Science.gov

Sample records for achieve increased efficiency

  1. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  2. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  3. Achieving Efficiencies in Army Installations.

    DTIC Science & Technology

    2007-11-02

    34" ’■■"■" 1 USAWC STRATEGY RESEARCH PROJECT Achieving Efficiencies in Army Installations by Richard Fliss Col. Richard M. Meinhart Project...government agency. STRATEGY RESEARCH PROJECT ACHIEVING EFFICIENCIES IN ARMY INSTALLATIONS BY RICHARD FLISS DISTRIBUTION STATEMENT A: Approved...for public release. Distribution is unlimited. DTIC QUALITY INSPECTED & USAWC CLASS OF 1998 U.S. ARMY WAR COLLEGE, CARLISLE BARRACKS, PA 17013-5050

  4. Grouping Students for Increased Achievements.

    ERIC Educational Resources Information Center

    Holloway, John H.

    2001-01-01

    Reviews results of four recent studies exploring the effects of various student-grouping schemes on academic achievement. Grouping plans included multiage classrooms, full-time ability grouping, and within-classroom grouping. Two studies investigated administrator attitudes toward student grouping. Several studies found that grouping plans…

  5. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency.

    PubMed

    Longo, Kenneth A; Berryman, Darlene E; Kelder, Bruce; Charoenthongtrakul, Soratree; Distefano, Peter S; Geddes, Brad J; Kopchick, John J

    2010-02-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA.

  6. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  7. Increasing Math Achievement through Use of Music.

    ERIC Educational Resources Information Center

    Bryant-Jones, Marian; Shimmins, Kymberley J.; Vega, Jill D.

    This report describes a program for increasing math achievement through the use of musical interventions including repeated exposure to Mozart classical music and School House Rock, and introduction to teacher-made songs that introduce mathematical concepts in the music classroom. The students of the targeted second and fourth grade classes…

  8. Does High School Homework Increase Academic Achievement?

    ERIC Educational Resources Information Center

    Kalenkoski, Charlene Marie; Pabilonia, Sabrina Wulff

    2017-01-01

    Although previous research has shown that homework improves students' academic achievement, the majority of these studies use data on students' homework time from retrospective questionnaires, which may be less accurate than time-diary data. We use data from the combined Child Development Supplement (CDS) and the Transition to Adulthood Survey…

  9. Achieving Energy Efficiency Through Real-Time Feedback

    SciTech Connect

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  10. The ways of SOFC systems efficiency increasing

    SciTech Connect

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  11. Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

  12. DOD Joint Bases: Management Improvements Needed to Achieve Greater Efficiencies

    DTIC Science & Technology

    2012-11-01

    Joint Bases Realign Fort Eustis, VA, by relocating the installation management functions to Langley AFB, VA. Realign Fort Story , VA, by...the installation management functions to L·mglcy AFB, VA. Realign Fort Story , VA, by relocating the installation management functions to Commander...DOD JOINT BASES Management Improvements Needed to Achieve Greater Efficiencies Report to Congressional Addressees

  13. Conscientiousness increases efficiency of multicomponent behavior

    PubMed Central

    Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Many everyday situations require the flexible interruption and changing of different actions to achieve a goal. Several strategies can be applied to do so, but those requiring high levels of cognitive control seem to confer an efficiency (speed) advantage in situations requiring multi-component behavior. However, it is elusive in how far personality traits affect performance in such situations. Given that top-down control is an important aspect of personality and furthermore correlates with conscientiousness, N = 163 participants completed the NEO-FFI and performed an experimental (stop-change) paradigm assessing multicomponent behavior. Applying mathematical constraints to the behavioral data, we estimated the processing strategy of each individual. The results show that multicomponent behavior is selectively affected by conscientiousness which explained approximately 19% of the measured inter-individual behavioral variance. Conscientiousness should hence be seen as a major personality dimension modulating multicomponent behavior. Highly conscientious people showed a more effective, step-by-step processing strategy of different actions necessary to achieve a goal. In situations with simultaneous requirements, this strategy equipped them with an efficiency (speed) advantage towards individuals with lower conscientiousness. In sum, the results show that strategies and the efficiency with which people cope with situations requiring multicomponent behavior are strongly influenced by their personality. PMID:26503352

  14. Conscientiousness increases efficiency of multicomponent behavior.

    PubMed

    Stock, Ann-Kathrin; Beste, Christian

    2015-10-27

    Many everyday situations require the flexible interruption and changing of different actions to achieve a goal. Several strategies can be applied to do so, but those requiring high levels of cognitive control seem to confer an efficiency (speed) advantage in situations requiring multi-component behavior. However, it is elusive in how far personality traits affect performance in such situations. Given that top-down control is an important aspect of personality and furthermore correlates with conscientiousness, N = 163 participants completed the NEO-FFI and performed an experimental (stop-change) paradigm assessing multicomponent behavior. Applying mathematical constraints to the behavioral data, we estimated the processing strategy of each individual. The results show that multicomponent behavior is selectively affected by conscientiousness which explained approximately 19% of the measured inter-individual behavioral variance. Conscientiousness should hence be seen as a major personality dimension modulating multicomponent behavior. Highly conscientious people showed a more effective, step-by-step processing strategy of different actions necessary to achieve a goal. In situations with simultaneous requirements, this strategy equipped them with an efficiency (speed) advantage towards individuals with lower conscientiousness. In sum, the results show that strategies and the efficiency with which people cope with situations requiring multicomponent behavior are strongly influenced by their personality.

  15. Building aggressively duty-cycled platforms to achieve energy efficiency

    NASA Astrophysics Data System (ADS)

    Agarwal, Yuvraj

    Managing power consumption and improving energy efficiency is a key driver in the design of computing devices today. This is true for both battery-powered mobile devices as well as mains-powered desktop PCs and servers. In case of mobile devices, the focus of optimization is on energy efficiency to maximize battery lifetime. In case of mains-powered devices, we seek to optimize power consumption to reduce energy costs, thermal and environmental concerns. Traditionally, there are two main mechanisms to improve energy efficiency in systems: slowdown techniques that seek to reduce processor speed or radio power against the rate of work done, and shutdown techniques that seek to shut down specific components or subsystems -- such as processor, radio, memory -- to reduce power used by these components when not in use. The adverse effect of using these techniques is either reduced performance (e.g., increase in latency) and/or usability or loss of functionality. The thesis behind this dissertation is that improved energy efficiency can be achieved through system architectures that seek to design and exploit "collaboration" among heterogeneous but functionally similar subsystems. For instance, multiple radio interfaces with different power/performance characteristics can collaborate to provide an energy-efficient wireless communication subsystem. Furthermore, we show that in systems where such heterogeneity is not naturally present, we can introduce heterogeneous components to improve overall energy efficiency. We show that using collaboration, individual subsystems and even entire platforms can be shut down more aggressively to reduce energy consumption, while reducing adverse impacts on performance or usability. We have used collaboration to do energy efficient operation in several contexts. For battery powered mobile devices we show that wireless radios are the dominant power consumers, and then describe several techniques that use various heterogeneous radios present

  16. Using Differentiated Instruction to Increase Mathematics Achievement in Elementary Students

    ERIC Educational Resources Information Center

    Faulkner, Jennifer H.

    2013-01-01

    As evidenced by the poor mathematics performance in American schools, specifically in the school district in the current study, providing identical educational opportunities for diverse students does not necessarily increase academic achievement for everyone. Differentiation is an instructional method that has been found to be successful in…

  17. High-Stakes Testing: Does It Increase Achievement?

    ERIC Educational Resources Information Center

    Nichols, Sharon L.

    2007-01-01

    I review the literature on the impact on student achievement of high-stakes testing. Its popularity as a mechanism for holding educators accountable has triggered studies to examine whether its promise to increase student learning has been fulfilled. The review concludes there is no consistent evidence to suggest high-stakes testing leads to…

  18. Does Site-Based Management Increase Student Achievement?

    ERIC Educational Resources Information Center

    Muhammad, Bridgette D.

    2009-01-01

    The purpose of this review of literature is to determine if the literature suggests that site-based management increase student achievement. Original research findings done on 19 Michigan Title I schools using the Bureaucracy Theory, Systems Theory, and Human Resource Development Theory was reviewed. Also, qualitative studies on superintendents…

  19. Using Positive Student Engagement to Increase Student Achievement

    ERIC Educational Resources Information Center

    Center for Comprehensive School Reform and Improvement, 2007

    2007-01-01

    Teachers and school-based administrators alike have searched to find ways to increase student achievement in their schools. Several widely known and discussed strategies include: (1) using data to drive instruction; (2) employing highly qualified teachers; and (3) improving school leadership. Additionally, positive student engagement in the…

  20. Increasing Student Music Achievement through the Use of Motivational Strategies.

    ERIC Educational Resources Information Center

    Vega, Louis A.

    This action research project developed and implemented a program to improve student motivation through use of multiple intelligences, authentic assessment, technology and positive teacher feedback to increase levels of student music achievement. The students of the targeted seventh grade music class exhibited low levels of motivation that hindered…

  1. Magnetic Bearings Would Increase Pump Efficiency

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    Active feedback applied to bearings windings compensate for unbalanced forces. Helical-screw rotation compresses and transports gas charges, which subject shafts to forces tend to displace them from their equilibrium positions. Magnetic bearings restore shafts to equilibrium, lowering friction and increasing efficiency.

  2. Wind increases leaf water use efficiency.

    PubMed

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes.

  3. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles

    NASA Astrophysics Data System (ADS)

    Bajcinovci, Bujar; Jerliu, Florina

    2016-12-01

    By using our natural resources, and through inefficient use of energy, we produce much waste that can be recycled as a useful resource, which further contributes to climate change. This study aims to address energy effective bioclimatic architecture principles, by which we can achieve a potential energy savings, estimated at thirty-three per cent, mainly through environmentally affordable reconstruction, resulting in low negative impact on the environment. The study presented in this paper investigated the Ulpiana neighbourhood of Prishtina City, focusing on urban design challenges, energy efficiency and air pollution issues. The research methods consist of empirical observations through the urban spatial area using a comparative method, in order to receive clearer data and information research is conducted within Ulpiana's urban blocks, shapes of architectural structures, with the objective focusing on bioclimatic features in terms of the morphology and microclimate of Ulpiana. Energy supply plays a key role in the economic development of any country, hence, bioclimatic design principles for sustainable architecture and energy efficiency, present an evolutive integrated strategy for achieving efficiency and healthier conditions for Kosovar communities. Conceptual findings indicate that with the integrated design strategy: energy efficiency, and passive bioclimatic principles will result in a bond of complex interrelation between nature, architecture, and community. The aim of this study is to promote structured organized actions to be taken in Prishtina, and Kosovo, which will result in improved energy efficiency in all sectors, and particularly in the residential housing sector.

  4. Increasing market efficiency in the stock markets

    NASA Astrophysics Data System (ADS)

    Yang, Jae-Suk; Kwak, Wooseop; Kaizoji, Taisei; Kim, In-Mook

    2008-01-01

    We study the temporal evolutions of three stock markets; Standard and Poor's 500 index, Nikkei 225 Stock Average, and the Korea Composite Stock Price Index. We observe that the probability density function of the log-return has a fat tail but the tail index has been increasing continuously in recent years. We have also found that the variance of the autocorrelation function, the scaling exponent of the standard deviation, and the statistical complexity decrease, but that the entropy density increases as time goes over time. We introduce a modified microscopic spin model and simulate the model to confirm such increasing and decreasing tendencies in statistical quantities. These findings indicate that these three stock markets are becoming more efficient.

  5. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  6. Increasing the efficiency of solar thermal panels

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.

    2016-08-01

    The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.

  7. Composites for Increased Wear Resistance: Current Achievements and Future Prospects

    NASA Technical Reports Server (NTRS)

    Lancaster, J. K.

    1984-01-01

    The various ways in which reductions in wear and/or friction can be achieved by the use of composite materials are reviewed. Reinforced plastics are emphasized and it is shown that fillers and fibers reduce wear via several mechanisms additional to their role of increasing overall mechanical strength, preferential transfer, counter face abrasion, preferential load support, or third-body formation on either the composite or its counterface. Examples are given from recent work on thin layer composites of the type widely used as dry bearings in aircraft flight control mechanisms. Developments in metal based composites and carbon-carbon composites for high energy brakes are discussed. The aspects which could benefit by increased fundamental understanding identified and the types of composites which appear to have greatest potential for further growth are indicated.

  8. Achieving H.264-like compression efficiency with distributed video coding

    NASA Astrophysics Data System (ADS)

    Milani, Simone; Wang, Jiajun; Ramchandran, Kannan

    2007-01-01

    Recently, a new class of distributed source coding (DSC) based video coders has been proposed to enable low-complexity encoding. However, to date, these low-complexity DSC-based video encoders have been unable to compress as efficiently as motion-compensated predictive coding based video codecs, such as H.264/AVC, due to insufficiently accurate modeling of video data. In this work, we examine achieving H.264-like high compression efficiency with a DSC-based approach without the encoding complexity constraint. The success of H.264/AVC highlights the importance of accurately modeling the highly non-stationary video data through fine-granularity motion estimation. This motivates us to deviate from the popular approach of approaching the Wyner-Ziv bound with sophisticated capacity-achieving channel codes that require long block lengths and high decoding complexity, and instead focus on accurately modeling video data. Such a DSC-based, compression-centric encoder is an important first step towards building a robust DSC-based video coding framework.

  9. HP replacement program increases efficiency, protection

    SciTech Connect

    1997-10-01

    For more than 50 years, compression equipment along the 2,000-mile Tennessee Gas Pipeline has been helping to supply natural gas needs for the Northeast. But increasing demand and a need for more environmentally safe equipment mean a major replacement program for the compressor stations that make the natural gas transmission possible. Today it is one of the longest gas pipelines in the world, carrying more than 1 Bcf/d of natural gas. New compression equipment is being installed to boost efficiency and meet more stringent environmental standards. In 1993, Tenneco Energy, purchased by El Paso Energy in December 1996, initiated a Horsepower Replacement Program intended to replace older, inefficient technology with more advanced equipment. A major objective was to improve operational effectiveness and to reduce harmful nitrogen oxide and carbon monoxide emissions by converting much of the machinery to electric-driven compression equipment.

  10. Reshaping Light-Emitting Diodes To Increase External Efficiency

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert; Egalon, Claudio

    1995-01-01

    Light-emitting diodes (LEDs) reshaped, according to proposal, increasing amount of light emitted by decreasing fraction of light trapped via total internal reflection. Results in greater luminous output power for same electrical input power; greater external efficiency. Furthermore, light emitted by reshaped LEDs more nearly collimated (less diffuse). Concept potentially advantageous for conventional red-emitting LEDs. More advantageous for new "blue" LEDs, because luminous outputs and efficiencies of these devices very low. Another advantage, proposed conical shapes achieved relatively easily by chemical etching of semiconductor surfaces.

  11. Is yield increase sufficient to achieve food security in China?

    PubMed

    Wei, Xing; Zhang, Zhao; Shi, Peijun; Wang, Pin; Chen, Yi; Song, Xiao; Tao, Fulu

    2015-01-01

    Increasing demand for food, driven by unprecedented population growth and increasing consumption, will keep challenging food security in China. Although cereal yields have substantially improved during the last three decades, whether it will keep thriving to meet the increasing demand is not known yet. Thus, an integrated analysis on the trends of crop yield and cultivated area is essential to better understand current state of food security in China, especially on county scale. So far, yield stagnation has extensively dominated the main cereal-growing areas across China. Rice yield is facing the most severe stagnation that 53.9% counties tracked in the study have stagnated significantly, followed by maize (42.4%) and wheat (41.9%). As another important element for production sustainability, but often neglected is the planted area patterns. It has been further demonstrated that the loss in productive arable land for rice and wheat have dramatically increased the pressure on achieving food security. Not only a great deal of the planted areas have stagnated since 1980, but also collapsed. 48.4% and 54.4% of rice- and wheat-growing counties have lost their cropland areas to varying degrees. Besides, 27.6% and 35.8% of them have retrograded below the level of the 1980s. The combined influence (both loss in yield and area) has determined the crop sustainable production in China to be pessimistic for rice and wheat, and consequently no surprise to find that more than half of counties rank a lower level of production sustainability. Therefore, given the potential yield increase in wheat and maize, as well as substantial area loss of rice and wheat, the possible targeted adaptation measures for both yield and cropping area is required at county scale. Moreover, policies on food trade, alongside advocation of low calorie diets, reducing food loss and waste can help to enhance food security.

  12. Is Yield Increase Sufficient to Achieve Food Security in China?

    PubMed Central

    Wei, Xing; Zhang, Zhao; Shi, Peijun; Wang, Pin; Chen, Yi; Song, Xiao; Tao, Fulu

    2015-01-01

    Increasing demand for food, driven by unprecedented population growth and increasing consumption, will keep challenging food security in China. Although cereal yields have substantially improved during the last three decades, whether it will keep thriving to meet the increasing demand is not known yet. Thus, an integrated analysis on the trends of crop yield and cultivated area is essential to better understand current state of food security in China, especially on county scale. So far, yield stagnation has extensively dominated the main cereal-growing areas across China. Rice yield is facing the most severe stagnation that 53.9% counties tracked in the study have stagnated significantly, followed by maize (42.4%) and wheat (41.9%). As another important element for production sustainability, but often neglected is the planted area patterns. It has been further demonstrated that the loss in productive arable land for rice and wheat have dramatically increased the pressure on achieving food security. Not only a great deal of the planted areas have stagnated since 1980, but also collapsed. 48.4% and 54.4% of rice- and wheat-growing counties have lost their cropland areas to varying degrees. Besides, 27.6% and 35.8% of them have retrograded below the level of the 1980s. The combined influence (both loss in yield and area) has determined the crop sustainable production in China to be pessimistic for rice and wheat, and consequently no surprise to find that more than half of counties rank a lower level of production sustainability. Therefore, given the potential yield increase in wheat and maize, as well as substantial area loss of rice and wheat, the possible targeted adaptation measures for both yield and cropping area is required at county scale. Moreover, policies on food trade, alongside advocation of low calorie diets, reducing food loss and waste can help to enhance food security. PMID:25680193

  13. Grouping for Achievement Gains: For Whom Does Achievement Grouping Increase Kindergarten Reading Growth?

    ERIC Educational Resources Information Center

    Adelson, Jill L.; Carpenter, Brittany D.

    2011-01-01

    With ever-present budget cuts, teachers often use within-class achievement grouping to meet the needs of students of all ability levels but particularly high-ability students. Using a national database, this study examined the relationship between achievement grouping and the size of achievement groups on kindergarten reading growth. Additionally,…

  14. New York: Expanding Time, Increasing Opportunities for Achievement

    ERIC Educational Resources Information Center

    Miller, Tiffany D.

    2014-01-01

    New York is poised to take an important step to improve student achievement by expanding learning time for students attending high-poverty, low-performing schools. Recent district- and state-level investments in expanded learning time--a promising strategy to close achievement and opportunity gaps--will give students more time to learn core…

  15. Liquid Cooling Technology Increases Exercise Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To keep astronauts' airtight spacesuits from becoming hot and humid, Ames Research Center developed liquid cooling garments that were integrated into each suit's long underwear. Vasper Systems, in San Jose, California, is using the technology in its liquid-cooled compression cuffs, which help people exercise more efficiently by concentrating lactic acid in their muscles.

  16. Do Pretests Increase Student Achievement as Measured by Posttests?

    ERIC Educational Resources Information Center

    Bancroft, Roger J.

    This report describes a study of the effects of using pretests in science classes on chapter test achievement results. The targeted population consisted of eighth grade science students at a junior high school from 1992 to 2001. Whether giving a pretest followed by a posttest at the end of the chapter, or giving only the test at chapter end…

  17. Effective Teaching Results in Increased Science Achievement for All Students

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.

    2007-01-01

    This study of teacher effectiveness and student achievement in science demonstrated that effective teachers positively impact student learning. A general linear mixed model was used to assess change in student scores on the Discovery Inquiry Test as a function of time, race, teacher effectiveness, gender, and impact of teacher effectiveness in…

  18. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  19. How to increase meeting effectiveness and efficiency

    SciTech Connect

    Grunau, M.; Kurstedt, H.A. Jr.

    1991-01-01

    In this paper, I present a model adapted from control theory to gain insight into the dynamics of meetings. I relate the system controller and feedback sensor in the model to the role of the facilitator in meetings. By drawing parallels between the control theory model and the adapted model for meetings, I came up with an operational definition of a group facilitator and derived the following hypothesis: Providing facilitators with information about group members prior to the meeting will improve their effectiveness and efficiency in facilitating the meeting. Such information, for example, could include the group members' personality types measured with the Myers-Briggs Type Indicator or their conflict modes measured through the Thomas-Kilmann Conflict Mode Instrument. 12 refs., 2 figs.

  20. Addressing the Achievement Gap between Minority and Nonminority Children: Increasing Access and Achievement through Project EXCITE

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula

    2006-01-01

    Project EXCITE was developed and implemented specifically to raise the achievement of gifted minority students in a large suburban school district of Chicago so that they could qualify for advanced programs and accelerated tracks in high school in mathematics and science. This paper describes the goals, components, eligibility, and selection…

  1. Math Manipulatives to Increase 4th Grade Student Achievement

    ERIC Educational Resources Information Center

    Couture, Katie

    2012-01-01

    This research project was completed with twenty-nine fourth grade students from Shawnee Elementary, a school in the Chippewa Valley School District. It began in April 2012 and the data collection was completed by June 2012. The purpose of this project was to see if utilizing math manipulatives in an elementary classroom will increase student…

  2. Strategies for Increasing Academic Achievement in Higher Education

    ERIC Educational Resources Information Center

    Ensign, Julene; Woods, Amelia Mays

    2014-01-01

    Higher education today faces unique challenges. Decreasing student engagement, increasing diversity, and limited resources all contribute to the issues being faced by students, educators, and administrators alike. The unique characteristics and expectations that students bring to their professional programs require new methods of addressing…

  3. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  4. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  5. Achieving improved cycle efficiency via pressure gain combustors

    SciTech Connect

    Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S.; Rogers, W.A.

    1995-04-01

    As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

  6. Increasing the efficiency of polymer solar cells by silicon nanowires.

    PubMed

    Eisenhawer, B; Sensfuss, S; Sivakov, V; Pietsch, M; Andrä, G; Falk, F

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  7. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  8. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.7 Water used to achieve energy efficiency. ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 435.7 Section...

  9. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  10. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  11. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  12. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1998-01-01

    As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.

  13. Government Efficiency and Effectiveness: Opportunities to Reduce Fragmentation, Overlap, and Duplication and Achieve Other Financial Benefits

    DTIC Science & Technology

    2015-04-14

    Other Financial Benefits Statement of Gene L. Dodaro Comptroller General of the United States Testimony Before the Committee on Oversight and...Efficiency and Effectiveness: Opportunities to Reduce Fragmentation, Overlap, and Duplication and Achieve Other Financial Benefits 5a. CONTRACT NUMBER 5b...GOVERNMENT EFFICIENCY AND EFFECTIVENESS Opportunities to Reduce Fragmentation, Overlap, and Duplication and Achieve Other Financial Benefits Why

  14. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at < 200 W/m2 irradiation; 0.99 power factor, 87% efficiency and 0.088 distortion factor for dc supplies; 1 ns synchronization resolution via Ethernet; database accelerators allowing 85% energy savings for servers; adaptive software yielding energy reduction of 73% for e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  15. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  16. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  17. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  18. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  19. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  20. Increasing Digging Efficiency Using Two Biologically-Inspired Techniques

    NASA Astrophysics Data System (ADS)

    Wendell, Dawn; Hosoi, Peko

    2011-03-01

    The mechanics of digging through granular materials often neglect the inhomogeneities present in granular packings. This work reports on two biologically-inspired mechanisms that aim to increase the efficiency of digging through granular materials by taking advantage of the variety of forces found in granular packings. First, flexible diggers demonstrate that a slight increase in flexibility can lead to more efficient digging using a completely passive mechanism. Secondly, a digger with an actuated tip is investigated to find optimum parameters for energy efficient digging with actuated mechanisms. This work is funded by Schlumberger-Doll Research.

  1. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  2. 12 New England Organizations Honored for Outstanding Achievements in Energy Efficiency

    EPA Pesticide Factsheets

    EPA and the U.S. Department of Energy (DOE) are honoring 12 New England businesses and organizations for their commitment to saving energy, saving money, and protecting the environment through superior energy efficiency achievements.

  3. An Efficient Wireless Recharging Mechanism for Achieving Perpetual Lifetime of Wireless Sensor Networks

    PubMed Central

    Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting

    2016-01-01

    Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes “recharging while moving” into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle. PMID:28025567

  4. An Efficient Wireless Recharging Mechanism for Achieving Perpetual Lifetime of Wireless Sensor Networks.

    PubMed

    Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting

    2016-12-23

    Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes "recharging while moving" into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle.

  5. Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.

    PubMed

    Al-Khayat, Omar; Hong, Jun Ki; Beck, David M; Minett, Andrew I; Neto, Chiara

    2017-03-03

    Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 μm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 μm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.

  6. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  7. Increasing thermal efficiency of solar flat plate collectors

    NASA Astrophysics Data System (ADS)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  8. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity.

    PubMed

    Xu, Min; Zhao, Yuefang; Feng, Min

    2012-08-07

    Cationic nanocarrier mediated intracellular therapeutic agent delivery acts as a double-edged sword: the carriers promote cellular uptake, but interact nonspecifically and strongly with negatively charged endogenic proteins and cell membranes, which results in aggregates and high cytotoxicity. The present study was aimed at exploring zwitterionic polyaspartamide derivative nanoparticles for efficient intracellular delivery with low cytotoxicity. Poly(aspartic acid) partially grafted tetraethylenepentamine (PASP-pg-TEPA) with different isoelectric points (IEPs) was synthesized. The PASP-pg-TEPA formed zwitterionic nanoparticles with an irregular core and a well-defined shell structure in aqueous medium. Their particle size decreased from about 300 to 80 nm with an increase of the IEP from 7.5 to 9.1. The surface charge of the PASP-pg-TEPA nanoparticles could be tuned from positive to negative with a change of the pH of the medium. The nanoparticles with an IEP above 8.5 exhibited good stability under simulated physiological conditions. It was noted that the zwitterionic PASP-pg-TEPA nanoparticles displayed highly efficient cellular uptake in HeLa cells (approximately 99%) in serum-containing medium and did not adversely affect the cell viability at concentrations up to 1 mg/mL. Furthermore, thermodynamic analysis using isothermal titration calorimetry provided direct evidence that these zwitterionic nanoparticles had low binding affinities for serum protein. Therefore, the zwitterionic PASP-pg-TEPA nanoparticles could overcome limitations of cationic nanocarriers and achieve efficient intracellular delivery with low cytotoxicity.

  9. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used...

  10. Food security: increasing yield and improving resource use efficiency.

    PubMed

    Parry, Martin A J; Hawkesford, Malcolm J

    2010-11-01

    Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.

  11. U.S. Public Administration Programs: Increasing Academic Achievement by Identifying and Utilizing Student Learning Styles

    ERIC Educational Resources Information Center

    Naylor, Lorenda A; Wooldridge, Blue; Lyles, Alan

    2014-01-01

    Global economic shifts are forcing universities to become more competitive and operationally efficient. As a result, universities emphasize access, affordability, and achievement. More specifically, U.S. universities have responded by emphasizing course assessment, retention rates, and graduation rates. Both university administrators and faculty…

  12. An IRB Transformation: Increasing Quality and Efficiency Using Existing Resources

    ERIC Educational Resources Information Center

    Andrews, Joseph E., Jr.; Moore, J. Brian; Means, Paula; Weinberg, Richard

    2012-01-01

    In an effort to increase review-quality and efficiency, research administration at Wake Forest School of Medicine initiated a change in the operational structure of the Institutional Review Board (IRB) via a reconfiguring of the boards and rescheduling of the convened meetings. The number of IRB Panels was doubled and each panel/board began…

  13. Advanced Nano-Composites for Increased Energy Efficiency

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  14. A Program to Increase the Motivation of Low Achieving Students. Final Report.

    ERIC Educational Resources Information Center

    Sutton, Jeannette Schur; And Others

    A 3-year guidance program to increase achievement level and motivation admitted 73 low achieving 10th graders. Experimental subjects were assigned to seminar or non-seminar groups; controls remained in the usual slow track. Both experimental groups were divided into smaller groups for flexibly programed classes in English, social studies, and…

  15. Semiconductor technology for reducing emissions and increasing efficiency

    SciTech Connect

    Duffin, B.; Frank, R.

    1997-12-31

    The cooperation and support of all industries are required to significantly impact a worldwide reduction in gaseous emissions that may contribute to climate change. Each industry also is striving to more efficiently utilize the resources that it consumes since this is both conservation for good citizenship and an intelligent approach to business. The semiconductor industry is also extremely concerned with these issues. However, semiconductor manufacturer`s products provide solutions for reduced emissions and increased efficiency in their industry, other industries and areas that can realize significant improvements through control technology. This paper will focus on semiconductor technologies of digital control, power switching and sensing to improve efficiency and reduce emissions in automotive, industrial, and office/home applications. 10 refs., 13 figs.

  16. Heat shock increases conjugation efficiency in Clostridium difficile.

    PubMed

    Kirk, Joseph A; Fagan, Robert P

    2016-12-01

    Clostridium difficile infection has increased in incidence and severity over the past decade, and poses a unique threat to human health. However, genetic manipulation of C. difficile remains in its infancy and the bacterium remains relatively poorly characterised. Low-efficiency conjugation is currently the only available method for transfer of plasmid DNA into C. difficile. This is practically limiting and has slowed progress in understanding this important pathogen. Conjugation efficiency varies widely between strains, with important clinically relevant strains such as R20291 being particularly refractory to plasmid transfer. Here we present an optimised conjugation method in which the recipient C. difficile is heat treated prior to conjugation. This significantly improves conjugation efficiency in all C. difficile strains tested including R20291. Conjugation efficiency was also affected by the choice of media on which conjugations were performed, with standard BHI media giving most transconjugant recovery. Using our optimised method greatly increased the ease with which the chromosome of R20291 could be precisely manipulated by homologous recombination. Our method improves on current conjugation protocols and will help speed genetic manipulation of strains otherwise difficult to work with.

  17. New ferritic steels increase the thermal efficiency of steam turbines

    SciTech Connect

    Mayer, K.H.; Bakker, W.T.

    1996-12-31

    The further development of ferritic high-temperature-resistant 9--11%Cr steels has paved the way for fossil-fired power stations to be operated at turbine steam inlet temperatures of up to around 600 C and high supercritical steam pressures with a distinct improvement in thermal efficiency, a significant contribution towards reducing the environmental impact of SO{sub 2}, NO{sub x} and CO{sub 2} emissions and to a more economical utilization of fossil fuels. Advances in the development of these steels are primarily attributable to joint research projects undertaken by the manufacturers and operators of power stations in Japan (EPDC), in the USA (EPRI) and in Europe (COST 501). The report gives details on the results achieved under EPRI Research Project RP 140 3-15/23 on the creep behavior of modified 9%CrMo cast steel used in the manufacture of steam turbines for coal-fired power plants. The modified 9%CrMo cast steel also offers great benefits as regards improving the useful life and thermal efficiency of existing power plants.

  18. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  19. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  20. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  1. Light Increases Energy Transfer Efficiency in a Boreal Stream

    PubMed Central

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on

  2. Light increases energy transfer efficiency in a boreal stream.

    PubMed

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic (13)C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on (13)C uptake by periphyton. In the field experiment, P addition had a positive effect on (13)C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, (13)C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific (13)C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific (13)C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between (13)C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community

  3. Increase of unit efficiency by improved waste heat recovery

    SciTech Connect

    Bauer, G.; Lankes, F.

    1998-07-01

    For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

  4. Increasing the Cost-efficiency of the DSN

    NASA Technical Reports Server (NTRS)

    Statman, Joseph I.; Berner, Jeff B.

    2008-01-01

    JPL has operated the Deep Space Network (DSN) on behalf of NASA since the 1960's. Over the last two decades, the DSN budget has generally declined in real-year dollars while the aging assets required more attention, and the missions became more complex. As a result, the budget has been increasingly consumed by Operations and Maintenance (O and M), significantly reducing the funding wedge available for technology investment and for enhancing the DSN capability and capacity. Responding to this budget squeeze, the DSN launched an effort to improve the cost-efficiency of the O and M. In this paper we: Analyze the components of O&M. We note for example that, for the DSN, less than 20% of the staff engage in the traditional human-in-front-a-console role, so any effort to increase the cost efficiency must go beyond reducing the number of "Real-time operators." Explain the underlying organizational and cultural structures. Any cost-efficiency activities changes either accept, or carefully modify these structures. For example, the DSN O&M is based on the concept that there are three nearly identical antenna complexes separated by approximately 1200 in latitude and that each antenna complex is operated by a different contractor (driven by international agreements). Explore planned changes in the customer interface, e.g. web-based automated scheduling, and the processes required for a transition. Changes have to be evaluated in the larger end-to-end context, e.g. do the changes provide a net cost-efficiency for the DSN and the missions, or do they merely shift cost from the DSN to the missions. Consider possible significant changes in real-time pass management, e.g. full-remoting of operations, and lights-dim operations, while maintaining (or improving) the performance metrics of the DSN. Investigate how procedural and administrative changes could increase cost-efficiency, in conjunction with changes in the customer interfaces and real-time pass management. Examples would be

  5. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  6. Increased OLED radiative efficiency using a directive optical antenna.

    PubMed

    McDaniel, S; Blair, S

    2010-08-02

    We investigate the improvement in efficiency of organic light emitting diodes/displays (OLEDs) by embedding a typical OLED structure within a metallic patch grating resonator. A patch grating resonator is similar to the more familiar Fabry-Perot resonator, except that one mirror of the resonator is a metallic patch grating with a pitch approximately lambda /2 that reduces lateral propagation of radiative emission. FDTD simulations of the proposed structure indicate a potential 71% increase in emitted power over that of a reference OLED structure, and an additional 5% gain from adding an ITO spacer adjacent to the metallic electrode layer (for a total 76% increase). Implementation of this structure requires little to no modification of the OLED manufacturing process.

  7. Methods for increasing the efficiency of Compton imagers

    SciTech Connect

    Mihailescu, L; Vetter, K; Burks, M; Chivers, D; Cunningham, M; Gunter, D; Nelson, K E

    2005-11-15

    A Compton scatter camera based on position sensitive, planar Ge and Si(Li) detectors with segmented electrodes is being developed at LLNL. This paper presents various methods that were developed to increase the position resolution of the detectors, the granularity and capability to reconstruct the scattering sequence of the gamma-ray within the detectors. All these methods help to increase the efficiency of the imager, by accepting more photons in the final image. The initial extent and diffusion of charge-carrier clouds inside the semiconductor detectors are found to affect profoundly the fraction of interactions that deposit charge in multiple adjacent electrodes. An accurate identification of these charge-shared interactions is a key factor in correctly reconstructing the position of interactions in the detector.

  8. Increased SERS detection efficiency for characterizing rare events in flow.

    PubMed

    Jacobs, Kevin T; Schultz, Zachary D

    2015-08-18

    Improved surface-enhanced Raman scattering (SERS) measurements of a flowing aqueous sample are accomplished by combining line focus optics with sheath-flow SERS detection. The straightforward introduction of a cylindrical lens into the optical path of the Raman excitation laser increases the efficiency of SERS detection and the reproducibility of SERS signals at low concentrations. The width of the line focus is matched to the width of the sample capillary from which the analyte elutes under hydrodynamic focusing conditions, allowing for increased collection across the SERS substrate while maintaining the power density below the damage threshold at any specific point. We show that a 4× increase in power spread across the line increases the signal-to-noise ratio by a factor of 2 for a variety of analytes, such as rhodamine 6G, amino acids, and lipid vesicles, without any detectable photodamage. COMSOL simulations and Raman maps elucidate the hydrodynamic focusing properties of the flow cell, providing a clearer picture of the confinement effects at the surface where the sample exits the capillary. The lipid vesicle results suggest that the combination of hydrodynamic focusing and increased optical collection enables the reproducible detection of rare events, in this case individual lipid vesicles.

  9. Large Ribosomal Protein 4 Increases Efficiency of Viral Recoding Sequences

    PubMed Central

    Green, Lisa; Houck-Loomis, Brian; Yueh, Andrew

    2012-01-01

    Expression of retroviral replication enzymes (Pol) requires a controlled translational recoding event to bypass the stop codon at the end of gag. This recoding event occurs either by direct suppression of termination via the insertion of an amino acid at the stop codon (readthrough) or by alteration of the mRNA reading frame (frameshift). Here we report the effects of a host protein, large ribosomal protein 4 (RPL4), on the efficiency of recoding. Using a dual luciferase reporter assay, we found that transfection of cells with a plasmid encoding RPL4 cDNA increases recoding efficiency in a dose-dependent manner, with a maximal enhancement of nearly twofold. Expression of RPL4 increases recoding of reporters containing retroviral readthrough and frameshift sequences, as well as the Sindbis virus leaky termination signal. RPL4-induced enhancement of recoding is cell line specific and appears to be specific to RPL4 among ribosomal proteins. Cotransfection of RPL4 cDNA with Moloney murine leukemia proviral DNA results in Gag processing defects and a reduction of viral particle formation, presumably caused by the RPL4-dependent alteration of the Gag-to-Gag-Pol ratio required for virion assembly and release. PMID:22718819

  10. Increasing efficiency of preclinical research by group sequential designs.

    PubMed

    Neumann, Konrad; Grittner, Ulrike; Piper, Sophie K; Rex, Andre; Florez-Vargas, Oscar; Karystianis, George; Schneider, Alice; Wellwood, Ian; Siegerink, Bob; Ioannidis, John P A; Kimmelman, Jonathan; Dirnagl, Ulrich

    2017-03-01

    Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain.

  11. Increasing efficiency of preclinical research by group sequential designs

    PubMed Central

    Piper, Sophie K.; Rex, Andre; Florez-Vargas, Oscar; Karystianis, George; Schneider, Alice; Wellwood, Ian; Siegerink, Bob; Ioannidis, John P. A.; Kimmelman, Jonathan; Dirnagl, Ulrich

    2017-01-01

    Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain. PMID:28282371

  12. Opportunity to Learn and English Learner Achievement: Is Increased Content Exposure Beneficial?

    ERIC Educational Resources Information Center

    Aguirre-Munoz, Zenaida; Boscardin, Christy Kim

    2008-01-01

    This investigation examined the impact of opportunity to learn content and skills targeted by a writing assessment on the achievement of English learners (ELs), including the potential for differential impact of increased exposure to literary analysis and writing instruction. Results revealed several factors contributing to students' writing…

  13. Increasing Women's Aspirations and Achievement in Science: The Effect of Role Models on Implicit Cognitions

    ERIC Educational Resources Information Center

    Phelan, Julie E.

    2010-01-01

    This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating…

  14. The Increasing Enrollment of Returning Women Students and Their Achievement as Measured by Their Mean GPA.

    ERIC Educational Resources Information Center

    Beausang, Kenneth R.

    The two purposes of this study were to: (1) determine whether there had been an increase in the enrollment of returning women students (twenty-five years of age or older) between the fall of 1975 and the fall of 1976 at the Quad-Cities Campus, Black Hawk College. A second problem was to compare the mean grade point average achieved by these…

  15. Coteachers' Attitudes and Perceptions of Coteaching Strategies on Increasing Academic Achievement

    ERIC Educational Resources Information Center

    Ohaya, Ngozi Chidinma

    2014-01-01

    Meeting the goal of increasing academic achievement for students with disabilities in general education classes remains a challenge in the research district's high schools. Coteachers need to know if the teaching strategies of Project Instruction, Collaboration, and Environment, known as Project ICE, are effective in addressing the problem of poor…

  16. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  17. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  18. Device engineering of perovskite solar cells to achieve near ideal efficiency

    SciTech Connect

    Agarwal, Sumanshu E-mail: prnair@ee.iitb.ac.in; Nair, Pradeep R. E-mail: prnair@ee.iitb.ac.in

    2015-09-21

    Despite the exciting recent research on perovskite based solar cells, the design space for further optimization and the practical limits of efficiency are not well known in the community. In this letter, we address these aspects through theoretical calculations and detailed numerical simulations. Here, we first provide the detailed balance limit efficiency in the presence of radiative and Auger recombination. Then, using coupled optical and carrier transport simulations, we identify the physical mechanisms that contribute towards bias dependent carrier collection, and hence low fill factors of current perovskite based solar cells. Our detailed simulations indicate that it is indeed possible to achieve efficiencies and fill factors greater than 25% and 85%, respectively, with near ideal super-position characteristics even in the presence of Auger recombination.

  19. Device engineering of perovskite solar cells to achieve near ideal efficiency

    NASA Astrophysics Data System (ADS)

    Agarwal, Sumanshu; Nair, Pradeep R.

    2015-09-01

    Despite the exciting recent research on perovskite based solar cells, the design space for further optimization and the practical limits of efficiency are not well known in the community. In this letter, we address these aspects through theoretical calculations and detailed numerical simulations. Here, we first provide the detailed balance limit efficiency in the presence of radiative and Auger recombination. Then, using coupled optical and carrier transport simulations, we identify the physical mechanisms that contribute towards bias dependent carrier collection, and hence low fill factors of current perovskite based solar cells. Our detailed simulations indicate that it is indeed possible to achieve efficiencies and fill factors greater than 25% and 85%, respectively, with near ideal super-position characteristics even in the presence of Auger recombination.

  20. Increasing women's aspirations and achievement in science: The effect of role models on implicit cognitions

    NASA Astrophysics Data System (ADS)

    Phelan, Julie E.

    This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating men more than women with science) was linked to more negative (implicit and explicit) attitudes towards science and less identification with science. For men, stereotypes were either non-significantly or positively related to science attitudes and identification. Time 2 examined the influence of implicit and explicit science cognitions on students' science aspirations and achievement, and found that implicit stereotyping, attitudes, and identification were all unique predictors of science aspirations, but not achievement. Of more importance, Time 2 examined the influence of science role models, and found that identification with a role model of either gender reduced women's implicit science stereotyping and increased their positive attitudes toward science. Implications for decreasing the gender gap in advanced science achievement are discussed.

  1. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  2. Increasing Mathematics and Science Achievement for Culturally Diverse Students through Teaching Training

    NASA Technical Reports Server (NTRS)

    Mahon, Lee

    1997-01-01

    The purpose of this proposal was to field test and evaluate a Teacher Training program that would prepare teachers to increase the motivation and achievement of culturally diverse students in the areas of science and mathematics. Designed as a three year program, this report covers the first two years of the training program at the Ronald McNair School in the Ravenswood School district, using the resources of the NASA Ames Research Center and the California Framework for Mathematics and Science.

  3. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  4. Increasing Computational Efficiency of Cochlear Models Using Boundary Layers

    PubMed Central

    Alkhairy, Samiya A.; Shera, Christopher A.

    2016-01-01

    Our goal is to develop methods to improve the efficiency of computational models of the cochlea for applications that require the solution accurately only within a basal region of interest, specifically by decreasing the number of spatial sections needed for simulation of the problem with good accuracy. We design algebraic spatial and parametric transformations to computational models of the cochlea. These transformations are applied after the basal region of interest and allow for spatial preservation, driven by the natural characteristics of approximate spatial causality of cochlear models. The project is of foundational nature and hence the goal is to design, characterize and develop an understanding and framework rather than optimization and globalization. Our scope is as follows: designing the transformations; understanding the mechanisms by which computational load is decreased for each transformation; development of performance criteria; characterization of the results of applying each transformation to a specific physical model and discretization and solution schemes. In this manuscript, we introduce one of the proposed methods (complex spatial transformation) for a case study physical model that is a linear, passive, transmission line model in which the various abstraction layers (electric parameters, filter parameters, wave parameters) are clearer than other models. This is conducted in the frequency domain for multiple frequencies using a second order finite difference scheme for discretization and direct elimination for solving the discrete system of equations. The performance is evaluated using two developed simulative criteria for each of the transformations. In conclusion, the developed methods serve to increase efficiency of a computational traveling wave cochlear model when spatial preservation can hold, while maintaining good correspondence with the solution of interest and good accuracy, for applications in which the interest is in the solution

  5. Increasing computational efficiency of cochlear models using boundary layers

    NASA Astrophysics Data System (ADS)

    Alkhairy, Samiya A.; Shera, Christopher A.

    2015-12-01

    Our goal is to develop methods to improve the efficiency of computational models of the cochlea for applications that require the solution accurately only within a basal region of interest, specifically by decreasing the number of spatial sections needed for simulation of the problem with good accuracy. We design algebraic spatial and parametric transformations to computational models of the cochlea. These transformations are applied after the basal region of interest and allow for spatial preservation, driven by the natural characteristics of approximate spatial causality of cochlear models. The project is of foundational nature and hence the goal is to design, characterize and develop an understanding and framework rather than optimization and globalization. Our scope is as follows: designing the transformations; understanding the mechanisms by which computational load is decreased for each transformation; development of performance criteria; characterization of the results of applying each transformation to a specific physical model and discretization and solution schemes. In this manuscript, we introduce one of the proposed methods (complex spatial transformation) for a case study physical model that is a linear, passive, transmission line model in which the various abstraction layers (electric parameters, filter parameters, wave parameters) are clearer than other models. This is conducted in the frequency domain for multiple frequencies using a second order finite difference scheme for discretization and direct elimination for solving the discrete system of equations. The performance is evaluated using two developed simulative criteria for each of the transformations. In conclusion, the developed methods serve to increase efficiency of a computational traveling wave cochlear model when spatial preservation can hold, while maintaining good correspondence with the solution of interest and good accuracy, for applications in which the interest is in the solution

  6. Subpixel shift with Fourier transform to achieve efficient and high-quality image interpolation

    NASA Astrophysics Data System (ADS)

    Chen, Qin-Sheng; Weinhous, Martin S.

    1999-05-01

    A new approach to image interpolation is proposed. Different from the conventional scheme, the interpolation of a digital image is achieved with a sub-unity coordinate shift technique. In the approach, the original image is first shifted by sub-unity distances matching the locations where the image values need to be restored. The original and the shifted images are then interspersed together, yielding an interpolated image. High quality sub-unity image shift which is crucial to the approach is accomplished by implementing the shift theorem of Fourier transformation. It is well known that under the Nyquist sampling criterion, the most accurate image interpolation can be achieved with the interpolating function (sinc function). A major drawback is its computation efficiency. The present approach can achieve an interpolation quality as good as that with the sinc function since the sub-unity shift in Fourier domain is equivalent to shifting the sinc function in spatial domain, while the efficiency, thanks to the fast Fourier transform, is very much improved. In comparison to the conventional interpolation techniques such as linear or cubic B-spline interpolation, the interpolation accuracy is significantly enhanced. In order to compensate for the under-sampling effects in the interpolation of 3D medical images owing to a larger inter-slice distance, proper window functions were recommended. The application of the approach to 2- and 3-D CT and MRI images produced satisfactory interpolation results.

  7. The implementation of discovery learning model based on lesson study to increase student's achievement in colloid

    NASA Astrophysics Data System (ADS)

    Suyanti, Retno Dwi; Purba, Deby Monika

    2017-03-01

    The objectives of this research are to get the increase student's achievement on the discovery learning model based on lesson study. Beside of that, this research also conducted to know the cognitive aspect. This research was done in three school that are SMA N 3 Medan. Population is all the students in SMA N 11 Medan which taken by purposive random sampling. The research instruments are achievement test instruments that have been validated. The research data analyzed by statistic using Ms Excell. The result data shows that the student's achievement taught by discovery learning model based on Lesson study higher than the student's achievement taught by direct instructional method. It can be seen from the average of gain and also proved with t-test, the normalized gain in experimental class of SMA N 11 is (0.74±0.12) and control class (0.45±0.12), at significant level α = 0.05, Ha is received and Ho is refused where tcount>ttable in SMA N 11 (9.81>1,66). Then get the improvement cognitive aspect from three of school is C2 where SMA N 11 is 0.84(high). Then the observation sheet result of lesson study from SMA N 11 92 % of student working together while 67% less in active using media.

  8. Innovative strategy with potential to increase hemodialysis efficiency and safety

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Chien; Lin, Hsiu-Chen; Chen, Hsi-Hsien; Mai, Fu-Der; Liu, Yu-Chuan; Lin, Chun-Mao; Chang, Chun-Chao; Tsai, Hui-Yen; Yang, Chih-Ping

    2014-03-01

    Uremic toxins are mainly represented by blood urine nitrogen (BUN) and creatinine (Crea) whose removal is critically important in hemodialysis (HD) for kidney disease. Patients undergoing HD have a complex illness, resulting from: inadequate removal of organic waste, dialysis-induced oxidative stress and membrane-induced inflammation. Here we report innovative breakthroughs for efficient and safe HD by using a plasmon-induced dialysate comprising Au nanoparticles (NPs)-treated (AuNT) water that is distinguishable from conventional deionized (DI) water. The diffusion coefficient of K3Fe(CN)6 in saline solution can be significantly increased from 2.76, to 4.62 × 10-6 cm s-1, by using AuNT water prepared under illumination by green light-emitting diodes (LED). In vitro HD experiments suggest that the treatment times for the removals of 70% BUN and Crea are reduced by 47 and 59%, respectively, using AuNT water instead of DI water in dialysate, while additionally suppressing NO release from lipopolysaccharide (LPS)-induced inflammatory cells.

  9. Can Intrinsic Fluctuations Increase Efficiency in Neural Information Processing?

    NASA Astrophysics Data System (ADS)

    Liljenström, Hans

    2003-05-01

    All natural processes are accompanied by fluctuations, characterized as noise or chaos. Biological systems, which have evolved during billions of years, are likely to have adapted, not only to cope with such fluctuations, but also to make use of them. We investigate how the complex dynamics of the brain, including oscillations, chaos and noise, can affect the efficiency of neural information processing. In particular, we consider the amplification and functional role of internal fluctuations. Using computer simulations of a neural network model of the olfactory cortex and hippocampus, we demonstrate how microscopic fluctuations can result in global effects at the network level. We show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels, analogous to stochastic resonance phenomena. Noise can also induce transitions between different dynamical states, which could be of significance for learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. We speculate whether this dynamical behavior perhaps could be related to (creative) thinking.

  10. Efficient watermarking system with increased reliability for video authentication

    NASA Astrophysics Data System (ADS)

    Winne, Dominique A.; Knowles, Henry D.; Bull, David R.; Canagarajah, C. N.

    2003-06-01

    The widespread adoption of digital video techniques has generated a requirement for authenticity verification in applications such as criminal evidence, insurance claims and commercial databases. This paper extends our previous work and improves the watermark estimation procedure of a spatial digital video watermarking system designed to detect and characterize time-base attacks. Most watermark extraction processes utilize the noise masking levels of the image. These levels change during transmission, especially when the host signal is compressed at low bit-rates. The blocking artifacts that are introduced by this process modify the noise masking levels and influence the ability to form a good estimate of the embedded watermark. This paper describes a novel filter procedure to eliminate these artifacts from the noise masking levels. The efficiency is compared with the standard MPEG-4 deblocking and deringing filters. Extracting the watermark from only the encoded Macroblocks, excluding the skipped Macroblocks improves the performance significantly without an increase in computational complexity. The functionality of this system within an MPEG-4 implementation is demonstrated with a receiver operating characteristic.

  11. Increased diffraction efficiencies of DBR gratings in diode lasers with adiabatic ridge waveguides

    NASA Astrophysics Data System (ADS)

    Müller, André; Fricke, Jörg; Brox, Olaf; Erbert, Götz; Sumpf, Bernd

    2016-12-01

    The influence of the lateral layout on the diffraction efficiency of gratings in DBR lasers is presented. In this experimental study DBR ridge waveguide (RW) lasers with different ridge widths as well as straight and adiabatic waveguides are compared. The lasers are based on a vertical layer structure with an asymmetric super large optical cavity. DBR gratings of 3rd and 7th order are manufactured using electron beam lithography and dry etching. Their diffraction efficiencies are determined by measuring the optical output power emitted through the rear and front facets of unmounted devices. In comparison to a laser with a 30 μm ridge, the DBR diffraction efficiency in a laser with a 4 μm ridge is reduced by 46 percentage points. Implementing an adiabatic widening of the ridge width increases the diffraction efficiency from 35% to 72%. The latter is close to 81% achieved for the laser with 30 μm ridge. The new layout with enhanced DBR diffraction efficiency increases the optical output power of the narrow RW laser by a factor of 1.3. Similar results are obtained with 7th order gratings. All devices provide single-mode emission with spectral widths of 30 pm and side mode suppressions >60 dΒ. According to these results, implementing adiabatic waveguides is beneficial in terms of diffraction efficiency and performance of narrow RW lasers based on the applied vertical structure.

  12. Bilingual communication methods, text versus video, to increase parent involvement and science fair project student achievement

    NASA Astrophysics Data System (ADS)

    Clevenson, Rhonda Suzanne

    This research examined the responses of families to bilingual communication methods, text versus video, designed to facilitate school to home communication to increase parent involvement and seventh grade student achievement in the science fair project. Using an experimental design, 161 families were randomly selected to receive either a two part informational text or video series during the science fair unit taught at a culturally diverse urban middle school. The bilingual informational materials were created and produced by the staff at the research site. Measures were taken to make sure all families could access the informational materials and innovations such as a special travel envelope and reminding procedures aided data collection. Surveys measuring variables on a Likert scale with spaces for comments were collected from the parents and students. An interrater reliability study was completed to measure the agreement of the two teachers who used a grading checklist to score science fair project achievement. Quantitative methods including ANOVA and MLR were used to examine the data in terms of student achievement and the communication method (text or video), audience (students and parents), and the anticipated outcome (parent help). Nonparametric and qualitative data analyses were used to explore how families used and responded to the informational materials. Significant results were that the video communication method was positively associated with student achievement on the science fair project. Significant main effects were observed for the student characteristics, educational services (general and special education, and English as a Second Language), and previous achievement in science, and the parent characteristics, previous experience with science fair projects, primary viewing language (English or Spanish), and expectations for student achievement. Student achievement was not significantly related to the amount or usefulness of parent help. The amount

  13. From Guide to Practice: Improving Your After School Science Program to Increase Student Academic Achievement

    NASA Astrophysics Data System (ADS)

    Taylor, J.

    2013-12-01

    Numerous science organizations, such as NASA, offer educational outreach activities geared towards after school. For some programs, the primary goal is to grow students' love of science. For others, the programs are also intended to increase academic achievement. For those programs looking to support student learning in out-of-school time environments, aligning the program with learning during the classroom day can be a challenge. The Institute for Education Sciences, What Works Clearinghouse, put together a 'Practice Guide' for maximizing learning time beyond the regular school day. These practice guides provide concrete recommendations for educators supported by research. While this guide is not specific to any content or subject-area, the recommendations provided align very well with science education. After school science is often viewed as a fun, dynamic environment for students. Indeed, one of the recommendations to ensure time is structured according to students' needs is to provide relevant and interesting experiences. Given that our after school programs provide such creative environments for students, what other components are needed to promote increased academic achievement? The recommendations provided to academic achievement, include: 1. Align Instruction, 2. Maximize Attendance and Participation, 3. Adapt Instruction, 4. Provide Engaging Experiences, and 5. Evaluate Program. In this session we will examine these five recommendations presented in the Practice Guide, discuss how these strategies align with science programs, and examine what questions each program should address in order to provide experiences that lend themselves to maximizing instruction. Roadblocks and solutions for overcoming challenges in each of the five areas will be presented. Jessica Taylor will present this research based on her role as an author on the Practice Guide, 'Improving Academic Achievement in Out-of-School Time' and her experience working in various informal science

  14. III-V photocathode with nitrogen doping for increased quantum efficiency

    NASA Technical Reports Server (NTRS)

    James, L. W. (Inventor)

    1976-01-01

    An increase in the quantum efficiency of a 3-5 photocathode is achieved by doping its semiconductor material with an acceptor and nitrogen, a column-5 isoelectronic element, that introduces a spatially localized energy level just below the conduction band similar to a donor level to which optical transitions can occur. This increases the absorption coefficient, alpha without compensation of the acceptor dopant. A layer of a suitable 1-5, 1-6 or 1-7 compound is included as an activation layer on the electron emission side to lower the work function of the photocathode.

  15. Increasing the volumetric efficiency of Diesel engines by intake pipes

    NASA Technical Reports Server (NTRS)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  16. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency

    NASA Astrophysics Data System (ADS)

    Savin, Hele; Repo, Päivikki; von Gastrow, Guillaume; Ortega, Pablo; Calle, Eric; Garín, Moises; Alcubilla, Ramon

    2015-07-01

    The nanostructuring of silicon surfaces—known as black silicon—is a promising approach to eliminate front-surface reflection in photovoltaic devices without the need for a conventional antireflection coating. This might lead to both an increase in efficiency and a reduction in the manufacturing costs of solar cells. However, all previous attempts to integrate black silicon into solar cells have resulted in cell efficiencies well below 20% due to the increased charge carrier recombination at the nanostructured surface. Here, we show that a conformal alumina film can solve the issue of surface recombination in black silicon solar cells by providing excellent chemical and electrical passivation. We demonstrate that efficiencies above 22% can be reached, even in thick interdigitated back-contacted cells, where carrier transport is very sensitive to front surface passivation. This means that the surface recombination issue has truly been solved and black silicon solar cells have real potential for industrial production. Furthermore, we show that the use of black silicon can result in a 3% increase in daily energy production when compared with a reference cell with the same efficiency, due to its better angular acceptance.

  17. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency.

    PubMed

    Savin, Hele; Repo, Päivikki; von Gastrow, Guillaume; Ortega, Pablo; Calle, Eric; Garín, Moises; Alcubilla, Ramon

    2015-07-01

    The nanostructuring of silicon surfaces--known as black silicon--is a promising approach to eliminate front-surface reflection in photovoltaic devices without the need for a conventional antireflection coating. This might lead to both an increase in efficiency and a reduction in the manufacturing costs of solar cells. However, all previous attempts to integrate black silicon into solar cells have resulted in cell efficiencies well below 20% due to the increased charge carrier recombination at the nanostructured surface. Here, we show that a conformal alumina film can solve the issue of surface recombination in black silicon solar cells by providing excellent chemical and electrical passivation. We demonstrate that efficiencies above 22% can be reached, even in thick interdigitated back-contacted cells, where carrier transport is very sensitive to front surface passivation. This means that the surface recombination issue has truly been solved and black silicon solar cells have real potential for industrial production. Furthermore, we show that the use of black silicon can result in a 3% increase in daily energy production when compared with a reference cell with the same efficiency, due to its better angular acceptance.

  18. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    SciTech Connect

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

  19. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).

  20. Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  1. Local structure analysis of materials for increased energy efficiency

    NASA Astrophysics Data System (ADS)

    Medling, Scott

    In this dissertation, a wide range of materials which exhibit interesting properties with potential for energy efficiency applications are investigated. The bulk of the research was conducted using the Extended X-ray Absorption Fine Structure (EXAFS) technique. EXAFS is a powerful tool for elucidating the local structure of novel materials, and it's advantages are presented in Chapter 2. In Chapter 3, I present details on two new techniques which are used in studies later in this dissertation, but are also promising for other, unrelated studies and, therefore, warrant being discussed generally. I explain the presence of and present a method for subtracting the X-ray Raman background in the fluorescence window when collecting fluorescence EXAFS data of a dilute dopant Z in a Z+1 host. I introduce X-ray magnetic circular dichroism (XMCD) and discuss the process to reduce XMCD data, including the self-absorption corrections for low energy K-edges. In Chapter 4, I present a series of investigations on ZnS:Cu electroluminescent phosphors. Optical microscopy indicates that the emission centers do not degrade uniformly or monotonically, but rather, most of the emission centers blink on and off during degradation. The effect of this on various proposed degradation mechanisms is discussed. EXAFS data of ZnS:Cu phosphors ground to enable thinner, lower-voltage devices indicate that grinding preferentially causes damage to the CuS nanoprecipitates, quenching electroluminescence (EL) and concluding that smaller particles must be built up from nanoparticles instead. EXAFS data of nanoparticles show that adding a ZnS shell outside a ZnS:Cu core provides significant additional encapsulation of the Cu, increasing photoluminescence and indicating that this may increase EL if devices can be fabricated. Data from extremely dilute (0.02% Cu) ZnS:Cu nanoparticles is presented in order to specifically study the non-precipitate and suggests that the Cu dopant substitutes for Zn and is

  2. Increasing Biomass Conversion Efficiencies to Ethanol by Engineering Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Government has targeted aggressive development of bioethanol as one route for decreasing oil dependence and lowering greenhouse gas emissions. Achieving future production targets depends on expanding feedstock sources beyond corn and towards lignocellulose. This is expected to in...

  3. Swine herds achieve high performance by culling low lifetime efficiency sows in early parity.

    PubMed

    Takanashi, Ariko; McTaggart, Iain; Koketsu, Yuzo

    2011-11-01

    Sow lifetime performance and by-parity performance were analyzed using a 3 by 3 factorial design, comprising 3 herd productivity groups and 3 sow efficiency groups. Data was obtained from 101 Japanese herds, totaling 173,526 parity records of 34,929 sows, for the years 2001 to 2006. Sows were categorized into 3 groups based on the lower and upper 25th percentiles of the annualized lifetime pigs born alive: low lifetime efficiency sows (LE sows), intermediate lifetime efficiency sows or high lifetime efficiency sows. Herds were grouped on the basis of the upper and lower 25th percentiles of pigs weaned per mated female per year, averaged over 6 years: high-, intermediate- or low-performing herds. Mixed-effects models were used for comparisons. LE sows in high-performing herds had 57.8 fewer lifetime nonproductive days and 0.5 earlier parity at removal than those in low-performing herds (P<0.05). The number of pigs born alive of LE sows continuously decreased from parity 1 to 5, whereas those of high lifetime efficiency sows gradually increased from parity 1 to 4 before decreasing up to parity ≥ 6 (P<0.05). In conclusion, the LE sows have a performance pattern of decreasing number of pigs born alive across parity. The present study also indicates that high-performing herds culled potential LE sows earlier than the other herds.

  4. Biz of Acq: Increasing Your Efficiency with Internet Resources.

    ERIC Educational Resources Information Center

    Withers, Rob; Richards, Robert C., Jr., Ed.

    1998-01-01

    Electronic tools, both local applications and networked resources, allow acquisitions librarians and staff to conduct business with unprecedented efficiency. This article describes digital resources that improve workflow and save time and money in an age of shrinking budgets, highlighting e-mail, World Wide Web resources, home page development…

  5. Interhemispheric Resource Sharing: Decreasing Benefits with Increasing Processing Efficiency

    ERIC Educational Resources Information Center

    Maertens, M.; Pollmann, S.

    2005-01-01

    Visual matches are sometimes faster when stimuli are presented across visual hemifields, compared to within-field matching. Using a cued geometric figure matching task, we investigated the influence of computational complexity vs. processing efficiency on this bilateral distribution advantage (BDA). Computational complexity was manipulated by…

  6. Energy efficiency increase in a chemical production site.

    PubMed

    Keller, Urs; Jucker, Walter

    2013-01-01

    Sustainability has become a key factor for the chemical industry. One element of sustainability is energy efficiency in manufacturing processes. This article illustrates the strategic energy initiatives of a leading global operating company and the implementation of its elements into practice. Some successful energy-saving projects are highlighted.

  7. Raising yield potential in wheat: increasing photosynthesis capacity and efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing wheat yields to help to ensure food security is a major challenge. Meeting this challenge requires a quantum improvement in the yield potential of wheat. Past increases in yield potential have largely resulted from improvements in harvest index not through increased biomass. Further large...

  8. Progress in increasing the maximum achievable output power of broad area diode lasers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2012-03-01

    High power broad area diode lasers provide the optical energy for all high performance laser systems, either directly or as pump sources for solid-state lasers. Continuous improvement is required in the peak achievable output power of these diode laser devices in order to enable performance improvements in full laser systems. In recent years, device technology has advanced to the point where the main limit to optical power is no longer device failure, but is instead power saturation due to various physical effects within the semiconductor device itself. For example, the combination of large optical cavity designs with advanced facet passivation means that facet failure is no longer the dominant limiting factor. Increases in the optical power therefore require firstly a clear identification of the limiting mechanisms, followed by design changes and material improvements to address these. Recent theoretical and experimental diagnostic studies at the Ferdinand-Braun-Institut have helped trace the saturation effects to three main effects: gain saturation, longitudinal-holeburning and current driven carrier leakage. Design changes based on these studies have enabled increases in the achievable emitted power density from broad area lasers. Recent experimental examples include ~100W from 100μm stripes under short-pulsed conditions, > 30W from 100μm stripes under quasi-continuous wave conditions and > 10W from 30μm stripes under continuous wave conditions. An overview of the results of the diagnostic studies performed at the FBH will be presented, and the design changes necessary to address the observed power saturation will be discussed.

  9. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  10. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  11. Increased Efficiency Thermoelectric Generator With Convective Heat Transport

    DTIC Science & Technology

    2011-02-25

    term in the denominator is the reversible Seebeck thermal power input. The second and third terms are, respectively, Joule heating and conductive heat...heat transport functions, respectively, for Joule heating and conduction from the hot to cold ends. Figure 1 presents the effect of δ on efficiency...present, as it facilitates the convective effect when present. There is to be no possibility of a convective effect as being studied during this

  12. Methods for increased computational efficiency of multibody simulations

    NASA Astrophysics Data System (ADS)

    Epple, Alexander

    This thesis is concerned with the efficient numerical simulation of finite element based flexible multibody systems. Scaling operations are systematically applied to the governing index-3 differential algebraic equations in order to solve the problem of ill conditioning for small time step sizes. The importance of augmented Lagrangian terms is demonstrated. The use of fast sparse solvers is justified for the solution of the linearized equations of motion resulting in significant savings of computational costs. Three time stepping schemes for the integration of the governing equations of flexible multibody systems are discussed in detail. These schemes are the two-stage Radau IIA scheme, the energy decaying scheme, and the generalized-a method. Their formulations are adapted to the specific structure of the governing equations of flexible multibody systems. The efficiency of the time integration schemes is comprehensively evaluated on a series of test problems. Formulations for structural and constraint elements are reviewed and the problem of interpolation of finite rotations in geometrically exact structural elements is revisited. This results in the development of a new improved interpolation algorithm, which preserves the objectivity of the strain field and guarantees stable simulations in the presence of arbitrarily large rotations. Finally, strategies for the spatial discretization of beams in the presence of steep variations in cross-sectional properties are developed. These strategies reduce the number of degrees of freedom needed to accurately analyze beams with discontinuous properties, resulting in improved computational efficiency.

  13. Increased Efficiencies in the INEEL SAR/TSR/USQ Process

    SciTech Connect

    Cole, Norman Edward

    2002-06-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has implemented a number of efficiencies to reduce the time and cost of preparing safety basis documents. The INEEL is continuing to look at other aspects of the safety basis process to identify other efficiencies that can be implemented and remain in compliance with Title 10 Code of Federal Regulations (CFR) Part 830. A six-sigma approach is used to identify areas to improve efficiencies and develop the action plan for implementation of the new process, as applicable. Three improvement processes have been implemented: The first was the development of standardized Documented Safety Analysis (DSA) and technical safety requirement (TSR) documents that all nuclear facilities use, by adding facility-specific details. The second is a material procurement process, which is based on safety systems specified in the individual safety basis documents. The third is a restructuring of the entire safety basis preparation and approval process. Significant savings in time to prepare safety basis document, cost of materials, and total cost of the documents are currently being realized.

  14. Increased Efficiencies in the INEEL SAR/TSR/USQ Process

    SciTech Connect

    Cole, N.E.

    2002-05-16

    The Idaho National Engineering and Environmental Laboratory (INEEL) has implemented a number of efficiencies to reduce the time and cost of preparing safety basis documents. The INEEL is continuing to look at other aspects of the safety basis process to identify other efficiencies that can be implemented and remain in compliance with Title 10 Code of Federal Regulations (CFR) Part 830. A six-sigma approach is used to identify areas to improve efficiencies and develop the action plan for implementation of the new process, as applicable. Three improvement processes have been implemented: The first was the development of standardized Documented Safety Analysis (DSA) and technical safety requirement (TSR) documents that all nuclear facilities use, by adding facility-specific details. The second is a material procurement process, which is based on safety systems specified in the individual safety basis documents. The third is a restructuring of the entire safety basis preparation and approval process. Significant savings in time to prepare safety basis document, cost of materials, and total cost of the documents are currently being realized.

  15. Maximum achievable efficiency in near-field coupled power-transfer systems.

    PubMed

    Zargham, Meysam; Gulak, P Glenn

    2012-06-01

    Wireless power transfer is commonly realized by means of near-field inductive coupling and is critical to many existing and emerging applications in biomedical engineering. This paper presents a closed form analytical solution for the optimum load that achieves the maximum possible power efficiency under arbitrary input impedance conditions based on the general two-port parameters of the network. The two-port approach allows one to predict the power transfer efficiency at any frequency, any type of coil geometry and through any type of media surrounding the coils. Moreover, the results are applicable to any form of passive power transfer such as provided by inductive or capacitive coupling. Our results generalize several well-known special cases. The formulation allows the design of an optimized wireless power transfer link through biological media using readily available EM simulation software. The proposed method effectively decouples the design of the inductive coupling two-port from the problem of loading and power amplifier design. Several case studies are provided for typical applications.

  16. Does Achievement Increase over Time? Another Look at the South Carolina PET Program.

    ERIC Educational Resources Information Center

    Mandeville, Garrett K.

    1992-01-01

    Basics skills achievement of students of 48 elementary school teachers who received in-service training in the Program for Effective Teaching was compared longitudinally to the achievement of students of 34 teachers who had not received such training. No differences in achievement between the groups of students were found. (BB)

  17. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect

    Davis, Robert F.

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  18. Increasing the efficiency of organic solar cells using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ikhsanov, R. Sh.; Protsenko, I. E.; Uskov, A. V.

    2013-05-01

    Numerical simulations show that the introduction of aluminum nanoparticles into one layer of a bulk-heterojunction organic solar cell leads to an increase in the rate of exciton generation in the active layer of the cell. According to calculations of the optical absorption in the cell, which have been performed in the effective refractive index approximation using the Maxwell-Garnet model, a maximum relative increase in the rate of exciton generation due to plasmonic nanoparticles is about 4%.

  19. Challenges to increasing targeting efficiency in genome engineering.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-01-01

    Gene targeting technologies are essential for the analysis of gene functions. Knockout mouse generation via genetic modification of embryonic stem cells (ESCs) is the commonest example, but it is a time-consuming and labor-intensive procedure. Recently, a novel genome editing technology called CRISPR/Cas has enabled the direct production of knockout mice by non-homologous end joining (NHEJ)-mediated mutations. Unexpectedly, however, it generally exhibits a low efficiency in homologous recombination (HR) and is prone to high mosaicism. Meanwhile, gene targeting using ESCs is still being improved, as reported by Fukuda et al. in this issue. Here, we outline current gene targeting technologies with special emphasis on HR-mediated technologies, which are currently being performed using these two major strategies.

  20. Challenges to increasing targeting efficiency in genome engineering

    PubMed Central

    HORII, Takuro; HATADA, Izuho

    2015-01-01

    Gene targeting technologies are essential for the analysis of gene functions. Knockout mouse generation via genetic modification of embryonic stem cells (ESCs) is the commonest example, but it is a time-consuming and labor-intensive procedure. Recently, a novel genome editing technology called CRISPR/Cas has enabled the direct production of knockout mice by non-homologous end joining (NHEJ)-mediated mutations. Unexpectedly, however, it generally exhibits a low efficiency in homologous recombination (HR) and is prone to high mosaicism. Meanwhile, gene targeting using ESCs is still being improved, as reported by Fukuda et al. in this issue. Here, we outline current gene targeting technologies with special emphasis on HR-mediated technologies, which are currently being performed using these two major strategies. PMID:26688299

  1. Advanced liquid cooling in HCPVT systems to achieve higher energy efficiencies

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Helmers, H.; Tiwari, M. K.; Escher, W.; Paredes, S.; Neves, P.; Poulikakos, D.; Wiesenfarth, M.; Bett, A. W.; Michel, B.

    2013-09-01

    The benefits of advanced thermal packaging are demonstrated through a receiver package consisting of a monolithic interconnected module (MIM) which is directly attached to a high performance microchannel heat sink. Those packages can be applied in high-concentration photovoltaic systems and the generated heat can be used in addition to the electrical power output (CPVT systems). Thus, the total energy efficiency of the system increases significantly. A detailed exergy analysis of the receiver power output underscores the advantages of the new cooling approach.

  2. The increasing efficiency of tornado days in the United States

    NASA Astrophysics Data System (ADS)

    Elsner, James B.; Elsner, Svetoslava C.; Jagger, Thomas H.

    2015-08-01

    The authors analyze the historical record of tornado reports in the United States and find evidence for changes in tornado climatology possibly related to global warming. They do this by examining the annual number of days with many tornadoes and the ratio of these days to days with at least one tornado and by examining the annual proportion of tornadoes occurring on days with many tornadoes. Additional evidence of a changing tornado climate is presented by considering tornadoes in geographic clusters and by analyzing the density of tornadoes within the clusters. There is a consistent decrease in the number of days with at least one tornado at the same time as an increase in the number of days with many tornadoes. These changes are interpreted as an increasing proportion of tornadoes occurring on days with many tornadoes. Coincident with these temporal changes are increases in tornado density as defined by the number of tornadoes per area. Trends are insensitive to the begin year of the analysis. The bottom line is that the risk of big tornado days featuring densely concentrated tornado outbreaks is on the rise. The results are broadly consistent with numerical modeling studies that project increases in convective energy within the tornado environment.

  3. Increasing Educational Efficiency Through Technology (Commission Discussion and Background Materials).

    ERIC Educational Resources Information Center

    Indiana State Commission for Higher Education, Indianapolis.

    A program schedule and background information for Indiana Commission for Higher Education-sponsored discussion of the use of educational technology to increase educational effeciency are presented. The four major topics of discussion to illustrate the uses and advantages/disadvantages of audio, video, and computing technologies are as follows:…

  4. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity.

    PubMed

    Seals, Douglas R; Justice, Jamie N; LaRocca, Thomas J

    2016-04-15

    Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential

  5. Transcription-replication collision increases recombination efficiency between plasmids.

    PubMed

    Jialiang, Li; Feng, Chen; Zhen, Xu; Jibing, Chen; Xiang, Lv; Lingling, Zhang; Depei, Liu

    2013-11-01

    It has been proposed that the stalling of the replication forks can induce homologous recombination in several organisms, and that arrested replication forks may offer nuclease targets, thereby providing a substrate for proteins involved in double-strand repair. In this article, we constructed a plasmid with the potential for transcription-replication collision (TRC), in which DNA replication and RNA transcription occur on the same DNA template simultaneously. Theoretically, transcription will impede DNA replication and increase homologous recombination. To validate this hypothesis, another plasmid was constructed that contained a homologous sequence with the exception of some mutated sites. Co-transfection of these two plasmids into 293T cells resulted in increased recombination frequency. The ratio of these two plasmids also affected the recombination frequency. Moreover, we found high expression levels of RAD51, which indicated that the increase in the recombination rate was probably via the homologous recombination pathway. These results indicate that mutant genes in plasmids can be repaired by TRC-induced recombination.

  6. Implementation of Comprehensive School Reform and Its Impact on Increases in Student Achievement

    ERIC Educational Resources Information Center

    Zhang, Yu; Fashola, Olatokunbo; Shkolnik, Jamie; Boyle, Andrea

    2006-01-01

    This study examined the relationship between the implementation of comprehensive school reform (CSR) and changes in reading and math achievement from 1999 until 2003. Survey data about CSR implementation and school-level achievement data were collected for multiple years from a sample of CSR schools and compared with a sample of matched comparison…

  7. A locally-blazed ant trail achieves efficient collective navigation despite limited information

    PubMed Central

    Fonio, Ehud; Heyman, Yael; Boczkowski, Lucas; Gelblum, Aviram; Kosowski, Adrian; Korman, Amos; Feinerman, Ofer

    2016-01-01

    Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often restricts them from providing the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information. DOI: http://dx.doi.org/10.7554/eLife.20185.001 PMID:27815944

  8. Supervillin Reorganizes the Actin Cytoskeleton and Increases Invadopodial Efficiency

    PubMed Central

    Crowley, Jessica L.; Smith, Tara C.; Fang, Zhiyou; Takizawa, Norio

    2009-01-01

    Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface. PMID:19109420

  9. Can charged colloidal particles increase the thermoelectric energy conversion efficiency?

    PubMed

    Salez, Thomas J; Huang, Bo Tao; Rietjens, Maud; Bonetti, Marco; Wiertel-Gasquet, Cécile; Roger, Michel; Filomeno, Cleber Lopes; Dubois, Emmanuelle; Perzynski, Régine; Nakamae, Sawako

    2017-04-05

    Currently, liquid thermocells are receiving increasing attention as an inexpensive alternative to conventional solid-state thermoelectrics for low-grade waste heat recovery applications. Here we present a novel path to increase the Seebeck coefficient of liquid thermoelectric materials using charged colloidal suspensions; namely, ionically stabilized magnetic nanoparticles (ferrofluids) dispersed in aqueous potassium ferro-/ferri-cyanide electrolytes. The dependency of thermoelectric potential on experimental parameters such as nanoparticle concentration and types of solute ions (lithium citrate and tetrabutylammonium citrate) is examined to reveal the relative contributions from the thermogalvanic potential of redox couples and the entropy of transfer of nanoparticles and ions. The results show that under specific ionic conditions, the inclusion of magnetic nanoparticles can lead to an enhancement of the ferrofluid's initial Seebeck coefficient by 15% (at a nanoparticle volume fraction of ∼1%). Based on these observations, some practical directions are given on which ionic and colloidal parameters to adjust for improving the Seebeck coefficients of liquid thermoelectric materials.

  10. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%

    SciTech Connect

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-09

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% +/- 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell showed a steady-state efficiency of almost equal to 6.00% for over 100 s.

  11. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22.

    PubMed

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-01

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

  12. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  13. From here to efficiency : time lags between the introduction of new technology and the achievement of fuel savings.

    SciTech Connect

    Mintz, M.; Vyas, A.; Wang, M.; Stodolsky, F.; Cuenca, R.; Gaines, L.

    1999-12-03

    In this paper, the energy savings of new technology offering significant improvements in fuel efficiency are tracked for over 20 years as vehicles incorporating that technology enter the fleet and replace conventional light-duty vehicles. Two separate analyses are discussed: a life-cycle analysis of aluminum-intensive vehicles and a fuel-cycle analysis of the energy and greenhouse gas emissions of double vs. triple fuel-economy vehicles. In both efforts, market-penetration modeling is used to simulate the rate at which new technology enters the new fleet, and stock-adjustment modeling is used to capture the inertia in turnover of new and existing current-technology vehicles. Together, these two effects--slowed market penetration and delayed vehicle replacement--increase the time lag between market introduction and the achievement of substantial energy savings. In both cases, 15-20 years elapse, before savings approach these levels.

  14. Dynamic ocean management increases the efficiency and efficacy of fisheries management

    PubMed Central

    Maxwell, Sara M.; Halpin, Patrick N.

    2016-01-01

    In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time–area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time–area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100–200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15–52 million in landings using a static approach over a dynamic management approach. PMID:26729885

  15. Dynamic ocean management increases the efficiency and efficacy of fisheries management.

    PubMed

    Dunn, Daniel C; Maxwell, Sara M; Boustany, Andre M; Halpin, Patrick N

    2016-01-19

    In response to the inherent dynamic nature of the oceans and continuing difficulty in managing ecosystem impacts of fisheries, interest in the concept of dynamic ocean management, or real-time management of ocean resources, has accelerated in the last several years. However, scientists have yet to quantitatively assess the efficiency of dynamic management over static management. Of particular interest is how scale influences effectiveness, both in terms of how it reflects underlying ecological processes and how this relates to potential efficiency gains. Here, we address the empirical evidence gap and further the ecological theory underpinning dynamic management. We illustrate, through the simulation of closures across a range of spatiotemporal scales, that dynamic ocean management can address previously intractable problems at scales associated with coactive and social patterns (e.g., competition, predation, niche partitioning, parasitism, and social aggregations). Furthermore, it can significantly improve the efficiency of management: as the resolution of the closures used increases (i.e., as the closures become more targeted), the percentage of target catch forgone or displaced decreases, the reduction ratio (bycatch/catch) increases, and the total time-area required to achieve the desired bycatch reduction decreases. In the scenario examined, coarser scale management measures (annual time-area closures and monthly full-fishery closures) would displace up to four to five times the target catch and require 100-200 times more square kilometer-days of closure than dynamic measures (grid-based closures and move-on rules). To achieve similar reductions in juvenile bycatch, the fishery would forgo or displace between USD 15-52 million in landings using a static approach over a dynamic management approach.

  16. Designing for multiple global user populations: increasing resource allocation efficiency for greater sustainability.

    PubMed

    Nadadur, G; Parkinson, M B

    2012-01-01

    This paper proposes a method to identify opportunities for increasing the efficiency of raw material allocation decisions for products that are simultaneously targeted at multiple user populations around the world. The values of 24 body measures at certain key percentiles were used to estimate the best-fitting anthropometric distributions for female and male adults in nine national populations, which were selected to represent the diverse target markets multinational companies must design for. These distributions were then used to synthesize body measure data for combined populations with a 1:1 female:male ratio. An anthropometric range metric (ARM) was proposed for assessing the variation of these body measures across the populations. At any percentile, ARM values were calculated as the percentage difference between the highest and lowest anthropometric values across the considered user populations. Based on their magnitudes, plots of ARM values computed between the 1st and 99 th percentiles for each body measure were grouped into low, medium, and high categories. This classification of body measures was proposed as a means of selecting the most suitable strategies for designing raw material-efficient products. The findings in this study and the contributions of subsequent work along these lines are expected to help achieve greater efficiencies in resource allocation in global product development.

  17. Mathematics Achievement Gaps between Suburban Students and Their Rural and Urban Peers Increase over Time. Issue Brief No. 52

    ERIC Educational Resources Information Center

    Graham, Suzanne E.; Provost, Lauren E.

    2012-01-01

    In this brief, authors Suzanne Graham and Lauren Provost examine whether attending a school in a rural, urban, or suburban community is related to children's mathematics achievement in kindergarten, and whether increases in mathematics achievement between kindergarten and eighth grade differ for children in rural, urban, and suburban schools. They…

  18. A Rubric and an Individualized Educational Plan to Increase Academic Achievement in Middle School Students with Disabilities

    ERIC Educational Resources Information Center

    Morta, Antoinette L.

    2010-01-01

    Special educators struggle to develop legitimate Individualized Educational Plans (IEPs) that describe student needs and lead to academic achievement. The purpose of this study was to determine if using a rubric to create an IEP resulted in an increase in academic achievement. The conceptual framework is drawn from a synthesis of the literature on…

  19. Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power.

    PubMed

    Zameziati, Karim; Mornieux, Guillaume; Rouffet, David; Belli, Alain

    2006-02-01

    We determined the index of effectiveness (IE), as defined by the ratio of the tangential (effective force) to the total force applied on the pedals, using a new method proposed by Mornieux et al. (J Biomech, 2005), while simultaneously measuring the muscular efficiency during sub-maximal cycling tests of different intensities. This allowed us to verify whether part of the changes in muscular efficiency could be explained by a better orientation of the force applied on the pedals. Ten subjects were asked to perform an incremental test to exhaustion, starting at 100 W and with 30 W increments every 5 min, at 80 rpm. Gross (GE) and net (NE) efficiencies were calculated from the oxygen uptake and W(Ext) measurements. From the three-dimensional force's measurements, it was possible to measure the total force (F(Tot)), including the effective (F(Tang)) and ineffective force (F (Rad + Lat)). IE has been determined as the ratio between F(Tang) and F(Tot), applied on the pedals for three different time intervals, i.e., during the full revolution (IE(360 degrees)), the downstroke phase (IE(180 degrees Desc)) and the upstroke phase (IE(180 degrees Asc)). IE(360 degrees) and IE(180 degrees Asc) were significantly correlated with GE (r = 0.79 and 0.66, respectively) and NE (r = 0.66 and 0.99, respectively). In contrast, IE(180 degrees Desc) was not correlated to GE or to NE. From a mechanical point of view, during the upstroke, the subject was able to reduce the non-propulsive forces applied by an active muscle contraction, contrary to the downstroke phase. As a consequence, the term 'passive phase', which is currently used to characterize the upstroke phase, seems to be obsolete. The IE(180 degrees Asc) could also explain small variations of GE and NE for a recreational group.

  20. Progress toward achieving high power and high efficiency semipolar LEDs and their characterization

    NASA Astrophysics Data System (ADS)

    Zhong, Hong

    Performance of current commercially available wurtzite nitride based light-emitting diodes (LEDs), grown along the polar (0001) c-plane orientation, is limited by the presence of polarization-related electric fields inside multi-quantum wells (MQWs). The discontinuities in both spontaneous and piezoelectric polarization at the heterointerfaces result in internal electric fields in the quantum wells. These electric fields cause carrier separation [quantum confined Stark effect (QCSE)] and reduce the radiative recombination rate within the quantum wells. One approach to reduce and possibly eliminate the polarization-related effects is to grow III-nitride devices on crystal planes that are inclined with respect to the c-axis, i.e., on semipolar planes. In this dissertation, metalorganic chemical vapor deposition (MOCVD) has been employed for the homoepitaxial growth of GaN based LEDs on semipolar orientations. As a consequence of growing on high-quality bulk GaN substrates, the LEDs have significantly reduced threading dislocation and stacking fault densities, resulting in remarkable improvements in EQE and output power. High efficiency semipolar (1011) violet-blue and blue LEDs have been demonstrated without any intentional effort to enhance the light extraction from those devices. Optimizations of epitaxial structures have led to increased output power and external quantum efficiency. A silicone encapsulated single quantum well blue LED with peak wavelength of 444 nm with output power of 24.3 mW, external quantum efficiency of 43% and luminous efficacy of 75 lm/W (with phosphorescent coating) at 20 mA has been demonstrated. Polarization fields in strained (1011) and (112¯2) InGaN quantum wells have been experimentally determined through bias-dependent optical studies. Our results show that the polarization field flips its direction in semipolar InGaN quantum wells with large inclination angles (i.e. around 60°). This suggests that there exists a polarization

  1. An Effective Model to Increase Student Attitude and Achievement: Narrative Including Analogies

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Akcay, Husamettin

    2011-01-01

    This study describes the analogical models and narratives used to introduce and teach Grade 9 chemical covalent compounds which are relatively abstract and difficult for students. We explained each model's development during the lessons and analyzed understanding students derived from these learning materials. In this context, achievement,…

  2. Increasing Equity and Achievement in Fifth Grade Mathematics: The Contribution of Content Exposure

    ERIC Educational Resources Information Center

    Ottmar, Erin R.; Konold, Timothy R.; Berry, Robert Q.; Grissmer, David W.; Cameron, Claire E.

    2013-01-01

    This study uses a large nationally representative data set (ECLS-K) of 5,181 students to examine the extent to which exposure to content and instructional practice contributes to mathematics achievement in fifth grade. Using hierarchical linear modeling, results suggest that more exposure to content beyond numbers and operations (i.e., geometry,…

  3. Blending Academic, Career/Technical and Fine Arts Instruction to Increase Achievement and Graduation Rates

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2010

    2010-01-01

    Teachers who work together to blend academic and career/technical (CT) instruction have found a key to motivating students to complete high school and prepare for college, advanced training and careers. This newsletter highlights key strategies schools are using to join academic and technical studies to advance student motivation and achievement.…

  4. Increasing Metacomprehension in Learning Disabled and Normally Achieving Students through Self-Questioning Training.

    ERIC Educational Resources Information Center

    Wong, Bernice Y. L.; Jones, Wayne

    1982-01-01

    Training to self-monitor reading comprehension was undertaken with 120 learning disabled eighth and ninth graders and normally achieving sixth graders. It was hypothesized that insufficient metacomprehension is one possible cause underlying learning disabled adolescents' comprehension problems. (Author/SEW)

  5. Strategies for Success: Links to Increased Mathematics Achievement Scores of English-Language Learners

    ERIC Educational Resources Information Center

    Pray, Lisa; Ilieva, Vessela

    2011-01-01

    This research investigates the link between mathematic teachers' use of English-language learner (ELL) strategies and the mathematics achievement of their students who are ELLs. Interviews and observations of mathematic teachers who taught ELLs were used to document instructional strategies use. The findings from the interviews and observations…

  6. Learning Objectives: Posting & Communicating Daily Learning Objectives to Increase Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Althoff, Sarah E.; Linde, Kristen J.; Mason, John D.; Nagel, Ninja M.; O'Reilly, Katie A.

    2007-01-01

    This research project was conducted at a high school in a suburban metropolitan area in the Midwest from August 21, 2006 through October 26, 2006. The purpose of the research was to improve student achievement and motivation through the posting and communicating of daily learning objectives. The research participants included 150 students and five…

  7. The Effort to Increase the Students' Achievement in Poetry Mastery through Semiotic Method

    ERIC Educational Resources Information Center

    Dirgeyasa, I Wy.

    2017-01-01

    The obejectives of this research are to know the improvement of the students' achievement in poetry mastery and their perception regarding to the semiotic method in teaching and learning poetry in English Education Department, Languages and Art Faculty of State University of Medan. The research method used is the Classroom Action Research (CAR).…

  8. Pairing New Science Curriculum with Professional Learning Increases Student Achievement. Lessons from Research

    ERIC Educational Resources Information Center

    Killion, Joellen

    2016-01-01

    A randomized trial study, conducted over two school years in 18 high schools in Washington, finds that "An Inquiry Approach," a three-year, educative curriculum for high school science, has a positive impact on student achievement, teacher practice, and fidelity of implementation of the curriculum when the curriculum is paired with…

  9. Does Minority Status Increase the Effect of Disability Status on Elementary Schoolchildren's Academic Achievement?

    ERIC Educational Resources Information Center

    Wu, Qiong; Morgan, Paul L.; Farkas, George

    2014-01-01

    We investigated whether children's reading and mathematics growth trajectories from kindergarten to fifth grade inter-related, and to what extent disability and minority status interacted to predict their achievement trajectories. We conducted secondary data analysis based on a nationally representative sample of 6,446 U.S. schoolchildren from the…

  10. Improving Teaching Capacity to Increase Student Achievement: The Key Role of Data Interpretation by School Leaders

    ERIC Educational Resources Information Center

    Lynch, David; Smith, Richard; Provost, Steven; Madden, Jake

    2016-01-01

    Purpose: This paper argues that in a well-organised school with strong leadership and vision coupled with a concerted effort to improve the teaching performance of each teacher, student achievement can be enhanced. The purpose of this paper is to demonstrate that while macro-effect sizes such as "whole of school" metrics are useful for…

  11. Lipid Encapsulation Provides Insufficient Total-Tract Digestibility to Achieve an Optimal Transfer Efficiency of Fatty Acids to Milk Fat

    PubMed Central

    Bainbridge, Melissa; Kraft, Jana

    2016-01-01

    Transfer efficiencies of rumen-protected n-3 fatty acids (FA) to milk are low, thus we hypothesized that rumen-protection technologies allow for biohydrogenation and excretion of n-3 FA. The objectives of this study were to i) investigate the ruminal protection and post-ruminal release of the FA derived from the lipid-encapsulated echium oil (EEO), and ii) assess the bioavailability and metabolism of the EEO-derived FA through measuring the FA content in plasma lipid fractions, feces, and milk. The EEO was tested for rumen stability using the in situ nylon bag technique, then the apparent total-tract digestibility was assessed in vivo using six Holstein dairy cattle. Diets consisted of a control (no EEO); 1.5% of dry matter (DM) as EEO and 1.5% DM as encapsulation matrix; and 3% DM as EEO. The EEO was rumen-stable and had no effect on animal production. EEO-derived FA were incorporated into all plasma lipid fractions, with the highest proportion of n-3 FA observed in cholesterol esters. Fecal excretion of EEO-derived FA ranged from 7–14%. Biohydrogenation products increased in milk, plasma, and feces with EEO supplementation. In conclusion, lipid-encapsulation provides inadequate digestibility to achieve an optimal transfer efficiency of n-3 FA to milk. PMID:27741299

  12. Increased efficiency for beyond line-of-sight in airborne ISR operations

    NASA Astrophysics Data System (ADS)

    Frayter, Slava; Willems, Koen

    2013-05-01

    Airborne platforms are increasingly being used as vehicles to capture intelligence data for defense, state and civil applications. The aerial vehicles are equipped with technology for both video and sensor data collection; the data is then sent to a ground mission control center for further processing. When the airborne platform is outside the reach of direct data relay due to distance or environment, satellite communications is used for Beyond Line of Sight (BLoS) communication. It is a key requirement for the satellite link in ISR (Intelligence, Surveillance and Reconnaissance) operations to get as much data and video as possible through the available bandwidth. The satellite link also needs to be available at all times during operations to insure mission critical communications and not endanger ground operations. Only by using robust satellite technology can the demand for more data and highest efficiency be satisfied while keeping OPEX costs under control. This paper will highlight both technical and practical challenges of operators in the airborne ISR missions, going from technical requirements to efficiency-driven solutions. It will also look at what the final results in the field are when transmitting ISR data and video from the airborne platform over satellite in highly adaptive environments. The existing qualified and deployed BLoS airborne solution already achieves over 20Mbps from the aircraft to the ground in active operations, but requirements and capabilities continue to increase as more comprehensive ISR data is being transmitted.

  13. Incremental Efficiency of WISC-III Factor Scores in Predicting Achievement: What Do They Tell Us?

    ERIC Educational Resources Information Center

    Glutting, Joseph J.; Youngstrom, Eric A.; Ward, Thomas; Ward, Sandra; Hale, Robert L.

    1997-01-01

    The incremental validity of factor scores from the Wechlser Intelligence Scale for Children-III (WISC-III) in predicting scores on the Wechsler Individual Achievement Test (WIAT) was studied in 283 nonreferred children and 636 referred for evaluation. The Full Scale IQ of the WISC-III was the best predictor of WIAT achievement. (SLD)

  14. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  15. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, L.

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  16. Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization

    NASA Astrophysics Data System (ADS)

    Yuan, Yongbo; Bi, Yu; Huang, Jinsong

    2011-02-01

    We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.

  17. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    SciTech Connect

    Nalwa, Kanwar

    2011-01-01

    Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 μm), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is

  18. The honeymoon effect in job performance - Temporal increases in the predictive power of achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Sawin, Linda L.; Carsrud, Alan L.

    1986-01-01

    Correlations between a job performance criterion and personality measures reflecting achievement motivation and an interpersonal orientation were examined at three points in time after completion of job training for a sample of airline reservations agents. Although correlations between the personality predictors and performance were small and nonsignificant for the 3-month period after beginning the job, by the end of six and eight months a number of significant relationships had emerged. Implications for the utility of personality measures in selection and performance prediction are discussed.

  19. Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

    SciTech Connect

    Splitter, Derek A; Reitz, Rolf; Wissink, martin; DelVescovo, Dan

    2014-01-01

    The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5 CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition. This allowed for the investigation of several combinations of intake temperature, intake pressure, and charge stratification at otherwise constant thermodynamic conditions. The results show that sources of engine inefficiency compete as functions of premixed and global equivalence ratios. Losses are minimized through proper balancing of intake pressure and temperature, such that the global equivalence ratio ( global) is as lean as possible without overly lean regions of the stratified charge causing an increase in incomplete combustion. The explored speed-load-phasing combination shows that losses are minimized at conditions where approximately 2/3 of the fuel is fully premixed. The results exhibit a pathway for achieving simultaneous increases in combustion and fuel efficiency through proper fuel reactivity and initial condition management.

  20. A 12%-efficient upgraded metallurgical grade silicon-organic heterojunction solar cell achieved by a self-purifying process.

    PubMed

    Zhang, Jie; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan

    2014-11-25

    Low-quality silicon such as upgraded metallurgical-grade (UMG) silicon promises to reduce the material requirements for high-performance cost-effective photovoltaics. So far, however, UMG silicon currently exhibits the short diffusion length and serious charge recombination associated with high impurity levels, which hinders the performance of solar cells. Here, we used a metal-assisted chemical etching (MACE) method to partially upgrade the UMG silicon surface. The silicon was etched into a nanostructured one by the MACE process, associated with removing impurities on the surface. Meanwhile, nanostructured forms of UMG silicon can benefit improved light harvesting with thin substrates, which can relax the requirement of material purity for high photovoltaic performance. In order to suppress the large surface recombination due to increased surface area of nanostructured UMG silicon, a post chemical treatment was used to decrease the surface area. A solution-processed conjugated polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on UMG silicon at low temperature (<150 °C) to form a heterojunction to avoid any impurity diffusion in the silicon substrate. By optimizing the thickness of silicon and suppressing the charge recombination at the interface between thin UMG silicon/PEDOT:PSS, we are able to achieve 12.0%-efficient organic-inorganic hybrid solar cells, which are higher than analogous UMG silicon devices. We show that the modified UMG silicon surface can increase the minority carrier lifetime because of reduced impurity and surface area. Our results suggest a design rule for an efficient silicon solar cell with low-quality silicon absorbers.

  1. The Effect on Student Achievement of Increasing Kinetic Structure of Teachers' Lectures.

    ERIC Educational Resources Information Center

    Lamb, William G.; And Others

    1979-01-01

    Tests O. R. Anderson's theory of kinetic structure of verbal communications by administering lectures on swine flu to high school biology students and then reteaching the lectures with increased commonality. Results weakly support Anderson's theory. Implications are made for training teachers to increase the commonality of their lectures. (CS)

  2. Learning Increases the Survival of Newborn Neurons Provided that Learning Is Difficult to Achieve and Successful

    ERIC Educational Resources Information Center

    Curlik, Daniel M., II; Shors, Tracey J.

    2011-01-01

    Learning increases neurogenesis by increasing the survival of new cells generated in the adult hippocampal formation [Shors, T. J. Saving new brain cells. "Scientific American," 300, 46-52, 2009]. However, only some types of learning are effective. Recent studies demonstrate that animals that learn the conditioned response (CR) but require more…

  3. Nursing Homes That Increased The Proportion Of Medicare Days Achieved Gains In Quality

    PubMed Central

    Lepore, Michael; Leland, Natalie E.

    2017-01-01

    Nursing homes are increasingly serving short-stay rehabilitation residents under Medicare skilled nursing facility coverage, which is substantially more generous than Medicaid coverage for long-stay residents. In relation to increasing short-stay resident care, potential exists for beneficial or detrimental effects on long-stay resident outcomes. We employ panel multivariate regression analyses using facility fixed-effects models to determine how increasing the proportion of Medicare days in nursing homes relates to changes in quality outcomes for long-stay residents. We find increasing the proportion of Medicare days in a nursing home is significantly associated with improved quality outcomes for long-stay residents. Findings reinforce prior research indicating that quality outcomes tend to be superior in nursing homes with greater financial resources. This study bolsters arguments for financial investments in nursing homes, including increases in Medicaid payment rates, to support better care. PMID:26643633

  4. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    SciTech Connect

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  5. Thinking Maps: An innovative way to increase sixth-grade student achievement in social studies

    NASA Astrophysics Data System (ADS)

    Reed, Tamita

    The purpose of this quantitative study was to determine the effect of Thinking Maps on the achievement of 6th-grade social studies students in order to determine its effectiveness. The population of this study came from a suburban middle school in the state of Georgia. The quantitative data included a pretest and posttest. The study was designed to find (a) whether there is a significant difference between the mean posttest scores on the benchmark test of 6th-grade students who are taught with either Thinking Maps or traditional social studies methods, (b) whether there is a significant difference between the mean posttest scores on the benchmark test of 6th-grade male versus female social studies students, and (c) whether there is a significant interaction between 6th-grade students' type of social studies class and gender as to differentially affect their mean posttest scores on the benchmark test. To answer these questions, students' pretest and posttest were compared to determine if there was a statistically significant difference after Thinking Maps were implemented with the treatment group for 9 weeks. The results indicate that there was no significant difference in the test scores between the students who were taught with Thinking Maps and the students who were taught without Thinking Maps. However, the students taught with Thinking Maps had the higher adjusted posttest scores.

  6. Increasing Underrepresented High School Students' College Transitions and Achievements: TRIO Educational Opportunity Programs

    ERIC Educational Resources Information Center

    Cowan Pitre, Charisse; Pitre, Paul

    2009-01-01

    The American education agenda suggests a clear commitment to the development of programs and practices to increase equitable participation in higher education. During a time when equity-based policy initiatives are under attack in the United States, governmental TRIO Programs remain one proven pathway for ensuring college preparedness and access…

  7. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests

    PubMed Central

    Wei, Xiaohua; Blanco, Juan A.

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber

  8. Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests.

    PubMed

    Wei, Xiaohua; Blanco, Juan A

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500-2500 trees ha⁻¹. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir--Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr⁻¹, offsetting 1.9% of China's annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products

  9. A Thorough and Efficient Education: School Funding, Student Achievement and Productivity

    ERIC Educational Resources Information Center

    Ahlgrim, Richard W.

    2010-01-01

    Many school districts are facing stagnant or reduced funding (input) concurrent with demands for improved student achievement (output). In other words, there is pressure for all schools, even those schools with student populations of low socioeconomic status, to improve academic results (accountability for output) without a directly proportionate…

  10. Finding Efficiency in the Design of Large Multisite Evaluations: Estimating Variances for Science Achievement Studies

    ERIC Educational Resources Information Center

    Westine, Carl D.

    2016-01-01

    Little is known empirically about intraclass correlations (ICCs) for multisite cluster randomized trial (MSCRT) designs, particularly in science education. In this study, ICCs suitable for science achievement studies using a three-level (students in schools in districts) MSCRT design that block on district are estimated and examined. Estimates of…

  11. Increasing racial/ethnic diversity in nursing to reduce health disparities and achieve health equity.

    PubMed

    Phillips, Janice M; Malone, Beverly

    2014-01-01

    As nursing continues to advance health care in the 21st century, the current shift in demographics, coupled with the ongoing disparities in health care and health outcomes, will warrant our ongoing attention and action. As within all health professions, concerted efforts are needed to diversify the nation's health-care workforce. The nursing profession in particular will be challenged to recruit and retain a culturally diverse workforce that mirrors the nation's change in demographics. This increased need to enhance diversity in nursing is not new to the profession; however, the need to successfully address this issue has never been greater. This article discusses increasing the diversity in nursing and its importance in reducing health disparities. We highlight characteristics of successful recruitment and retention efforts targeting racial/ethnic minority nurses and conclude with recommendations to strengthen the development and evaluation of their contributions to eliminating health disparities.

  12. Increasing Racial/Ethnic Diversity in Nursing to Reduce Health Disparities and Achieve Health Equity

    PubMed Central

    Malone, Beverly

    2014-01-01

    As nursing continues to advance health care in the 21st century, the current shift in demographics, coupled with the ongoing disparities in health care and health outcomes, will warrant our ongoing attention and action. As within all health professions, concerted efforts are needed to diversify the nation's health-care workforce. The nursing profession in particular will be challenged to recruit and retain a culturally diverse workforce that mirrors the nation's change in demographics. This increased need to enhance diversity in nursing is not new to the profession; however, the need to successfully address this issue has never been greater. This article discusses increasing the diversity in nursing and its importance in reducing health disparities. We highlight characteristics of successful recruitment and retention efforts targeting racial/ethnic minority nurses and conclude with recommendations to strengthen the development and evaluation of their contributions to eliminating health disparities. PMID:24385664

  13. 76 FR 41790 - Increasing Market and Planning Efficiency Through Improved Software; Notice Establishing Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... discuss opportunities for increasing real-time and day- ahead market efficiency through improved software... improved software, 76 Fed. Reg. 28,022 (2011). Parties wishing to submit written comments regarding...

  14. A Strategy to Achieve High-Efficiency Organolead Trihalide Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Andalibi, Shabnam; Rostami, Ali; Darvish, Ghafar; Moravvej-Farshi, Mohammad Kazem

    2016-11-01

    Recent theoretical and experimental reports have shown that organometal lead halide perovskite solar cells have attracted attention as a low-cost photovoltaic technology offering high power conversion efficiency. However, the photovoltaic efficiency of these materials is still limited by poor chemical and structural stability in the case of methylammonium lead triiodide and by large bandgap in the case of methylammonium lead tribromide or trichloride. To obtain high-performance devices, we have investigated the computationally optimal efficiency for these materials using the detailed-balance method and present optimal intermediate-band perovskite solar cells with high open-circuit voltage. We model different halide perovskites using density function theory calculations and study their bandgap and absorption coefficient. Based on calculation results, surprisingly Hg doping in different halide perovskites introduces a narrow partially filled intermediate band in the forbidden bandgap. We investigate electrical and optical properties of MAPb0.97Hg0.03I3, MAPb0.96Hg0.04Br3, and MAPb0.96Hg0.04Cl3 and calculate the high absorption efficiency of the different perovskite structures to create thin films suitable for photovoltaic devices.

  15. Efficiency of Students' Achievement Using Black/White and Color Coded Learning and Test Materials.

    ERIC Educational Resources Information Center

    Lamberski, Richard J.; Roberts, Dennis M.

    The purpose of this study was to compute and analyze descriptive indices of efficiency assessing the relative effectiveness of a verbal and visual color code applied to self-paced learning and testing materials. The sample consisted of 176 college subjects randomly assigned to one of four treatment conditions receiving black/white (B) or color…

  16. A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver via piggyBac Transposition

    PubMed Central

    Smith, Ryan P.; Riordan, Jesse D.; Feddersen, Charlotte R.

    2015-01-01

    Abstract Much research has gone into the development of hybrid gene delivery systems that combine the broad tropism and efficient transduction of adenoviral vectors with the ability to achieve stable expression of cargo genes. In addition to gene therapy applications, such a system has considerable advantages for studies of gene function in vivo, permitting fine-tuned genetic manipulation with higher throughput than can be achieved using standard transgenic and DNA targeting techniques. Existing strategies are limited, however, by low integration efficiencies, small cargo capacity, and/or a dependence on target cell division. The utility of this approach could be enhanced by a system that provides all of the following: (1) efficient delivery, (2) stable expression in a high percentage of target cells (whether mitotic or not), (3) large cargo capacity, (4) flexibility to use with a wide range of additional experimental conditions, and (5) simple experimental technique. Here we report the initial characterization of a hybrid system that meets these criteria by utilizing piggyBac (PB) transposition to achieve genomic integration from adenoviral vectors. We demonstrate stable expression of an adenovirus (Ad)-PB-delivered reporter gene in ∼20–40% of hepatocytes following standard tail vein injection. Its high efficiency and flexibility relative to existing hybrid adenoviral gene delivery approaches indicate a considerable potential utility of the Ad-PB system for therapeutic gene delivery and in vivo studies of gene function. PMID:25808258

  17. Practices to reduce nitrate leaching and increase nitrogen use efficiency in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Quemada, Miguel; Baranski, Marcin; Nobel de Lange, Majimcha; Vallejo, Antonio; Cooper, Julia

    2013-04-01

    Despite the large body of research in irrigated agriculture, it is still not clear which practices most effectively reduce nitrate leaching (NL) while maintaining crop yield. A meta-analysis (MA) of published experimental results from agricultural irrigated systems was conducted to identify those agricultural practices that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended N fertilizer rate. Applications above the recommended rate increased leaching without enhancing yield. Replacing a fallow with a non-legume cover crop (CC) reduced NL by 50% while using a legume CC did not have any effect on NL. Legume CC increased yield and N use efficiency while yields following non-legume CC were not different from the fallow. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.

  18. Live births achieved via IVF are increased by improvements in air quality and laboratory environment.

    PubMed

    Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D

    2015-09-01

    Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme.

  19. Live births achieved via IVF are increased by improvements in air quality and laboratory environment

    PubMed Central

    Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D

    2016-01-01

    Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme. PMID:26194882

  20. Increasing young children's contact with print during shared reading: longitudinal effects on literacy achievement.

    PubMed

    Piasta, Shayne B; Justice, Laura M; McGinty, Anita S; Kaderavek, Joan N

    2012-01-01

    Longitudinal results for a randomized-controlled trial (RCT) assessing the impact of increasing preschoolers' attention to print during reading are reported. Four-year-old children (N = 550) in 85 classrooms experienced a 30-week shared reading program implemented by their teachers. Children in experimental classrooms experienced shared-book readings 2 or 4 times per week during which their teachers verbally and nonverbally referenced print. Children in comparison classrooms experienced their teachers' typical book reading style. Longitudinal results (n = 356, 366) showed that use of print references had significant impacts on children's early literacy skills (reading, spelling, comprehension) for 2 years following the RCT's conclusion. Results indicate a causal relation between early print knowledge and later literacy skills and have important implications concerning the primary prevention of reading difficulties.

  1. Procuring High-Efficiency Air Conditioners: Harnessing Competition to Achieve Advances in Technology

    SciTech Connect

    Hollomon, J Bradford; Gordon, Kelly L.

    2002-03-01

    The Departments of Energy and Defense have joined forces to devise an innovative approach to acquiring more efficient unitary air conditioners that minimize life-cycle cost through improved technology. The resulting procurement solicitation challenges manufacturers to offer products with reduced life-cycle cost, taking into account both the initial prices of their units and the costs of their ongoing electric consumption. Competing products are evaluated according to a formula that reflects both full- and part-load efficiencies under a simulated set of time-varying climate conditions. The authors will report on the progress of the procurement, including the choice of target product based on market prospects and technology readiness, development of the technical specifications and electric consumption simulator, approaches to administrative and procedural challenges, responses from manufacturers, and plans for product promotion in the future.

  2. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  3. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  4. An Investigation of the Effectiveness of Increasing Academic Learning Time for College Undergraduate Students' Achievement in Kuwait

    ERIC Educational Resources Information Center

    Al-Shammari, Zaid; Mohammad, Anwar; Al-Shammari, Bandar

    2010-01-01

    The study investigated the effectiveness of increasing ALT for college students' achievement in Kuwait. In Phase 1, 37 students participated (22, experimental; 15, control); in Phase 2, 19 students participated (8, sub-experimental; 11, sub-control). Several experimental research methods used in conducting this study, including development of a…

  5. The Implementation of a Focused School Renewal Plan to Increase Student Achievement in a Low Performing Rural School District

    ERIC Educational Resources Information Center

    Williams, Sarah L.

    2010-01-01

    The following study was conducted using a mixed-methodology study design. The purpose of this study was to determine if a focused school renewal plan would increase student achievement at Rural Elementary. In order to accomplish this goal, baseline research data was gathered using the What Works in Schools Online Survey (Marzano, 2003) to…

  6. Effects of Using Channelling Devices to Increase Efficiency of Hydrokinetic Devices

    NASA Astrophysics Data System (ADS)

    Kalnacs, A.; Kalnacs, J.; Mutule, A.; Entins, V.

    2015-04-01

    In the rivers of Latvia and of many other countries the flow velocity in the places that are most suitable for installation of hydrokinetic devices is 0.4 to 0.9 m/s. In a stream or a river the hydrokinetic devices can reach full efficiency starting from about twice higher flow velocities. It is advisable to at least double this velocity thus increasing the efficiency and power output of the hydrokinetic devices installed in such places. Since Latvia has abundance of slow rivers and almost none are fast, research in this field is of high importance. Diversified technical methods are known that allow increasing substantially the efficiency of hydrokinetic devices. These methods include the use of diffusers, concentrators, different types of other channelling devices and means of flow control. Desirable effects are achieved through changing the cross-section and/or direction of a flow, its pressure, minimizing the turbulence, etc. This work substantiates the use of such devices for increasing the efficiency of hydrokinetic devices. A method is proposed for evaluation of the effects on power output gained owing to the use of channelling devices. Results show that the efficiency of hydrokinetic devices can be increased by at least 110%. Kā rāda pētījumi, Latvijā upju vietās, kuras ir piemērotas hidrokinētisko HES ierīkošanai, straumes ātrums pārsvarā ir robežās 0,4 līdz 0,9 m/s. Būtu izdevīgi vismaz dubultot šo ātrumu, līdz ar to būtiski palielinot šādās vietās izvietojamo iekārtu efektivitāti un jaudu. Sakarā ar to, ka Latvijā ir daudz tieši lēni plūstošu upju, minēto tēmu izpēte un iekārtu izmantošana Latvijai ir sevišķi aktuāla. Ir zināmi dažādi tehniskie paņēmieni, kas dod iespējas būtiski palielināt hidrokinētisko iekārtu efektivitāti. Šādas iespējas dod koncentratori, difuzori, dažādi plūsmas virzītāji un citi speciāli plūsmas vadības paņēmieni. Šīs ierīces maina straumes šķērsgriezumu un

  7. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  8. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.

    PubMed

    Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui

    2017-01-01

    Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend.

  9. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency

    NASA Astrophysics Data System (ADS)

    Takano, Takayoshi; Mino, Takuya; Sakai, Jun; Noguchi, Norimichi; Tsubaki, Kenji; Hirayama, Hideki

    2017-03-01

    Enhancing the light-extraction efficiency is the key issue for realizing highly efficient AlGaN-based ultraviolet light-emitting diodes (UV-LEDs). We introduced several features to improve the light extraction: a transparent AlGaN:Mg contact layer, a Rh mirror electrode, an AlN template on a patterned sapphire substrate, and encapsulation resin. The combination of the AlGaN:Mg contact layer and the Rh mirror electrode significantly improved the output power and the external quantum efficiency (EQE) of UV-LEDs. By introducing the aforementioned features, a maximum EQE of >20% at an emission wavelength of 275 nm and a 20-mA direct current was achieved.

  10. Efficient Method of Achieving Agreements between Individuals and Organizations about RFID Privacy

    NASA Astrophysics Data System (ADS)

    Cha, Shi-Cho

    This work presents novel technical and legal approaches that address privacy concerns for personal data in RFID systems. In recent years, to minimize the conflict between convenience and the privacy risk of RFID systems, organizations have been requested to disclose their policies regarding RFID activities, obtain customer consent, and adopt appropriate mechanisms to enforce these policies. However, current research on RFID typically focuses on enforcement mechanisms to protect personal data stored in RFID tags and prevent organizations from tracking user activity through information emitted by specific RFID tags. A missing piece is how organizations can obtain customers' consent efficiently and flexibly. This study recommends that organizations obtain licenses automatically or semi-automatically before collecting personal data via RFID technologies rather than deal with written consents. Such digitalized and standard licenses can be checked automatically to ensure that collection and use of personal data is based on user consent. While individuals can easily control who has licenses and license content, the proposed framework provides an efficient and flexible way to overcome the deficiencies in current privacy protection technologies for RFID systems.

  11. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  12. Survey of light sources for image display systems to achieve brightness with efficient energy

    NASA Astrophysics Data System (ADS)

    Cheng, Dah Yu; Chen, Li-Min

    1995-04-01

    This paper will review the currently available light sources, and also introduces a new, patented compound orthogonal parabolic reflector to be integrated with the light source, which focuses a relatively large light source into a very small point. The reflector creates a nearly ideal intense point source for all next generation image display systems. The proposed system is not limited by the radiation source whether it is a short arc lamp or a long tungsten filament lamp. Our technologies take the finite size of radiation sources into account to address the common problem for all reflector lamp systems, i.e., intensity and uniformity (dark hole). Successful examples will be shown on how to make the efficient intense light source match the requirements of LCD and DMD display systems. A method for reducing U.V. and I.R. radiation will also be demonstrated.

  13. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    SciTech Connect

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2010-08-04

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

  14. Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil

    PubMed Central

    Richardson, Alan E.; Wade, Len J.; Conyers, Mark; Kirkegaard, John A.

    2016-01-01

    Removing carbon dioxide (CO2) from the atmosphere and storing the carbon (C) in resistant soil organic matter (SOM) is a global priority to restore soil fertility and help mitigate climate change. Although it is widely assumed that retaining rather than removing or burning crop residues will increase SOM levels, many studies have failed to demonstrate this. We hypothesised that the microbial nature of resistant SOM provides a predictable nutrient stoichiometry (C:nitrogen, C:phosphorus and C:sulphur–C:N:P:S) to target using supplementary nutrients when incorporating C-rich crop residues into soil. An improvement in the humification efficiency of the soil microbiome as a whole, and thereby C-sequestration, was predicted. In a field study over 5 years, soil organic-C (SOC) stocks to 1.6 m soil depth were increased by 5.5 t C ha-1 where supplementary nutrients were applied with incorporated crop residues, but were reduced by 3.2 t C ha-1 without nutrient addition, with 2.9 t C ha-1 being lost from the 0–10 cm layer. A net difference of 8.7 t C ha-1 was thus achieved in a cropping soil over a 5 year period, despite the same level of C addition. Despite shallow incorporation (0.15 m), more than 50% of the SOC increase occurred below 0.3 m, and as predicted by the stoichiometry, increases in resistant SOC were accompanied by increases in soil NPS at all depths. Interestingly the C:N, C:P and C:S ratios decreased significantly with depth possibly as a consequence of differences in fungi to bacteria ratio. Our results demonstrate that irrespective of the C-input, it is essential to balance the nutrient stoichiometry of added C to better match that of resistant SOM to increase SOC sequestration. This has implications for global practices and policies aimed at increasing SOC sequestration and specifically highlight the need to consider the hidden cost and availability of associated nutrients in building soil-C. PMID:27144282

  15. 76 FR 28022 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 28-30, 2011, from 8... efficiency through improved software. This conference will bring together diverse experts from ISOs/RTOs,...

  16. Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs

    NASA Astrophysics Data System (ADS)

    Caginalp, Gunduz; DeSantis, Mark

    2017-02-01

    Whether efficiency increases with increasing volume is an important issue that may illuminate trader strategies and distinguish between market theories. This relationship is tested using 124,236 daily observations comprising 68 large and liquid U.S. equity exchange traded funds (ETFs). ETFs have the advantage that efficiency can be measured in terms of the deviation between the trading price and the underlying net asset value that is reported each day. Our findings support the hypothesis that the relationship between volume and efficiency is nonlinear. Indeed, efficiency increases as volume increases from low to moderately high levels, but then decreases as volume increases further. The first part tends to support the idea that higher volume simply facilitates transactions and maintains efficiency, while the latter part, i.e., even higher volumes, supports the ansatz that increased volume is associated with increased speculation that ignores valuation and decreases efficiency. The results are consistent with the hypothesis that valuation is only part of the motivation for traders. Our methodology accounts for fund heterogeneity and contemporaneous correlations. Similar results are obtained when daily price volatility is introduced as an additional independent variable.

  17. 78 FR 31916 - Increasing Market and Planning Efficiency Through Improved Software; Supplemental Agenda Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software... improved software. A detailed agenda with the list of times for the selected speakers and presentation... diverse experts from public utilities, the software industry, government, research centers and...

  18. Learner Characteristics and Motivation: How to Achieve Efficient and Effective Learning

    ERIC Educational Resources Information Center

    Bates, Catherine Marie Fraser

    2015-01-01

    During the Society for Teaching and Learning in Higher Education Conference 2014, a workshop was held three consecutive times as part of the Pedagogical Speed Dating sessions to introduce experienced college/university faculty and instructional designers to an approach to instructional design that is based on increasing motivation. The purpose of…

  19. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels

    SciTech Connect

    Luque, A.; Marti, A.

    1997-06-01

    Recent attempts have been made to increase the efficiency of solar cells by introducing an impurity level in the semiconductor band gap. We present an analysis of such a structure under ideal conditions. We prove that its efficiency can exceed not only the Shockley and Queisser efficiency for ideal solar cells but also that for ideal two-terminal tandem cells which use two semiconductors, as well as that predicted for ideal cells with quantum efficiency above one but less than two. {copyright} {ital 1997} {ital The American Physical Society}

  20. The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index

    NASA Astrophysics Data System (ADS)

    Acomi, N.; Acomi, O. C.; Stanca, C.

    2015-11-01

    To reduce air pollution produced by ships, the International Maritime Organization has developed a set of technical, operational and management measures. The subject of our research addresses the operational measures for minimizing CO2 air emissions and the way how the emission value could be influenced by external factors regardless of ship-owners’ will. This study aims to analyse the air emissions for a loaded voyage leg performed by an oil tanker. The formula that allows us to calculate the predicted Energy Efficiency Operational Index involves the estimation of distance and fuel consumption, while the quantity of cargo is known. The electronic chart display and information system, ECDIS Simulation Software, will be used for adjusting the passage plan in real time, given the predicted severe environmental conditions. The distance will be determined using ECDIS, while the prediction of the fuel consumption will consider the sea trial and the vessel experience records. That way it will be possible to compare the estimated EEOI value in the case of great circle navigation in adverse weather condition with the estimated EEOI value for weather navigation.

  1. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers

    PubMed Central

    Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037

  2. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  3. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links.

    PubMed

    Kean, Zachary S; Hawk, Jennifer L; Lin, Shaoting; Zhao, Xuanhe; Sijbesma, Rint P; Craig, Stephen L

    2014-09-10

    Hydrogels and organogels made from polymer networks are widely used in biomedical applications and soft, active devices for which the ability to sustain large deformations is required. The strain at which polymer networks fracture is typically improved through the addition of elements that dissipate energy, but these materials require extra work to achieve a given, desired level of deformation. Here, the addition of mechanically "invisible" supramolecular crosslinks causes substantial increases in the ultimate gel properties without incurring the added energetic costs of dissipation.

  4. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    SciTech Connect

    Kopach, V. R.; Kirichenko, M. V. Khrypunov, G. S.; Zaitsev, R. V.

    2010-06-15

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  5. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.

    PubMed

    Oh, Jihun; Yuan, Hao-Chih; Branz, Howard M

    2012-11-01

    Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured 'black-silicon' cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers.

  6. Evaluation of pollutants removal efficiency to achieve successful urban river restoration.

    PubMed

    Cha, Sung Min; Ham, Young Sik; Ki, Seo Jin; Lee, Seung Won; Cho, Kyung Hwa; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    Greater efforts to provide alternative scenarios are key to successful urban stream restoration planning. In this study, we discuss two different aspects of water quality management schemes, biodegradation and human health, which are incorporated in the restoration project of original, pristine condition of urban stream at the Gwangju (GJ) Stream, Korea. For this study, monthly monitoring of biochemical oxygen demand (BOD(5)) and fecal indicator bacteria (FIB) data were obtained from 2003 to 2008 and for 2008, respectively, and these were evaluated to explore pollutant magnitude and variation with respect to space and time window. Ideal scenarios to reduce target pollutants were determined based on their seasonal characteristics and correlations between the concentrations at a water intake and discharge point, where we suggested an increase of environmental flow and wetland as pollutants reduction drawing for BOD(5) and FIB, respectively. The scenarios were separately examined by the Qual2E model and hypothetically (but planned) constructed wetland, respectively. The results revealed that while controlling of the water quality at the intake point guaranteed the lower pollution level of BOD(5) in the GJ Stream, a wetland constructed at the discharge point may be a promising strategy to mitigate mass loads of FIB. Overall, this study suggests that a combination of the two can be plausible scenarios not only to support sustainable urban water resources management, but to enhance a quality of urban stream restoration assignment.

  7. Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns.

    PubMed

    Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E

    2006-02-01

    The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.

  8. To investigate the surface properties for increasing efficiency of solar water heater

    NASA Astrophysics Data System (ADS)

    Hai, A.; Qurat-ul-Ain

    2013-06-01

    Energy crisis is becoming a major problem in Pakistan. Renewable energy sources are used to overcome this crisis. This research is about to increase the efficiency of fin type solar water heater by modification of its surface properties. During this research work, solar water heater module is fabricated and the modification of surfaces by using bare surface, external surface coated with high conductivity paint and lead electroplating is studied and the efficiency of solar heater is observed. The temperature profile and the heat transferred is studied and it was found that paint coated surface is more efficient than bare surface, further surface electroplated with lead is more efficient than painted surface for the same ambient conditions. The average increase in the heat absorption for lead plated and paint coated surface was observed 28.57% and 10.79 % respectively.

  9. Workshop Summary Proceedings Document: G7 Alliance on Resource Efficiency: U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain Management to Achieve Resource Efficiency

    EPA Pesticide Factsheets

    This proceedings document summarizes prepared remarks, presentations and discussions from the G7 Alliance on Resource Efficiency: U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain Management to Achieve Resource Efficiency.

  10. Efficiency increase of hard rock destruction with the use of eccentric pulses

    NASA Astrophysics Data System (ADS)

    Pushmin, P.; Romanov, G.

    2015-11-01

    The increase of efficiency of expendable well-drilling directly depends on the mechanism of rock destruction. The depth of hole coverage should be at the maximum possible value and equal along the whole contact area. The design features of performing rock- destruction tool in rotary drilling prevent the cutters, located on different distance from rotation axis, from working with equal intensity. The application of the shock pulses to a boring tool increases the mechanical drilling speed and sinking per revolution. One of the techniques for the efficiency increase is the application of impactor machines. On the other hand, the high values of mechanical drilling speed require the high values of impact energy which results in high power inputs energy consumption. The use of eccentric impact loading instead of central one can provide the enhancement of rock destruction efficiency, lower the power inputs, and decrease the risk of borehole deviation.

  11. Homeostatic structural plasticity increases the efficiency of small-world networks.

    PubMed

    Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen

    2014-01-01

    In networks with small-world topology, which are characterized by a high clustering coefficient and a short characteristic path length, information can be transmitted efficiently and at relatively low costs. The brain is composed of small-world networks, and evolution may have optimized brain connectivity for efficient information processing. Despite many studies on the impact of topology on information processing in neuronal networks, little is known about the development of network topology and the emergence of efficient small-world networks. We investigated how a simple growth process that favors short-range connections over long-range connections in combination with a synapse formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal network topology. Interestingly, we found that small-world networks benefited from homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest paths through the network. Efficiency particularly increased as small-world networks approached the desired level of electrical activity. Ultimately, homeostatic small-world networks became almost as efficient as random networks. The increase in efficiency was caused by the emergent property of the homeostatic growth process that neurons started forming more long-range connections, albeit at a low rate, when their electrical activity was close to the homeostatic set-point. Although global network topology continued to change when neuronal activities were around the homeostatic equilibrium, the small-world property of the network was maintained over the entire course of development. Our results may help understand how complex systems such as the brain could set up an efficient network topology in a self-organizing manner. Insights from our work may also lead to novel techniques for constructing large-scale neuronal networks by self-organization.

  12. Effectiveness of increasing the frequency of posaconazole syrup administration to achieve optimal plasma concentrations in patients with haematological malignancy.

    PubMed

    Park, Wan Beom; Cho, Joo-Youn; Park, Sang-In; Kim, Eun Jung; Yoon, Seonghae; Yoon, Seo Hyun; Lee, Jeong-Ok; Koh, Youngil; Song, Kyoung-Ho; Choe, Pyoeng Gyun; Yu, Kyung-Sang; Kim, Eu Suk; Bang, Su Mi; Kim, Nam Joong; Kim, Inho; Oh, Myoung-Don; Kim, Hong Bin; Song, Sang Hoon

    2016-07-01

    Few data are available on whether adjusting the dose of posaconazole syrup is effective in patients receiving anti-cancer chemotherapy. The aim of this prospective study was to analyse the impact of increasing the frequency of posaconazole administration on optimal plasma concentrations in adult patients with haematological malignancy. A total of 133 adult patients receiving chemotherapy for acute myeloid leukaemia or myelodysplastic syndrome who received posaconazole syrup 200 mg three times daily for fungal prophylaxis were enrolled in this study. Drug trough levels were measured by liquid chromatography-tandem mass spectrometry. In 20.2% of patients (23/114) the steady-state concentration of posaconazole was suboptimal (<500 ng/mL) on Day 8. In these patients, the frequency of posaconazole administration was increased to 200 mg four times daily. On Day 15, the median posaconazole concentration was significantly increased from 368 ng/mL [interquartile range (IQR), 247-403 ng/mL] to 548 ng/mL (IQR, 424-887 ng/mL) (P = 0.0003). The median increase in posaconazole concentration was 251 ng/mL (IQR, 93-517 ng/mL). Among the patients with initially suboptimal levels, 79% achieved the optimal level unless the steady-state level was <200 ng/mL. This study shows that increasing the administration frequency of posaconazole syrup is effective for achieving optimal levels in patients with haematological malignancy undergoing chemotherapy.

  13. Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-π Electron Acceptor - Methano Indene Fullerene

    NASA Astrophysics Data System (ADS)

    Ryan, James W.; Matsuo, Yutaka

    2015-02-01

    Organic solar cells (OSCs) offer the possibility of harnessing the sun's ubiquitous energy in a low-cost, environmentally friendly and renewable manner. OSCs based on small molecule semiconductors (SMOSCs) - have made a substantial improvement in recent years and are now achieving power conversion efficiencies (PCEs) that match those achieved for polymer:fullerene OSCs. To date, all efficient SMOSCs have relied on the same fullerene acceptor, PCBM, in order to achieve high performance. The use of PCBM however, is unfavourable due to its low lying LUMO level, which limits the open-circuit voltage (VOC). Alternative fullerene derivatives with higher lying LUMOs are thus required to improve the VOC. The challenge, however, is to prevent the typical concomitant decrease in the short circuit current density (JSC) when using a higher LUMO fullerene. In this communication, we address the issue by applying methano indene fullerene, MIF, a bis-functionalised C60 fullerene that has a LUMO level 140 mV higher than PCBM, in solution processed SMOSCs with a well known small molecule donor, DPP(TBFu)2. MIF-based devices show an improved VOC of 140 mV over PC61BM and only a small decrease in the JSC, with the PCE increasing to 5.1% (vs. 4.5% for PC61BM).

  14. Increasing efficiency of BEAMnrc-simulated Co-60 beams using directional source biasing

    SciTech Connect

    Walters, B. R. B.

    2015-10-15

    Purpose: This study describes the implementation of a directional source biasing (DSB) scheme for efficiently simulating Cobalt-60 treatment heads using the BEAMnrc Monte Carlo code. Previous simulation of Co-60 beams with BEAMnrc was impractical because of the time required to track photons not directed into the treatment field and to simulate secondary charged particles. Methods: In DSB, efficiency is increased by splitting each photon emitted by the Co-60 source a user-defined number of times. Only those split primary photons directed into a user-defined splitting field (encompassing the treatment field) are sampled, yielding many low-weight photons directed into the field. Efficiency can be further increased by taking advantage of radial symmetry at the top of the treatment head to reduce the number of split primary photons tracked in this portion. There is also an option to generate contaminant electrons in DSB. Results: The DSB scheme in BEAMnrc increases the photon fluence calculation efficiency in a 10 × 10 cm{sup 2} Co-60 beam by a factor of 1800 with a concurrent increase in contaminant electron fluence calculation efficiency by a factor of 1200. Implementation of DSB in beampp, a C++ code for accelerator simulations based on EGSnrc and the C++ class library, egspp, increases photon fluence efficiency by a factor of 2800 and contaminant electron fluence efficiency by a factor of 1600. Optimum splitting numbers are in the range of 20 000–40 000. For dose calculations in a water phantom (0.5 × 0.5 × 0.5 cm{sup 3} voxels) this translates into a factor of ∼400 increase in dose calculation efficiency (all doses > 0.5 × D{sub max}). An example calculation of the ratio of dose to water to dose to chamber (the basis of the beam quality correction factor) to within 0.2% in a realistic chamber using a full simulation of a Co-60 treatment head as a source indicates the practicality of Co-60 simulations with DSB. Conclusions: The efficiency improvement

  15. 1010 Amplification and phase conjugation with high efficiency achieved by overcoming noise limitations in Brillouin two-beam coupling

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Sternklar, Shmuel

    1995-06-01

    A model incorporating noise and pump depletion in a Brillouin amplifier (BA) predicts a fundamental limitation on attainable pump-to-signal-ratio extraction efficiency. Experimental data supporting this model are also presented. In spite of the limitation, an experimental technique is shown that results in a factor-of-7 increase in extraction efficiency. We accomplish this by noise suppressing and subsequently double passing a BA. We report an overall power efficiency of 37% and phase-conjugate amplification of 3.75 \\times 1010 for a signal input power near the noise level. This performance, which is the best to our knowledge recorded to date, is accomplished without requiring additional input energy.

  16. Teacher Research Programs: An Effective Form of Professional Development to Increase Student Achievement and Benefit the Economy

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2008-12-01

    U.S. high school students perform markedly less well in science, technology, engineering and math (STEM) than students in other economically advanced countries. This low level of STEM performance endangers our democracy and economy. The President's Council of Advisors in Science and Technology's 2004 report attributed the shortfall of students attracted to the sciences is a result of the dearth of teachers sufficiently conversant with science and scientists to enable them to communicate to their students the excitement of scientific exploration and discovery, and the opportunities science provides for highly rewarding and remunerative careers. Nonetheless, the United States has made little progress in correcting these deficiencies. Studies have shown that high-quality teaching matters more to student achievement than anything else schools do. This belief is buttressed by evidence from Columbia University's Summer Research Program for Science Teachers (SRP) that highly motivated, in-service science teachers require professional development to enable them and their students to perform up to their potential. Columbia's Summer Research Program is based on the premise that to teach science effectively requires experience in using the tools of contemporary science to answer unsolved questions. From its inception, SRP's goal has been to enhance interest and improve performance in science of students. It seeks to achieve this goal by increasing the professional competence of teachers. The reports of Elmore, Sanders and Rivers, and our own studies, show that professional development is a "key lever for improving student outcomes." While most middle and high school science teachers have taken college science courses that include cookbook laboratory exercises, the vast majority of them have never attempted to answer an unsolved question. Just as student learning depends on the expertise of teachers, the expertise of teachers depends on the quality of their professional

  17. Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo

    2016-03-01

    Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.

  18. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  19. Ultrathin Al2O3 interface achieving an 11.46% efficiency in planar n-Si/PEDOT:PSS hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Song, Jae-Won; Park, Min-Joon; Sami, Abdul; Lee, Jung-Ho

    2017-04-01

    Hybrid organic–inorganic photovoltaic devices consisting of poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type silicon have recently been investigated for their cost-efficiency and ease of fabrication. We demonstrate that the insertion of an ultrathin Al2O3 layer between n-Si and PEDOT:PSS significantly improves photovoltaic performance in comparison to the conventional interfacial oxide employing SiO2. A power-conversion efficiency of 11.46% was recorded at the optimal Al2O3 thickness of 2.3 nm. This result was achieved based upon increased built-in potential and improved charge collection via the electron blocking effect of Al2O3. In addition, the hydrophilicity enhanced by Al2O3 improved the coating uniformity of the PEDOT:PSS layer, resulting in a further reduction in surface recombination.

  20. Increasing efficiency of two-photon excited fluorescence and second harmonic generation using ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Tang, Shuo; Krasieva, Tatiana B.; Chen, Zhongping; Tempea, Gabriel; Tromberg, Bruce J.

    2006-02-01

    Multiphoton microscopy (MPM) has become an important tool for high-resolution and non-invasive imaging in biological tissues. However, the efficiencies of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) are relatively low because of their nonlinear nature. Therefore, it is critical to optimize laser parameters for most efficient excitation of MPM. Reducing the pulse duration can increase the peak intensity of excitation and thus potentially increase the excitation efficiency. In this paper, a multiphoton microscopy system using a 12 fs Ti:Sapphire laser is reported. With adjustable dispersion pre-compensation, the pulse duration at the sample location can be varied from 400 fs to sub-20 fs. The efficiencies of TPEF and SHG are studied for the various pulse durations, respectively. Both TPEF and SHG are found to increase proportionally to the inverse of the pulse duration for the entire tested range. To transmit most of the SHG and TPEF signals, the spectral transmission widow of the detection optics needs to be carefully considered. Limitation from phase-matching in SHG generation is not significant because the effective interaction length for SHG is less than 10 μm at the focal depth of the objectives. These results are important in improving MPM excitation efficiency using ultrashort pulses. MPM images from human artery wall are also demonstrated.

  1. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine.

    PubMed

    van Kempen, T A; van Heugten, E; Trottier, N L

    2001-09-01

    Adipic acid, upon catabolism, results in intermediates that bear a structural similarity to lysine degradation products. The objectives of this research were to determine whether adipic acid affects lysine concentrations in plasma and to evaluate whether adipic acid improves the efficiency of lysine utilization in pigs. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on plasma amino acid concentrations (plasma collected on d 7). In Exp. 2, nursery pigs (n = 56) were fed (for a period of 15 d) either a control diet or the same diet but deficient in either lysine, threonine, or tryptophan with or without supplemental adipic acid to assess the effects of adipic acid on the efficiency of amino acid utilization. The results from Exp. 1 showed that adipic acid increased plasma lysine (by 18%) but not alpha-amino adipic acid, an intermediate in lysine degradation. Experiment 2 demonstrated that adipic acid did not increase the efficiency of utilization of lysine, threonine, or tryptophan. The lack of effects on alpha-amino adipic acid in Exp. 1 and the lack of a positive effect on the efficiency of utilization of lysine, threonine, and tryptophan suggest that adipic acid does not inhibit the mitochondrial uptake of lysine and(or) its degradation in the mitochondrion. It is concluded that feeding adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization.

  2. Increased Efficiency in SI Engine with Air Replaced by Oxygen in Argon Mixture

    SciTech Connect

    Killingsworth, N J; Rapp, V H; Flowers, D L; Aceves, S M; Chen, J; Dibble, R

    2010-01-13

    Basic engine thermodynamics predicts that spark ignited engine efficiency is a function of both the compression ratio of the engine and the specific heat ratio of the working fluid. In practice the compression ratio of the engine is often limited due to knock. Both higher specific heat ratio and higher compression ratio lead to higher end gas temperatures and increase the likelihood of knock. In actual engine cycles, heat transfer losses increase at higher compression ratios and limit efficiency even when the knock limit is not reached. In this paper we investigate the role of both the compression ratio and the specific heat ratio on engine efficiency by conducting experiments comparing operation of a single-cylinder variable-compression-ratio engine with both hydrogen-air and hydrogen-oxygen-argon mixtures. For low load operation it is found that the hydrogen-oxygen-argon mixtures result in higher indicated thermal efficiencies. Peak efficiency for the hydrogen-oxygen-argon mixtures is found at compression ratio 5.5 whereas for the hydrogen-air mixture with an equivalence ratio of 0.24 the peak efficiency is found at compression ratio 13. We apply a three-zone model to help explain the effects of specific heat ratio and compression ratio on efficiency. Operation with hydrogen-oxygen-argon mixtures at low loads is more efficient because the lower compression ratio results in a substantially larger portion of the gas to reside in the adiabatic core rather than in the boundary layer and in the crevices, leading to less heat transfer and more complete combustion.

  3. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators

    PubMed Central

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-01-01

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs. PMID:27990232

  4. Increasing the Efficiency of Data Collection with a Research Participation Night

    ERIC Educational Resources Information Center

    Kilb, Angela; Herzig, Kathleen

    2016-01-01

    Data collection can be a frustrating experience for student researchers due to difficulty in scheduling appointments with participants. To increase the efficiency of research project data collection, we organized a Research Participation Night in which volunteers were incentivized to participate in as many experiments as time allowed. By offering…

  5. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  6. 77 FR 19280 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 25, 26, and 27, 2012... software. A detailed agenda with the list of and times for the selected speakers will be published on...

  7. 75 FR 45623 - Increasing Market and Planning Efficiency Through Improved Software; Notice Establishing Date for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... conferences regarding models and software related to wholesale electricity markets and planning: \\1\\ \\1... Software, 75 FR 27,341 (2010). June 2-3 Enhanced Unit-Commitment Models. June 9-10 Enhanced...

  8. Extension Master Gardener Intranet: Automating Administration, Motivating Volunteers, Increasing Efficiency, and Facilitating Impact Reporting

    ERIC Educational Resources Information Center

    Bradley, Lucy K.; Cook, Jonneen; Cook, Chris

    2011-01-01

    North Carolina State University has incorporated many aspects of volunteer program administration and reporting into an on-line solution that integrates impact reporting into daily program management. The Extension Master Gardener Intranet automates many of the administrative tasks associated with volunteer management, increasing efficiency, and…

  9. 78 FR 18974 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Energy Regulatory Commission Increasing Market and Planning Efficiency Through Improved Software; Notice... Software Take notice that Commission staff will convene a technical conference on June 24, 25, and 26, 2013... software. A detailed agenda with the list of and times for the selected speakers will be published on...

  10. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  11. Increasing Efficiency in Academia: The Use of a Weaning Model in Fundraising

    ERIC Educational Resources Information Center

    Maniaci, Vincent M.; Poole, Rob

    2005-01-01

    The authors discuss a method to increase institutional efficiency and financial stability through strategic planning, by gradually reallocating funds raised for annual operations to quasi-endowment over a period of years using a weaning model. The weaning model is offered as a tactic to address issues of financial vulnerability developed in…

  12. How To Do More with Less: Community College Innovations To Increase Efficiency and Reduce Costs.

    ERIC Educational Resources Information Center

    Beckman, Brenda, Ed.

    Designed to help community colleges increase efficiency and make the best use of depleted funds, this monograph describes innovative and successful strategies currently in place at colleges to improve effectiveness. The innovative practices are organized into five broad categories approximating a "typical" community college's distribution of…

  13. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.; Altshuler, G. B.; Yaroslavskii, I. V.

    2008-06-01

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%—40% and, therefore, to increase the the photothermolysis efficiency.

  14. Increasing pumping efficiency in a micro throttle pump by enhancing displacement amplification in an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Johnston, I. D.; Tracey, M. C.; Tan, C. K. L.

    2010-06-01

    Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.

  15. Fractal-like receiver geometries and features for increased light trapping and thermal efficiency

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Ortega, Jesus; Andraka, Charles

    2016-05-01

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs, and meso-scale tests have been performed. Results show that fractal-like structures and geometries can increase the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. The impact was more pronounced for materials with lower intrinsic solar absorptances (<0.9). The goal of this work is to increase the effective solar absorptance of oxidized substrate materials from ~0.9 to 0.95 or greater using these fractal-like geometries without the need for coatings.

  16. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.

    PubMed

    Keenan, Trevor F; Hollinger, David Y; Bohrer, Gil; Dragoni, Danilo; Munger, J William; Schmid, Hans Peter; Richardson, Andrew D

    2013-07-18

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  17. Increased transduction efficiency of primary hematopoietic cells by physical colocalization of retrovirus and target cells.

    PubMed

    Hutchings, M; Moriwaki, K; Dilloo, D; Hoffmann, T; Kimbrough, S; Johnsen, H E; Brenner, M K; Heslop, H E

    1998-06-01

    Efficient gene transfer into hematopoietic stem cells offers a number of potential therapeutic applications. However, the relatively low titer of retroviral supernatants and the requirement for cell division to ensure integration have meant that transduction efficiency has been low. We have modified a flowthrough approach to cell transduction and have been able consistently to increase gene transfer efficiency into human hematopoietic progenitor cells. We transduced CD34 cells with retroviral vectors encoding a truncated nerve growth factor receptor (NGFR) or neo. Retroviral supernatant was pulled through 0.2-micron polycarbonated membranes, followed by placement of cells on the filter. In the absence of cytokines, the transduction efficiency of CD34 cells with a NGFR vector was increased 3-11-fold over that obtained at an identical MOI in liquid culture to produce 11%-44% transduction. Furthermore, both Thy1+ and Thy1- subsets in a total CD34 population were transduced with similar efficiency, and transduction with a neo vector, as measured by G418 resistance in clonogenic assays, increased 1.5-5-fold. The mechanism by which gene transfer is improved may reflect colocalization of cells and retrovirus. Costaining of cells transduced on the filter with an NGFR retrovirus with both an NGFR antibody and a gp70 antibody that recognizes viral coat protein revealed high-level coexpression. The levels of in vitro gene transfer we obtain are equivalent to those observed when CD34 cells are cocultured in liquid culture with cytokines. However, culture with cytokines may commit CD34 cells to differentiation and has produced disappointingly low levels of subsequent in vivo gene transfer. Gene marking studies using distinguishable retroviral vectors will provide a means of learning whether the effects of flowthrough transduction genuinely enhance the efficiency of gene transfer to human marrow-repopulating cells.

  18. Increased glycosylation efficiency of recombinant proteins in Escherichia coli by auto-induction.

    PubMed

    Ding, Ning; Yang, Chunguang; Sun, Shenxia; Han, Lichi; Ruan, Yao; Guo, Longhua; Hu, Xuejun; Zhang, Jianing

    2017-03-25

    Escherichia coli cells have been considered as promising hosts for producing N-glycosylated proteins since the successful production of N-glycosylated protein in E. coli with the pgl (N-linked protein glycosylation) locus from Campylobacter jejuni. However, one hurdle in producing N-glycosylated proteins in large scale using E. coli is inefficient glycan glycosylation. In this study, we developed a strategy for the production of N-glycosylated proteins with high efficiency via an optimized auto-induction method. The 10th human fibronectin type III domain (FN3) was engineered with native glycosylation sequon DFNRSK and optimized DQNAT sequon in C-terminus with flexible linker as acceptor protein models. The resulting glycosylation efficiencies were confirmed by Western blots with anti-FLAG M1 antibody. Increased efficiency of glycosylation was obtained by changing the conventional IPTG induction to auto-induction method, which increased the glycosylation efficiencies from 60% and 75% up to 90% and 100% respectively. Moreover, in the condition of inserting the glycosylation sequon in the loop of FN3 (the acceptor sequon with local structural conformation), the glycosylation efficiency was increased from 35% to 80% by our optimized auto-induction procedures. To justify the potential for general application of the optimized auto-induction method, the reconstituted lsg locus from Haemophilus influenzae and PglB from C. jejuni were utilized, and this led to 100% glycosylation efficiency. Our studies provided quantitative evidence that the optimized auto-induction method will facilitate the large-scale production of pure exogenous N-glycosylation proteins in E. coli cells.

  19. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    PubMed

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  20. Application of gold nano-particles for silicon solar cells efficiency increase

    NASA Astrophysics Data System (ADS)

    Axelevitch, A.; Gorenstein, B.; Golan, G.

    2014-10-01

    The main problems preventing wide spreading of solar cells as alternative energy sources are their high cost and low efficiency. Efficiency of solar cells based on semiconductor materials is limited due to high electrical and optical losses and due to recombination processes. Non-continuous, thin island gold films deposited on a dielectric or semiconductor surface introduce a unique behavior. In response to light exposure in certain range, the metal islands present a resonant absorption of light accompanied with a collective behavior of free electrons in these islands. In this paper we present one possible way to increase the efficiency of solar cells by using nano-dimensional gold islands imbedded in semiconductor junctions.

  1. The Superintendent Beliefs and Leadership Practices in a School District that Has Successfully Increased the Achievement of Traditionally Marginalized Students

    ERIC Educational Resources Information Center

    Fairbanks-Schutz, Jo-Ellen M.

    2010-01-01

    Superintendent leadership can influence student achievement and with the alarming gap between the academic achievement of traditionally marginalized students and their peers, superintendents have an ethical duty to lead their districts in closing these achievement gaps. Spillane, Halverson, and Diamond (2001) suggested that to have a more complete…

  2. Masting promotes individual- and population-level reproduction by increasing pollination efficiency.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Linhart, Yan B; Mooney, Kailen A

    2014-04-01

    Masting is a reproductive strategy defined as the intermittent and synchronized production of large seed crops by a plant population. The pollination efficiency hypothesis proposes that masting increases pollination success in plants. Despite its general appeal, no previous studies have used long-term data together with population- and individual-level analyses to assess pollination efficiency between mast and non-mast events. Here we rigorously tested the pollination efficiency hypothesis in ponderosa pine (Pinus ponderosa), a long-lived monoecious, wind-pollinated species, using a data set on 217 trees monitored annually for 20 years. Relative investment in male and female function by individual trees did not vary between mast and non-mast years. At both the population and individual level, the rate of production of mature female cones relative to male strobili production was higher in mast than non-mast years, consistent with the predicted benefit of reproductive synchrony on reproductive success. In addition, at the individual level we found a higher conversion of unfertilized female conelets into mature female cones during a mast year compared to a non-mast year. Collectively, parallel results at the population and individual tree level provide robust evidence for the ecological, and potentially also evolutionary, benefits of masting through increased pollination efficiency.

  3. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

    NASA Astrophysics Data System (ADS)

    Litjens, Geert; Sánchez, Clara I.; Timofeeva, Nadya; Hermsen, Meyke; Nagtegaal, Iris; Kovacs, Iringo; Hulsbergen-van de Kaa, Christina; Bult, Peter; van Ginneken, Bram; van der Laak, Jeroen

    2016-05-01

    Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve the objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, we show the potential of this new methodology to reduce the workload for pathologists, while at the same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. We conclude that ‘deep learning’ holds great promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging.

  4. Some programming techniques for increasing program versatility and efficiency on CDC equipment

    NASA Technical Reports Server (NTRS)

    Tiffany, S. H.; Newsom, J. R.

    1978-01-01

    Five programming techniques used to decrease core and increase program versatility and efficiency are explained. The techniques are: (1) dynamic storage allocation, (2) automatic core-sizing and core-resizing, (3) matrix partitioning, (4) free field alphanumeric reads, and (5) incorporation of a data complex. The advantages of these techniques and the basic methods for employing them are explained and illustrated. Several actual program applications which utilize these techniques are described as examples.

  5. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  6. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    NASA Astrophysics Data System (ADS)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    Water scarcity, climate change, and population growth are significant global challenges for producing sufficient food, fiber, and fuel in the 21st century. Feeding an increasingly hungry world necessitates innovative strategies and technologies to maximize crop production outputs while simultaneously increasing crop water productivity. In the 20th century, major advances in precision irrigation enabled producers to increase productivity while more efficiently applying water to crops. While pressurized irrigation systems can deliver water effectively to the soil surface, the efficiency of rootzone delivery may be compromised by intrinsic heterogeneities in soil wetting characteristics related to organic matter, biofilms, and hydrophobic coatings on soil particles and aggregates. Efficiently delivering applied irrigation water throughout the soil matrix is critical to increasing crop productivity. We propose that management of soil water access by surfactants is a viable management option to maintain or increase yields under deficit irrigation. Potato yield and tuber quality under sprinkler irrigation were evaluated under standard production practices or with the inclusion of an aqueous nonionic surfactant formulation (10 wt% alkoxylated polyols and 7% glucoethers) applied at 10L ha-1 between emergence and tuberization. Crop responses from multi-year evaluations conducted on irrigated potatoes in Idaho (USA) were compared to multi-year on farm grower evaluations in Australia and China. Surfactant treatment resulted in statistically significant increases in yield (+5%) and US No. 1 grades (+8%) while reducing culls (-10%) in trials conducted in Idaho, USA. Similar responses were observed in commercial grower evaluations conducted in Australia (+8% total yield, +18% mean tuber weight) and in China in 2011 (+8% total yield and +18% premium, -12% culls). Under diverse production conditions, a single application of the surfactant formulation improved crop water

  7. Biaxial lidar efficiency increase based on improving spatial selectivity and stability against background radiation

    NASA Astrophysics Data System (ADS)

    Agishev, Ravil R.; Bajazitov, Ravil A.; Galeyev, Marat M.

    1996-11-01

    A criterion of spatial-angular efficiency (SAE) of remote electro-optical systems for atmosphere monitoring is formulated. The dependencies of the SAE from normalized range and minimal operating range for different optical receiving schemes of ground-based biaxial LIDAR are analyzed. It is shown that low SAE of traditional VIS & NIR systems is a main cause of a low signal-to-background-noise ratio at the photodetector input, the considerably measurements errors, and the following low accuracy of atmospheric optical parameters reconstruction. The most effective protection against sky background radiation in such systems consists in forming an angular field according to the introduced SAE criterion. Some approaches to achieve high value of the SAE-parameter for receiving system optimization are discussed.

  8. Possibility of increasing the efficiency of laser-induced tattoo removal by optical skin clearing

    SciTech Connect

    Genina, E A; Bashkatov, A N; Tuchin, V V; Yaroslavskii, I V; Altshuler, G B

    2008-06-30

    The possibility of selective laser photothermolysis improvement for the removal of tattoo pigments due to the optical clearing of human skin is investigated. It is shown experimentally that the optical skin clearing increases the tattoo image contrast. Computer Monte Carlo simulations show that by decreasing the laser beam scattering in upper skin layers, it is possible to reduce the radiation power required for tattoo removal by 30%-40% and, therefore, to increase the the photothermolysis efficiency. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  9. Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System

    NASA Astrophysics Data System (ADS)

    Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.

    2016-11-01

    A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.

  10. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  11. New method to increase the energy conversion efficiency of thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Kido, Aiko; Sakamoto, Shin-ichi; Taga, Kazusa; Watanabe, Yoshiaki

    2015-10-01

    Many researches have been reported to improve an energy conversion efficiency of thermoacoustic engine. Proposed improvement methods by our group were a phase adjuster (PA) and expanding phase adjuster (EPA) devices. They act as the amplifier and stabilizer of the system oscillation. However, there are some problems for these devices. Because of the solidified device and located in the thermoacoustic tube, it is difficult to tune and move them to the best setting position during system operation. Therefore, it is necessary to find more easy methods that produce the same amplifier and stabilizer effects of the PA and EPA. In this report, we propose the local heating method. Experiments are carried out using the loop-tube-type thermoacoustic system. Two electric heaters are set on the system, one is for the PM stack and the other is for the proposed heater HPA. The setting position of the HPA is easily changed, and then the HPA is moved to the various positions from the PM stack along the system. Resonant mode was changed depending on the setting position of HPA. As the result of the change of resonant mode, energy conversion efficiency is also changed. Especially the resonant mode is realized in the single wavelength mode, it is confirmed that, the energy conversion efficiency in substantially increased compare with the system without the HPA. These observed phenomena are similar to the behavior of EPA. Therefore, the presented method can be performed as an easier method to perform a high efficiency and stable oscillation.

  12. Mechanisms that increase the growth efficiency of diatoms in low light.

    PubMed

    Fisher, Nerissa L; Halsey, Kimberly H

    2016-08-01

    Photoacclimation was studied in Thalassiosira pseudonana to help understand mechanisms underlying the success of diatoms in low-light environments, such as coastal and deep mixing ecosystems. Light harvesting and other cell characteristics were combined with oxygen and carbon production measurements to assess the water-splitting reaction at PSII ([Formula: see text]) and intermediate steps leading to net carbon production (NPPC). These measurements revealed that T. pseudonana is remarkably efficient at converting harvested light energy into biomass, with at least 57 % of [Formula: see text] retained as NPPC across all light-limited growth rates examined. Evidence for upregulation of ATP generation pathways that circumvent carbon fixation indicated that high growth efficiency at low light levels was at least partly due to increases in the efficiency of ATP production. Growth rate-dependent demands for ATP and NADPH were reflected in carbon composition and in unexpected shifts in the light-limited slope (α) of photosynthesis-irradiance relationships generated from chlorophyll-specific (14)C-uptake. Overall, these results suggest that pathway gating of carbon and energy flow depends on light availability and is a key factor promoting the efficiency of diatom growth at low light intensities.

  13. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    PubMed

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  14. Highly Functional TNTs with Superb Photocatalytic, Optical, and Electronic Performance Achieving Record PV Efficiency of 10.1% for 1D-Based DSSCs.

    PubMed

    Qadir, Muhammad Bilal; Li, Yuewen; Sahito, Iftikhar Ali; Arbab, Alvira Ayoub; Sun, Kyung Chul; Mengal, Naveed; Memon, Anam Ali; Jeong, Sung Hoon

    2016-09-01

    Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices.

  15. Self-Directed Weight Loss Strategies: Energy Expenditure Due to Physical Activity Is Not Increased to Achieve Intended Weight Loss

    PubMed Central

    Elbelt, Ulf; Schuetz, Tatjana; Knoll, Nina; Burkert, Silke

    2015-01-01

    Reduced physical activity and almost unlimited availability of food are major contributors to the development of obesity. With the decline of strenuous work, energy expenditure due to spontaneous physical activity has attracted increasing attention. Our aim was to assess changes in energy expenditure, physical activity patterns and nutritional habits in obese subjects aiming at self-directed weight loss. Methods: Energy expenditure and physical activity patterns were measured with a portable armband device. Nutritional habits were assessed with a food frequency questionnaire. Results: Data on weight development, energy expenditure, physical activity patterns and nutritional habits were obtained for 105 patients over a six-month period from an initial cohort of 160 outpatients aiming at weight loss. Mean weight loss was −1.5 ± 7.0 kg (p = 0.028). Patients with weight maintenance (n = 75), with substantial weight loss (>5% body weight, n = 20) and with substantial weight gain (>5% body weight, n = 10) did not differ in regard to changes of body weight adjusted energy expenditure components (total energy expenditure: −0.2 kcal/kg/day; non-exercise activity thermogenesis: −0.3 kcal/kg/day; exercise-related activity thermogenesis (EAT): −0.2 kcal/kg/day) or patterns of physical activity (duration of EAT: −2 min/day; steps/day: −156; metabolic equivalent unchanged) measured objectively with a portable armband device. Self-reported consumption frequency of unfavorable food decreased significantly (p = 0.019) over the six-month period. Conclusions: An increase in energy expenditure or changes of physical activity patterns (objectively assessed with a portable armband device) are not employed by obese subjects to achieve self-directed weight loss. However, modified nutritional habits could be detected with the use of a food frequency questionnaire. PMID:26193310

  16. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity.

    PubMed

    Yang, Dong-Ping; Zhou, Hai-Jun; Zhou, Changsong

    2017-02-01

    The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint.

  17. Co-emergence of multi-scale cortical activities of irregular firing, oscillations and avalanches achieves cost-efficient information capacity

    PubMed Central

    Zhou, Hai-Jun; Zhou, Changsong

    2017-01-01

    The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale properties: irregular firing, oscillations and neuronal avalanches. Here we demonstrate that these prominent properties can be simultaneously observed in a generic, biologically plausible neural circuit model that captures excitation-inhibition balance and realistic dynamics of synaptic conductance. Their co-emergence achieves minimal energy cost as well as maximal energy efficiency on information capacity, when neuronal firing are coordinated and shaped by moderate synchrony to reduce otherwise redundant spikes, and the dynamical clusterings are maintained in the form of neuronal avalanches. Such cost-efficient neural dynamics can be employed as a foundation for further efficient information processing under energy constraint. PMID:28192429

  18. Efficient Consistency Achievement of Federated Identity and Access Management Based on a Novel Self-Adaptable Approach

    NASA Astrophysics Data System (ADS)

    Cha, Shi-Cho; Chang, Hsiang-Meng

    Federated identity and access management (FIAM) systems enable a user to access services provided by various organizations seamlessly. In FIAM systems, service providers normally stipulate that their users show assertions issued by allied parties to use their services as well as determine user privileges based on attributes in the assertions. However, the integrity of the attributes is important under certain circumstances. In such a circumstance, all released assertions should reflect modifications made to user attributes. Despite the ability to adopt conventional certification revocation technologies, including CRL or OCSP, to revoke an assertion and request the corresponding user to obtain a new assertion, re-issuing an entirely new assertion if only one attribute, such as user location or other environmental information, is changed would be inefficient. Therefore, this work presents a self-adaptive framework to achieve consistency in federated identity and access management systems (SAFIAM). In SAFIAM, an identity provider (IdP), which authenticates users and provides user attributes, should monitor access probabilities according to user attributes. The IdP can then adopt the most efficient means of ensuring data integrity of attributes based on related access probabilities. While Internet-based services emerge daily that have various access probabilities with respect to their user attributes, the proposed self-adaptive framework significantly contributes to efforts to streamline the use of FIAM systems.

  19. Increased Light-Use Efficiency Sustains Net Primary Productivity of Shaded Coffee Plants In Agroforestry System.

    PubMed

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-04-06

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D-model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.

  20. Altered Physiological Function, Not Structure, Drives Increased Radiation-Use Efficiency of Soybean Grown at Elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies of elevated carbon dioxide concentration ([CO2]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy stru...

  1. SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice

    PubMed Central

    Banks, Alexander S.; Kon, Ning; Knight, Colette; Matsumoto, Michihiro; Gutiérrez-Juárez, Roger; Rossetti, Luciano; Gu, Wei; Accili, Domenico

    2011-01-01

    Summary In yeast, worms and flies, an extra copy of the gene encoding the Sirtuin Sir2 increases metabolic efficiency, as does administration of polyphenols like resveratrol, thought to act through Sirtuins. But evidence that Sirtuin gain-of-function results in increased metabolic efficiency in mammals is limited. We generated transgenic mice with moderate overexpression of SirT1, designed to mimic the Sirtuin gain-of-function that improves metabolism in C.elegans. These mice exhibit normal insulin sensitivity, but decreased food intake and locomotor activity, resulting in decreased energy expenditure. However, in various models of insulin resistance and diabetes, SirT1 transgenics display improved glucose tolerance due to decreased hepatic glucose production and increased adiponectin levels, without changes in body weight or composition. We conclude that SirT1 gain-of-function primes the organism for metabolic adaptation to insulin resistance, increasing hepatic insulin sensitivity and decreasing whole-body energy requirements. These findings have important implications for Sirtuin-based therapies in humans. PMID:18840364

  2. Liquid crystal colloidal structures for increased silicone deposition efficiency on colour-treated hair.

    PubMed

    Brown, M A; Hutchins, T A; Gamsky, C J; Wagner, M S; Page, S H; Marsh, J M

    2010-06-01

    An approach is described to increase the deposition efficiency of silicone conditioning actives from a shampoo on colour-treated hair via liquid crystal (LC) colloidal structures, created with a high charge density cationic polymer, poly(diallyldimethyl ammonium chloride) and negatively charged surfactants. LCs are materials existing structurally between the solid crystalline and liquid phases, and several techniques, including polarized light microscopy, small angle X-Ray analysis, and differential scanning calorimetry, were used to confirm the presence of the LC structures in the shampoo formula. Silicone deposition from the LC-containing shampoo and a control shampoo was measured on a range of hair substrates, and data from inductively coupled plasma optical emission spectroscopy analysis and ToF-SIMS imaging illustrate the enhancement in silicone deposition for the LC shampoo on all hair types tested, with the most pronounced enhancement occurring on hair that had undergone oxidative treatments, such as colouring. A model is proposed in which the LC structure deposits from the shampoo onto the hair to: (i) provide 'slip planes' along the hair surface for wet conditioning purposes and (ii) form a hydrophobic layer which changes the surface energy of the fibres. This increase in hydrophobicity of the hair surface thereby increases the deposition efficiency of silicone conditioning ingredients. Zeta potential measurements, dynamic absorbency testing analysis and ToF-SIMS imaging were used to better understand the mechanisms of action. This approach to increasing silicone deposition is an improvement relative to conventional conditioning shampoos, especially for colour-treated hair.

  3. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    SciTech Connect

    Dong, Kegong; Wu, Yuchi; Zhu, Bin; Zhang, Zhimeng; Zhao, Zongqing; Zhou, Weimin; Hong, Wei; Cao, Leifeng; Gu, Yuqiu

    2014-12-15

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoid the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.

  4. International experience in addressing combined exposures: increasing the efficiency of assessment.

    PubMed

    Meek, M E Bette

    2013-11-16

    More efficient methodology for assessing the impact of combined exposures to multiple chemicals has been considered in a project of the World Health Organization (WHO) International Programme on Chemical Safety (IPCS). Recommendations regarding terminology and the status of development of the framework, its content, review and application are described. Evolving experience in its application is illustrated by example (polybrominated diphenyls) with special emphasis on the critical content of problem formulation, the role of predictive tools in grouping of chemicals for consideration and the importance of explicit delineation of relative uncertainty and sensitivity for tiered assessment. Priorities in increasing the efficiency of risk assessment not only for combined exposures, but more generally based on experience acquired in developing the framework and its application in case studies are identified and recommendations included.

  5. Increasing the Efficiency of the Multi-mission Radioisotope Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Holgate, Tim C.; Bennett, Russell; Hammel, Tom; Caillat, Thierry; Keyser, Steve; Sievers, Bob

    2015-06-01

    The National Aeronautics and Space Administration's Mars Science Laboratory terrestrial rover, Curiosity, has recently completed its first Martian year (687 Earth days) during which it has provided a wealth of information and insight into the red planet's atmosphere and geology. The success of this mission was made possible in part by the reliable electrical power provided by its onboard thermoelectric power source—the multi-mission radioisotope thermoelectric generator (MMRTG). In an effort to increase the output power and efficiency of these generators, a newly designed enhanced MMRTG (eMMRTG) that will utilize the more efficient skutterudite-based thermoelectric materials has been conceptualized and modeled, and is now being developed. A discussion of the motivations, modeling results and key design factors are presented and discussed.

  6. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi.

    PubMed

    Schoberle, Taylor J; Nguyen-Coleman, C Kim; May, Gregory S

    2013-01-01

    Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes.

  7. Natural dyes as sensitizers to increase the efficiency in sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cerda, Bayron; Sivakumar, R.; Paulraj, M.

    2016-05-01

    A dye-sensitized solar cell (DSSC) is a sandwich type solar cell consisting of a photoelectrode, a counter electrode and a liquid electrolyte. The photo electrode comprises of a titanium dioxide semiconducting thin film grown over a glass substrate which in-turn has a transparent thin conducting layer of tin oxide film doped with fluorine (FTO) coated over it. The aim of this work is to develop photoelectrodes with different dyes to increase the efficiency of this type of solar cells. Dyes obtained from fresh sources of maqui, black myrtle, spinach and a dye mixture of spinach and spinach-maqui-myrtle were used. The technique used for the extraction of the dyes was maceration for one day, in methanol. Colourants and photoelectrodes were studied using, UV-vis spectrophotometer for their spectral properties. Their photovoltaic properties such as efficiency, fill factor, open circuit voltage and short circuit current were studied using a solar simulator and source meter unit.

  8. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent.

    PubMed

    Earmme, Taeshik; Hwang, Ye-Jin; Subramaniyan, Selvam; Jenekhe, Samson A

    2014-09-17

    All-polymer solar cells with 4.8% power conversion efficiency are achieved via solution processing from a co-solvent. The observed short-circuit current density of 10.5 mA cm(-2) and external quantum efficiency of 61.3% are also the best reported in all-polymer solar cells so far. The results demonstrate that processing the active layer from a co-solvent is an important strategy in achieving highly efficient all-polymer solar cells.

  9. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications.

    PubMed

    Vanoppen, Marjolein; Stoffels, Griet; Demuytere, Célestin; Bleyaert, Wouter; Verliefde, Arne R D

    2015-09-01

    Ion-exchange (IEX) and Donnan dialysis (DD) are techniques which can selectively remove cations, limiting scaling in reverse osmosis (RO). If the RO concentrate could be recycled for regeneration of these pre-treatment techniques, RO recovery could be largely increased without the need for chemical addition or additional technologies. In this study, two different RO feed streams (treated industrial waste water and simple tap water) were tested in the envisioned IEX-RO and DD-RO hybrids including RO concentrate recycling. The efficiency of multivalent cation removal depends mainly on the ratio of monovalent to multivalent cations in the feed stream, influencing the ion-exchange efficiency in both IEX and DD. Since the mono-to-multivalent ratio was very high in the waste water, the RO recovery could potentially be increased to 92%. For the tap water, these high RO recoveries could only be reached by adding additional NaCl, because of the low initial monovalent to multivalent ratio in the feed. In both cases, the IEX-RO hybrid proved to be most cost-efficient, due to the high current cost of the membranes used in DD. The membrane cost would have to decrease from ±300 €/m² to 10-30 €/m² - comparable to current reverse osmosis membranes - to achieve a comparable cost. In conclusion, the recycling of RO concentrate to regenerate ion exchange pre-treatment techniques for RO is an interesting option to increase RO recovery without addition of chemicals, but only at high monovalent/multivalent cation-ratios in the feed stream.

  10. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Anh, Pham Viet; Everaert, Gert; Goethals, Peter; Vinh, Chu Tien; De Laender, Frederik

    2015-11-01

    Fishing effort in the Vietnamese coastal ecosystem has rapidly increased from the 1990s to the 2000s, with unknown consequences for local ecosystem structure and functioning. Using ecosystem models that integrate fisheries and food webs we found profound differences in the production of six functional groups, the food web efficiency, and eight functional food web indices between the 1990s (low fishing intensity) and the 2000s (high fishing intensity). The functional attributes (e.g. consumption) of high trophic levels (e.g. predators) were lower in the 2000s than in the 1990s while primary production did not vary, causing food web efficiency to decrease up to 40% with time for these groups. The opposite was found for lower trophic levels (e.g. zooplankton): the functional attributes and food web efficiency increased with time (22 and 10% for the functional attributes and food web efficiency, respectively). Total system throughput, a functional food web index, was about 10% higher in the 1990s than in the 2000s, indicating a reduction of the system size and activity with time. The network analyses further indicated that the Vietnamese coastal ecosystem in the 1990s was more developed (higher ascendancy and capacity), more stable (higher overhead) and more mature (higher ratio of ascendancy and capacity) than in the 2000s. In the 1990s the recovery time of the ecosystem was shorter than in 2000s, as indicated by a higher Finn's cycling index in the 1990s (7.8 and 6.5% in 1990s and 2000s, respectively). Overall, our results demonstrate that the Vietnamese coastal ecosystem has experienced profound changes between the 1990s and 2000s, and emphasise the need for a closer inspection of the ecological impact of fishing.

  11. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO2 and greening observations

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca T.; Prentice, Iain Colin; Graven, Heather; Ciais, Philippe; Fisher, Joshua B.; Hayes, Daniel J.; Huang, Maoyi; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; Mao, Jiafu; Michalak, Anna M.; Peng, Shushi; Poulter, Benjamin; Ricciuto, Daniel M.; Shi, Xiaoying; Schwalm, Christopher; Tian, Hanqin; Zeng, Ning

    2016-11-01

    Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5-15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.

  12. Test results of a steam injected gas turbine to increase power and thermal efficiency

    SciTech Connect

    Messerlie, R.L.; Tischler, A.O.

    1983-08-01

    The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

  13. Increasing Binding Efficiency via Reporter Shape and Flux in a Viral Nanoparticle Lateral-Flow Assay.

    PubMed

    Kim, Jinsu; Vu, Binh; Kourentzi, Katerina; Willson, Richard C; Conrad, Jacinta C

    2017-02-15

    To identify factors controlling the performance of reporter particles in a sensitive lateral-flow assay (LFA), we investigated the effect of the flux and shape of filamentous bacteriophage (phage) on the performance of phage LFAs. Phage of three different lengths and diameters were modified with biotin and AlexaFluor 555 as binding and read-out elements, respectively. The binding efficiencies of the functionalized phage were tested in a fibrous glass LFA membrane modified with avidin. The total binding rate, quantified using real-time particle counting and particle image velocimetry, decreased monotonically with the average bulk flux of phage through the membrane. At the pore scale, more phage bound in regions with faster local flow, confirming that both average and local flux increased binding. The number of bound phage increased with the aspect ratio of the phage and scaled with the phage surface area, consistent with a binding interaction controlled by the number of recognition elements on the surface. Together, these results indicate that increasing the likelihood that recognition elements on the surface of phage encounter the fibers enhances the assay binding efficiency and suggests one origin for the improved performance of nonspherical phage reporters.

  14. High-intensity interval training improves performance in young and older individuals by increasing mechanical efficiency.

    PubMed

    Jabbour, Georges; Iancu, Horia-Daniel; Mauriège, Pascale; Joanisse, Denis R; Martin, Luc J

    2017-04-01

    This study evaluated the effects of 6 weeks of high-intensity interval training (HIIT) on mechanical efficiency (ME) in young and older groups. Seventeen healthy young adults [26.2(2.4) year], and thirteen healthy older adults [54.5(2.3) year] completed a 6-week HIIT intervention (three sessions per week) on an electromagnetically braked cycle ergometer. Each HIIT session contained six repetitions of supramaximal exercise intervals (6 seconds each) with 2 min of passive recovery between each repetition. ME (%) were computed in net terms across stages corresponding to ventilator thresholds 1 (VT1) and 2 (VT2) and at 100% of maximal oxygen consumption (VO2max) of an incremental maximal cycling test. After 6 weeks, the ME values did not differ between the two groups and were significantly higher than the ones at baseline (P < 0.01). In this study, the multiple linear regression analysis demonstrated the increases in maximal power (Pmax) contributed significantly to ME increases over 6 weeks at VT1, VT2 and at 100% of VO2max This model accounted respectively for 28, 38, and 42%, of the increases. In older adults, ME determined during incremental maximal cycling test increases at VT1, VT2 and at 100% over 6-week HIIT intervention, and the increment appeared to be related to increases in Pmax. HIIT can be recommended as a strategy aimed at improving muscle efficiency among older adults.

  15. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  16. The development of skin immersion clearing method for increasing of laser exposure efficiency on subcutaneous objects

    NASA Astrophysics Data System (ADS)

    Kozina, Alexandra M.; Genina, Elina A.; Terentyuk, Georgy S.; Terentyuk, Artem G.; Bashkatov, Alexey N.; Tuchin, Valery V.; Khlebtsov, Boris N.

    2012-06-01

    In this paper we have studied effect of a hyperosmotic optical clearing agent (OCA), such as polyethylene glycol, on the fluorescence intensity from a target located in subcutaneous area in the model experiments. As a fluorescence agent the nanocomposite including gold nanorods with hematophorphyrin was used. The remitted fluorescent signal traveling to the tissue surface was monitored over time as the tissue was treated with the OCA. The detected fluorescent signal increased as the scattering in tissue samples was substantially reduced. The study has shown how OCA can be used to improve the detected signal at localization of subcutaneous target tissue at the photothermal or photodynamic therapy. Immersion clearing of skin can be also useful for improvement of laser exposure efficiency due to the increasing of light penetration depth.

  17. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    NASA Astrophysics Data System (ADS)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  18. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat.

    PubMed

    Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi

    2016-01-01

    Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat.

  19. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    PubMed Central

    Sork, Helena; Nordin, Joel Z; Turunen, Janne J; Wiklander, Oscar PB; Bestas, Burcu; Zaghloul, Eman M; Margus, Helerin; Padari, Kärt; Duru, Adil D; Corso, Giulia; Bost, Jeremy; Vader, Pieter; Pooga, Margus; Smith, CI Edvard; Wood, Matthew JA; Schiffelers, Raymond M; Hällbrink, Mattias; Andaloussi, Samir EL

    2016-01-01

    The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents. PMID:27111416

  20. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.

    PubMed

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-04-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.

  1. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis

    PubMed Central

    Litjens, Geert; Sánchez, Clara I.; Timofeeva, Nadya; Hermsen, Meyke; Nagtegaal, Iris; Kovacs, Iringo; Hulsbergen - van de Kaa, Christina; Bult, Peter; van Ginneken, Bram; van der Laak, Jeroen

    2016-01-01

    Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve the objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, we show the potential of this new methodology to reduce the workload for pathologists, while at the same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of the slides containing benign and normal tissue could be excluded without the use of any additional immunohistochemical markers or human intervention. We conclude that ‘deep learning’ holds great promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging. PMID:27212078

  2. Strategy for increased efficiency of transfection in human cell lines using radio frequency electroporation.

    PubMed

    Zald, P B; Cotter, M A; Robertso, E S

    2001-02-01

    Traditional electroporation devices use direct current electric fields to stimulate the uptake of oligonucleotides, plasmids, short peptides, and proteins into a variety of cell types. A variation of this widely used technique is now available which relies on radio frequency (RF) electrical pulses. This oscillating type of electrical field reportedly elicits greater uptake of plasmid DNA across the plasma membrane. We evaluated a protocol for RF electroporation of the a human embryonic kidney cell line and a Burkitt's lymphoma (BL) cell line for effeciency of transfection by RF electroporation. The plasmid EGFP, which codes for the widely used fusion protein, enhanced green fluorescent protein (EGFP), was used as a reporter of plasmid uptake after transfections. Transfection efficiency consistently increased approximately 30% from that typically obtained with conventional DC type electroporation and was accompanied by greater survivability of cells. Additionally, in some instances, percent transfection efficiency increased to over 70%. Thus, RF electroporation represents an improved methodology for transfection of human cell lines. Moreover, the RF protocol is simple to incorporate in laboratories already utilizing conventional electroporation devices and techniques.

  3. Response of plants' water use efficiency to increasing atmospheric CO2 concentration.

    PubMed

    Wang, Guoan; Feng, Xiahong

    2012-08-21

    This study assesses plants' adaptation to the elevated atmospheric CO(2) concentrations (c(a)) using 83 tree-ring δ(13)C series from the mid- to high-latitudes of the northern hemisphere. We found that the variation of Δ with the atmospheric CO(2) concentration is nonlinear and that the range of Δ change is relatively small. After 1950, the mean increase in Δ is 0.43‰, corresponding to the average coefficient of Δ-c(a) relationship to be about 0.006‰/ ppmv CO(2). In contrast to the changes in Δ, intercellular CO(2) concentration (c(i)) and intrinsic water-use efficiency (W(i)) both increase linearly with c(a). For the past two and a half centuries, changes in the intercellular CO(2) concentration (c(i)) and intrinsic water-use efficiency (W(i)) are, on average, both about 30%, while the mean change of the c(i)/c(a) ratio is 3%. Most changes have occurred after 1950. W(i) responds to c(a) linearly with sensitivities ranging from 0.06 to 0.6 μmol CO(2)/mmol H(2)O ppmv(-1), and an average 0.33 μmol CO(2)/mmol H(2)O ppmv(-1) during the past 50 years. Statistical analysis shows that the increase in c(a) accounts for 98% of the W(i) variation. The remaining small variance is explained by altitude and temperature. Trees at higher elevations show slightly higher increase in W(i), and they are also more sensitive to the CO(2) increase than trees at lower altitudes. Trees growing at low temperature environments are slightly more sensitive to CO(2) increase than those at higher temperature sites. No significant relationship between precipitation and plants' W(i) response to the atmospheric CO(2) increase is found with these data. Although the temperature and altitude both impact the W(i) response to elevated CO(2), the size of the impact is physically small and can be omitted from ecological models.

  4. IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY

    SciTech Connect

    Stephen M Bajorek; J. Schnelle

    2002-05-01

    This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All

  5. The Use of a Collaborative Common Parts Catalog to Achieve Increased Efficiency and Cost Savings in the Fleet Modernization Plan

    DTIC Science & Technology

    2011-12-01

    Modernization, Return on Investment, ROI, Return on Knowledge, ROK, Information Technology, Collaboration, Navy Shipyards, PLM , Product Life cycle...18  3.  Lean Six Sigma and PLM ..................................................................18  4.  Lean Six Sigma and KVA...Cost of PLM Technology ...................................................................43  3.  Reengineered Process

  6. Mechanism of motor coordination of masseter and temporalis muscles for increased masticatory efficiency in mice.

    PubMed

    Yoshimi, Tomoko; Koga, Yoshiyuki; Nakamura, Aya; Fujishita, Ayumi; Kohara, Haruka; Moriuchi, Emi; Yoshimi, Keiko; Tsai, Chi-Yang; Yoshida, Noriaki

    2017-02-09

    The demand for the use of mice as animal models for elucidating the pathophysiologies and pathogeneses of oral motor disorders has been increasing in recent years, as more and more kinds of genetically modified mice that express functional disorders of the stomatognathic system become available. However, the fundamental characteristics of mouse jaw movements during mastication have yet to be fully elucidated. The purpose of this study was to investigate the roles of the masseter and temporalis muscles, and the mechanisms of motor coordination of these muscles for increasing masticatory efficiency in the closing phase in mice. Twenty-two male Jcl:ICR mice were divided into control (n = 8), masseter hypofunction (n = 7), and temporalis hypofunction groups (n = 7). Botulinum neurotoxin type A (BoNT⁄A) was used to induce muscle hypofunction. The masticatory movement path in the horizontal direction during the occlusal phase became unstable after BoNT⁄A injection into the masseter muscle. BoNT⁄A injection into the temporalis muscle decreased antero-posterior excursion of the late-closing phase corresponding to the power phase of the chewing cycle. These results suggest that the masseter plays an important role in stabilizing the grinding path, where the food bolus is ground by sliding the posterior teeth from back to front during the occlusal phase. The temporalis plays a major role in retracting the mandible more posteriorly in the early phase of closing, extending the grinding path. Masticatory efficiency is thus increased based on the coordination of activities by the masseter and temporalis muscles. This article is protected by copyright. All rights reserved.

  7. The Catalytic Efficiency of Lipin 1β Increases by Physically Interacting with the Proto-oncoprotein c-Fos*

    PubMed Central

    Cardozo Gizzi, Andres M.; Prucca, Cesar G.; Gaveglio, Virginia L.; Renner, Marianne L.; Pasquaré, Susana J.; Caputto, Beatriz L.

    2015-01-01

    Phosphatidic acid (PA) is a central precursor for membrane phospholipid biosynthesis. The lipin family is a magnesium-dependent type I PA phosphatase involved in de novo synthesis of neutral lipids and phospholipids. The regulation of lipin activity may govern the pathways by which these lipids are synthesized and control the cellular levels of important signaling lipids. Moreover, the proto-oncoprotein c-Fos has an emerging role in glycerolipid synthesis regulation; by interacting with key synthesizing enzymes it is able to increase overall phospho- and glycolipid synthesis. We studied the lipin 1β enzyme activity in a cell-free system using PA/Triton X-100 mixed micelles as substrate, analyzing it in the presence/absence of c-Fos. We found that lipin 1β kcat value increases around 40% in the presence of c-Fos, with no change in the lipin 1β affinity for the PA/Triton X-100 mixed micelles. We also probed a physical interaction between both proteins. Although the c-Fos domain involved in lipin activation is its basic domain, the interaction domain is mapped to the N-terminal c-Fos. In conclusion, we provide evidence for a novel positive regulator of lipin 1β PA phosphatase activity that is not achieved via altering its subcellular localization or affinity for membranes but rather through directly increasing its catalytic efficiency. PMID:26475860

  8. Schools and Districts Use Resources Wisely to Increase Achievement and Graduate More Students. High Schools That Work

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2011

    2011-01-01

    In a time of reduced funding, schools are meeting the challenge to continue improving classroom practices, student achievement and graduation rates. Many schools and teachers are forming networks to exchange information via the Internet as they tap into free electronic resources. Career/technical (CT) instructors are teaching students about…

  9. LinguaFolio Goal Setting Intervention and Academic Achievement: Increasing Student Capacity for Self-Regulated Learning

    ERIC Educational Resources Information Center

    Clarke, Oxana D.

    2013-01-01

    In the last few decades there has been a shift from thinking less about teaching and more about learning. Such a paradigm shift from teacher-centered to student-centered instruction requires students to think about their own learning and to monitor their own learning development and language achievement. Researchers have identified goal setting…

  10. Professional Development Increasing Student Achievement Year-Round Education: "Why Can't We Get It Right?"

    ERIC Educational Resources Information Center

    Speck, Marsha

    This conference presentation examines planning tools that provide professional development opportunities to build capacity and improve student achievement, focusing on year-round education. It emphasizes how to bridge the current gap between professional development practices and a professional's capacity to enable students to meet standards by…

  11. The Use of Several Diverse Methodologies for Increasing Pupil Achievement: Wesley Avenue Elementary School, 1972-73.

    ERIC Educational Resources Information Center

    Russell, Gail; Gaskin, Comer

    Since many of the children attending Wesley School come from homes which have a low income base, it qualifies for federally funded compensatory services. The educational program at Wesley was unique in that the various compensatory programs in operation reflected the use of several diverse methodologies for improving pupil achievement. The total…

  12. Strategies to increase the activity of microglia as efficient protectors of the brain against infections

    PubMed Central

    Nau, Roland; Ribes, Sandra; Djukic, Marija; Eiffert, Helmut

    2014-01-01

    In healthy individuals, infections of the central nervous system (CNS) are comparatively rare. Based on the ability of microglial cells to phagocytose and kill pathogens and on clinical findings in immunocompromised patients with CNS infections, we hypothesize that an intact microglial function is crucial to protect the brain from infections. Phagocytosis of pathogens by microglial cells can be stimulated by agonists of receptors of the innate immune system. Enhancing this pathway to increase the resistance of the brain to infections entails the risk of inducing collateral damage to the nervous tissue. The diversity of microglial cells opens avenue to selectively stimulate sub-populations responsible for the defence against pathogens without stimulating sub-populations which are responsible for collateral damage to the nervous tissue. Palmitoylethanolamide (PEA), an endogenous lipid, increased phagocytosis of bacteria by microglial cells in vitro without a measurable proinflammatory effect. It was tested clinically apparently without severe side effects. Glatiramer acetate increased phagocytosis of latex beads by microglia and monocytes, and dimethyl fumarate enhanced elimination of human immunodeficiency virus from infected macrophages without inducing a release of proinflammatory compounds. Therefore, the discovery of compounds which stimulate the elimination of pathogens without collateral damage of neuronal structures appears an achievable goal. PEA and, with limitations, glatiramer acetate and dimethyl fumarate appear promising candidates. PMID:24904283

  13. Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency.

    PubMed

    Tsai, Steven C; Chang, David F; Hong, Chang-Mu; Xia, Ping; Senadheera, Dinithi; Trump, Lisa; Mishra, Suparna; Lutzko, Carolyn

    2014-06-15

    Our knowledge of the molecular mechanisms underlying human embryonic stem cell (hESC) self-renewal and differentiation is incomplete. The level of octamer-binding transcription factor 4 (Oct4), a critical regulator of pluripotency, is precisely controlled in mouse embryonic stem cells. However, studies of human OCT4 are often confounded by the presence of three isoforms and six expressed pseudogenes, which has complicated the interpretation of results. Using an inducible lentiviral overexpression and knockdown system to manipulate OCT4A above or below physiological levels, we specifically examine the functional role of the OCT4A isoform in hESC. (We also designed and generated a comparable series of vectors, which were not functional, for the overexpression and knockdown of OCT4B.) We show that specific knockdown of OCT4A results in hESC differentiation, as indicated by morphology changes, cell surface antigen expression, and upregulation of ectodermal genes. In contrast, inducible overexpression of OCT4A in hESC leads to a transient instability of the hESC phenotype, as indicated by changes in morphology, cell surface antigen expression, and transcriptional profile, that returns to baseline within 5 days. Interestingly, sustained expression of OCT4A past 5 days enhances hESC cloning efficiency, suggesting that higher levels of OCT4A can support self-renewal. Overall, our results indicate that high levels of OCT4A increase hESC cloning efficiency and do not induce differentiation (whereas OCT4B expression cannot be induced in hESC), highlighting the importance of isoform-specific studies in a stable and inducible expression system for human OCT4. Additionally, we demonstrate the utility of an efficient method for conditional gene expression in hESC.

  14. Ionic liquids increase the catalytic efficiency of a lipase (Lip1) from an antarctic thermophilic bacterium.

    PubMed

    Muñoz, Patricio A; Correa-Llantén, Daniela N; Blamey, Jenny M

    2015-01-01

    Lipases catalyze the hydrolysis and synthesis of triglycerides and their reactions are widely used in industry. The use of ionic liquids has been explored in order to improve their catalytic properties. However, the effect of these compounds on kinetic parameters of lipases has been poorly understood. A study of the kinetic parameters of Lip1, the most thermostable lipase from the supernatant of the strain ID17, a thermophilic bacterium isolated from Deception Island, Antarctica, and a member of the genus Geobacillus is presented. Kinetic parameters of Lip1 were modulated by the use of ionic liquids BmimPF6 and BmimBF4. The maximum reaction rate of Lip1 was improved in the presence of both salts. The highest effect was observed when BmimPF6 was added in the reaction mix, resulting in a higher hydrolytic activity and in a modulation of the catalytic efficiency of the enzyme. However, the catalytic efficiency did not change in the presence of BmimBF4. The increase of the reaction rates of Lip1 promoted by these ionic liquids could be related to possible changes in the Lip1 structure. This effect was measured by quenching of tryptophan fluorescence of the enzyme, when it was incubated with each liquid salt. In conclusion, the hydrolytic activity of Lip1 is modulated by the ionic liquids BmimBF4 and BmimPF6, improving the reaction rate and the catalytic efficiency of this enzyme when BmimPF6 was used. This effect is probably due to changes in the structure of Lip1 induced by the presence of these ionic liquids, stimulating its catalytic activity.

  15. Phleomycin Increases Transformation Efficiency and Promotes Single Integrations in Schizophyllum commune▿

    PubMed Central

    van Peer, Arend F.; de Bekker, Charissa; Vinck, Arman; Wösten, Han A. B.; Lugones, Luis G.

    2009-01-01

    Phleomycin is mutagenic by introducing double-strand breaks in DNA. The ble gene of Streptoalloteychus hindustanus, which confers resistance to this substance, is widely used as a selection marker for transformation. Schizophyllum commune grows on 25 μg of phleomycin ml−1 after introduction of a resistance cassette based on the ble gene. However, we here report that growth of resistant colonies on this concentration of phleomycin resulted in aberrant colony morphologies. Apparently, phleomycin was mutagenic despite acquired resistance. Therefore, a new selection system was developed based on resistance to the antibiotic nourseothricin. However, the transformation efficiency was tenfold lower than that obtained with phleomycin as a selection agent. This low transformation efficiency could be rescued by addition of a nonselective concentration of phleomycin during protoplast regeneration. This was accompanied by a higher incidence of single-copy integrations and with an increase of expression of key genes involved in double-strand break repair. Taken together, we conclude that the effect of a nonselective concentration of phleomycin strongly resembles the effect of restriction enzyme-mediated integration (REMI) but, unlike REMI, it does not depend on the presence of a target restriction site. PMID:19114524

  16. Increasing the efficiency of traveling wave ultrasonic motor by modifying the stator geometry.

    PubMed

    Mohd Romlay, Fadhlur Rahman; Wan Yusoff, Wan Azhar; Mat Piah, Kamal Arifin

    2016-01-01

    Current traveling wave ultrasonic motor (TWUSM) utilizes comb-teeth structure as deflection amplifier. The position of the stator neutral axis to the stator contact surface is one of the factors that influences the deflection amplifier. Stator deflection directly effects on motor performance. In this study, the modification of the comb-teeth stator design is proposed to see its effect on motor efficiency. The modification is done so that the neutral axis position is further distance from the stator top contact surface. The proposed solution is to remove a selected mass element from the comb-teeth structure. Modeling, simulation and experimental work of the proposed concept is carried out utilizing Shinsei USR60 as the chosen TWUSM. The modeling and analyses are conducted through multi-physic finite element simulation MSC Marc Mentat. The results of the analyses and experimental work reveal that the modified comb-teeth stator increases the position of the neutral axis from the stator top surface. Due to the neutral axis shifting, the results also confirm that the proposed modified motor has higher efficiency compared to the non-modified motor.

  17. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  18. Decreased activity with increased background network efficiency in amnestic MCI during a visuospatial working memory task.

    PubMed

    Lou, Wutao; Shi, Lin; Wang, Defeng; Tam, Cindy W C; Chu, Winnie C W; Mok, Vincent C T; Cheng, Sheung-Tak; Lam, Linda C W

    2015-09-01

    Recent studies have demonstrated the working memory impairment in patients with amnestic mild cognitive impairment (aMCI). However, the neurophysiological basis of the working memory deficit in aMCI is poorly understood. The aim of this study was to explore the abnormal activity during encoding and recognition procedures, as well as the reorganization of the background network maintaining the working memory state in aMCI. Using event-related fMRI during a visuospatial working memory task with three recognition difficulty levels, the task-related activations and network efficiency of the background network in 17 aMCI patients and 19 matched controls were investigated. Compared with cognitively healthy controls, patients with aMCI showed significantly decreased activity in the frontal and visual cortices during the encoding phase, while during the recognition phase, decreased activity was detected in the frontal, parietal, and visual regions. In addition, increased local efficiency was also observed in the background network of patients with aMCI. The results suggest patients with aMCI showed impaired encoding and recognition functions during the visuospatial working memory task, and may pay more effort to maintain the cognitive state. This study extends our understanding of the impaired working memory function in aMCI and provides a new perspective to investigate the compensatory mechanism in aMCI.

  19. Pre-envelope deconvolution for increased lesion detection efficiency in ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Zemp, Roger J.; Insana, Michael F.

    2003-05-01

    We use an ideal observer model to evaluate the efficiency of human observers detecting a simulated lesion in the presence of speckle, and the ability of pre-envelope deconvolution to improve performance in this task. We model the lesion as a localized area of increased scatter density, which translates into an area of higher variance in the ultrasound signal. Assuming the scattering function and electronic noise obey Gaussian distributions, the ideal observer for lesion detection is given by a quadratic function of the in-phase (I) and quadrature (Q) data. For comparison, human-observer performance is assessed through two-alternative forced-choice (2AFC) psychophysical studies after making a B-mode image by computing the magnitude (envelope) of the I and Q components. We also consider the effect of removing spatial correlations in the I and Q components, before computing the magnitude (pre-envelope deconvolution). Our Psychophysical studies indicate approximately a 4-fold improvement in detection efficiency with pre-envelope deconvolution.

  20. Human diaphragm efficiency estimated as power output relative to activation increases with hypercapnic hyperpnea.

    PubMed

    Finucane, Kevin E; Singh, Bhajan

    2009-11-01

    Hyperpnea with exercise or hypercapnia causes phasic contraction of abdominal muscles, potentially lengthening the diaphragm at end expiration and unloading it during inspiration. Muscle efficiency in vitro varies with load, fiber length, and precontraction stretch. To examine whether these properties of muscle contractility determine diaphragm efficiency (Eff(di)) in vivo, we measured Eff(di) in six healthy adults breathing air and during progressive hypercapnia at three levels of end-tidal Pco(2) with mean values of 48 (SD 2), 55 (SD 2), and 61 (SD 1) Torr. Eff(di) was estimated as the ratio of diaphragm power (Wdi) [the product of mean inspiratory transdiaphragmatic pressure, diaphragm volume change (DeltaVdi) measured fluoroscopically, and 1/inspiratory duration (Ti(-1))] to activation [root mean square values of inspiratory diaphragm electromyogram (RMS(di)) measured from esophageal electrodes]. At maximum hypercapnea relative to breathing air, 1) gastric pressure and diaphragm length at end expiration (Pg(ee) and Ldi(ee), respectively) increased 1.4 (SD 0.2) and 1.13 (SD 0.08) times, (P < 0.01 for both); 2) inspiratory change (Delta) in Pg decreased from 4.5 (SD 2.2) to -7.7 (SD 3.8) cmH(2)O (P < 0.001); 3) DeltaVdi.Ti(-1), Wdi, RMS(di), and Eff(di) increased 2.7 (SD 0.6), 4.9 (SD 1.8), 2.6 (SD 0.9), and 1.8 (SD 0.3) times, respectively (P < 0.01 for all); and 4) net and inspiratory Wdi were not different (P = 0.4). Eff(di) was predicted from Ldi(ee) (P < 0.001), Pg(ee) (P < 0.001), DeltaPg.Ti(-1) (P = 0.03), and DeltaPg (P = 0.04) (r(2) = 0.52) (multivariate regression analysis). We conclude that, with hypercapnic hyperpnea, 1) approximately 47% of the maximum increase of Wdi was attributable to increased Eff(di); 2) Eff(di) increased due to preinspiratory lengthening and inspiratory unloading of the diaphragm, consistent with muscle behavior in vitro; 3) passive recoil of the diaphragm did not contribute to inspiratory Wdi or Eff(di); and 4) phasic

  1. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect

    Wang, Qi; Ma, Dongge Ding, Junqiao; Wang, Lixiang; Leo, Karl; Qiao, Qiquan; Jia, Huiping; Gnade, Bruce E.

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  2. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  3. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  4. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect

    Pragasen Pillay

    2008-12-31

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and

  5. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency

    NASA Technical Reports Server (NTRS)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2016-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  6. Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Yeh, H. C.

    1976-01-01

    The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value

  7. Survey on methods of increasing the efficiency of extended state disturbance observers.

    PubMed

    Madoński, R; Herman, P

    2015-05-01

    This survey presents various methods of improving the overall estimation quality in the class of extended state observers (ESO), which estimate not only the conventional states of the system, but the acting disturbance as well. This type of observers is crucial in forming the active disturbance rejection control structure (ADRC), where the precision of online perturbation reconstruction and cancellation directly influences the robustness of the closed-loop control system. Various aspects of the observer-based disturbance estimation/rejection loop are covered by this work and divided into three categories, related with observer: structure, tuning, and working conditions. The survey is dedicated to researchers and practitioners who are interested in increasing the efficiency of their ADRC-based governing schemes.

  8. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array.

    PubMed

    Liu, Hao-Li; Shih, Tzu-Ching; Chen, Wen-Shiang; Ju, Kuen-Cheng

    2007-07-01

    Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.

  9. Efficient Bayesian mixed model analysis increases association power in large cohorts

    PubMed Central

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2014-01-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633

  10. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

    PubMed Central

    Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert

    2013-01-01

    Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296

  11. Increasing water-use efficiency directly through genetic manipulation of stomatal density.

    PubMed

    Franks, Peter J; W Doheny-Adams, Timothy; Britton-Harper, Zoe J; Gray, Julie E

    2015-07-01

    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max) ) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2 ) atmospheres.

  12. Efficient Bayesian mixed-model analysis increases association power in large cohorts.

    PubMed

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2015-03-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts and may not optimize power. All existing methods require time cost O(MN(2)) (where N is the number of samples and M is the number of SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here we present a far more efficient mixed-model association method, BOLT-LMM, which requires only a small number of O(MN) time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to 9 quantitative traits in 23,294 samples from the Women's Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for genome-wide association studies in large cohorts.

  13. Chronic stress undermines the compensatory sleep efficiency increase in response to sleep restriction in adolescents.

    PubMed

    Astill, Rebecca G; Verhoeven, Dorit; Vijzelaar, Romy L; Van Someren, Eus J W

    2013-08-01

    To investigate the effects of real-life stress on the sleep of adolescents, we performed a repeated-measures study on actigraphic sleep estimates and subjective measures during one regular school week, two stressful examination weeks and a week's holiday. Twenty-four adolescents aged 17.63 ± 0.10 years (mean ± standard error of the mean) wore actigraphs and completed diaries on subjective stress, fatigue, sleep quality, number of examinations and consumption of caffeine and alcohol for 4 weeks during their final year of secondary school. The resulting almost 500 assessments were analysed using mixed-effect models to estimate the effects of mere school attendance and additional examination stress on sleep estimates and subjective ratings. Total sleep time decreased from 7:38 h ± 12 min during holidays to 6:40 h ± 12 min during a regular school week. This 13% decrease elicited a partial compensation, as indicated by a 3% increase in sleep efficiency and a 6% decrease in the duration of nocturnal awakenings. During examination weeks total sleep time decreased to 6:23 h ± 8 min, but it was now accompanied by a decrease in sleep efficiency and subjective sleep quality and an increase in wake bout duration. In conclusion, school examination stress affects the sleep of adolescents. The compensatory mechanism of more consolidated sleep, as elicited by the sleep restriction associated with mere school attendance, collapsed during 2 weeks of sustained examination stress.

  14. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  15. Between-country collaboration and consideration of costs increase conservation planning efficiency in the Mediterranean Basin.

    PubMed

    Kark, Salit; Levin, Noam; Grantham, Hedley S; Possingham, Hugh P

    2009-09-08

    The importance of global and regional coordination in conservation is growing, although currently, the majority of conservation programs are applied at national and subnational scales. Nevertheless, multinational programs incur transaction costs and resources beyond what is required in national programs. Given the need to maximize returns on investment within limited conservation budgets, it is crucial to quantify how much more biodiversity can be protected by coordinating multinational conservation efforts when resources are fungible. Previous studies that compared different scales of conservation decision-making mostly ignored spatial variability in biodiversity threats and the cost of actions. Here, we developed a simple integrating metric, taking into account both the cost of conservation and threats to biodiversity. We examined the Mediterranean Basin biodiversity hotspot, which encompasses over 20 countries. We discovered that for vertebrates to achieve similar conservation benefits, one would need substantially more money and area if each country were to act independently as compared to fully coordinated action across the Basin. A fully coordinated conservation plan is expected to save approximately US$67 billion, 45% of total cost, compared with the uncoordinated plan; and if implemented over a 10-year period, the plan would cost approximately 0.1% of the gross national income of all European Union (EU) countries annually. The initiative declared in the recent Paris Summit for the Mediterranean provides a political basis for such complex coordination. Surprisingly, because many conservation priority areas selected are located in EU countries, a partly coordinated solution incorporating only EU-Mediterranean countries is almost as efficient as the fully coordinated scenario.

  16. Increases in efficiency and enhancements to the Mars Observer non-stored commanding process

    NASA Technical Reports Server (NTRS)

    Brooks, Robert N., Jr.; Torgerson, J. Leigh

    1994-01-01

    The Mars Observer team was, until the untimely loss of the spacecraft on August 21, 1993, performing flight operations with greater efficiency and speed than any previous JPL mission of its size. This level of through-put was made possible by a mission operations system which was composed of skilled personnel using sophisticated sequencing and commanding tools. During cruise flight operations, however, it was realized by the project that this commanding level was not going to be sufficient to support the activities planned for mapping operations. The project had committed to providing the science instrument principle investigators with a much higher level of commanding during mapping. Thus, the project began taking steps to enhance the capabilities of the flight team. One mechanism used by project management was a tool available from total quality management (TQM). This tool is known as a process action team (PAT). The Mars Observer PAT was tasked to increase the capacity of the flight team's nonstored commanding process by fifty percent with no increase in staffing and a minimal increase in risk. The outcome of this effort was, in fact, to increase the capacity by a factor of 2.5 rather than the desired fifty percent and actually reduce risk. The majority of these improvements came from the automation of the existing command process. These results required very few changes to the existing mission operations system. Rather, the PAT was able to take advantage of automation capabilities inherent in the existing system and make changes to the existing flight team procedures.

  17. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  18. Manipulating tillage to increase stored soil water and manipulating plant geometry to increase water-use efficiency in dryland areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper briefly summarizes some of the practices being used in the semiarid U.S. Great Plains to grow crops without irrigation. Fallow periods are commonly used to increase the amount of plant-available water in the soil profile at the time of seeding a crop because growing-season precipitation i...

  19. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis.

    PubMed

    Meneses, M J; Bernardino, R L; Sá, R; Silva, J; Barros, A; Sousa, M; Silva, B M; Oliveira, P F; Alves, M G

    2016-10-01

    Pioglitazone is a synthetic agonist for the nuclear receptor peroxisome proliferator-activated receptor γ used to treat type 2 diabetes mellitus. Recently we reported that antidiabetic drugs regulate the nutritional support of spermatogenesis by Sertoli cells. Herein, we investigate the effects of pioglitazone on human Sertoli cells metabolism. Human Sertoli cells were cultured in the presence of pioglitazone (1, 10, 100μM). Protein levels of phosphofructokinase 1, lactate dehydrogenase, hexokinase, glucose transporters (GLUT1, GLUT2, GLUT3), monocarboxylate transporter 4 and oxidative phosphorylation complexes were determined by Western blot. Lactate dehydrogenase and alanine aminotransferase activity were assessed and metabolite production and consumption determined by proton nuclear magnetic resonance. Mitochondrial membrane potential was also determined. Glucose consumption more than doubled in human Sertoli cells stimulated with pioglitazone 100μM. Mitochondrial complex II protein levels increased 50% with exposure to pioglitazone (100μM) in human Sertoli cells, though mitochondrial membrane potential was decreased by 32%. The pharmacological concentration of pioglitazone (10μM) almost doubled lactate production and established crucial correlations among key intervenient of glycolysis. Moreover, in the same concentration, alanine aminotransferase decreased more than 80%. Our results suggest that pioglitazone (10μM) increases the efficiency of the glycolytic flux and lactate production by human Sertoli cells, which is essential to sustain and preserve the spermatogenic event. Thus, pioglitazone may improve male fertility and thus, be considered a suitable antidiabetic drug for men in reproductive age.

  20. Student's social interaction in inquiry-based science education: how experiences of flow can increase motivation and achievement

    NASA Astrophysics Data System (ADS)

    Ellwood, Robin; Abrams, Eleanor

    2017-02-01

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a

  1. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis

    PubMed Central

    Pavlovič, Andrej; Krausko, Miroslav; Libiaková, Michaela; Adamec, Lubomír

    2014-01-01

    Backround and Aims It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. Methods Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). Key Results Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). Conclusions According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved

  2. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  3. Multibeam Bathymetry Data Value and Increased Efficiency Through Improved Data Access and Reuse

    NASA Astrophysics Data System (ADS)

    Price, D. J.; Fischman, D.; Varner, J. D.; McLean, S. J.; Henderson, J. F.

    2012-12-01

    The costs associated with geophysical data collection are ever increasing, and efficiencies created by data reuse have never been more important. Multibeam sonar bathymetry, collected by specialized research vessels in challenging oceanic environments, is an example data type that has experienced steady increases in acquisition costs. The National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Center (NGDC) in partnership with the Academic Fleet Rolling deck To Repository (R2R) program provides streamlined delivery of multibeam bathymetric data from ship to shore to user. By ensuring long term archive and easy access to these data, we foster the innovative reuse of data to produce additional products to serve multiple needs beyond the original intent of collection. Archived data are made widely accessible to the scientific community and the public via Web technologies that also support a "whole ocean" approach to management and planning, leveraging limited resources, and maximizing the benefit of the original investment in data collection. Currently, the public has access to more than 461,000 multibeam bathymetry files from the NGDC website through various Web based tools (ngdc.noaa.gov/mgg/bathymetry/). Data are discoverable through geospatial maps and text search options. Once data are identified, users can download individual files, bundled data, or create custom grids. This paper takes a closer look at the multibeam data downloaded from the NGDC website and attempts to quantify the value of providing data for reuse. Using the number of surveys downloaded, an average cost to collect and steward multibeam data, and computing the ship hours required to acquire these data, we can estimate the value of the data freely available through R2R and NGDC. We will show that the value of long term stewardship, sharing, and reuse of these data provides a significant return on the initial investment. Proper data stewardship by NOAA's National Data

  4. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency.

    PubMed

    Li, Zhongyuan; Huang, Huoqing; Yang, Peilong; Yuan, Tiezheng; Shi, Pengjun; Zhao, Junqi; Meng, Kun; Yao, Bin

    2011-09-01

    β-Propeller phytases (BPPs) with tandemly repeated domains are abundant in nature. Previous studies have shown that the intact domain is responsible for phytate hydrolysis, but the function of the other domain is relatively unknown. In this study, a new dual-domain BPP (PhyH) from Bacillus sp. HJB17 was identified to contain an incomplete N-terminal BPP domain (PhyH-DI, residues 41-318) and a typical BPP domain (PhyH-DII, residues 319-644) at the C-terminus. Purified recombinant PhyH and PhyH-DII required Ca(2+) for phytase activity, showed activity at low temperatures (0-35 °C) and pH 6.0-8.0, and remained active (at 37 °C) after incubation at 60 °C and pH 6.0-12.0. Compared with PhyH-DII, PhyH is catalytically more active against phytate (catalytic constant 27.72 versus 4.17 s(-1)), which indicates the importance of PhyH-DI in phytate degradation. PhyH-DI was found to hydrolyze phytate intermediate D-Ins(1,4,5,6) P(4), and to act synergistically (a 1.2-2.5-fold increase in phosphate release) with PhyH-DII, other BPPs (PhyP and 168PhyA) and a histidine acid phosphatase. Furthermore, fusion of PhyH-DI with PhyP or 168PhyA significantly enhanced their catalytic efficiencies. This is the first report to elucidate the substrate specificity of the incomplete domain and the functional relationship of tandemly repeated domains in BPPs. We conjecture that dual-domain BPPs have succeeded evolutionarily because they can increase the amount of available phosphate by interacting together. Additionally, fusing PhyH-DI to a single-domain phytase appears to be an efficient way to improve the activity of the latter.

  5. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  6. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability.

  7. Increasing the efficiency of digitization workflows for herbarium specimens

    PubMed Central

    Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers,  Barbara M.

    2012-01-01

    Abstract The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate. Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation’s new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time. PMID:22859882

  8. Increasing the efficiency of digitization workflows for herbarium specimens.

    PubMed

    Tulig, Melissa; Tarnowsky, Nicole; Bevans, Michael; Anthony Kirchgessner; Thiers, Barbara M

    2012-01-01

    The New York Botanical Garden Herbarium has been databasing and imaging its estimated 7.3 million plant specimens for the past 17 years. Due to the size of the collection, we have been selectively digitizing fundable subsets of specimens, making successive passes through the herbarium with each new grant. With this strategy, the average rate for databasing complete records has been 10 specimens per hour. With 1.3 million specimens databased, this effort has taken about 130,000 hours of staff time. At this rate, to complete the herbarium and digitize the remaining 6 million specimens, another 600,000 hours would be needed. Given the current biodiversity and economic crises, there is neither the time nor money to complete the collection at this rate.Through a combination of grants over the last few years, The New York Botanical Garden has been testing new protocols and tactics for increasing the rate of digitization through combinations of data collaboration, field book digitization, partial data entry and imaging, and optical character recognition (OCR) of specimen images. With the launch of the National Science Foundation's new Advancing Digitization of Biological Collections program, we hope to move forward with larger, more efficient digitization projects, capturing data from larger portions of the herbarium at a fraction of the cost and time.

  9. Increasing Efficiency and Quality by Consolidation of Clinical Chemistry and Immunochemistry Systems with MODULAR ANALYTICS SWA

    PubMed Central

    Mocarelli, Paolo; Horowitz, Gary L.; Gerthoux, Pier Mario; Cecere, Rossana; Imdahl, Roland; Ruinemans-Koerts, Janneke; Luthe, Hilmar; Calatayud, Silvia Pesudo; Salve, Marie Luisa; Kunst, Albert; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2008-01-01

    MODULAR ANALYTICS Serum Work Area (in USA Integrated MODULAR ANALYTICS, MODULAR ANALYTICS is a trademark of a member of the Roche Group) represents a further approach to automation in the laboratory medicine. This instrument combines previously introduced modular systems for the clinical chemistry and immunochemistry laboratory and allows customised combinations for various laboratory workloads. Functionality, practicability, and workflow behaviour of MODULAR ANALYTICS Serum Work Area were evaluated in an international multicenter study at six laboratories. Across all experiments, 236000 results from 32400 samples were generated using 93 methods. Simulated routine testing which included provocation incidents and anomalous situations demonstrated good performance and full functionality. Heterogeneous immunoassays, performed on the E-module with the electrochemiluminescence technology, showed reproducibility at the same level of the general chemistry tests, which was well within the clinical demands. Sample carryover cannot occur due to intelligent sample processing. Workflow experiments for the various module combinations, with menus of about 50 assays, yielded mean sample processing times of <38 minutes for combined clinical chemistry and immunochemistry requests; <50 minutes including automatically repeated samples. MODULAR ANALYTICS Serum Work Area offered simplified workflow by combining various laboratory segments. It increased efficiency while maintaining or even improving quality of laboratory processes. PMID:18401449

  10. Differential pollen placement on an Old World nectar bat increases pollination efficiency

    PubMed Central

    Stewart, Alyssa B.; Dudash, Michele R.

    2016-01-01

    Background and Aims Plant species that share pollinators are potentially subject to non-adaptive interspecific pollen transfer, resulting in reduced reproductive success. Mechanisms that increase pollination efficiency between conspecific individuals are therefore highly beneficial. Many nocturnally flowering plant species in Thailand are pollinated by the nectar bat Eonycteris spelaea (Pteropodidae). This study tested the hypothesis that plant species within a community reduce interspecific pollen movement by placing pollen on different areas of the bat’s body. Methods Using flight cage trials, pollen transfer by E. spelaea was compared between conspecific versus heterospecific flowers across four bat-pollinated plant genera. Pollen from four locations on the bat’s body was also quantified to determine if pollen placement varies by plant species. Key Results It was found that E. spelaea transfers significantly more pollen between conspecific than heterospecific flowers, and that diverse floral designs produce significantly different patterns of pollen deposition on E. spelaea. Conclusions In the Old World tropics, differential pollen placement is a mechanism that reduces competition among bat-pollinated plant species sharing a common pollinator. PMID:26482654

  11. Cholesterol improves the transfection efficiency of lipoplexes by increasing the effective membrane charge density

    NASA Astrophysics Data System (ADS)

    Safinya, Cyrus R.; Zidovska, Alexandra; Evans, Heather M.; Ewert, Kai K.

    2008-03-01

    Motivated by its important role in lipid-mediated gene delivery, we have studied the effect of cholesterol on the transfection efficiency (TE) of lamellar, cationic lipid-DNA (CL-DNA) complexes. A successful in vivo liposome mixture seems to require cholesterol. Recent work in our group has identified the membrane charge density (σ) as a universal parameter for TE of lamellar, DOPC containing CL-DNA complexes (A.J. Lin et al, Biophys. J., 2003, K. Ewert et al, J. Med. Chem., 2002, A. Ahmad et al., J. Gene Med., 2005), with TE following a universal bell-shaped curve as a function of σ. Theoretical calculations considering the headgroup area of cholesterol and thus necessarily counting for an increase in σ, when DOPC is replaced by cholesterol, show that TE strongly deviates from the TE universal curve. However, experimental determination of σ via X-ray diffraction shows full agreement with the TE universal curve demonstrating that the real σ is higher as predicted, therefore the effective headgroup area of cholesterol is lower as expected by theory, suggesting that cholesterol is inserted deep into lipid bilayer partially hidden by the neighboring lipids. Funding provided by NIH GM-59288 and NSF DMR-0503347.

  12. Directly incorporating fluorochromes into DNA probes by PCR increases the efficience of fluorescence in situ hybridization

    SciTech Connect

    Dittmer, Joy

    1996-05-01

    The object of this study was to produce a directly labeled whole chromosome probe in a Degenerative Oligonucleotide Primed-Polymerase Chain Reaction (DOP-PCR) that will identify chromosome breaks, deletions, inversions and translocations caused by radiation damage. In this study we amplified flow sorted chromosome 19 using DOP-PCR. The product was then subjected to a secondary DOP PCR amplification, After the secondary amplification the DOP-PCR product was directly labeled in a tertiary PCR reaction with rhodamine conjugated with dUTP (FluoroRed) to produce a DNA fluorescent probe. The probe was then hybridized to human metaphase lymphocytes on slides, washed and counterstained with 4{prime},6-diamino-2-phenylindole (DAPI). The signal of the FluoroRed probe was then compared to a signal of a probe labeled with biotin and stained with avidin fluorescein isothio cynate (FITC) and anti-avidin FITC. The results show that the probe labeled with FluoroRed gave signals as bright as the probe with biotin labeling. The FluoroRed probe had less noise than the biotin labeled probe. Therefore, a directly labeled probe has been successfully produced in a DOP-PCR reaction. In future a probe labeled with FluoroRed will be produced instead of a probe labeled with biotin to increase efficiency.

  13. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis.

    PubMed

    Gao, Dahai; Chundawat, Shishir P S; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S; Dale, Bruce E

    2013-07-02

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme-substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph I(β) to III(I) results in 40-50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings.

  14. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis

    PubMed Central

    Gao, Dahai; Chundawat, Shishir P. S.; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S.; Dale, Bruce E.

    2013-01-01

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme–substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph Iβ to IIII results in 40–50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings. PMID:23784776

  15. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells.

    PubMed

    Moret, Francesca; Gobbo, Marina; Reddi, Elena

    2015-07-01

    Some antimicrobial peptides (AMPs) have the ability to penetrate and kill not only pathogenic microorganisms but also cancer cells, while they are less active toward normal eukaryotic cells. Here we have investigated the potential of three AMPs, namely apidaecin 1b (Api), magainin 2 (Mag) and buforin II (Buf), as carriers of drugs for cancer cells by using the hydrophobic photosensitiser 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP) as the drug model, conjugated to the N-terminus of the peptides. Flow cytometry measurements demonstrated that conjugation of cTPP increased its rate and efficiency of uptake in A549 human lung adenocarcinoma cells in the order Mag > Buf > Api. In vitro photodynamic therapy (PDT) experiments showed that the increased uptake of the conjugated cTPP determined 100% cell killing at concentrations in the nanomolar range while micromolar concentrations were required for the same killing effect with unconjugated cTPP. Serum proteins interacted with cTPP conjugated to Buf and Api and slightly interfered with the cellular uptake of these conjugates but not with that of Mag. The data suggest electrostatic interactions of the conjugates with sialic acid and ganglioside rich domains, as lipid rafts of the plasma membrane, followed by cell internalization via non-caveolar dynamin-dependent endocytosis as indicated by the effects of inhibitors of specific endocytic pathways. Our study demonstrated that the three AMPs investigated, Mag in particular, have the ability to carry a hydrophobic cargo inside cancer cells and may therefore represent useful carriers of anticancer drugs, especially those with a poor capacity to penetrate inside the target cells.

  16. Clinical and Translational Science Awards: can they increase the efficiency and speed of clinical and translational research?

    PubMed

    Heller, Caren; de Melo-Martín, Inmaculada

    2009-04-01

    Most agree that the recent decades-long boom in biomedical research discoveries has not had a sufficient effect on the public's health. To overcome some of the barriers to speeding clinical and translational (C/T) research, the National Institutes of Health has established the Institutional Clinical and Translational Science Award (CTSA). To explore whether the CTSA proposal addresses major C/T barriers and whether funded institutions offer adequate solutions, the authors reviewed the obstacles to C/T research described in the literature and examined the completeness of the solutions offered by the 12 initial CTSA awardees. Through an analysis of the literature, the authors categorized C/T barriers into three categories (research workforce, research operations, and organizational silos). They then analyzed each CTSA proposal regarding the types of programs offered to address these barriers. They found that, in general, institutions developed detailed programs to address research workforce and research operations barriers but had limited to no solutions for organizational silos. The authors suggest that differences in how barriers are addressed are consistent with the degree of control that CTSA centers have over these obstacles and solutions. They argue that although CTSA centers might have an important role in successfully addressing some of the barriers to C/T research, CTSA centers might ultimately have difficulties achieving their purported goal of facilitating and increasing the efficiency and speed of C/T research because of a lack of control over solutions to some important obstacles facing such research.

  17. On use of time-dependent microwave fields to increase an FEL oscillator efficiency

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1995-12-31

    Various schemes of a high efficiency FEL oscillator with time-dependent accelerating (or decelerating) microwave field in interaction region are proposed. All the, schemes are based on standard accelerating structure and undulator technology. Feasibility of the proposed schemes is confirmed by results of numerical simulations. Realistic examples of FEL oscillators of infrared and visible wavelength ranges with efficiency about 20 % are presented.

  18. Techniques for increasing the film cooling efficiency by means of the vortex near-wall jets

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2013-12-01

    Experimental results on the effect of the methods of gas cooling arrangement on thermal efficiency are presented. The swirl cooling is considered at both injecting along the axis and co-axial supply of the cooling gas. The influence of swirling degree, density ratio of both flows and flow regimes on the efficiency of near-wall cooling is considered.

  19. Techniques for increasing the film cooling efficiency by means of the vortex near-wall jets

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Shishkin, N. E.

    2014-12-01

    Experimental results on the effect of the methods of gas cooling arrangement on thermal efficiency are presented. The swirl cooling is considered at both injecting along the axis and co-axial supply of the cooling gas. The influence of swirling degree, density ratio of both flows and flow regimes on the efficiency of near-wall cooling is considered.

  20. Increasing the Reading Achievement of At-Risk Children through Direct Instruction: Evaluation of the Rodeo Institute for Teacher Excellence.

    ERIC Educational Resources Information Center

    Carlson, Coleen D.; Francis, David J.

    2002-01-01

    Evaluated the Rodeo Institute for Teacher Excellence (RITE), a phonics-based program that addressed at-risk students' failure to develop reading skills and provided teacher professional development. Data on K-2 students in intervention and control schools indicated that the RITE program successfully increased RITE students' reading abilities,…

  1. Small Businesses Save Big: A Borrower's Guide To Increase the Bottom Line Using Energy Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Dollars saved through energy efficiency can directly impact your bottom line. Whether you are planning for a major renovation or upgrading individual pieces of building equipment, these improvements can help reduce operating costs, save on utility bills, and boost profits. This fact sheet provides a guide for small businesses to find the resources to increase the energy efficiency of their buildings.

  2. ACHIEVING PERCEPTUAL-MOTOR EFFICIENCY, A SPACE-ORIENTED APPROACH TO LEARNING. PERCEPTUAL MOTOR CURRICULUM, VOLUME I.

    ERIC Educational Resources Information Center

    BARSCH, RAY H.

    THE FIRST OF A 3-VOLUME PERCEPTUAL MOTOR CURRICULUM, THE BOOK DESCRIBES A PROGRAM BASED ON A THEORY OF MOVEMENT WHICH THE AUTHOR LABELS MOVIGENICS (THE STUDY OF THE ORIGIN AND DEVELOPMENT OF PATTERNS OF MOVEMENT IN MAN AND THE RELATIONSHIP OF THESE MOVEMENTS TO HIS LEARNING EFFICIENCY). TEN BASIC CONSTRUCTS OF MOVIGENICS ARE OUTLINED, AND THE…

  3. Use of combined steam-water and organic rankine cycles for achieving better efficiency of gas turbine units and internal combustion engines

    NASA Astrophysics Data System (ADS)

    Gotovskiy, M. A.; Grinman, M. I.; Fomin, V. I.; Aref'ev, V. K.; Grigor'ev, A. A.

    2012-03-01

    Innovative concepts of recovering waste heat using low-boiling working fluids, due to which the the efficiency can be increased to 28-30%, are presented. If distributed generation of electricity or combined production of heat and electricity is implemented, the electrical efficiency can reach 58-60% and the fuel heat utilization factor, 90%.

  4. Redesign of Process Map to Increase Efficiency: Reducing Procedure Time 1 in Cervical-Cancer Brachytherapy

    PubMed Central

    Damato, Antonio L.; Cormack, Robert A.; Bhagwat, Mandar S.; Buzurovic, Ivan; Finucane, Susan; Hansen, Jorgen L.; O’Farrell, Desmond A.; Offiong, Alecia; Randall, Una; Friesen, Scott; Lee, Larissa J.; Viswanathan, Akila N.

    2014-01-01

    Purpose To increase intra-procedural efficiency in the use of clinical resources and to decrease planning time for cervical-cancer brachytherapy treatments through redesign of the procedure’s process map. Methods and Materials A multi-disciplinary team identified all tasks and associated resources involved in cervical-cancer brachytherapy in our institution, and arranged them in a process map. A redesign of the treatment planning component of the process map was conducted with the goal of minimizing planning time. Planning time was measured on 20 consecutive insertions, of which 10 were performed with standard procedures and 10 with the redesigned process map, and results compared. Statistical significance (p <0.05) was measured with a 2-tailed T-test. Results Twelve tasks involved in cervical-cancer brachytherapy treatments were identified. The process map showed that in standard procedures, the treatment planning tasks were performed sequentially. The process map was redesigned to specify that contouring and some planning tasks are performed concomitantly. Some quality assurance (QA) tasks were reorganized to minimize adverse effects of a possible error on procedure time. Test “dry runs” followed by live implementation confirmed the applicability of the new process map to clinical conditions. A 29% reduction in planning time (p <0.01) was observed with the introduction of the redesigned process map. Conclusions A process map for cervical-cancer brachytherapy was generated. The treatment planning component of the process map was redesigned, resulting in a 29% decrease in planning time and a streamlining of the QA process. PMID:25572438

  5. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids.

    PubMed

    LeMaster, David M; Tang, Jianzhong; Paredes, Diana I; Hernández, Griselda

    2005-11-15

    The extreme thermal stability of proteins from hyperthermophilic organisms is widely believed to arise from an increased conformational rigidity in the native state. In apparent contrast to this paradigm, both Pyrococcus furiosus (Pf) rubredoxin, the most thermostable protein characterized to date, and its Clostridium pasteurianum (Cp) mesophile homolog undergo a transient conformational opening of their multi-turn segments, which is more favorable in hyperthermophile proteins below room temperature. Substitution of the hyperthermophile multi-turn sequence into the mesophile protein sequence yields a hybrid, (14-33(Pf)) Cp, that exhibits a 12 degrees increase in its reversible thermal unfolding transition midpoint. Nuclear magnetic resonance (NMR) magnetization transfer-based hydrogen exchange was used to monitor backbone conformational dynamics in the subsecond time regime. Despite the substantially increased thermostability, flexibility throughout the entire main chain of the more thermostable hybrid is equal to or greater than that of the wild type mesophile rubredoxin near its normal growth temperature. In comparison to the identical core residues of the (14-33(Pf)) Cp rubredoxin hybrid, six spatially clustered residues in the parental mesophile protein exhibit a substantially larger temperature dependence of exchange. The exchange behavior of these six residues closely matches that observed in the multi-turn segment, consistent with a more extensive conformational process. These six core residues exhibit a much weaker temperature dependence of exchange in the (14-33(Pf)) Cp hybrid, similar to that observed for the multi-turn segment in its parental Pf rubredoxin. These results suggest that differential temperature dependence of flexibility can underlie variations in thermostability observed for mesophile versus hyperthermophile homologs.

  6. The hybrid progress note: semiautomating daily progress notes to achieve high-quality documentation and improve provider efficiency.

    PubMed

    Kargul, George J; Wright, Scott M; Knight, Amy M; McNichol, Mary T; Riggio, Jeffrey M

    2013-01-01

    Health care institutions are moving toward fully functional electronic medical records (EMRs) that promise improved documentation, safety, and quality of care. However, many hospitals do not yet use electronic documentation. Paper charting, including writing daily progress notes, is time-consuming and error prone. To improve the quality of documentation at their hospital, the authors introduced a highly formatted paper note template (hybrid note) that is prepopulated with data from the EMR. Inclusion of vital signs and active medications improved from 75.5% and 60% to 100% (P < .001), respectively. The use of unapproved abbreviations in the medication list decreased from 13.3% to 0% (P < .001). Prepopulating data enhances provider efficiency. Interviews of key clinician leaders also suggest that the initiative is well accepted and that documentation quality is enhanced. The hybrid progress note improves documentation and provider efficiency, promotes quality care, and initiates the development of the forthcoming electronic progress note.

  7. A method for achieving an order-of-magnitude increase in the temporal resolution of a standard CRT computer monitor.

    PubMed

    Fiesta, Matthew P; Eagleman, David M

    2008-09-15

    As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.

  8. 75 FR 27341 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... adopted into market operation software. Smarter software is a valuable tool for improving the efficiency..., demand resources (DR, DG, and storage), electric vehicles, dispatchable transmission, and combined cycle... respect to energy, reserves, ramp rates, and network topology), flexible dispatch, settlement...

  9. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    SciTech Connect

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  10. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  11. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  12. Is the increasing policy use of Impact Assessment in Europe likely to undermine efforts to achieve healthy public policy?

    PubMed

    Smith, Katherine E; Fooks, Gary; Collin, Jeff; Weishaar, Heide; Gilmore, Anna B

    2010-06-01

    European policymakers have recently become increasingly committed to using Impact Assessment (IA) to inform policy decisions. Welcoming this development, the public health community has not yet paid sufficient attention to conceptual concerns about IA or to corporate efforts to shape the way in which IA is used. This essay is a thematic analysis of literature concerning IA and associated tools and a related assessment of the European Union's (EU) new 'integrated' IA tool. Eight key concerns regarding IA are identified from the literature, many of which relate to the potential for undue corporate influence. Assessment of the EU's IA tool suggests that many of these concerns are valid. The findings raise crucial questions about the role of IA in public policy. By focusing mainly on the impact on the economy and business environment, the EU's current approach to IA may undermine healthy public policy. Those interested in public health need to acknowledge and respond to the problems associated with IA and evaluate the effects of 'integrated' IA tools on policy decisions affecting public health.

  13. Operational efficiency increase in a copper vapor laser due to the replacement of vacuum jacket brewster windows with flat windows

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Witherspoon, Ned; Holloway, John; Price, Brian; Miller, Robert

    1989-01-01

    The vacuum integrity of the discharge tube of a copper vapor laser (CVL) is normally protected by Brewster angled windows. In an attempt to increase the operating efficiency of the CVL, flat windows were used to replace the Brewster windows. Experimental data confirm that the overall efficiency of the CVL does increase when such windows are used. The experimental results are discussed in terms of a computer model found in the literature. The cause of the efficiency increase appears due to a double optical cavity set up by the flat windows. However, the variation of the efficiency due to changes in the pulse repetition frequency (PRF) and buffer gas pressure are less well understood.

  14. Side-Chain Fluorination: An Effective Approach to Achieving High-Performance All-Polymer Solar Cells with Efficiency Exceeding 7.

    PubMed

    Oh, Jiho; Kranthiraja, Kakaraparthi; Lee, Changyeon; Gunasekar, Kumarasamy; Kim, Seonha; Ma, Biwu; Kim, Bumjoon J; Jin, Sung-Ho

    2016-12-01

    Side-chain fluorination of polymers is demonstrated as a highly effective strategy to improve the efficiency of all-polymer solar cells from 2.93% (nonfluorinated P1) to 7.13% (fluorinated P2). This significant enhancement is achieved by synergistic improvements in open-circuit voltage, charge generation, and charge transport, as fluorination of the donor polymer optimizes the band alignment and the film morphology.

  15. Increasing the Academic Achievement of Middle School Students Exposed to Domestic Violence through Interpersonal-Cognitive Group Counseling and Parenting Education (Project REAL).

    ERIC Educational Resources Information Center

    Foreman, Deborah

    Project REAL (Relationship skills, Education on violence prevention, Academics, Leadership and decision-making skills) was a practicum designed to increase the academic achievement of middle school students exposed to domestic violence. Eleven students and their parents participated in a 12-week interpersonal-cognitive counseling group and its…

  16. Influence of College Clubs in Increasing Students' Interest and Achievement in Nigerian Post-Primary Schools as Perceived by Science Students

    ERIC Educational Resources Information Center

    Nwankwo, Madeleine C.; Okoye, K. R. E.

    2015-01-01

    The perceived influence of college club in increasing students' interest and achievement in Nigerian post-primary schools in Anambra State was studied using a survey research design. The population of the study comprised all senior secondary school science students in Anambra State totaling 9322 as at 2007. From this population, a sample of 140…

  17. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  18. Opportunities for increasing biomass conversion efficiencies to ethanol by engineering energy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States government has targeted aggressive development of bioethanol as one route for decreasing oil dependence and lowering greenhouse gas emissions. Achieving future production targets depends on expanding feedstock sources beyond corn and towards lignocellulose. This is expected to in...

  19. A method for increasing the scoring efficiency of the Farnsworth-Munsell 100-Hue test.

    PubMed

    Craven, B J

    1997-03-01

    This paper describes a method for scoring the Farnsworth-Munsell 100-Hue test, based on maximum-likelihood estimation, which in theory reduces test-to-test variability in scores and which is therefore better able to discriminate between different levels of overall colour discrimination than is the original Farnsworth scoring system. Error scores produced by the method are directly comparable to error scores produced by the traditional scoring system. It is hoped that this work will provoke further consideration of the efficiency of the scoring system as far as test-to-test variability is concerned, including the efficient detection of polarity in the subject's hue discrimination function.

  20. The inter-group comparison-intra-group cooperation hypothesis: comparisons between groups increase efficiency in public goods provision.

    PubMed

    Böhm, Robert; Rockenbach, Bettina

    2013-01-01

    Identifying methods to increase cooperation and efficiency in public goods provision is of vital interest for human societies. The methods that have been proposed often incur costs that (more than) destroy the efficiency gains through increased cooperation. It has for example been shown that inter-group conflict increases intra-group cooperation, however at the cost of collective efficiency. We propose a new method that makes use of the positive effects associated with inter-group competition but avoids the detrimental (cost) effects of a structural conflict. We show that the mere comparison to another structurally independent group increases both the level of intra-group cooperation and overall efficiency. The advantage of this new method is that it directly transfers the benefits from increased cooperation into increased efficiency. In repeated public goods provision we experimentally manipulated the participants' level of contribution feedback (intra-group only vs. both intra- and inter-group) as well as the provision environment (smaller groups with higher individual benefits from cooperation vs. larger groups with lower individual benefits from cooperation). Irrespective of the provision environment groups with an inter-group comparison opportunity exhibited a significantly stronger cooperation than groups without this opportunity. Participants conditionally cooperated within their group and additionally acted to advance their group to not fall behind the other group. The individual efforts to advance the own group cushion the downward trend in the above average contributors and thus render contributions on a higher level. We discuss areas of practical application.

  1. Experimental investigation of precision grinding oriented to achieve high process efficiency for large and middle-scale optic

    NASA Astrophysics Data System (ADS)

    Li, Ping; Jin, Tan; Guo, Zongfu; Lu, Ange; Qu, Meina

    2016-10-01

    High efficiency machining of large precision optical surfaces is a challenging task for researchers and engineers worldwide. The higher form accuracy and lower subsurface damage helps to significantly reduce the cycle time for the following polishing process, save the cost of production, and provide a strong enabling technology to support the large telescope and laser energy fusion projects. In this paper, employing an Infeed Grinding (IG) mode with a rotary table and a cup wheel, a multi stage grinding process chain, as well as precision compensation technology, a Φ300mm diameter plano mirror is ground by the Schneider Surfacing Center SCG 600 that delivers a new level of quality and accuracy when grinding such large flats. Results show a PV form error of Pt<2 μm, the surface roughness Ra<30 nm and Rz<180 nm, with subsurface damage <20 μm, and a material removal rates of up to 383.2 mm3/s.

  2. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.

    PubMed

    Rephaeli, Eden; Fan, Shanhui

    2009-08-17

    We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO(2) multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

  3. Increasing Instructional Efficiency by Presenting Additional Stimuli in Learning Trials for Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Vladescu, Jason C.; Kodak, Tiffany M.

    2013-01-01

    The current study examined the effectiveness and efficiency of presenting secondary targets within learning trials for 4 children with an autism spectrum disorder. Specifically, we compared 4 instructional conditions using a progressive prompt delay. In 3 conditions, we presented secondary targets in the antecedent or consequence portion of…

  4. "Intentional Repetition" and Learning Style: Increasing Efficient and Cohesive Interaction in Asynchronous Online Discussions

    ERIC Educational Resources Information Center

    Topcu, Abdullah

    2008-01-01

    This study verified the efficacy of the intentional repetition technique in improving interaction in asynchronous online discussions by taking into account the learning styles of the participants. A conceptual framework served for the development of the technique, which conceptualises efficient and cohesive interaction on a continuum of process…

  5. Firearm Injury Prevention Skills: Increasing the Efficiency of Training with Peer Tutoring

    ERIC Educational Resources Information Center

    Jostad, Candice M.; Miltenberger, Raymond G.

    2004-01-01

    Gun play results in hundreds of childhood injuries and deaths each year in the United States. Behavioral Skills Training (BST) is used to teach children the skills needed to resist gun play when finding a firearm. Although effective, existing BST programs are time and resource intensive and therefore lack the efficiency required to be widely…

  6. Increasing the sonoporation efficiency of targeted polydisperse microbubble populations using chirp excitation.

    PubMed

    McLaughlan, James; Ingram, Nicola; Smith, Peter R; Harput, Sevan; Coletta, P Louise; Evans, Stephen; Freear, Steven

    2013-12-01

    The therapeutic use of microbubbles for targeted drug or gene delivery is a highly active area of research. Phospholipid- encapsulated microbubbles typically have a polydisperse size distribution over the 1 to 10 μm range and can be functionalized for molecular targeting and loaded with drugcarrying liposomes. Sonoporation through the generation of shear stress on the cell membrane by microbubble oscillations is one mechanism that results in pore formation in the cell membrane and can improve drug delivery. A microbubble oscillating at its resonant frequency would generate maximum shear stress on a membrane. However, because of the polydisperse nature of phospholipid microbubbles, a range of resonant frequencies would exist in a single population. In this study, the use of linear chirp excitations was compared with equivalent duration and acoustic pressure tone excitations when measuring the sonoporation efficiency of targeted microbubbles on human colorectal cancer cells. A 3 to 7 MHz chirp had the greatest sonoporation efficiency of 26.9 ± 5.6%, compared with 16.4 ± 1.1% for the 1.32 to 3.08 MHz chirp. The equivalent 2.2- and 5-MHz tone excitations have efficiencies of 12.8 ± 2.1% and 15.6 ± 1.1%, respectively, which were all above the efficiency of 4.1 ± 3.1% from the control exposure.

  7. Single-Cell-State Culture of Human Pluripotent Stem Cells Increases Transfection Efficiency

    PubMed Central

    Nii, Takenobu; Kohara, Hiroshi; Marumoto, Tomotoshi; Sakuma, Tetsushi; Yamamoto, Takashi; Tani, Kenzaburo

    2016-01-01

    Abstract Efficient gene transfer into human pluripotent stem cells (hPSCs) holds great promise for regenerative medicine and pharmaceutical development. In the past decade, various methods were developed for gene transfer into hPSCs; however, hPSCs form tightly packed colonies, making gene transfer difficult. In this study, we established a stable culture method of hPSCs at a single-cell state to reduce cell density and investigated gene transfection efficiency followed by gene editing efficiency. hPSCs cultured in a single-cell state were transfected using nonliposomal transfection reagents with plasmid DNA or mRNA encoding enhanced green fluorescent protein. We found that most cells (DNA > 90%; mRNA > 99%) were transfected without the loss of undifferentiated PSC marker expression or pluripotency. Moreover, we demonstrated an efficient gene editing method using transcription activator-like effector nucleases (TALENs) targeting the adenomatous polyposis coli (APC) gene. Our new method may improve hPSC gene transfer techniques, thus facilitating their use for human regenerative medicine. PMID:27257519

  8. Online decision support based on modeling with the aim of increased irrigation efficiency

    NASA Astrophysics Data System (ADS)

    Dövényi-Nagy, Tamás; Bakó, Károly; Molnár, Krisztina; Rácz, Csaba; Vasvári, Gyula; Nagy, János; Dobos, Attila

    2015-04-01

    The significant changes in the structure of ownership and control of irrigation infrastructure in the past decades resultted in the decrease of total irrigable and irrigated area (Szilárd, 1999). In this paper, the development of a model-based online service is described whose aim is to aid reasonable irrigation practice and increase water use efficiency. In order to establish a scientific background for irrigation, an agrometeorological station network has been built up by the Agrometeorological and Agroecological Monitoring Centre. A website has been launched in order to provide direct access for local agricultural producers to both the measured weather parameters and results of model based calculations. The public site provides information for general use, registered partners get a handy model based toolkit for decision support at the plot level concerning irrigation, plant protection or frost forecast. The agrometeorological reference station network was established in the recent years by the Agrometeorological and Agroecological Monitoring Centre and is distributed to cover most of the irrigated cropland areas of Hungary. From the spatial aspect, the stations have been deployed mainly in Eastern Hungary with concentrated irrigation infrastructure. The meteorological stations' locations have been carefully chosen to represent their environment in terms of soil, climatic and topographic factors, thereby assuring relevant and up-to-date input data for the models. The measured parameters range from classic meteorological data (air temperature, relative humidity, solar irradiation, wind speed etc.) to specific data which are not available from other services in the region, such as soil temperature, soil water content in multiple depths and leaf wetness. In addition to the basic grid of reference stations, specific stations under irrigated conditions have been deployed to calibrate and validate the models. A specific modeling framework (MetAgro) has been developed

  9. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

  10. Increased efficiency of rf-induced evaporative cooling by utilizing gravity

    NASA Astrophysics Data System (ADS)

    Klinner, Julian; Wolke, Matthias; Hemmerich, Andreas

    2010-04-01

    We report on an efficient rf-induced forced evaporative cooling of an ensemble of Rb87 atoms in state |F=2,mF=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different mF value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency α≡dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.

  11. Conducting successful programs to increase the energy efficiency of manufactured housing

    SciTech Connect

    Lee, A.D.; Volke, S.M. ); Reiwer, S.M. )

    1990-08-01

    Since 1985, Bonneville has conducted a multilayer program to promote higher efficiency in manufactured homes. Recently, manufactured housing was included in Bonneville's Residential Construction Demonstration Project (RCDP) Cycle II. The demonstration was a success: 8 out of 17 regional plants participated; 150 manufactured homes were built to the Northwest Power Planning Council's regional energy-efficiency Model Conservation Standards (MCS); and all 17 plants have indicated they will participate in the Super Good Cents (SGC) program, a Bonneville marketing program for homes built to the MCS. Information about Bonneville's program should be of interest to planners and policymakers in other parts of the country. This paper discusses Bonneville's program, its key outcomes, and lessons learned. 8 refs., 1 tab.

  12. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp.

    PubMed

    Zhao, Lingfeng; Yuan, Zhaoyang; Kapu, Nuwan Sella; Chang, Xue Feng; Beatson, Rodger; Trajano, Heather L; Martinez, D Mark

    2017-01-01

    To improve the efficiency of enzymatic hemicellulose removal from bamboo pre-hydrolysis kraft pulp, mechanical refining was conducted prior to enzyme treatment. Refining significantly improved the subsequent hemicellulose removal efficiency by xylanase treatment. Results showed that when PFI refining was followed by 3h xylanase treatment, the xylan content of the bamboo pre-hydrolysis kraft pulp (after first stage oxygen delignification) could be decreased to 2.72% (w/w). After bleaching of enzyme treated pulp, the alpha-cellulose content was 93.4% (w/w) while the xylan content was only 2.38%. The effect of refining on fibre properties was investigated in terms of freeness, water retention value, fibre length and fibrillation characteristics. The brightness, reactivity and viscosity were also determined to characterize the quality of final pulp. Results demonstrated the feasibility of combining refining and xylanase treatment to produce high quality bamboo dissolving pulp.

  13. Potential for the increased efficiency in motors in the chemical and processing industries. Final report

    SciTech Connect

    Pillay, P.

    1996-08-01

    Refineries and chemical plants make up a large portion of the process industry in Louisiana. Detailed surveys of motors and motor loads were done for 2 refineries and 5 chemical plants. In addition, surveys of motor failures were done for 1 refinery and 4 chemical plants. Categories of < 20hp, 20hp--250hp, 250hp--500hp and > 500hp were used to reflect the horsepower ranges sued by utilities nationwide in DSM rebate programs. The 20hp--250hp range being a target for replacement or retrofit scenarios; this is also the horsepower range where users have a choice of energy efficient or standard efficient motors. The data are presented in different graphs to emphasize different characteristics. A raw motor count is given that is an actual count in every hp; this is then organized in the hp ranges listed above. The total horsepower in each category is also given to show the concentration of the plant`s installed hp. the loads are divided into pumps, fans, compressors and others in the case of refineries. in the case of chemical plants, additional categories had to be used, depending on the plant, like agitators, centrifuges etc. A realistic tariff structure is then used to determine the potential for efficiency improvements with the resultant energy, demand and cost savings. The results of metering of motors are then presented. Results of a 50hp motor driving a pump, a 200 hp motor driving a pump, a 100 hp motor driving a fan, and a 30hp motor driving an agitator are included. An examination of variable speed drive efficiency is included, using detailed models of the power electronic devices. 20 refs., 180 figs., 82 tabs.

  14. Increasing the efficiency of organic solar cells using dielectric spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Vladimirova, Yu. V.; Zadkov, V. N.

    2016-12-01

    In this paper we review recent progress in using plasmonic nanoparticles for improving efficiency of the organic photovoltaic (PV) cells with embedded plasmonic nanoparticles. Specifically, we discuss how the plasmonic nanoparticles can be used for guiding and concentrating the light for enhanced absorption, paying attention to both fundamentals and design considerations, as well as to realization of the broadband plasmonic scattering to better utilize the incoming solar spectrum. Plus to that, we discuss potential advantages of using dielectric nanoparticles in PV solar cells.

  15. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  16. Increasing the Efficiency of Gold-Ceria Catalyst for the Massive Production of Hydrogen

    DTIC Science & Technology

    2010-10-04

    cerium dioxide (CeO2) singe crystals by means of atomic force microscopy (AFM) working with atomic resolution. Our AFM data reveal that single...Introduction: Ceria ( cerium dioxide, CeO2) is a material of tremendous potential in several industrial applications with important repercussions in...relevant process in the WGS reaction– on the two most efficient systems currently known for enhancing this chemical reaction: gold nanoclusters on ceria

  17. Application of X-Y Separable 2-D Array Beamforming for Increased Frame Rate and Energy Efficiency in Handheld Devices

    PubMed Central

    Owen, Kevin; Fuller, Michael I.; Hossack, John A.

    2015-01-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can

  18. Application of X-Y separable 2-D array beamforming for increased frame rate and energy efficiency in handheld devices.

    PubMed

    Owen, Kevin; Fuller, Michael; Hossack, John

    2012-07-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phase-rotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 x 60 channel array using a 40 x 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can

  19. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.

  20. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  1. Metal-Organic Framework Photosensitized TiO2 Co-catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System.

    PubMed

    Xie, Ming-Hua; Shao, Rong; Xi, Xin-Guo; Hou, Gui-Hua; Guan, Rong-Feng; Dong, Peng-Yu; Zhang, Qin-Fang; Yang, Xiu-Li

    2017-03-17

    A 3D metal-organic framework (ADA-Cd=[Cd2 L2 (DMF)2 ]⋅3 H2 O where H2 L is (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid) constructed from diacrylate substituted anthracene, sharing structural characteristics with some frequently employed anthraquinone-type dye sensitizers, was introduced as an effective sensitizer for anatase TiO2 to achieve enhanced visible light photocatalytic performance. A facile mechanical mixing procedure was adopted to prepare the co-catalyst denoted as ADA-Cd/TiO2 , which showed enhanced photodegradation ability, as well as sustainability, towards several dyes under visible light irradiation. Mechanistic studies revealed that ADA-Cd acted as the antenna to harvest visible light energy, generating excited electrons, which were injected to the conduction band (CB) of TiO2 , facilitating the separation efficiency of charge carriers. As suggested by the results of control experiments, combined with the corresponding redox potential of possible oxidative species, (.) O2(-) , generated from the oxygen of ambient air at the CB of TiO2 was believed to play a dominant role over (.) OH and h(+) . UV/Vis and photoluminescence technologies were adopted to monitor the generation of (.) O2(-) and (.) OH, respectively. This work presents a facile strategy to achieve a visible light photocatalyst with enhanced catalytic activity and sustainability; the simplicity, efficiency, and stability of this strategy may provide a promising way to achieve environmental remediation.

  2. Poly(D,L-lactide-co-glycolide acid) nanoparticles for DNA delivery: waiving preparation complexity and increasing efficiency.

    PubMed

    Gvili, Koby; Benny, Ofra; Danino, Dganit; Machluf, Marcelle

    When designing a nonviral gene delivery system based on polymeric nanoparticles (NPs), it is important to keep in mind obstacles associated with future clinical applications. Simplifying the procedure of NPs production and taking toxicity into account are the most important issues that need to be addressed. Toxicity concerns in clinical trials may be raised when using additives such as cationic polymers/lipids, buffering reagents, and proteins. Therefore, the aim of this study was to simplify the formulation of poly (lactide-co-glycolide) acid NPs by shortening steps such as sonication time and by avoiding the use of additives while preserving its efficiency. NPs (300 nm) were formulated using a modified w/o/w technique with DNA entrapment efficiency of 80%. Once achieving such NPs, formulation parameters such as DNA loading, release kinetics, DNA integrity and bioactivity, uptake by cells, and toxicity were addressed. The NPs were readily taken by several cell lines and were localized mostly in their endo-lysosomal compartments. The NPs did not affect cells viability. Most importantly, transfection studies in COS-7 and Cf2th cells resulted with a 250-fold protein expression levels when compared with the control. These expression levels are higher than ones achieved with more complicated NPs systems, demonstrating the efficiency of our simplified NPs for gene delivery.

  3. Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization.

    PubMed

    Hao, Yan; Saygili, Yasemin; Cong, Jiayan; Eriksson, Anna; Yang, Wenxing; Zhang, Jinbao; Polanski, Enrico; Nonomura, Kazuteru; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Hagfeldt, Anders; Boschloo, Gerrit

    2016-12-07

    Blue and green dyes as well as NIR-absorbing dyes have attracted great interest because of their excellent ability of absorbing the incident photons in the red and near-infrared range region. A novel blue D-π-A dye (Dyenamo Blue), based on the diketopyrrolopyrrole (DPP)-core, has been designed and synthesized. Assembled with the cobalt bipyridine-based electrolytes, the device with Dyenamo Blue achieved a satisfying efficiency of 7.3% under one sun (AM1.5 G). The co-sensitization strategy was further applied on this blue organic dye together with a red D-π-A dye (D35). The successful co-sensitization outperformed a panchromatic light absorption and improved the photocurrent density; this in addition to the open-circuit potential result in an efficiency of 8.7%. The extended absorption of the sensitization and the slower recombination reaction between the blue dye and TiO2 surface inhibited by the additional red sensitizer could be the two main reasons for the higher performance. In conclusion, from the results, the highly efficient cobalt-based DSSCs could be achieved with the co-sensitization between red and blue D-π-A organic dyes with a proper design, which showed us the possibility of applying this strategy for future high-performance solar cells.

  4. Viscoelastic fluid response can increase the speed and efficiency of a free swimmer.

    PubMed

    Teran, Joseph; Fauci, Lisa; Shelley, Michael

    2010-01-22

    Microorganisms navigate through complex environments such as biofilms and mucosal tissues and tracts. To understand the effect of a complex medium upon their locomotion, we investigate numerically the effect of fluid viscoelasticity on the dynamics of an undulating swimming sheet. First, we recover recent small-amplitude results for infinite sheets that suggest that viscoelasticity impedes locomotion. We find the opposite result when simulating free swimmers with large tail undulations, with both velocity and mechanical efficiency peaking for Deborah numbers near one. We associate this with regions of highly stressed fluid aft of the undulating tail.

  5. Emerging and established technologies to increase nitrogen use efficiency of cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fertilizers are expensive inputs; additionally, loss of N increases costs, contributes to soil acidification, and causes off-site pollution of air, groundwater and waterways. This study reviews current knowledge about technologies for N fertilization with potential to increase N use eff...

  6. Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems.

    PubMed

    Wilkins, R J

    2008-02-12

    Eco-efficiency is concerned with the efficient and sustainable use of resources in farm production and land management. It can be increased either by altering the management of individual crop and livestock enterprises or by altering the land-use system. This paper concentrates on the effects of crop sequence and rotation on soil fertility and nutrient use efficiency. The potential importance of mixed farming involving both crops and livestock is stressed, particularly when the systems incorporate biological nitrogen fixation and manure recycling. There is, however, little evidence that the trend in developed countries to farm-level specialization is being reduced. In some circumstances legislation to restrict diffuse pollution may provide incentives for more diverse eco-efficient farming and in other circumstances price premia for produce from eco-efficient systems, such as organic farming, and subsidies for the provision of environmental services may provide economic incentives for the adoption of such systems. However, change is likely to be most rapid where the present systems lead to obvious reductions in the productive potential of the land, such as in areas experiencing salinization. In other situations, there is promise that eco-efficiency could be increased on an area-wide basis by the establishment of linkages between farms of contrasting type, particularly between specialist crop and livestock farms, with contracts for the transfer of manures and, to a lesser extent, feeds.

  7. China's growing CO{sub 2} emissions - a race between increasing consumption and efficiency gains

    SciTech Connect

    Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek

    2007-09-15

    China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO{sub 2} emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO{sub 2} emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO{sub 2} emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries. 65 refs., 3 figs., 1 tab.

  8. Visual Working Memory Capacity Can Be Increased by Training on Distractor Filtering Efficiency

    PubMed Central

    Li, Cui-Hong; He, Xu; Wang, Yu-Juan; Hu, Zhe; Guo, Chun-Yan

    2017-01-01

    It is generally considered that working memory (WM) capacity is limited and that WM capacity affects cognitive processes. Distractor filtering efficiency has been suggested to be an important factor in determining the visual working memory (VWM) capacity of individuals. In the present study, we investigated whether training in visual filtering efficiency (FE) could improve VWM capacity, as measured by performance on the change detection task (CDT) and changes of contralateral delay activity (CDA) (contralateral delay activity) of different conditions, and evaluated the transfer effect of visual FE training on verbal WM and fluid intelligence, as indexed by performance on the verbal WM span task and Raven’s Standard Progressive Matrices (RSPM) test, respectively. Participants were divided into high- and low-capacity groups based on their performance in a CDT designed to test VWM capacity, and then the low-capacity individuals received 20 days of FE training. The training significantly improved the group’s performance in the CDT, and their CDA models of different conditions became more similar with high capacity group, and the effect generalized to improve verbal WM span. These gains were maintained at a 3-month follow-up test. Participants’ RSPM scores were not changed by the training. These findings support the notion that WM capacity is determined, at least in part, by distractor FE and can be enhanced through training. PMID:28261131

  9. China's growing CO2 emissions--a race between increasing consumption and efficiency gains.

    PubMed

    Peters, Glen P; Weber, Christopher L; Guan, Dabo; Hubacek, Klaus

    2007-09-01

    China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO2 emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO2 emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO2 emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries.

  10. REVERSAL OF FORTUNE: INCREASED STAR FORMATION EFFICIENCIES IN THE EARLY HISTORIES OF DWARF GALAXIES?

    SciTech Connect

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  11. Modeling of a water vapor selective membrane unit to increase the energy efficiency of humidity harvesting

    NASA Astrophysics Data System (ADS)

    Bergmair, D.; Metz, S. J.; de Lange, H. C.; van Steenhoven, A. A.

    2012-11-01

    Air humidity is a promising source of clean and safe drinking water. However, in conventional systems a lot of energy is wasted on the production of cold air, rather than the condensation of water vapor. This study examines the possibility of using a hollow fiber membrane module to make this process more energy efficient, by separating the vapor from other gases, prior to the cooling process with the help of selective membranes. The water vapor concentration within a fiber has been modeled using a random walker approach, and the membrane permeability has been implemented as a re-bounce probability for simulation particles interacting with the membrane. Considering the additional work requirement for driving a feed flow through the membrane section and the computed water vapor permeation it could be shown that the energy demand per unit water is lowest for slow flow speeds and favors short and thin fibers. The total energy requirement was estimated to be less than half of the conventional one. Comparison with other CFD simulations and a real life module has shown a good level of agreement, indicating that a membrane section could improve the energy efficiency of humidity harvesting significantly.

  12. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    PubMed Central

    Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703

  13. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    SciTech Connect

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  14. Practical strategies for increasing efficiency and effectiveness in critical care education.

    PubMed

    Joyce, Maurice F; Berg, Sheri; Bittner, Edward A

    2017-02-04

    Technological advances and evolving demands in medical care have led to challenges in ensuring adequate training for providers of critical care. Reliance on the traditional experience-based training model alone is insufficient for ensuring quality and safety in patient care. This article provides a brief overview of the existing educational practice within the critical care environment. Challenges to education within common daily activities of critical care practice are reviewed. Some practical evidence-based educational approaches are then described which can be incorporated into the daily practice of critical care without disrupting workflow or compromising the quality of patient care. It is hoped that such approaches for improving the efficiency and efficacy of critical care education will be integrated into training programs.

  15. Monitoring applications of power generators for the increase of energy efficiency using novel fiber optical sensors

    NASA Astrophysics Data System (ADS)

    Villnow, Michael; Willsch, Michael; Bosselmann, Thomas; Schmauss, Bernhard

    2011-05-01

    To verify optimization measures of power generators to improve the energy efficiency and to monitor critical parameters, fiber optical sensors have been developed and investigated. A fiber optical hot wire anemometer based on the thermooptic effect of Fiber Bragg Gratings was investigated to measure the flow distribution along the stator core. Fiber optical magnetic field sensors, based on the strain-optic effect of FBGs, were used to measure the magnetic field distribution on the end windings of a power generator. A novel fiber-optical accelerometer was used to measure the end winding vibrations. In this paper the functionality of each sensor is described and results of field test under real conditions are shown and discussed.

  16. Practical strategies for increasing efficiency and effectiveness in critical care education

    PubMed Central

    Joyce, Maurice F; Berg, Sheri; Bittner, Edward A

    2017-01-01

    Technological advances and evolving demands in medical care have led to challenges in ensuring adequate training for providers of critical care. Reliance on the traditional experience-based training model alone is insufficient for ensuring quality and safety in patient care. This article provides a brief overview of the existing educational practice within the critical care environment. Challenges to education within common daily activities of critical care practice are reviewed. Some practical evidence-based educational approaches are then described which can be incorporated into the daily practice of critical care without disrupting workflow or compromising the quality of patient care. It is hoped that such approaches for improving the efficiency and efficacy of critical care education will be integrated into training programs. PMID:28224102

  17. Standardized workflows for increasing efficiency and productivity in discovery stage bioanalysis.

    PubMed

    Bateman, Kevin P; Cohen, Lucinda; Emary, Bart; Pucci, Vincenzo

    2013-07-01

    Merck consolidated discovery stage bioanalytical functions into the Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism in 2007. Since then procedures and equipment used to provide important quantitative data to project teams have been harmonized and in many cases standardized. This approach has enabled movement of work across the network of laboratories and has resulted in a lean, flexible and efficient organization. The overall goal was to reduce time and resources spent on routine activities while creating time to perform research in new areas and technologies to support future scientific needs. The current state of discovery bioanalysis at Merck is discussed, including hardware and software platforms, workflow procedures and performance metrics. Examples of improved processes will be discussed for compound tuning, LC method development, analytical acceptance criteria, automated sample preparation, sample analysis platforms, data processing and data reporting.

  18. C2-domain mediated nano-cluster formation increases calcium signaling efficiency

    PubMed Central

    Bonny, Mike; Hui, Xin; Schweizer, Julia; Kaestner, Lars; Zeug, André; Kruse, Karsten; Lipp, Peter

    2016-01-01

    Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca2+ signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living cells combined with computational analysis to study the spatial organization of cPKCs bound to the plasma membrane. We discovered Ca2+-dependent cPKC nano-clusters that significantly extend cPKC’s plasma-membrane residence time. These protein patterns resulted from self-assembly mediated by Ca2+-binding C2-domains, which are widely used for membrane-targeting of Ca2+-sensing proteins. We also established clustering of other unrelated C2-domain containing proteins, suggesting that nano-cluster formation is a key step for efficient cellular Ca2+-signaling. PMID:27808106

  19. Increasing Combustion Efficiency for Structural Reactive Materials through Design and Processing

    NASA Astrophysics Data System (ADS)

    Zahrah, Tony; Rowland, Rod; Silva, Erin; Littrell, Donald

    2015-06-01

    This paper describes the development of multifunctional materials - materials that are both structural and energetic. These materials typically consist of metal-metal, metal-metal oxide, or metal-oxidizer powder blends that are consolidated into structural components via Hot Isostatic Pressing (HIP), and release energy when explosively shocked via anaerobic (intermetallic or thermitic) reactions and aerobic (particle-air) reactions. The mechanical and reactive properties of the materials were tailored through powder selection and ratios. The powder blends included soft and hard materials, and the volume percent from each material was adjusted to control the consolidation temperature. This paper discusses the use of a unique instrumented-HIP technique to minimize the exposure of the powder blend to high temperature and maximize its combustion efficiency. It will focus on the Al-AlMg material system with discussion of its formulation, HIP processing parameters, mechanical properties, and energy release when explosively shocked.

  20. Advances in the Development of Gene-Targeting Vectors to Increase the Efficiency of Genetic Modification.

    PubMed

    Saito, Shinta; Adachi, Noritaka

    2016-01-01

    Gene targeting via homologous recombination, albeit highly inefficient in human cells, is considered a powerful tool for analyzing gene functions. Despite recent progress in the application of artificial nucleases for genome editing, safety issues remain a concern, particularly when genetic modification is used for therapeutic purposes. Therefore, the development of gene-targeting vectors is necessary for safe and sophisticated genetic modification. In this paper, we describe the effect of vector structure on random integration, which is a major obstacle in efficient gene targeting. In addition, we focus on the features of exon-trapping-type gene-targeting vectors, and discuss a novel strategy for negative selection to enhance gene targeting in human cells.

  1. C2-domain mediated nano-cluster formation increases calcium signaling efficiency.

    PubMed

    Bonny, Mike; Hui, Xin; Schweizer, Julia; Kaestner, Lars; Zeug, André; Kruse, Karsten; Lipp, Peter

    2016-11-03

    Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca(2+) signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living cells combined with computational analysis to study the spatial organization of cPKCs bound to the plasma membrane. We discovered Ca(2+)-dependent cPKC nano-clusters that significantly extend cPKC's plasma-membrane residence time. These protein patterns resulted from self-assembly mediated by Ca(2+)-binding C2-domains, which are widely used for membrane-targeting of Ca(2+)-sensing proteins. We also established clustering of other unrelated C2-domain containing proteins, suggesting that nano-cluster formation is a key step for efficient cellular Ca(2+)-signaling.

  2. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food.

    PubMed

    Haug, Anna; Graham, Robin D; Christophersen, Olav A; Lyons, Graham H

    2007-12-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations.

  3. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  4. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    PubMed

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  5. Detailed evaluation of different (68)Ge/(68)Ga generators: an attempt toward achieving efficient (68)Ga radiopharmacy.

    PubMed

    Chakravarty, Rubel; Chakraborty, Sudipta; Ram, Ramu; Vatsa, Rakhee; Bhusari, Priya; Shukla, Jaya; Mittal, B R; Dash, Ashutosh

    2016-03-01

    The present study is aimed at carrying out a comparative performance evaluation of different types of (68)Ge/(68)Ga generators to identify the best choice for use in (68)Ga-radiopharmacy. Over the 1 year period of evaluation, the elution yields from the CeO2-based and SiO2-based (68)Ge/(68) Ga generators remained almost consistent, in contrast to the sharp decrease observed in the elution yields from TiO2 and SnO2-based generators. The level of (68)Ge impurity in (68)Ga eluates from the CeO2 and SiO2-based (68)Ge/(68)Ga generator was always <10(-3)%, while this level increased from 10(-3)% to 10(-1)% in case of TiO2 and SnO2-based generators. The level of chemical impurities in (68)Ga eluates from CeO2 and SiO2-based (68)Ge/(68)Ga generators was negligibly low (<0.1 ppm) in contrast to the significantly higher level (1-20 ppm) of such impurities in eluates from other two generators. As demonstrated by radiolabeling studies carried out using DOTA-coupled dimeric cyclic RGD peptide derivative (DOTA-RGD2), CeO2-PAN and SiO2-based generators are directly amenable for radiopharmaceutical preparation, whereas the other generators can be only used after post-elution purification of (68)Ga eluates. Clinically relevant dose of (68)Ga-DOTA-RGD2 was prepared in a hospital radiopharmacy for non-invasive visualization of tumors in breast cancer patients using positron emission tomography.

  6. Using Supplementary Video in Multimedia Instruction as a Teaching Tool to Increase Efficiency of Learning and Quality of Experience

    ERIC Educational Resources Information Center

    Ljubojevic, Milos; Vaskovic, Vojkan; Stankovic, Srecko; Vaskovic, Jelena

    2014-01-01

    The main objective of this research is to investigate efficiency of use of supplementary video content in multimedia teaching. Integrating video clips in multimedia lecture presentations may increase students' perception of important information and motivation for learning. Because of that, students can better understand and remember key points of…

  7. The Endless Pursuit of Efficiency: The International Movement To Increase Accountability and Performance in Higher Education. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Alexander, F. King

    This paper examines the trend toward demanding increased accountability and efficiency by institutions of higher education in the United States and Europe and its implications for the relationship between government and the college or university. It notes that such factors as limited state resources, rising educational costs, and the growing…

  8. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux.

    PubMed

    Ward, Ben A; Follows, Michael J

    2016-03-15

    Mixotrophic plankton, which combine the uptake of inorganic resources and the ingestion of living prey, are ubiquitous in marine ecosystems, but their integrated biogeochemical impacts remain unclear. We address this issue by removing the strict distinction between phytoplankton and zooplankton from a global model of the marine plankton food web. This simplification allows the emergence of a realistic trophic network with increased fidelity to empirical estimates of plankton community structure and elemental stoichiometry, relative to a system in which autotrophy and heterotrophy are mutually exclusive. Mixotrophy enhances the transfer of biomass to larger sizes classes further up the food chain, leading to an approximately threefold increase in global mean organism size and an ∼35% increase in sinking carbon flux.

  9. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux

    PubMed Central

    Ward, Ben A.; Follows, Michael J.

    2016-01-01

    Mixotrophic plankton, which combine the uptake of inorganic resources and the ingestion of living prey, are ubiquitous in marine ecosystems, but their integrated biogeochemical impacts remain unclear. We address this issue by removing the strict distinction between phytoplankton and zooplankton from a global model of the marine plankton food web. This simplification allows the emergence of a realistic trophic network with increased fidelity to empirical estimates of plankton community structure and elemental stoichiometry, relative to a system in which autotrophy and heterotrophy are mutually exclusive. Mixotrophy enhances the transfer of biomass to larger sizes classes further up the food chain, leading to an approximately threefold increase in global mean organism size and an ∼35% increase in sinking carbon flux. PMID:26831076

  10. Increasing Efficiency at the NTF by Optimizing Model AoA Positioning

    NASA Technical Reports Server (NTRS)

    Crawford, Bradley L.; Spells, Courtney

    2006-01-01

    The National Transonic Facility (NTF) at NASA Langley Research Center (LaRC) is a national resource for aeronautical research and development. The government, military and private industries rely on the capability of this facility for realistic flight data. Reducing the operation costs and keeping the NTF affordable is essential for aeronautics research. The NTF is undertaking an effort to reduce the time between data points during a pitch polar. This reduction is being driven by the operating costs of a cryogenic facility. If the time per data point can be reduced, a substantial cost savings can be realized from a reduction in liquid nitrogen (LN2) consumption. It is known that angle-of-attack (AoA) positioning is the longest lead-time item between points. In January 2005 a test was conducted at the NTF to determine the cause of the long lead-time so that an effort could be made to improve efficiency. The AoA signal at the NTF originates from onboard instrumentation then travels through a number of different systems including the signal conditioner, digital voltmeter, and the data system where the AoA angle is calculated. It is then fed into a closed loop control system that sets the model position. Each process along this path adds to the time per data point affecting the efficiency of the data taking process. Due to the nature of the closed loop feed back AoA control and the signal path, it takes approximately 18 seconds to take one pitch pause point with a typical AoA increment. Options are being investigated to reduce the time delay between points by modifying the signal path. These options include: reduced signal filtering, using analog channels instead of a digital volt meter (DVM), re-routing the signal directly to the AoA control computer and implementing new control algorithms. Each of these has potential to reduce the positioning time and together the savings could be significant. These timesaving efforts are essential but must be weighed against

  11. Increased efficiency with surface texturing in ITO/InP solar cells

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Fatemi, Navid; Li, Xiaonan; Scheiman, David; Bailey, Sheila

    1992-01-01

    Optimization of an InP solar cell with a V-grooved surface is discussed. Total internal reflection in the coverglass reduces surface reflection and can recover light reflected from the front metallization. Results from the first ITO/InP solar cells on low-angle V-grooved substrates are presented, showing a 5.8 percent increase in current.

  12. Increasing Completion Rates in Norwegian Doctoral Training: Multiple Causes for Efficiency Improvements

    ERIC Educational Resources Information Center

    Kyvik, Svein; Olsen, Terje Bruen

    2014-01-01

    This article examines changes in completion rates and time-to-degree in Norwegian doctoral training over the last 30 years. A steadily increasing share of doctoral candidates holding a fellowship have been awarded their doctoral degree within five years; from 30% of those admitted in 1980 to 60% of those admitted 25 years later. Furthermore, the…

  13. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1

    PubMed Central

    Krossa, Sebastian; Schmitt, Anne Dorothée; Hattermann, Kirsten; Fritsch, Jürgen; Scheidig, Axel J.; Mehdorn, Hubertus Maximilian; Held-Feindt, Janka

    2015-01-01

    The Twist-1 transcription factor and its interacting protein Akirin-2 regulate apoptosis. We found that in glioblastomas, highly malignant brain tumors, Akirin-2 and Twist-1 were expressed in glial fibrillary acidic protein positive tumor regions as well as in tumor endothelial cells and infiltrating macrophages / microglia. Temozolomide (TMZ) induced the expression of both molecules, partly shifting their nuclear to cytosolic localization. The knock-down (kd) of Akirin-2 increased the activity of cleaved (c)Caspase-3/-7, the amounts of cCaspases-3, -7 and cPARP-1 and resulted in an increased number of apoptotic cells after TMZ exposure. Glioblastoma cells containing decreased amounts of Akirin-2 after kd contained increased amounts of cCaspase-3 as determined by the ImageStreamx Mark II technology. For Twist-1, similar results were obtained with the exception that the combination of TMZ treatment and Twist-1 kd failed to significantly reduce chemoresistance compared with controls. This could be attributed to a cell population containing only slightly increased cCaspase-3 together with decreased Twist-1 levels, which was clearly larger than the respective population observed under Akirin-2 kd. Our results showed that, compared with Twist-1, Akirin-2 is the more promising target for RNAi strategies antagonizing Twist-1/Akirin-2 facilitated glioblastoma cell survival. PMID:26036627

  14. A survey on breeding strategies and selection objectives for increased feed efficiency and decreased methane emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combined effects of world population growth, rising incomes and dietary changes have resulted in an increasing international demand for dairy and meat products. However, livestock can have negative impacts on the environment and the greater awareness of climate change has placed pressure on the ...

  15. Conservation cropping systems: Increasing water use efficiency and lowering production costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As of the 2007 Census of Agriculture, irrigated acres were only found on 4.4% of agricultural operations in Alabama. To increase irrigated acres, the Alabama Legislature passed the Irrigation Incentives Bill in 2012 to provide a state income tax credit of 20 percent of the costs of the purchase and ...

  16. Supplementing Vitamin E to the Ration of Beef Cattle Increased the Utilization Efficiency of Dietary Nitrogen

    PubMed Central

    Wei, Chen; Lin, Shixin; Wu, Jinlong; Zhao, Guangyong; Zhang, Tingting; Zheng, Wensi

    2016-01-01

    The objectives of the trial were to investigate the effects of supplementing vitamin E (VE) on nutrient digestion, nitrogen (N) retention and plasma parameters of beef cattle in feedlot. Four growing Simmental bulls, fed with a total mixed ration composed of corn silage and concentrate mixture as basal ration, were used as the experimental animals. Four levels of VE product, i.e. 0, 150, 300, 600 mg/head/d (equivalent to 0, 75, 150, 300 IU VE/head/d), were supplemented to the basal ration (VE content 38 IU/kg dry matter) in a 4×4 Latin square design as experimental treatments I, II, III and IV, respectively. Each experimental period lasted 15 days, of which the first 12 days were for pretreatment and the last 3 days for sampling. The results showed that supplementing VE did not affect the nutrient digestibility (p>0.05) whereas decreased the urinary N excretion (p<0.01), increased the N retention (p<0.05) and tended to increase the microbial N supply estimated based on the total urinary purine derivatives (p = 0.057). Supplementing VE increased the plasma concentrations of VE, glucose and triglycerol (TG) (p<0.05) and tended to increase the plasma concentration of total protein (p = 0.096) whereas did not affect the plasma antioxidant indices and other parameters (p>0.05). It was concluded that supplementing VE up to 300 IU/head/d did not affect the nutrient digestibility whereas supplementing VE at 150 or 300 IU/head/d increased the N retention and the plasma concentrations of VE and TG (p<0.05) of beef cattle. PMID:26950868

  17. A high efficiency veto to increase the sensitivity of ZEPLIN-III, a WIMP detector

    SciTech Connect

    Barnes, E. J.

    2009-09-08

    An active veto detector to complement the ZEPLIN-III two phase Xenon, direct dark matter device is described. The proposed design consists of 52 plastic scintillator segments, individually read out by high efficiency photomultipliers, coupled to a Gd loaded passive polypropylene shield. Experimental work was performed to determine the plastic scintillator characteristics which were used to inform a complete end-to-end Monte Carlo simulation of the expected performance of the new instrument, both operating alone and as an active veto detector for ZEPLIN-III. The veto device will be capable of tagging over 65% of coincident nuclear recoil events in the energy range of interest in ZEPLIN-III, and over 12% for gamma ray rejection, while contributing no significant additional background. In addition it will also provide valuable diagnostic capabilities. The inclusion of the veto to ZEPLIN-III will aid to significantly improve the sensitivity to spin independent WIMP-nucleon cross sections below 10{sup -8} pb.

  18. Perspectives of Increasing Efficiency and Productivity of Electromagnetic Induction Pumps for Mercury Basing on Permanent Magnets

    SciTech Connect

    Bucenieks, I.

    2006-07-01

    In the next generation neutron sources the HLM (heavy liquid metals) such as lead, lead based eutectic alloys and mercury will be used both as spallation target material and simultaneously as the cooling liquid. In this aspect the design of safe and effective pumps for HLM recirculation at high pressure heads and big flow rates becomes important. For this purpose electromagnetic inductions pumps having no problems of hydraulic seals being in contact with liquid metal (electromagnetic forces in the liquid metal are induced by magnetic system located outside of the channel of pump) are more perspective from the point of view of their safety for operation at high temperature and radiation conditions in comparison with mechanical pumps. At the Institute of Physics of University of Latvia (IPUL) the design concept of electromagnetic induction pumps basing on the principle of rotating permanent magnets (PMP) have been developed. Such design concept of electromagnetic induction pumps has many advantages in comparison with traditionally used electromagnetic induction pumps basing on 3-phase linear flat or cylindrical inductors. The estimations of parameters of powerful pumps (such as overall dimensions of the active magnetic system, power of motor needed for pump drive, the efficiency of pump) for mercury for the developed by pump pressure heads in the range up to 10.0 bar and provided flow rates in the range up to 20 litres per second are demonstrated. (author)

  19. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    NASA Astrophysics Data System (ADS)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  20. Policy options for the split incentive: Increasing energy efficiency for low-income renters

    PubMed Central

    Bird, Stephen; Hernández, Diana

    2016-01-01

    The split incentive problem concerns the lack of appropriate incentives to implement energy efficiency measures. In particular, low income tenants face a phenomenon of energy poverty in which they allocate significantly more of their household income to energy expenditures than other renters. This problem is substantial, affecting 1.89% of all United States' energy use. If effectively addressed, it would create a range of savings between 4 and 11 billion dollars per year for many of the nation's poorest residents. We argue that a carefully designed program of incentives for participants (including landlords) in conjunction with a unique type of utility-managed on-bill financing mechanism has significant potential to solve many of the complications. We focus on three kinds of split incentives, five concerns inherent to addressing split incentive problems (scale, endurance, incentives, savings, political disfavor), and provide a detailed policy proposal designed to surpass those problems, with a particular focus on low-income tenants in a U.S. context. PMID:27053828

  1. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    PubMed Central

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-01-01

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations. PMID:25831491

  2. A high efficiency veto to increase the sensitivity of ZEPLIN-III, a WIMP detector

    NASA Astrophysics Data System (ADS)

    Barnes, E. J.

    2009-09-01

    An active veto detector to complement the ZEPLIN-III two phase Xenon, direct dark matter device is described. The proposed design consists of 52 plastic scintillator segments, individually read out by high efficiency photomultipliers, coupled to a Gd loaded passive polypropylene shield. Experimental work was performed to determine the plastic scintillator characteristics which were used to inform a complete end-to-end Monte Carlo simulation of the expected performance of the new instrument, both operating alone and as an active veto detector for ZEPLIN-III. The veto device will be capable of tagging over 65% of coincident nuclear recoil events in the energy range of interest in ZEPLIN-III, and over 12% for gamma ray rejection, while contributing no significant additional background. In addition it will also provide valuable diagnostic capabilities. The inclusion of the veto to ZEPLIN-III will aid to significantly improve the sensitivity to spin independent WIMP-nucleon cross sections below 10-8 pb.

  3. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    DOE PAGES

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less

  4. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.

    PubMed

    Hoogeboom-Pot, Kathleen M; Hernandez-Charpak, Jorge N; Gu, Xiaokun; Frazer, Travis D; Anderson, Erik H; Chao, Weilun; Falcone, Roger W; Yang, Ronggui; Murnane, Margaret M; Kapteyn, Henry C; Nardi, Damiano

    2015-04-21

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  5. Policy options for the split incentive: Increasing energy efficiency for low-income renters.

    PubMed

    Bird, Stephen; Hernández, Diana

    2012-09-01

    The split incentive problem concerns the lack of appropriate incentives to implement energy efficiency measures. In particular, low income tenants face a phenomenon of energy poverty in which they allocate significantly more of their household income to energy expenditures than other renters. This problem is substantial, affecting 1.89% of all United States' energy use. If effectively addressed, it would create a range of savings between 4 and 11 billion dollars per year for many of the nation's poorest residents. We argue that a carefully designed program of incentives for participants (including landlords) in conjunction with a unique type of utility-managed on-bill financing mechanism has significant potential to solve many of the complications. We focus on three kinds of split incentives, five concerns inherent to addressing split incentive problems (scale, endurance, incentives, savings, political disfavor), and provide a detailed policy proposal designed to surpass those problems, with a particular focus on low-income tenants in a U.S.

  6. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    SciTech Connect

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  7. Efficiency of Intergeneric Recombinants Between Bacillus Thuringiensis and Bacillus Subtilis for Increasing Mortality Rate in Cotten Leaf Worm

    NASA Astrophysics Data System (ADS)

    AlOtaibi, Saad Aied

    2012-12-01

    In this study , two strains of Bacillus belonging to two serotypes and four of their transconjugants were screened with respect to their toxicity against lepidopterous cotton pest. . Bacterial transconjugants isolated from conjugation between both strains were evaluated for their transconjugant efficiency caused mortality in Spodoptera littoralis larvae . Two groups of bioinsecticides ; crystals , crystals and spores have been isolated from Bacillusstrains and their transconjugants . Insecticidal crystal protein ( ICP ) was specific for lepidopteran insects because of the toxin sufficient both for insect specificity and toxicity . The toxicities of these two groups against larvae of Spodoptera littoralis was expressed as transconjugant efficiency , which related to the mean number of larvae died expressed as mortality percentage . The results showed transconjugant efficiency in reducing the mean number of Spodoptera littoralis larvae feeding on leaves of Ricinus communis sprayed with bioinsecticides of Bt transconjugants. Most values of positive transconjugant efficiency related to increasing mortality percentage are due to toxicological effects appeared in response to the treatments with crystals + endospores than that of crystals alone .This indicated that crystals + endospores was more effective for increasing mortality percentage than that resulted by crystals . Higher positive transconjugant efficiency in relation to the mid parents and better parent was appeared at 168 h of treatment . The results indicated that recombinant Bacillus thuringiensis are important control agents for lepidopteran pests , as well as , susceptibility decreased with larval development . The results also suggested a potential for the deployment of these recominant entomopathogens in the management of Spodoptera. littoralis larvae .

  8. Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy

    NASA Astrophysics Data System (ADS)

    Kuo, David M. T.; Chen, Chih-Chieh; Chang, Yia-Chung

    2017-02-01

    It is theoretically demonstrated that the figure of merit (Z T ) of quantum dot (QD) junctions can be significantly enhanced when the degree of degeneracy of the energy levels involved in electron transport is increased. The theory is based on the the Green-function approach in the Coulomb blockade regime by including all correlation functions resulting from electron-electron interactions associated with the degenerate levels (L ). We found that electrical conductance (Ge) as well as electron thermal conductance (κe) are highly dependent on the level degeneracy (L ), whereas the Seebeck coefficient (S ) is not. Therefore, the large enhancement of Z T is mainly attributed to the increase of Ge when the phonon thermal conductance (κp h) dominates the heat transport of the QD junction system. In the serially coupled double-QD case, we also obtain a large enhancement of Z T arising from higher L . Unlike Ge and κe, S is found almost independent on electron interdot hopping strength.

  9. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective.

    PubMed

    Way, Danielle A; Katul, Gabriel G; Manzoni, Stefano; Vico, Giulia

    2014-07-01

    C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3-C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3-C4 intermediate stages, but both traits significantly increased between early C3-C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related.

  10. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  11. Mutational analysis in the glycone binding pocket of Dalbergia cochinchinensis β-glucosidase to increase catalytic efficiency toward mannosides.

    PubMed

    Ratananikom, Khakhanang; Choengpanya, Khuanjarat; Tongtubtim, Nusra; Charoenrat, Theppanya; Withers, Stephen G; Kongsaeree, Prachumporn T

    2013-05-24

    Dalcochinase and Abg are glycoside hydrolase family 1 β-glucosidases from Dalbergia cochinchinensis Pierre and Agrobacterium sp., respectively, with 35% sequence identity. However, Abg shows much higher catalytic efficiencies toward a broad range of glycone substrates than dalcochinase does, possibly due to the difference in amino acid residues around their glycone binding pockets. Site-directed mutagenesis was used to replace the amino acid residues of dalcochinase with the corresponding residues of Abg, generating three single mutants, F196H, S251V, and M369E, as well as the corresponding three double mutants and one triple mutant. Among these, the F196H mutant showed increases in catalytic efficiency toward almost all glycoside substrates tested, with the most improved catalytic efficiency being a 3-fold increase for hydrolysis of p-nitrophenyl β-D-mannoside, suggesting a preferred polar residue at this position and consistent with the presence of histidine at this position in two other GH1 glycosidases from barley and rice that prefer β-mannosides. In addition, the M369E mutation resulted in a small increase in catalytic efficiency for cleavage of p-nitrophenyl β-D-galactoside. By contrast, the multiple mutants were up to 8-fold less efficient than the recombinant wild-type dalcochinase, and displayed primarily antagonistic interactions between these residues. Thus, differences in catalytic efficiency between dalcochinase and Abg are therefore not primarily due to differences in the residues that directly contact the substrate, but derive largely from contributions from more remote residues and the overall architecture of the active site.

  12. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective

    PubMed Central

    Way, Danielle A.; Katul, Gabriel G.; Manzoni, Stefano; Vico, Giulia

    2014-01-01

    C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol–1) and low (280 μmol mol–1) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3–C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3–C4 intermediate stages, but both traits significantly increased between early C3–C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related. PMID:24860185

  13. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    NASA Technical Reports Server (NTRS)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  14. Optimization of embryo culture conditions for increasing efficiency of cloning in buffalo (Bubalus bubalis) and generation of transgenic embryos via cloning.

    PubMed

    Wadhwa, Neerja; Kunj, Neetu; Tiwari, Shuchita; Saraiya, Megha; Majumdar, Subeer S

    2009-09-01

    Cloning in bovine species is marred by low efficiency of blastocyst formation. Any increase in the efficiency of blastocyst formation upon nuclear transfer will greatly enhance the efficiency of cloning. In the present study, the effect of various media, protein sources, and growth factors on the development of cloned buffalo embryos was evaluated. Among various combinations tested, culture of cloned embryos in TCM-199 media on the feeder layer of Buffalo Oviductal Epithelial Cells (BOEC) in the presence of bovine serum albumin-free fatty acid (BSA-FFA) and leukemia inhibitory factor (LIF) provided most suitable environment for efficient development of cloned blastocysts. Under these conditions, we achieved a blastocyst formation rate of 43%, which is better than those reported previously. Because preimplantation embryonic development, in vivo, occurs in an environment of oviductal cells, the blastocysts generated by this method may presumably be more suitable for implantation and further development. Additionally, we generated green blastocysts from enucleated oocytes by transfer of nuclei from cells transfected with EGFP transgene, showing possibility of transgenesis via cloning in this species. To our knowledge, this is the first report regarding the production of transgenic cloned buffalo embryos and their developmental competence with respect to various media, cocultures, and supplements.

  15. Increased efficiency of ion acceleration by using femtosecond laser pulses at higher harmonic frequency

    SciTech Connect

    Psikal, J.; Klimo, O.; Weber, S.; Margarone, D.

    2014-07-15

    The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7 × 10{sup 21 }W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100 nm and 200 nm when switching from the fundamental frequency to the third harmonics.

  16. Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency

    PubMed Central

    2013-01-01

    Background The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by ‘semi-landmarks’ alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches. Results We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure (‘ghost points’) can then be used in any further downstream statistical analysis. Conclusions Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points. PMID:23548043

  17. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in

  18. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE PAGES

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; ...

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7

  19. Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China.

    PubMed

    Yuan, Zhi-You; Li, Ling-Hao; Han, Xing-Guo; Chen, Shi-Ping; Wang, Zheng-Wen; Chen, Quan-Sheng; Bai, Wen-Ming

    2006-07-01

    The concept of nutrient use efficiency is central to understanding ecosystem functioning because it is the step in which plants can influence the return of nutrients to the soil pool and the quality of the litter. Theory suggests that nutrient efficiency increases unimodally with declining soil resources, but this has not been tested empirically for N and water in grassland ecosystems, where plant growth in these ecosystems is generally thought to be limited by soil N and moisture. In this paper, we tested the N uptake and the N use efficiency (NUE) of two Stipa species (S. grandis and S. krylovii) from 20 sites in the Inner Mongolia grassland by measuring the N content of net primary productivity (NPP). NUE is defined as the total net primary production per unit N absorbed. We further distinguished NUE from N response efficiency (NRE; production per unit N available). We found that NPP increased with soil N and water availability. Efficiency of whole-plant N use, uptake, and response increased monotonically with decreasing soil N and water, being higher on infertile (dry) habitats than on fertile (wet) habitats. We further considered NUE as the product of the N productivity (NP the rate of biomass increase per unit N in the plant) and the mean residence time (MRT; the ratio between the average N pool and the annual N uptake or loss). The NP and NUE of S. grandis growing usually in dry and N-poor habitats exceeded those of S. krylovii abundant in wet and N-rich habitats. NUE differed among sites, and was often affected by the evolutionary trade-off between NP and MRT, where plants and communities had adapted in a way to maximize either NP or MRT, but not both concurrently. Soil N availability and moisture influenced the community-level N uptake efficiency and ultimately the NRE, though the response to N was dependent on the plant community examined. These results show that soil N and water had exerted a great impact on the N efficiency in Stipa species. The

  20. Increasing the refolding efficiency in vitro by site-directed mutagenesis of Cys383 in rat procarboxypeptidase B.

    PubMed

    Li, Suxia; Zhang, Luosheng; Wu, Qian; Xin, Aijie; Zhao, Jian; Fan, Liqiang

    2011-07-10

    This study examines a novel method to reduce the probability of disulfide mismatches during the refolding process by the replacement of cysteines within a protein. Specifically, Cys383 of recombinant rat procarboxypeptidase B was replaced by other amino acids to increase the refolding efficiency in vitro. Mutants C383G, C383A and C383S could refold successfully, but mutants C383R, C383E, C383L and C383Y failed to refold correctly. Compared with wild type, the refolding efficiencies of mutants C383G and C383A were enhanced. The Cys383 mutations changed some of the properties of rat carboxypeptidase B. Mutants C383G, C383A had higher k(cat)/K(m) values which indicated increased catalytic abilities. And both had higher thermal stability. pH had different effects on the activities and stabilities of the mutant and wild type proteins. The studies suggested that mutating Cys383 of rat procarboxypeptidase B could improve the renaturation process by increasing the refolding efficiency. This new method could be taken as a new attempt to improve the refolding efficiency of other recombinant proteins containing disulfide bonds that are expressed as inclusion bodies. While the results also claimed that the potential effects of the substituted amino acid on the protein itself should be seriously considered in addition to its ability to reduce the probability of disulfide mismatches.

  1. Increasing the indium incorporation efficiency during InGaN layer growth by suppressing the dissociation of NH3

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Liu, W.; Liang, F.; Li, X.; Liu, S. T.; Zhang, L. Q.; Yang, H.

    2017-02-01

    Three series of InGaN samples with different growth pressures are grown in a vertical metal organic chemical vapor deposition (MOCVD) system and the indium incorporation efficiency during InGaN layer growth is investigated. It is found that the indium content in InGaN layer decreases when the NH3 flow rate increases at a higher growth pressure and it increases with the NH3 flow rate at a lower growth pressure, This may be attributed to the higher dissociation rate of NH3 into N2 and H2 at a higher growth pressure, leading to a higher H2 concentration in reactor during InGaN growth. Therefore, changing growth conditions to suppress the dissociation of NH3 into N2 and H2 can increase the indium incorporation efficiency during InGaN film growth.

  2. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  3. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  4. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth.

    PubMed

    Hjältén, Joakim; Axelsson, E Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees.

  5. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth

    PubMed Central

    Hjältén, Joakim; Axelsson, E. Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees. PMID:25983736

  6. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics.

    PubMed

    Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Holban, Alina Maria; Ficai, Anton; Ficai, Denisa; Voicu, Georgeta; Grumezescu, Valentina; Balaure, Paul Cătălin; Chifiriuc, Carmen Mariana

    2013-09-15

    The aim of this study was to obtain a nano-active system to improve antibiotic activity of certain drugs by controlling their release. Magnetic composite nanomaterials based on magnetite core and cross-linked chitosan shell were synthesized via the co-precipitation method and characterized by Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The prepared magnetic composite nanomaterials exhibit a significant potentiating effect on the activity of two cationic (kanamycin and neomycin) drugs, reducing the amount of antibiotics necessary for the antimicrobial effect. The increase in the antimicrobial activity was explained by the fact that the obtained nanosystems provide higher surface area to volume ratio, resulting into higher surface charge density thus increasing affinity to microbial cell and also by controlling their release. In addition to the nano-effect, the positive zeta potential of the synthesized magnetite/cross-linked chitosan core/shell magnetic nanoparticles allows for a more favorable interaction with the usually negatively charged cell wall of bacteria. The novelty of the present contribution is just the revealing of this synergistic effect exhibited by the synthesized water dispersible magnetic nanocomposites on the activity of different antibiotics against Gram-positive and Gram-negative bacterial strains. The results obtained in this study recommend these magnetic water dispersible nanocomposite materials for applications in the prevention and treatment of infectious diseases.

  7. The concept of increasing energy efficiency of low-rise construction in the context of technical regulation

    NASA Astrophysics Data System (ADS)

    Minaev, N.; Filushina, K.; Jarova, E.

    2015-01-01

    Intensive development of low-rise construction and modern trends directed at enhancing energy efficient construction considering regulatory requirements determine the necessity to develop the concept based on variable control models managing the processes of low-rise construction. However effective process management cannot be performed without correlation of sectoral planning documents of federal and regional level also considering the technical regulations requirements. Development of concept to increase energy efficiency of low-rise construction on the basis of governmental housing policy should be built within integrated and system approach. This approach should take into account the factors and objectives of social and economic regional development and its peculiar features, as well as complex urban planning, transport and engineering conditions of low rise housing development. The program and goal-oriented approach used in the present study enables to provide integrity and interrelation with the technical requirements of energy efficiency.

  8. Optical vortices: an innovative approach to increase spectral efficiency by fiber mode-division multiplexing

    NASA Astrophysics Data System (ADS)

    Boffi, Pierpaolo; Martelli, P.; Gatto, A.; Martinelli, M.

    2013-01-01

    We will show the capabilities of optical modes known as optical vortices in order to perform mode-division multiplexing (MDM) propagation with a different approach. In particular, we will propose optical vortices not only as an alternative way to increase the fiber capacity, but also as a cost-effective and "green" solution able to reduce power dissipation in high capacity systems with respect to solutions based on coherent detection and computationally complex digital MIMO processing, employed in MDM with usual LP modes. Two different proposals based on the all-optical spatial mode demultiplexing and on a non-linear MIMO receiver can allow to employ direct detection and to exploit optical vortices in very simple systems useful for short and medium distances links, where the cost reduction and energy sustainability are mandatory.

  9. Increasing reticle inspection efficiency and reducing wafer print-checks using automated defect classification and simulation

    NASA Astrophysics Data System (ADS)

    Ryu, Sung Jae; Lim, Sung Taek; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2013-09-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs. Fortunately, a software program has been developed which automates defect classification with simulated printability measurement greatly reducing requal cycle time and improving overall disposition accuracy. This product, called ADAS (Auto Defect Analysis System), has been tested in both engineering and high-volume production environments with very successful results. In this paper, data is presented supporting significant reduction for costly wafer print checks, improved inspection area productivity, and minimized risk of misclassified yield limiting defects.

  10. Kazakhstan can achieve ambitious HIV targets despite expected donor withdrawal by combining improved ART procurement mechanisms with allocative and implementation efficiencies

    PubMed Central

    Benedikt, Clemens; Bokazhanova, Aliya; Đurić, Predrag; Petrenko, Irina; Ganina, Lolita; Kelly, Sherrie L.; Stuart, Robyn M.; Kerr, Cliff C.; Vinichenko, Tatiana; Zhang, Shufang; Hamelmann, Christoph; Manova, Manoela; Masaki, Emiko; Wilson, David P.; Gray, Richard T.

    2017-01-01

    Background Despite a non-decreasing HIV epidemic, international donors are soon expected to withdraw funding from Kazakhstan. Here we analyze how allocative, implementation, and technical efficiencies could strengthen the national HIV response under assumptions of future budget levels. Methodology We used the Optima model to project future scenarios of the HIV epidemic in Kazakhstan that varied in future antiretroviral treatment unit costs and management expenditure—two areas identified for potential cost-reductions. We determined optimal allocations across HIV programs to satisfy either national targets or ambitious targets. For each scenario, we considered two cases of future HIV financing: the 2014 national budget maintained into the future and the 2014 budget without current international investment. Findings Kazakhstan can achieve its national HIV targets with the current budget by (1) optimally re-allocating resources across programs and (2) either securing a 35% [30%–39%] reduction in antiretroviral treatment drug costs or reducing management costs by 44% [36%–58%] of 2014 levels. Alternatively, a combination of antiretroviral treatment and management cost-reductions could be sufficient. Furthermore, Kazakhstan can achieve ambitious targets of halving new infections and AIDS-related deaths by 2020 compared to 2014 levels by attaining a 67% reduction in antiretroviral treatment costs, a 19% [14%–27%] reduction in management costs, and allocating resources optimally. Significance With Kazakhstan facing impending donor withdrawal, it is important for the HIV response to achieve more with available resources. This analysis can help to guide HIV response planners in directing available funding to achieve the greatest yield from investments. The key changes recommended were considered realistic by Kazakhstan country representatives. PMID:28207809

  11. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Fischer, A. J.; Bryant, B. N.; Kotula, P. G.; Wierer, J. J.

    2015-04-01

    InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z~0.38) IL is ~1-2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

  12. Application of lower aliphatic alcohols as reducing agents for increasing efficiency of the LCLD process

    NASA Astrophysics Data System (ADS)

    Semenok, Dmitrii

    2014-05-01

    A method is described that is promising for application metal conductors on ceramic substrates during printed-circuit boards (PCBs) production without masking plate. The main idea of laser-induced metal deposition from solution (LCLD) consists of implementation of chemical micro reactor by using a focused laser beam. In this reactor the red/ox reaction would be initiated due to heating of a reaction medium. We used a 532 nm DPSS laser (power: 2100 mW) and water solutions of organic alcohols with low molecular weight, ethanol and isopropanol as reductants. The results of deposition were studied using the SEM, EDX methods and impedance spectroscopy. The equivalent resistance-capacitance circuit of copper tracks was constructed. The experiments showed that increasing the rate of deposition of nanostructured copper tracks up to 50 μm/s with electrical resistivity 5 Ohm/cm is possible by replacing the well-known reductants such as formaldehyde and D-sorbitol with iso-propanol.

  13. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    PubMed

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p increase in nonparetic step length (p = 0.05) in the HR group only. These results suggest that combining explicit rewards with novel anklebot training may accelerate motor learning for restoring mobility.

  14. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.

    PubMed

    Hamouda, I; Badri, M; Mejri, M; Cruz, C; Siddique, K H M; Hessini, K

    2016-05-01

    The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.

  15. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    USGS Publications Warehouse

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  16. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    PubMed

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.

  17. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  18. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  19. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks (Invited)

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Hollinger, D. Y.; Bohrer, G.; Dragoni, D.; Munger, J. W.; Schmid, H. E.; Richardson, A. D.

    2013-12-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  20. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  1. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  2. RNAi Knock-Down of LHCBM1, 2 and 3 Increases Photosynthetic H2 Production Efficiency of the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Oey, Melanie; Ross, Ian L.; Stephens, Evan; Steinbeck, Janina; Wolf, Juliane; Radzun, Khairul Adzfa; Kügler, Johannes; Ringsmuth, Andrew K.; Kruse, Olaf; Hankamer, Ben

    2013-01-01

    Single cell green algae (microalgae) are rapidly emerging as a platform for the production of sustainable fuels. Solar-driven H2 production from H2O theoretically provides the highest-efficiency route to fuel production in microalgae. This is because the H2-producing hydrogenase (HYDA) is directly coupled to the photosynthetic electron transport chain, thereby eliminating downstream energetic losses associated with the synthesis of carbohydrate and oils (feedstocks for methane, ethanol and oil-based fuels). Here we report the simultaneous knock-down of three light-harvesting complex proteins (LHCMB1, 2 and 3) in the high H2-producing Chlamydomonas reinhardtii mutant Stm6Glc4 using an RNAi triple knock-down strategy. The resultant Stm6Glc4L01 mutant exhibited a light green phenotype, reduced expression of LHCBM1 (20.6% ±0.27%), LHCBM2 (81.2% ±0.037%) and LHCBM3 (41.4% ±0.05%) compared to 100% control levels, and improved light to H2 (180%) and biomass (165%) conversion efficiencies. The improved H2 production efficiency was achieved at increased solar flux densities (450 instead of ∼100 µE m−2 s−1) and high cell densities which are best suited for microalgae production as light is ideally the limiting factor. Our data suggests that the overall improved photon-to-H2 conversion efficiency is due to: 1) reduced loss of absorbed energy by non-photochemical quenching (fluorescence and heat losses) near the photobioreactor surface; 2) improved light distribution in the reactor; 3) reduced photoinhibition; 4) early onset of HYDA expression and 5) reduction of O2-induced inhibition of HYDA. The Stm6Glc4L01 phenotype therefore provides important insights for the development of high-efficiency photobiological H2 production systems. PMID:23613840

  3. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades

    NASA Astrophysics Data System (ADS)

    Urrutia-Jalabert, Rocío.; Malhi, Yadvinder; Barichivich, Jonathan; Lara, Antonio; Delgado-Huertas, Antonio; Rodríguez, Carmen Gloria; Cuq, Emilio

    2015-12-01

    Little is known about how old-growth and massive forests are responding to environmental change. We investigated tree-ring growth and carbon isotopes of the long-lived and high biomass Fitzroya cupressoides in two stands growing in contrasting environmental conditions in the Coastal Range (~300 years old) and Andean Cordilleras (>1500 years old) of southern Chile. The interannual variability in δ13C was assessed for the period 1800-2010, and changes in discrimination and intrinsic water use efficiency (iWUE) were evaluated in relation to changes in climate and tree-ring growth during the last century. 13C discrimination has significantly decreased, and iWUE has increased since the 1900s in both sites. However, these trends in isotopic composition have been accompanied by different growth patterns: decreasing growth rates in the Coastal Range since the 1970s and increasing growth rates in the Andes since the 1900s. Trees growing in the Coastal Range have become more efficient in their use of water, probably due to reduced stomatal conductance caused by increases in CO2 and warming. Trees growing in the Andes have also become more water use efficient, but this has been likely due to increased photosynthetic rates. Fitzroya forests, including particularly old-growth stands, are responding to recent environmental changes, and their response has been site dependent. The growth of forests under a more Mediterranean climate influence and restrictive soil conditions in the Coastal Range has been more negatively affected by current warming and drying; while the growth of old stands in the wet Andes has been positively affected by changes in climate (decreasing cloudiness) and increasing CO2. Permanent monitoring of these endangered forests under ongoing environmental changes is needed in order to reassure the long-term preservation of this millennial-aged species.

  4. Increased SNR Efficiency in Velocity Selective Arterial Spin Labeling using Multiple Velocity Selective Saturation Modules (mm-VSASL)

    PubMed Central

    Guo, Jia; Wong, Eric C.

    2014-01-01

    Purpose Velocity-selective arterial spin labeling (VSASL) is theoretically insensitive to transit delay (TD) effects. However, it uses saturation instead of inversion, resulting in compromised signal to noise ratio (SNR). In this study we explore the use of multiple velocity-selective saturation (VSS) modules in VSASL (mm-VSASL) to improve SNR. Methods Theoretical SNR efficiency improvement and optimized parameters were calculated from simulations for mm-VSASL. VSASL with two VSS modules (VSASL-2VSS) was implemented to measure cerebral blood flow in vivo, compared with conventional VSASL (VSASL-1VSS), Pulsed ASL and Pseudo-Continuous ASL. TDs and bolus durations (BDs) were measured to validate the simulations and to examine the TD sensitivity of these preparations. Results Compared with VSASL-1VSS, VSASL-2VSS achieved a significant improvement of SNR (22.1 ± 1.9%, P = 1.7 × 10−6) in vivo, consistent with a 22.7% improvement predicted from simulations. The SNR was comparable to or higher (in GM, P = 4.3 × 10−3) than that using PCASL. VSASL was experimentally verified to have minimal TD effects. Conclusion Utilizing multiple VSS modules can improve the SNR efficiency of VSASL. Mm-VSASL may result in an SNR that is comparable to or even higher than that of PCASL in applications where long PLDs are required. PMID:25251933

  5. Increased Efficiency LED

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O. (Inventor); Rogowski, Robert S. (Inventor)

    1998-01-01

    In an LED a large portion of the light produced is lost due to total internal reflection at the air-semiconductor interface. A reverse taper of the semiconductor is used to change the angle at which light strikes the interface so that a greater portion of the light is transmitted.

  6. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.

    PubMed

    Zhang, Fusuo; Cui, Zhenling; Fan, Mingsheng; Zhang, Weifeng; Chen, Xinping; Jiang, Rongfeng

    2011-01-01

    During the past 47 yr (1961-2007), Chinese cereal production has increased by 3.2-fold, successfully feeding 22% of the global human population with only 9% of the world's arable land, but at high environmental cost and resource consumption. Worse, crop production has been stagnant since 1996 while the population and demand for food continue to rise. New advances for sustainability of agriculture and ecosystem services will be needed during the coming 50 yr to reduce environmental risk while increasing crop productivity and improving nutrient use efficiency. Here, we advocate and develop integrated soil-crop system management (ISSM). In this approach, the key points are (i) to take all possible soil quality improvement measures into consideration, (ii) to integrate the utilization of various nutrient resources and match nutrient supply to crop requirements, and (iii) to integrate soil and nutrient management with high-yielding cultivation systems. Recent field experiments have shed light on how ISSM can lead to significant increases in crop yields while increasing nutrient use efficiency and reducing environmental risk.

  7. [An increase in efficiency of adaptations and a weakening of organism protective reactions in the process of biological evolution].

    PubMed

    2014-01-01

    The main direction of evolution of living organisms is development of the central nervous system and sense organ, an increase of energy exchange development of homoiothermia, development of the more and more complex forms of behavior, an increase in energy expenditure in connection with an increase of the organism activity, and development of adaptation to the habitat. Such fundamental processes were subjected and have been subjected to numerous studies and discussions. However, in different animals there exist different species peculiarities of evolution of physiological functions, from which finally formed are fundamental evolutionary processes. We studied some of these specific processes by dividing them into two categories. The first category is "Increase of efficiency of adaptation" in development of biological evolution. By this term we mean development of amazing by perfection specific physiological mechanisms of adaptive character. The second category is "Weakening of protective organism reactions". By this we understand disturbance of protective mechanisms of the organism immune system, discoordination of movement of leukocytes along microvessels, the absence of efficient collateral circulation in brain and in heart, etc.

  8. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  9. Low-frequency ultrasound sonophoresis to increase the efficiency of topical steroids: a pilot randomized study of humans.

    PubMed

    Maruani, Annabel; Boucaud, Alain; Perrodeau, Elodie; Gendre, David; Giraudeau, Bruno; Machet, Laurent

    2010-08-16

    Topical steroids are efficient in vasoconstriction potential, which is linked to their anti-inflammatory activity. Low-frequency ultrasound (US) applied on the skin (sonophoresis) may enhance the transdermal transport of various steroids. We aimed to assess, in a simple, blinded, randomized controlled pilot study, the clinical efficiency of sonophoresis in increasing vasoconstriction by enhancing the transdermal penetration of topical steroids in human skin. The study took place in the Clinical Investigation Center of the University Hospital of Tours and involved healthy volunteers. Three circular zones were delimited on each of the subjects' forearms: zone 1 (right and left) received topical steroids with 1-h occlusion, zone 2 with 2-h occlusion, and zone 3 with massage. Forearms were randomized to first undergo US, using a 36 kHz probe, delivered in a pulsed mode (2s on/5s off), during 5 min, with a US intensity of 2.72 W/cm(2), or no US. We used betamethasone 17-valerate in cream form as the topical steroid. The primary outcome was difference between forearms in skin color (increased whiteness reflecting the intensity of vasoconstriction) measured by 2 scores: values obtained with a chromameter (the higher the value, the whiter the skin) and a clinical visual score. The measurements were taken by a dermatologist by blinded assessment. Fifteen subjects were included. Vasoconstriction was significantly higher with the topical steroid applied after US, especially in zone 2, than without US. Vasoconstriction was increased at 1, 2, 3, 4, and 6h (e.g., chromameter score 63.4 versus 65.2, p=0.017 at 4h) and disappeared at 24h. Moreover, 2-h occlusion gave higher vasoconstriction scores than did 1-h occlusion or massage alone, whether US was applied or not. The use of low-frequency US coupled with 2-h occlusion is a synergistic way to increase the efficiency of topical steroids by enhancing skin permeability.

  10. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    SciTech Connect

    Yu, Yuqi; Wang, Jinan; Shao, Qiang E-mail: Jiye.Shi@ucb.com Zhu, Weiliang E-mail: Jiye.Shi@ucb.com; Shi, Jiye E-mail: Jiye.Shi@ucb.com

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  11. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  12. Genetically Enhanced Sorghum and Sugarcane: Engineering Hydrocarbon Biosynthesis and Storage together with Increased Photosynthetic Efficiency into the Saccharinae

    SciTech Connect

    2012-02-15

    PETRO Project: UIUC is working to convert sugarcane and sorghum—already 2 of the most productive crops in the world—into dedicated bio-oil crop systems. Three components will be engineered to produce new crops that have a 50% higher yield, produce easily extractable oils, and have a wider growing range across the U.S. This will be achieved by modifying the crop canopy to better distribute sunlight and increase its cold tolerance. By directly producing oil in the shoots of these plants, these biofuels could be easily extracted with the conventional crushing techniques used today to extract sugar.

  13. Increasing the Efficiency of LiDAR Based Forest Inventories: A Novel Approach for Integrating Variable Radius Inventory Plots with LiDAR Data.

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Fekety, P.; Silva, C. A.; Hudak, A. T.

    2015-12-01

    LiDAR data are increasingly applied to support forest inventory and assessment across a variety of spatial scales. Typically this is achieved by integrating LiDAR data with forest inventory collected at fixed radius forest inventory plots. A well-designed forest inventory, one that covers the full range of structural and compositional variation across the forest of interest, is costly especially when collecting fixed radius plot data. Variable radius plots offer an alternative inventory protocol that is more efficient in terms of both time and money. However, integrating variable radius plot data with LiDAR data is problematic because the plots have unknown sizes that vary with variation in tree size. This leads to a spatial mismatch between LiDAR metrics (e.g., mean height, canopy cover, density, etc.) and plot data, which ultimately translates into errors in LiDAR derived forest inventory predictions. We propose and evaluate and novel approach for integrating variable radius plot data into a LiDAR based forest inventories in two different forest systems, one in the inland northwest and another in the northern lakes states of the USA. The novel approach calculates LiDAR metrics by weighting the point cloud proportional to return height, mimicking the way in which variable radius plot data weights tree measurements by tree size. This could increase inventory sampling efficiency, allowing for the collection of a greater number of inventory plots, and ultimately improve the performance of LiDAR based inventories.

  14. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.).

    PubMed

    Soolanayakanahally, Raju Y; Guy, Robert D; Silim, Salim N; Drewes, Eric C; Schroeder, William R

    2009-12-01

    In outdoor common gardens, high latitude populations of deciduous tree species often display higher assimilation rates (A) than low latitude populations, but they accomplish less height. To test whether trends in A reflect adaptation to growing season length or, alternatively, are garden growth artefacts, we examined variation in height increment and ecophysiological traits in a range-wide collection of Populus balsamifera L. populations from 21 provenances, during unconstrained growth in a greenhouse. Rooted cuttings, maintained without resource limitation under 21 h photoperiod for 90 d, displayed increasing height growth, A, leaf mass per area and leaf N per area with latitude whereas stomatal conductance (g(s)) showed no pattern. Water-use efficiency as indicated by both gas exchange and delta(13)C increased with latitude, whereas photosynthetic nitrogen-use efficiency decreased. Differences in delta(13)C were less than expected based on A/g(s), suggesting coextensive variation in internal conductance (g(m)). Analysis of A-C(i) curves on a subset of populations showed that high latitude genotypes had greater g(m) than low-latitude genotypes. We conclude that higher peak rates of height growth in high latitude genotypes of balsam poplar are supported by higher A, achieved partly through higher g(m), to help compensate for a shorter growing season.

  15. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased

    NASA Astrophysics Data System (ADS)

    van der Sleen, Peter; Groenendijk, Peter; Vlam, Mart; Anten, Niels P. R.; Boom, Arnoud; Bongers, Frans; Pons, Thijs L.; Terburg, Gideon; Zuidema, Pieter A.

    2015-01-01

    The biomass of undisturbed tropical forests has likely increased in the past few decades, probably as a result of accelerated tree growth. Higher CO2 levels are expected to raise plant photosynthetic rates and enhance water-use efficiency, that is, the ratio of carbon assimilation through photosynthesis to water loss through transpiration. However, there is no evidence that these physiological responses do indeed stimulate tree growth in tropical forests. Here we present measurements of stable carbon isotopes and growth rings in the wood of 1,100 trees from Bolivia, Cameroon and Thailand. Measurements of carbon isotope fractions in the wood indicate that intrinsic water-use efficiency in both understorey and canopy trees increased by 30-35% over the past 150 years as atmospheric CO2 concentrations increased. However, we found no evidence for the suggested concurrent acceleration of individual tree growth when analysing the width of growth rings. We conclude that the widespread assumption of a CO2-induced stimulation of tropical tree growth may not be valid.

  16. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield.

    PubMed

    Hauben, Miriam; Haesendonckx, Boris; Standaert, Evi; Van Der Kelen, Katrien; Azmi, Abdelkrim; Akpo, Hervé; Van Breusegem, Frank; Guisez, Yves; Bots, Marc; Lambert, Bart; Laga, Benjamin; De Block, Marc

    2009-11-24

    Quantitative traits, such as size and weight in animals and seed yield in plants, are distributed normally, even within a population of genetically identical individuals. For example, in plants, various factors, such as local soil quality, microclimate, and sowing depth, affect growth differences among individual plants of isogenic populations. Besides these physical factors, also epigenetic components contribute to differences in growth and yield. The network that regulates crop yield is still not well understood. Although this network is expected to have epigenetic elements, it is completely unclear whether it would be possible to shape the epigenome to increase crop yield. Here we show that energy use efficiency is an important factor in determining seed yield in canola (Brassica napus) and that it can be selected artificially through an epigenetic feature. From an isogenic canola population of which the individual plants and their self-fertilized progenies were recursively selected for respiration intensity, populations with distinct physiological and agronomical characteristics could be generated. These populations were found to be genetically identical, but epigenetically different. Furthermore, both the DNA methylation patterns as well as the agronomical and physiological characteristics of the selected lines were heritable. Hybrids derived from parent lines selected for high energy use efficiencies had a 5% yield increase on top of heterosis. Our results demonstrate that artificial selection allows the increase of the yield potential by selecting populations with particular epigenomic states.

  17. Continent-wide increase of water-use efficiency in vegetation during severe droughts of the recent decade

    NASA Astrophysics Data System (ADS)

    Peters, Wouter; van der Velde, Ivar; Miller, John. B.; Tans, Pieter P.; Vaughn, Bruce; White, James W. C.

    2015-04-01

    Recent severe droughts in Europe, Russia, China, and North America have caused widespread decline of agricultural yield and reduction of forest carbon uptake during the past decade. During droughts plants limit their water-loss at the expense of carbon uptake by partially closing their stomata, which increases the intrinsic water-use efficiency defined as the ratio of gross primary production to stomatal conductance. Here we present new evidence on this drought response of terrestrial vegetation derived from year-to-year changes in the 13C:12C stable isotope ratio in atmospheric CO2 (δ13C). Observations from more than 50,000 flask samples from a global monitoring network show a strong increase in water-use efficiency over continent-wide scales during severe droughts in Europe (2003, 2006), Russia (2010), and the United States (2002). This large-scale area-integrated vegetation drought response can not be measured from laboratory experiments or local-scale field studies and the atmospheric δ13C record thus offers a unique perspective on large-scale vegetation drought dynamics. Independent evidence from multiple eddy-covariance sites supports our inverse model interpretation of the observed global atmospheric δ13C record. With the parameterized stomatal conductance and soil moisture response used in our study, as well as many current climate models, our vegetation model underestimates this increase in water-use efficiency during severe droughts. We therefore suggest minor modifications to better reproduce the observations. We conclude that the global δ13C record provides a new opportunity to test and improve interannual drought dynamics in coupled biosphere-atmosphere models for CO2.

  18. Design principles for innovative workspaces to increase efficiency in pharmaceutical R&D: lessons learned from the Novartis campus.

    PubMed

    Zoller, Frank A; Boutellier, Roman

    2013-04-01

    When managing R&D departments for increased efficiency and effectiveness the focus has often been on organizational structure. Space is, however, of outstanding importance in an environment of large task uncertainty, which is the case in pharmaceutical R&D. Based on case studies about the Novartis campus in Basel, Switzerland, we propose some design principles for laboratory and office workspace to support the strong and weak ties of scientist networks. We address the diversity of technologies and specialization, as well as the pressure on time-to-market, as major challenges in pharmaceutical R&D.

  19. Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Wan, Farong; Wang, Yali; Jiang, Chunhua

    2009-09-01

    The rutile TiO2 nanorods (RTNs) with the length of 40-130 nm and diameters approximately 8-15 nm, containing some 300-500 nm sized RTN aggregates and 6% of anatase TiO2 nanocrystals, were prepared by surfactant-assisted hydrothermal method. The dye-sensitized solar cell (DSC) based on the RTNs exhibited power conversion efficiency of 6.03%. As compared to P25 TiO2 based DSC, RTNs based DSC shows improved light-harvesting and Brunauer-Emmett-Teller surface area, leading to an increase in short-circuit current (Jsc) by 40.6%.

  20. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea.

    PubMed

    Bruns, Alke; Cypionka, Heribert; Overmann, Jörg

    2002-08-01

    The effect of signal molecules on the cultivation efficiency of bacteria from the Gotland Deep in the central Baltic Sea was investigated. Numbers of cultivated cells were determined by the most-probable-number (MPN) technique. Artificial brackish water supplemented with different carbon substrates at low concentrations (200 microM each) was employed as the growth medium. Compared to the results of previous studies, this approach yielded significantly higher cultivation efficiencies (up to 11% in fluid media). A further and pronounced increase in cultivation success was accomplished by the addition of cyclic AMP (cAMP), N-butyryl homoserine lactone, or N-oxohexanoyl-DL-homoserine lactone at a low concentration of 10 microM. The most effective inducer was cAMP, which led to cultivation efficiencies of up to 100% of total bacterial counts. From the highest positive dilutions of these latter MPN series, several strains were isolated in pure culture and one strain (G100) was used to study the physiological effect of cAMP. Dot blot hybridization revealed, however, that strain G100 represented only a small fraction of the total bacterial community. This points towards an inherent limitation of the MPN approach, which does not necessarily recover abundant species from highly diverse communities. Bacterial cells of strain G100 that were starved for 6 weeks attained a higher growth rate and a higher biomass yield when resuscitated in the presence of cAMP instead of AMP.