconomic, ecological, and technological needs that will accompany 21st Century Earth societies.

  10. Exploring National Human Resource Development: A Case of China Management Development in a Transitioning Context

    ERIC Educational Resources Information Center

    Wang, Jia; Wang, Greg G.

    2006-01-01

    To advance an emerging frontier in human resource development (HRD) research, national HRD (NHRD), this study explored the subject by focusing on a key area of HRD, management development (MD) in the China context. Taking a system and holistic perspective, the study identified three critical challenges facing Chinese managers and China MD in the…

  11. The Hudson River Plume: Exploring Human Impact on the Coastal Environment

    ERIC Educational Resources Information Center

    McDonnell, Janice; Duncan, Ravit; Lichtenwalner, C. Sage; Dunbar, Laura

    2010-01-01

    The Hudson River Watershed contains a variety of geologic, topographic, climatic, and hydrologic features and a diversity of land-use patterns--making it an ideal model for studying human impact on the coastal environment. In this article, the authors present the Hudson River Plume (HRP), a problem-based online module that explores nonpoint-source…

  12. Guides to Sustainable Connections? Exploring Human-Nature Relationships among Wilderness Travel Leaders

    ERIC Educational Resources Information Center

    Grimwood, Bryan S. R.; Haberer, Alexa; Legault, Maria

    2015-01-01

    This paper explores and critically interprets the role wilderness travel may play in fostering environmental sustainability. The paper draws upon two qualitative studies that sought to understand human-nature relationships as experienced by different groups of wilderness travel leaders in Canada. According to leaders involved in the studies,…

  13. Building a pathway to the planets - Expanding the frontiers of human exploration

    NASA Technical Reports Server (NTRS)

    O'Handley, Douglas A.

    1989-01-01

    The basic mission options, transportation, robotic precursors, technology, and human factors involved in the advance into interplanetary exploration and establishment of bases on the moon, planets, and planetary satellites are discussed. Case studies that have been undertaken for four candidate missions are briefly addressed. The role of international cooperation and the selection criteria pertaining to such missions are addressed.

  14. 78 FR 70963 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-462, as amended, the National Aeronautics and...

  15. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  16. Exploring the Strategic Role of Human Resource Development in Organizational Crisis Management

    ERIC Educational Resources Information Center

    Wang, Jia; Hutchins, Holly M.; Garavan, Thomas N.

    2009-01-01

    Crisis management has been a largely overlooked territory in human resource development (HRD) despite the increasingly recognized impact of organizational crises on the individual and organizational performance. This article explores the strategic role of HRD in the context of organizational crisis management using Garavan's strategic HRD model as…

  17. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  18. Human Body Explorations: Hands-On Investigations of What Makes Us Tick.

    ERIC Educational Resources Information Center

    Kalumuck, Karen E.

    This book presents science activities on the human body with materials that can be purchased in a grocery store or pharmacy. Each activity includes an explorer and facilitator guide. Activities include: (1) "Naked Egg"; (2) "Cellular Soap Opera"; (3) "Acid in Your Stomach"; (4) "How Much Do You C?"; (5) "How Sweet It Is"; (6) "Milk Makes Me…

  19. 391 Ways to Explore Arts and Humanities Careers: Classroom Activities in Dance, Music, Theater and Media, Visual Arts and Crafts, Writing, Humanities.

    ERIC Educational Resources Information Center

    Hansen, Mary Lewis; And Others

    One of a series of 11 arts and humanities career exploration guides for grade 7-12 teachers, counselors, and students, this curriculum guide is intended to help teachers help students explore arts and humanities careers in regular grade 7-12 arts and humanities courses. Focus throughout the four sections is on augmenting, rather than replacing,…

  20. An exploration of the impact of family background factors on the science achievement of Afro-Caribbean and African American students in the United States

    NASA Astrophysics Data System (ADS)

    Pinder, Patrice J.

    Ogbu and Simons (1998) defined voluntary immigrants as individuals who chose to migrate to the United States (U.S.). Involuntary immigrants are defined as individuals whose ancestors were brought to the U.S. by force (Obgu & Simons, 1998). There have been recent reports indicating that voluntary immigrants are outperforming involuntary immigrants (Fisher, 2005; Williams, Fleming, Jones, & Griffin, 2007). There seems to be a trend in voluntary immigrants exhibiting a higher academic achievement pattern than involuntary immigrants (Fisher, 2005; Rong & Preissle, 1998; Williams et al., 2007). However, the reason for the groups' differences in achievement has not been extensively explored. The primary objective of this research study was to explore the impact of family background on the academic achievement patterns of Afro-Caribbean and African American students in the United States. The study utilized two research designs; a causal-comparative and a correlational design. A questionnaire was distributed to a sample of eighty-seven high school students. Eighteen of the participants were Afro-Caribbean students, and sixty-seven were African American students. Chemistry test scores for the students were also provided. The results of the study indicated that Afro-Caribbean students outperformed African American students on the test of science achievement. The difference was statistically significant (t= 2.43, p<0.05). Additionally, results suggested that there were a few significant differences in Afro-Caribbean and African American students' family backgrounds. Moreover, the findings of this study suggest that the positive impact of arrival status on the first-generation of Afro-Caribbean immigrants may be influencing their children's academic success in science. The present study holds a few implications for parents and teachers of immigrant minority students. Additionally, the current researcher has offered several implications for future research on ethnicity

  1. Towards a Model of Human Resource Solutions for Achieving Intergenerational Interaction in Organisations

    ERIC Educational Resources Information Center

    McGuire, David; By, Rune Todnem; Hutchings, Kate

    2007-01-01

    Purpose: Achieving intergenerational interaction and avoiding conflict is becoming increasingly difficult in a workplace populated by three generations--Baby Boomers, Generation X-ers and Generation Y-ers. This paper presents a model and proposes HR solutions towards achieving co-operative generational interaction. Design/methodology/approach:…

  2. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  3. Reallocating Human Resources to Maximize Student Achievement: A Critical Case Study of a Southern California School District

    ERIC Educational Resources Information Center

    Glazener, Adrianna Kathleen

    2013-01-01

    This study applied the Evidence-Based Model (Odden & Picus, 2008) as a framework for determining how district leadership could potentially reallocate human resources to maximize the opportunity for student achievement, relying heavily on the ten strategies for doubling student performance (Odden, 2009; Odden & Archibald, 2009) and the…

  4. Relations of Cognitive and Motivational Variables with Students' Human Circulatory System Achievement in Traditional and Learning Cycle Classrooms

    ERIC Educational Resources Information Center

    Sadi, Özlem; Çakiroglu, Jale

    2014-01-01

    This study is aimed at investigating the relationships among students' relevant prior knowledge, meaningful learning orientation, reasoning ability, self-efficacy, locus of control, attitudes toward biology and achievement with the human circulatory system (HCS) using the learning cycle (LC) and the traditional classroom setting. The study…

  5. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  6. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  7. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  8. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  9. Human Factors Engineering as a System in the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Smith, Danielle; Holden, Kritina

    2006-01-01

    In order to accomplish NASA's Vision for Exploration, while assuring crew safety and productivity, human performance issues must be well integrated into system design from mission conception. To that end, a two-year Technology Development Project (TDP) was funded by NASA Headquarters to develop a systematic method for including the human as a system in NASA's Vision for Exploration. The specific goals of this project are to review current Human Systems Integration (HSI) standards (i.e., industry, military, NASA) and tailor them to selected NASA Exploration activities. Once the methods are proven in the selected domains, a plan will be developed to expand the effort to a wider scope of Exploration activities. The methods will be documented for inclusion in NASA-specific documents (such as the Human Systems Integration Standards, NASA-STD-3000) to be used in future space systems. The current project builds on a previous TDP dealing with Human Factors Engineering processes. That project identified the key phases of the current NASA design lifecycle, and outlined the recommended HFE activities that should be incorporated at each phase. The project also resulted in a prototype of a webbased HFE process tool that could be used to support an ideal HFE development process at NASA. This will help to augment the limited human factors resources available by providing a web-based tool that explains the importance of human factors, teaches a recommended process, and then provides the instructions, templates and examples to carry out the process steps. The HFE activities identified by the previous TDP are being tested in situ for the current effort through support to a specific NASA Exploration activity. Currently, HFE personnel are working with systems engineering personnel to identify HSI impacts for lunar exploration by facilitating the generation of systemlevel Concepts of Operations (ConOps). For example, medical operations scenarios have been generated for lunar habitation

  10. Why Should Humans Explore a Near Earth Asteroid and What Factors Drive the Medical Risks?

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Steinberg, Susan S.; Arya, Maneesh; Charles, John B.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is currently considering plans for the human exploration of a Near Earth Asteroid (NEA). Reasons for undertaking the human exploration of a NEA include increasing the scientific understanding of the origins of our solar system, and developing technology for the exploration of more distant destinations such as Mars. Most mission scenarios have a duration on the order of several months or a year, most of which is spent in transit to and from the NEA. The choice of a particular NEA destination determines the mission duration and guides the types of exploration activities that can be performed on and near the NEA. NASA s Human Research Program (HRP) has identified short and long-term health risks associated with such missions and begun characterizing the level of risk. Some risk drivers are well known from missions to low Earth orbit and the Moon (e.g., the limited mass, volume, and power available for the medical care system). Other factors emerge as major drivers for NEA missions. Some are fundamental characteristics of the mission parameters (e.g., mission duration, distance) and others are strongly dependent on the specifics of how the mission is implemented (e.g., isolation and confinement). Careful consideration of these factors will be required for safe and effective missions to NEAs.

  11. Performance of humans vs. exploration algorithms on the Tower of London Test.

    PubMed

    Fimbel, Eric; Lauzon, Stéphane; Rainville, Constant

    2009-01-01

    The Tower of London Test (TOL) used to assess executive functions was inspired in Artificial Intelligence tasks used to test problem-solving algorithms. In this study, we compare the performance of humans and of exploration algorithms. Instead of absolute execution times, we focus on how the execution time varies with the tasks and/or the number of moves. This approach used in Algorithmic Complexity provides a fair comparison between humans and computers, although humans are several orders of magnitude slower. On easy tasks (1 to 5 moves), healthy elderly persons performed like exploration algorithms using bounded memory resources, i.e., the execution time grew exponentially with the number of moves. This result was replicated with a group of healthy young participants. However, for difficult tasks (5 to 8 moves) the execution time of young participants did not increase significantly, whereas for exploration algorithms, the execution time keeps on increasing exponentially. A pre-and post-test control task showed a 25% improvement of visuo-motor skills but this was insufficient to explain this result. The findings suggest that naive participants used systematic exploration to solve the problem but under the effect of practice, they developed markedly more efficient strategies using the information acquired during the test. PMID:19787066

  12. Bone Research and Animal Support of Human Space Exploration: Where do we go from here?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    2004-01-01

    NASA exploration goals include returning humans to the moon by 20 15-2020 as a prelude for human exploration of Mars and beyond. The number of human flight subjects available during this very short time period is insufficient to solve high-risk problems without data from animals. This presentation will focus on three questions: What do we know? What do we need to know? Where do we go from here?: roles for animals in the exploration era. Answers to these questions are based on flight and ground-based models using humans and animals. First, what do we know? Adult humans have spent less than 1% of their lifespan in space while juvenile rats have spent almost 2%. This information suggests that our data are rather meager for projecting to a 30-month mission to Mars. The space platforms for humans have included Skylab, STS/MIR, and STS/ISS and for animals have included the unmanned Bion series and shuttle. The ground-based models include head-down bedrest in humans (BR) and hindlimb unloading in rodents (HU). We know that as gravity decreases, the impact forces generated by the body during locomotion decrease. For example, on Earth, your legs supports approximately 1 body weight (BW) when standing, 1.33BW when walking, and 3BW when jogging. On Mars, the same activity would generate 0.38BW standing, 0.5BW walking, and 1BW when jogging. In space, no impact load is generated, as gravity is minimal.

  13. Opening the Solar System: An Advanced Nuclear Spacecraft for Human Exploration

    NASA Technical Reports Server (NTRS)

    Werka, R. O.; Percy, T. K.

    2014-01-01

    Human exploration of the solar system is limited by our technology, not our imagination. We dream of a time when we can freely travel among the planets and truly become a spacefaring people. However, the current state of our technology limits our options for architecting missions to other planets. Instead of sailing the seas of space in the way that we cruise the seas of Earth, our limited propulsion technology requires us to depart Earth on a giant cluster of gas tanks and return in a lifeboat. This inefficient approach to exploration is evident in many of today's leading mission plans for human flights to Mars, asteroids, and other destinations. The cost and complexity of this approach to mission architecting makes it extremely difficult to realize our dreams of exploration beyond Low Earth Orbit (LEO). This does not need to be the case. Researchers at NASA's Marshall Space Flight Center (MSFC) have been investigating the feasibility of a new take on nuclear propulsion with the performance to enable a paradigm shift in human space exploration. During the fall of 2013, engineers at MSFC's Advanced Concepts Office developed a spacecraft concept (pictured below) around this new propulsion technology and redefined the human Mars mission to show its full potential. This spacecraft, which can be launched with a fleet of soon-to-be available SLS launch vehicles, is fueled primarily with hydrogen, and is fully reusable with no staging required. The reusable nature of this design enables a host of alternative mission architectures that more closely resemble an ocean voyage than our current piecemeal approach to exploration.

  14. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  15. The Mars Surveyor Program, Human Exploration Objectives and the Case for Gusev Crater

    NASA Technical Reports Server (NTRS)

    Cabrol, Nathalie A.; Grin, Edmond A.; Hand, Kevin

    1999-01-01

    It has been demonstrated during the past years that by its configuration, extended history of water ponding and sedimentary deposition, Gusev crater is one of the most favorable sites to consider for the incoming exploration of Mars. It provides exceptional possibilities to document the evolution of water, climate changes, and possibly the evolution of life on Mars through time. Because of all these reasons, it is probably one of the most interesting sites to target for sample return missions and human exploration, but as well, it is by all means an excellent target for the Surveyor '01, in spite of the current imposed mission constraints, as we propose to demonstrate.

  16. The Mars Surveyor Program, Human Exploration Objectives and the Case for Gusev Crater

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Grin, Edmond A.; Hand, Kevin

    1999-06-01

    It has been demonstrated during the past years that by its configuration, extended history of water ponding and sedimentary deposition, Gusev crater is one of the most favorable sites to consider for the incoming exploration of Mars. It provides exceptional possibilities to document the evolution of water, climate changes, and possibly the evolution of life on Mars through time. Because of all these reasons, it is probably one of the most interesting sites to target for sample return missions and human exploration, but as well, it is by all means an excellent target for the Surveyor '01, in spite of the current imposed mission constraints, as we propose to demonstrate.

  17. The role of Space Station Freedom in the Human Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Ahlf, P. R.; Saucillo, R. J.; Meredith, B. D.; Peach, L. L.

    1990-01-01

    Exploration accommodation requirements for Space Station Freedom (SSF) and mission-supporting capabilities have been studied. For supporting the Human Exploration Initiative (HEI), SSF will accommodate two functions with augmentations to the baseline Assembly Complete configuration. First, it will be an earth-orbiting transportation node providing facilities and resources (crew, power, communications) for space vehicle assembly, testing, processing and postflight servicing. Second, it will be an in-space laboratory for science research and technology development. The evolutionary design of SSF will allow the on-orbit addition of pressurized laboratory and habitation modules, power generation equipment, truss structure, and unpressurized vehicle processing platforms.

  18. On Space Exploration and Human Error: A Paper on Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Bell, David G.; Maluf, David A.; Gawdiak, Yuri

    2005-01-01

    NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability

  19. OBPR Product Lines, Human Research Initiative, and Physics Roadmap for Exploration

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf

    2004-01-01

    The pace of change has increased at NASA. OBPR s focus is now on the Human interface as it relates to the new Exploration vision. The fundamental physics community must demonstrate how we can contribute. Many opportunities exist for physicists to participate in addressing NASA's cross-disciplinary exploration challenges: a) Physicists can contribute to elucidating basic operating principles for complex biological systems; b) Physics technologies can contribute to developing miniature sensors and systems required for manned missions to Mars. NASA Codes other than OBPR may be viable sources of funding for physics research.

  20. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  1. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  2. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    SciTech Connect

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  3. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  4. Achieving Competitive Advantage in Human Resource Management in General School District of Riyadh in Saudi Arabia

    ERIC Educational Resources Information Center

    Al dakeel, Taghreed M.; Almannie, Mohamed A.

    2015-01-01

    The general school district of Riyadh is one of largest in the country of (45) school districts in Saudi Arabia. The school districts play an important roles in the development of education, therefore the objective of the study is to examine the roles of the management in the school districts to see if it is achieving competitive advantage. After…

  5. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework.

    PubMed

    Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G

    2016-08-01

    Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831

  6. An exploration of the perceptions, developmental reasoning levels, differences in learning processes, and academic achievement levels of students in introductory college microbiology

    NASA Astrophysics Data System (ADS)

    Poole, Barbara Ann Matherly

    1997-11-01

    This study explored the relationship between the grades students earned in introductory college microbiology and American College Testing scores, sex, race, age, GED or high school diploma, full-time or part-time student status, developmental reasoning levels, memory tactics, and expected achievement. The study also explored student perceptions at the beginning and the end of the microbiology courses for science preparation, expected achievement, relevancy of microbiology, and expectations for the course. Archival records for 121 freshman level and 119 sophomore level microbiology students were accessed to obtain final grades, ACT scores, sex, race, age, GED or high school diploma and full-time or part-time status. The same information was obtained for the 113 freshman level and the 85 sophomore level students who participated in the study. The study groups were given the Group Assessment of Logical Thinking to assess their level of formal reasoning ability, the Inventory of Learning Processes-Revised to assess three memory techniques, an initial perception survey, and an exit perception survey. Academic achievement in microbiology could not be predicted using composites of the predictor variables. There were significant relationships between the GALT scores and the predicted grades with both the freshman and the sophomore final grades. The Self-Efficacy Fact Retention scores and the Literal Memorization scores had significant relationships to the final grades of the freshmen but not the sophomores. There was not a significant relationship between the Deep Semantic scores and the final grades in either group. Students indicated that high school science had given them only a medium to low level of preparation for college microbiology. The sophomores felt that previous college science classes had given them a much better preparation for microbiology than did the freshmen students. Both groups expressed the importance of the laboratory experience to the understanding

  7. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    NASA Technical Reports Server (NTRS)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  8. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion

    NASA Astrophysics Data System (ADS)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.

    2014-11-01

    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  9. Developing the global exploration roadmap: An example using the humans to the lunar surface theme

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Schmidt, G. K.; Ehrenfreund, P.; Carpenter, J. D.

    2014-08-01

    The development of the Global Exploration Roadmap (GER) by 12 space agencies participating in the International Space Exploration Coordination Group broadly outlines a pathway to send humans beyond low Earth orbit for the first time since Apollo. Three themes have emerged: Exploration of a Near-Earth Asteroid, Extended Duration Crew Missions, and Humans to the Lunar Surface. The lack of detail within each of these themes could mean that realizing the goals of the GER would be significantly delayed. The purpose of this paper is to demonstrate that many of the details needed to fully define and evaluate these themes in terms of scientific rationale, economic viability, and technical feasibility already exist and need to be mapped to the GER. Here, we use the Humans to the Lunar Surface theme as an example to illustrate how this process could work. By mapping documents from a variety of international stakeholders, this process can be used to cement buy-in from the current partners and attract new ones to this effort.

  10. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance.

    PubMed

    Mendell, W W; Heydorn, R P

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. PMID:15806749

  11. Robotic resource exploration is a key to human expansion through the cosmos

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Fink, Wolfgang; Furfaro, Roberto; Miyamoto, Hideaki

    2008-04-01

    If the goal of planetary exploration is to build a permanent and expanding, self-sustaining extraterrestrial civilization, then clever and myriad uses must be made of planetary resources. Resources must be identified and evaluated according to their practicality. A new economy should be devised based on resource occurrence, ore accessibility, options for ore transport, material beneficiation, and manufacturing; end uses and demand; and full economic cost/benefit assessment. Locating and evaluating these resources should be done with coordinated robotic assets arrayed in orbit and on the surface. Sensor arrays and tandem on-ground means of physical manipulation of rocks should incorporate highly capable onboard data processing, feature detection, and quantification of material properties; intelligent decision making; a flexible capacity to re-order priorities and act on those priorities in carrying out exploration programs; and human-robot interaction. As resource exploration moves into exploitation, sensors working in tandem with robust physical manipulation will place increased emphasis on automation in effective and safe robotic quarrying, tunneling, boring, and ore beneficiation. Any new global planetary economy will have to weigh the efficiency of resource identification and utilization with full-spectrum cost/benefit assessment for human health and safety, the environment, future habitability and sustainability, and human priorities in the development and growth of civilization. It makes no sense to rove from one planet to another in a wave of resource use and depletion, like interplanetary locusts. Robotic systems will open new worlds to human use, but they will also place a premium on human ability to control exponentially growing consumption.

  12. Poverty and Health: Debt Relief Could Help Achieve Human Rights Objectives.

    PubMed

    Logie; Rowson

    1998-01-01

    Article 25 of the Universal Declaration of Human Rights clearly emphasizes health as a human right. Poverty and social exclusion are the most important drivers of ill-health. The causes of increasing poverty are complex but one significant factor is international debt. This affects mainly sub-Saharan Africa but, with the global economic crisis in South East Asia, may spread. Structural adjustment policies which cut social spending compound the health effects of debt and poverty. Privatization of health care and user charges particularly affect women, children, the disabled, and other marginalized communities. To improve health, governments and international institutions have a duty to examine the determinants of health, including human rights and economic policy. PMID:10343295

  13. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  14. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  15. Telepresence in the human exploration of Mars: Field studies in analog environments

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    1993-01-01

    This paper describes the role of telepresence in performing exploration of Mars. As part of an effort to develop telepresence to support Mars exploration, NASA is developing telepresence technology and using it to perform exploration in space analog environments. This paper describes experiments to demonstrate telepresence control of an underwater remotely operated vehicle (TROV) to perform scientific field work in isolated and hostile environments. Toward this end, we have developed a telepresence control system and interfaced it to an underwater remotely operated vehicle. This vehicle was used during 1992 to study aquatic ecosystems in Antarctica including a study of the physical and biological environment of permanently ice-covered lake. We also performed a preliminary analysis of the potential for using the TROV to study the benthic ecology under the sea ice in McMurdo sound. These expeditions are opening up new areas of research by using telepresence control of remote vehicles to explore isolated and extreme environments on Earth while also providing an impetus to develop technology which will play a major role in the human exploration of Mars. Antarctic field operations, in particular, provide an excellent analog experience for telepresence operation in space.

  16. NEEMO 15: Evaluation of human exploration systems for near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2013-08-01

    The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far-field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near-field survey" approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near-field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be

  17. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Beaton, Kara H.; Abercromby, Andrew F. J.; Crues, Edwin Z.; Li, Zu Qun; Bielski, Paul; Howe, A. Scott

    2016-01-01

    Phobos is a scientifically significant destination and exploring it would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to fostering development of systems relevant to Mars surface missions, exploring Phobos offers engineering and operational opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low-latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection, and infrastructure development, which may include in situ resource utilization to provide liquid oxygen for the Mars ascent vehicle (MAV). A human mission to the moons of Mars would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion-based systems. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-to-Mars transit and to reach Phobos after insertion into Mars orbit. The crew would taxi from Mars orbit to Phobos in a spacecraft that is based on a MAV to join with the predeployed systems. A mostly static Phobos surface habitat was chosen as a baseline architecture. The habitat would have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat may use deployable EVA support structures that allow astronauts to work from portable foot restraints or body restraint tethers in the vicinity of the habitat. Prototype structures were tested as part of NASA Extreme Environment Mission Operations (NEEMO) 20. PEVs would contain closed-loop guidance and provide life support and

  18. Human health and performance risk management—an approach for exploration missions

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey R.; Fogarty, Jennifer A.; Richard, Elizabeth E.

    During long duration exploration missions, maintaining human health and performance will be essential to enabling success. Therefore, NASA has developed standards through the Health and Medical Technical Authority to insure human health and performance during exploration. Human health standards are the first step in defining acceptable risk for human space flight and take into consideration both short-term (mission) and long-term (lifetime) health risk. These standards are based on the best medical evidence from terrestrial standards; analog spaceflight environments; and spaceflight experience. Standards drive the development of focused program requirements to mitigate risks associated with specific missions. Program requirements include vehicle design as well as health care systems including medical, environmental and countermeasures. NASA has also developed the risk mitigation analysis tool (RMAT), a process to evaluate the effectiveness of risk mitigation strategies. The RMAT facilitates documentation and analysis of the effectiveness of mitigation strategies, enables NASA to baseline a risk mitigation approach based on the best evidence, and provides the traceability from research and technology development projects to specific mission deliverables.

  19. Human Cortical θ during Free Exploration Encodes Space and Predicts Subsequent Memory

    PubMed Central

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric

    2013-01-01

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  20. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    PubMed

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  1. The Reallocation of Human Resources to Improve Student Achievement in a Time of Fiscal Constraints

    ERIC Educational Resources Information Center

    Behar, Steve

    2013-01-01

    This study compared the allocation of human resources of a K-12 unified school district in Southern California to the Evidence-Based model (Odden & Picus, 2008). Using document analysis and interviews of key administrators of the district, data was input into a spreadsheet to identify gaps between current practice and the Evidence-Based model.…

  2. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    NASA Astrophysics Data System (ADS)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  3. Developing a Crew Time Model for Human Exploration Missions to Mars

    NASA Technical Reports Server (NTRS)

    Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce

    2015-01-01

    Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.

  4. Probiotics and Time to Achieve Full Enteral Feeding in Human Milk-Fed and Formula-Fed Preterm Infants: Systematic Review and Meta-Analysis

    PubMed Central

    Aceti, Arianna; Gori, Davide; Barone, Giovanni; Callegari, Maria Luisa; Fantini, Maria Pia; Indrio, Flavia; Maggio, Luca; Meneghin, Fabio; Morelli, Lorenzo; Zuccotti, Gianvincenzo; Corvaglia, Luigi

    2016-01-01

    Probiotics have been linked to a reduction in the incidence of necrotizing enterocolitis and late-onset sepsis in preterm infants. Recently, probiotics have also proved to reduce time to achieve full enteral feeding (FEF). However, the relationship between FEF achievement and type of feeding in infants treated with probiotics has not been explored yet. The aim of this systematic review and meta-analysis was to evaluate the effect of probiotics in reducing time to achieve FEF in preterm infants, according to type of feeding (exclusive human milk (HM) vs. formula). Randomized-controlled trials involving preterm infants receiving probiotics, and reporting on time to reach FEF were included in the systematic review. Trials reporting on outcome according to type of feeding (exclusive HM vs. formula) were included in the meta-analysis. Fixed-effect or random-effects models were used as appropriate. Results were expressed as mean difference (MD) with 95% confidence interval (CI). Twenty-five studies were included in the systematic review. In the five studies recruiting exclusively HM-fed preterm infants, those treated with probiotics reached FEF approximately 3 days before controls (MD −3.15 days (95% CI −5.25/−1.05), p = 0.003). None of the two studies reporting on exclusively formula-fed infants showed any difference between infants receiving probiotics and controls in terms of FEF achievement. The limited number of included studies did not allow testing for other subgroup differences between HM and formula-fed infants. However, if confirmed in further studies, the 3-days reduction in time to achieve FEF in exclusively HM-fed preterm infants might have significant implications for their clinical management. PMID:27483319

  5. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  6. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    PubMed

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  7. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; Bleacher, Jake; Gernhardt, Mike; Mueller, Rob; Sanders, Gerald; Watts, Kevin; Eigenbrode, Jen; Garry, Brent; Freeh, Joshua; Manzella, David; Hack, Kurt; Aranyos, Tom

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  8. Effects of isolation and confinement on humans-implications for manned space explorations.

    PubMed

    Pagel, J I; Choukèr, A

    2016-06-15

    Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future. PMID:26846554

  9. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  10. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    NASA Technical Reports Server (NTRS)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  11. Debt-Repaying Mechanism in Chinese Relationships: An Exploration of the Folk Concepts of "Pao" and Human Emotional Debt.

    ERIC Educational Resources Information Center

    Chang, Hui-Ching; Holt, G. Richard

    1994-01-01

    Explores the mechanisms of "pao" and human emotional debt underlying Chinese human relationships through interviews with 55 Chinese in Taiwan. The definition, recompensation, minimization, and manipulation of human emotional debt and the linguistic code by which relations can be made closer or more distant following the principles of "pao" are…

  12. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  13. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    NASA Technical Reports Server (NTRS)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  14. Issues of exploration: Human health and wellbeing during a mission to mars

    NASA Astrophysics Data System (ADS)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.

  15. Hematopoietic Stem Cell Therapy as a Counter-Measure for Human Exploration of Deep Space

    NASA Technical Reports Server (NTRS)

    Ohi, S.; Roach, A.-N.; Ramsahai, S.; Kim, B. C.; Fitzgerald, W.; Riley, D. A.; Gonda, S. R.

    2004-01-01

    Human exploration of deep space depends, in part, on our ability to counter severe/invasive disorders that astronauts experience in space environments. The known symptoms include hematological/cardiac abnormalities,bone and muscle losses, immunodeficiency, neurological disorders, and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, we have advanced a hypothesis that ome of the space-caused disorders maybe amenable to hematopoietis stem cell therapy(HSCT) so as to maintain promote human exploration of deep space. Using mouse models of human anemia beta-thaiassemia) as well as spaceflight (hindlimb unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, in the case of HSCT for muscle loss, the beta-galactosidese marked HSCs were detected in the hindlimbs of unloaded mouse following transplantation by -X-gal wholemaunt staining procedure. Histochemicaland physical analyses indicated structural contribution of HSCs to the muscle. HSCT for immunodeficiency was investigated ising beta-galactosidese gene-tagged Escherichia coli as the infectious agent. Results of the X-gal staining procedure indicated the rapeutic role of the HSCT. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  16. Visual exploration patterns of human figures in action: an eye tracker study with art paintings

    PubMed Central

    Villani, Daniela; Morganti, Francesca; Cipresso, Pietro; Ruggi, Simona; Riva, Giuseppe; Gilli, Gabriella

    2015-01-01

    Art exploration is a complex process conditioned by factors at different levels and includes both basic visual principles and complex cognitive factors. The human figure is considered a critical factor attracting the attention in art painting. Using an eye-tracking methodology, the goal of this study was to explore different elements of the human figure performing an action (face and body parts in action) in complex social scenes characterized by different levels of social interaction between agents depicted in scenes (individual vs. social). The sample included 44 laypersons, and the stimuli consisted of 10 fine art paintings representing the figurative style of classical art. The results revealed different scanning patterns of the human figure elements related to the level of social interaction of agents depicted in the scene. The agents’ face attracted eye movements in social interaction scenes while the agents’ body parts attracted eye movements only when the agents were involved in individual actions. These processes were confirmed specifically in participants with high empathic abilities who became immediately fixated on faces to develop a mimetic engagement with other agents. Future studies integrating other measures would help confirm the results obtained and strengthen their implication for embodiment processes. PMID:26579021

  17. Limited By Cost: The Case Against Humans In The Scientific Exploration Of Space

    NASA Astrophysics Data System (ADS)

    Coates, Andrew J.

    2001-11-01

    Human space flight represents a heady mix of bravery and drama which can be inspirational to nations and to humankind but at huge economic cost. Due to the current high launch costs only a handful of people have ventured beyond low Earth orbit and walked on the Moon, propelled by aspirations related more to the Cold War than to science. Problems with reusable launch vehicle development mean that severe launch cost limitations will exist for some time. Meanwhile, cheaper robotic probes have visited all the planets except Pluto, flown by comets, landed on Mars, Venus and an asteroid, have probed Jupiter's atmosphere and studied the Universe beyond our own solar system with telescopes. Using these data we are determining mankind's place in the Universe. Public interest in the historic Eros landing eclipsed a simultaneous space walk at the fledgling International Space Station and the Mars Pathfinder landing generated hundreds of millions of website hits in a few days. Given the fact that hundreds of Mars missions could be flown for the still-escalating cost of the International Space Station, the unsuitability of human bodies for deep space exploration, and the advances in 3-d and virtual reality techniques, we discuss whether human exploration needs a place in a realistic, useful and inspirational space programme.

  18. Using Pareto optimality to explore the topology and dynamics of the human connectome.

    PubMed

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Betzel, Richard F; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Thiran, Jean-Philippe; Sporns, Olaf

    2014-10-01

    Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains. PMID:25180308

  19. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  20. Issues of exploration: human health and wellbeing during a mission to Mars

    NASA Technical Reports Server (NTRS)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    2003-01-01

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.