Science.gov

Sample records for achieve maximum energy

  1. Achieving Maximum Power in Thermoelectric Generation with Simple Power Electronics

    NASA Astrophysics Data System (ADS)

    Youn, Nari; Lee, Hohyun; Wee, Daehyun; Gomez, Miguel; Reid, Rachel; Ohara, Brandon

    2014-06-01

    A thermoelectric generator typically delivers a relatively low power output, and hence it is of great practical importance to determine a design and operating condition close to those which can provide the maximum attainable power. To maintain a favorable condition for the maximum power output, power electronics circuits are usually applied. One of the simplest methods is to control the operating voltage at half the open-circuit voltage, assuming that the typical impedance-matching condition, in which the load and internal resistances are matched, yields the maximum power output. However, recent investigations have shown that, when external thermal resistances exist between the thermoelectric modules and thermal reservoirs, the impedance-matching condition is not identical to the condition for the maximum power output. In this article, it is argued that, although the impedance-matching condition is not the condition for maximum power output, the maximum power is still achievable when the operating voltage is kept at half the open-circuit voltage. More precisely, it is shown that the typical V- I curve for thermoelectric generators must show approximately linear behavior, which justifies the use of a simple strategy in thermoelectric power generation applications. The conditions for the validity of the approximation are mathematically discussed, supported by a few examples. Experimental evidence at room temperature is also provided.

  2. The optimal polarizations for achieving maximum contrast in radar images

    NASA Technical Reports Server (NTRS)

    Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter.

  3. Quantum gravity momentum representation and maximum energy

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.

    2016-11-01

    We use the idea of the symmetry between the spacetime coordinates xμ and the energy-momentum pμ in quantum theory to construct a momentum space quantum gravity geometry with a metric sμν and a curvature tensor Pλ μνρ. For a closed maximally symmetric momentum space with a constant 3-curvature, the volume of the p-space admits a cutoff with an invariant maximum momentum a. A Wheeler-DeWitt-type wave equation is obtained in the momentum space representation. The vacuum energy density and the self-energy of a charged particle are shown to be finite, and modifications of the electromagnetic radiation density and the entropy density of a system of particles occur for high frequencies.

  4. Energy and maximum norm estimates for nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle; Oliger, Joseph

    1994-01-01

    We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.

  5. Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

    SciTech Connect

    Jin, Guojun; Tierney, Brian

    2003-01-31

    Distinguishing available bandwidth and achievable throughput is essential for improving network applications' performance. Achievable throughput is the throughput considering a number of factors such as network protocol, host speed, network path, and TCP buffer space, where as available bandwidth only considers the network path. Without understanding this difference, trying to improve network applications' performance is like ''blind men feeling the elephant'' [4]. In this paper, we define and distinguish bandwidth and throughput, and debate which part of each is achievable and which is available. Also, we introduce and discuss a new concept - Maximum Burst Size that is crucial to the network performance and bandwidth sharing. A tool, netest, is introduced to help users to determine the available bandwidth, and provides information to achieve better throughput with fairness of sharing the available bandwidth, thus reducing misuse of the network.

  6. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Major Sources in Accordance With Clean Air Act Sections, Sections 112(g) and 112(j) § 63.43... achieving such emission reduction and any non-air quality health and environmental impacts and energy..., and analysis of cost and non-air quality health environmental impacts or energy requirements for...

  7. Effect of Date and Location on Maximum Achievable Altitude for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1997-01-01

    The maximum altitude attainable for a solar powered aircraft without any energy storage capability is examined. Mission profiles for a solar powered aircraft were generated over a range of latitudes and dates. These profiles were used to determine which latitude-date combinations produced the highest achieavable altitude. Based on the presented analysis the results have shown that for a given time of year lower latitudes produced higher maximum altitudes. For all the cases examined the time and date which produced the highest altitude was around March at the equator.

  8. Component Prioritization Schema for Achieving Maximum Time and Cost Benefits from Software Testing

    NASA Astrophysics Data System (ADS)

    Srivastava, Praveen Ranjan; Pareek, Deepak

    Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. Defining the end of software testing represents crucial features of any software development project. A premature release will involve risks like undetected bugs, cost of fixing faults later, and discontented customers. Any software organization would want to achieve maximum possible benefits from software testing with minimum resources. Testing time and cost need to be optimized for achieving a competitive edge in the market. In this paper, we propose a schema, called the Component Prioritization Schema (CPS), to achieve an effective and uniform prioritization of the software components. This schema serves as an extension to the Non Homogenous Poisson Process based Cumulative Priority Model. We also introduce an approach for handling time-intensive versus cost-intensive projects.

  9. Effect of fiber and matrix maximum strain on the energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Static crushing tests were conducted on graphite composite tubes to examine the influence of fiber and matrix maximum strain at failure on the energy absorption capability of graphite reinforced composite material. Fiber and matrix maximum strain at failure were determined to significantly effect energy absorption. The higher strain at failure composite material system, AS-4/5245, exhibited superior energy absorption capability compared to AS-4/934, T300/5245 or T300/934 composite material. Results of this investigation suggest that to achieve maximum energy absorption from a composite material a matrix material that has a higher strain at failure than the fiber reinforcement should be used.

  10. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.

    PubMed

    Salisbury, F B

    1984-01-01

    Limitations to maximum plant yield are photosynthesis, respiration, and harvest index (edible/total biomass). Our best results with wheat equal 97.5 g total biomass m-2 day-1. Theoretical maximums for our continuous 900 micromoles photons m-2 s-1 = 175 g carbohydrate, so our life-cycle efficiency is about 56%. Mineral nutrition has posed problems, but these are now nearly solved. CO2 levels are about 80 micromoles m-3 (1700 ppm; ambient = 330 ppm). We have grown wheat plants successfully under low-pressure sodium lamps. The main factor promising increased yields is canopy development. About half the life cycle is required to develop a canopy that uses light efficiently. At that point, we achieve 89% of maximum theoretical growth, suggesting that most parameters are nearly optimal. The next important frontier concerns application of these techniques to the microgravity environment of a space craft. There are engineering problems connected with circulation of nutrient solutions, for example. Plant responses to microgravity could decrease or increase yields. Leaves become epinastic, grass nodes elongate, and roots grow out of their medium. We are proposing space experiments to study these problems.

  11. Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes

    PubMed Central

    Sorrell, Brian K.; Hawes, Ian

    2010-01-01

    Background and Aims Convective gas flow in helophytes (emergent aquatic plants) is thought to be an important adaptation for the ability to colonize deep water. In this study, the maximum depths achieved by seven helophytes were compared in 17 lakes differing in nutrient enrichment, light attenuation, shoreline exposure and sediment characteristics to establish the importance of convective flow for their ability to form the deepest helophyte vegetation in different environments. Methods Convective gas flow development was compared amongst the seven species, and species were allocated to ‘flow absent’, ‘low flow’ and ‘high flow’ categories. Regression tree analysis and quantile regression analysis were used to determine the roles of flow category, lake water quality, light attenuation and shoreline exposure on maximum helophyte depths. Key Results Two ‘flow absent’ species were restricted to very shallow water in all lakes and their depths were not affected by any environmental parameters. Three ‘low flow’ and two ‘high flow’ species had wide depth ranges, but ‘high flow’ species formed the deepest vegetation far more frequently than ‘low flow’ species. The ‘low flow’ species formed the deepest vegetation most commonly in oligotrophic lakes where oxygen demands in sediments were low, especially on exposed shorelines. The ‘high flow’ species were almost always those forming the deepest vegetation in eutrophic lakes, with Eleocharis sphacelata predominant when light attenuation was low, and Typha orientalis when light attenuation was high. Depths achieved by all five species with convective flow were limited by shoreline exposure, but T. orientalis was the least exposure-sensitive species. Conclusions Development of convective flow appears to be essential for dominance of helophyte species in >0·5 m depth, especially under eutrophic conditions. Exposure, sediment characteristics and light attenuation frequently constrain them

  12. Achieving Maximum Power from Thermoelectric Generators with Maximum-Power-Point-Tracking Circuits Composed of a Boost-Cascaded-with-Buck Converter

    NASA Astrophysics Data System (ADS)

    Park, Hyunbin; Sim, Minseob; Kim, Shiho

    2015-06-01

    We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.

  13. Maximum kinetic energy considerations in proton stereotactic radiosurgery.

    PubMed

    Sengbusch, Evan R; Mackie, Thomas R

    2011-04-12

    The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc.

  14. Maximum kinetic energy considerations in proton stereotactic radiosurgery

    PubMed Central

    Sengbusch, Evan R.; Mackie, Thomas R.

    2016-01-01

    The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc. PMID:21844866

  15. Maximum field capability of Energy-Saver superconducting magnets

    SciTech Connect

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-03-01

    At an energy of 1 TeV, the superconducting cable in the Energy Saver dipole magnets will be operating at approx. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets is 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils. In general, the cable in the four coils comes from four different reels of cable. As part of magnet fabrication quality control, a short piece of cable from both ends of each reel has its critical current (rho = 1 x 10/sup -12/'..cap omega..-cm) measured at 5T and 4.3/sup 0/K. We present the statistical results of the maximum field tests on Saver magnets and explore the correlation with cable critical current.

  16. Graphical methods for determining the maximum energy product of magnets

    NASA Astrophysics Data System (ADS)

    Stadelmaier, H. H.; Henig, E.-Th.

    1990-08-01

    The graphical construction in which an optimum load line B = ( {B r}/{H o}) H , Hc < 0, defines the maximum energy product of a permanent magnet, is rigorously correct when B( H) in the second quadrant fits the branch of a single hyperbola. It fails as an approximation for some magnets with square ( B - μ0H) vs. H loops, and alternative procedures for dealing with such magnets are described.

  17. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}`s.

  18. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}'s.

  19. Maximum gravitational-wave energy emissible in magnetar flares

    SciTech Connect

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-15

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies ({approx}10{sup 49} erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10{sup 48}-10{sup 49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  20. Uncertain loading and quantifying maximum energy concentration within composite structures

    NASA Astrophysics Data System (ADS)

    Lipton, Robert; Sinz, Paul; Stuebner, Michael

    2016-11-01

    We introduce a systematic method for identifying the worst case load among all boundary loads of fixed energy. Here the worst case load is defined to be the one that delivers the largest fraction of input energy to a prescribed subdomain of interest. The worst case load is identified with the first eigenfunction of a suitably defined eigenvalue problem. The first eigenvalue for this problem is the maximum fraction of boundary energy that can be delivered to the subdomain. We compute worst case boundary loads and associated energy contained inside a prescribed subdomain through the numerical solution of the eigenvalue problem. We apply this computational method to bound the worst case load associated with an ensemble of random boundary loads given by a second order random process. Several examples are carried out on heterogeneous structures to illustrate the method.

  1. Mind the bubbles: achieving stable measurements of maximum hydraulic conductivity through woody plant samples

    PubMed Central

    Espino, Susana; Schenk, H. Jochen

    2011-01-01

    The maximum specific hydraulic conductivity (kmax) of a plant sample is a measure of the ability of a plants’ vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of kmax are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of kmax are a common problem when measuring woody plant samples and it is commonly observed that kmax declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in kmax under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of kmax were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining kmax values. Our findings suggest that degassing of water is essential for achieving stable and precise

  2. Mind the bubbles: achieving stable measurements of maximum hydraulic conductivity through woody plant samples.

    PubMed

    Espino, Susana; Schenk, H Jochen

    2011-01-01

    The maximum specific hydraulic conductivity (k(max)) of a plant sample is a measure of the ability of a plants' vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of k(max) are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of k(max) are a common problem when measuring woody plant samples and it is commonly observed that k(max) declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in k(max) under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of k(max) were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining k(max) values. Our findings suggest that degassing of water is essential for achieving stable and

  3. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  4. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    DOE PAGES

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agenciesmore » are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.« less

  5. Achieving Deeper Energy Savings in Federal Energy Performance Contracts

    SciTech Connect

    Shonder, John A.; Nasseri, Cyrus

    2015-01-01

    Legislation requires each agency of the US federal government to reduce the aggregate energy use index of its buildings by 30% by 2015, with respect to a 2003 baseline. The declining availability of appropriated funding means that energy performance contracting will be key to achieving this goal. Historically however, energy performance contracts have been able to reduce energy use by only about 20% over baseline. Achieving 30% energy reductions using performance contracting will require new approaches and a specific focus on achieving higher energy savings, both by ESCOs and by agencies. This paper describes some of the ways federal agencies are meeting this challenge, and presents results from the efforts of one agency the US General Services Administration -- to achieve deeper energy savings in conventional energy savings performance contracts.

  6. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  7. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  8. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    PubMed

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738

  9. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline.

    PubMed

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-05-01

    Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear-surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established.

  10. Slip resistance of winter footwear on snow and ice measured using maximum achievable incline

    PubMed Central

    Hsu, Jennifer; Shaw, Robert; Novak, Alison; Li, Yue; Ormerod, Marcus; Newton, Rita; Dutta, Tilak; Fernie, Geoff

    2016-01-01

    Abstract Protective footwear is necessary for preventing injurious slips and falls in winter conditions. Valid methods for assessing footwear slip resistance on winter surfaces are needed in order to evaluate footwear and outsole designs. The purpose of this study was to utilise a method of testing winter footwear that was ecologically valid in terms of involving actual human testers walking on realistic winter surfaces to produce objective measures of slip resistance. During the experiment, eight participants tested six styles of footwear on wet ice, on dry ice, and on dry ice after walking over soft snow. Slip resistance was measured by determining the maximum incline angles participants were able to walk up and down in each footwear–surface combination. The results indicated that testing on a variety of surfaces is necessary for establishing winter footwear performance and that standard mechanical bench tests for footwear slip resistance do not adequately reflect actual performance. Practitioner Summary: Existing standardised methods for measuring footwear slip resistance lack validation on winter surfaces. By determining the maximum inclines participants could walk up and down slopes of wet ice, dry ice, and ice with snow, in a range of footwear, an ecologically valid test for measuring winter footwear performance was established. PMID:26555738

  11. Drag and energy accommodation coefficients during sunspot maximum

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano; Moe, Kenneth; Moe, Mildred M.

    A hundred years of laboratory measurements have shown that gas-surface interactions depend not only on the chemistry and energy of the incident particles but also on the degree of surface contamination. The conditions appropriate to gas-surface interaction in space have not been successfully duplicated in the laboratory. Consequently, knowledge of satellite drag coefficients has been dependent upon opportunities to compare theoretical models with observations of satellite decay. From such studies it is now known that the great majority of molecules which strike satellite surfaces are reemitted in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient, α. Although a few measurements of α were made in the past, none was made near sunspot maximum. In the present study, we take advantage of the increasing data base to compare theoretical determinations of satellite drag coefficients with the history of satellite orbital decay during sunspot maximum. An example is the SNOE satellite which was in a circular orbit with an initial perigee altitude of 515 km during dates from October 1999 to December 2002. SNOE had a cylinder-like shape with a hexagonal cross section. It was attitude stabilized so that it maintained a constant aspect relative to the incident velocity vector, a feature which facilitated the computation of its drag coefficient as a function of α. The satellite drag coefficient was obtained by fitting, in a least squares sense, the semi-major axis decay inferred from the historical two-line elements acquired by the US Space Surveillance Network. All the principal orbital perturbations, namely geopotential harmonics up to the 16th degree and order, third body attraction of the Moon and the Sun, direct solar radiation pressure (with eclipses), and aerodynamic drag were included, using the Jacchia Bowman 2006 (JB2006) model to describe the atmospheric density. The average drag coefficient (fitted to JB2006), calculated

  12. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    SciTech Connect

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  13. Maximum likelihood analysis of low energy CDMS II germanium data

    NASA Astrophysics Data System (ADS)

    Agnese, R.; Anderson, A. J.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Godfrey, G. L.; Golwala, S. R.; Graham, M.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nelson, R. H.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.; SuperCDMS Collaboration

    2015-03-01

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using geant4 to simulate the surface-event background from 210Pb decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in our data. We confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.

  14. Paradigms and poverty in global energy policy: research needs for achieving universal energy access

    NASA Astrophysics Data System (ADS)

    Sovacool, Benjamin K.; Bazilian, Morgan; Toman, Michael

    2016-06-01

    This research letter discusses elements of a long-term interdisciplinary research effort needed to help ensure the maximum social, economic, and environmental benefits of achieving secure universal access to modern energy services. Exclusion of these services affects the lives and livelihoods of billions of people. The research community has an important, but not yet well-defined, role to play.

  15. Achieving energy efficiency during collective communications

    SciTech Connect

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run

  16. Maximum likelihood positioning and energy correction for scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-01

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30× 30 scintillator pixel array with an 8× 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner’s spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner’s overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time.

  17. Maximum likelihood positioning and energy correction for scintillation detectors.

    PubMed

    Lerche, Christoph W; Salomon, André; Goldschmidt, Benjamin; Lodomez, Sarah; Weissler, Björn; Solf, Torsten

    2016-02-21

    An algorithm for determining the crystal pixel and the gamma ray energy with scintillation detectors for PET is presented. The algorithm uses Likelihood Maximisation (ML) and therefore is inherently robust to missing data caused by defect or paralysed photo detector pixels. We tested the algorithm on a highly integrated MRI compatible small animal PET insert. The scintillation detector blocks of the PET gantry were built with the newly developed digital Silicon Photomultiplier (SiPM) technology from Philips Digital Photon Counting and LYSO pixel arrays with a pitch of 1 mm and length of 12 mm. Light sharing was used to readout the scintillation light from the 30 × 30 scintillator pixel array with an 8 × 8 SiPM array. For the performance evaluation of the proposed algorithm, we measured the scanner's spatial resolution, energy resolution, singles and prompt count rate performance, and image noise. These values were compared to corresponding values obtained with Center of Gravity (CoG) based positioning methods for different scintillation light trigger thresholds and also for different energy windows. While all positioning algorithms showed similar spatial resolution, a clear advantage for the ML method was observed when comparing the PET scanner's overall single and prompt detection efficiency, image noise, and energy resolution to the CoG based methods. Further, ML positioning reduces the dependence of image quality on scanner configuration parameters and was the only method that allowed achieving highest energy resolution, count rate performance and spatial resolution at the same time. PMID:26836394

  18. Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan

    2016-07-01

    Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return

  19. Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan

    2016-07-01

    Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return

  20. 40 CFR 63.55 - Maximum achievable control technology (MACT) determinations for affected sources subject to case...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections... quality health and environmental impacts and energy requirements, determines is achievable by affected... and any non-air quality health and environmental impacts and energy requirements, determines...

  1. Maximum Likelihood Analysis of Low Energy CDMS II Germanium Data

    DOE PAGES

    Agnese, R.

    2015-03-30

    We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from Pb210decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. In addition, we also perform fits using an analytic ad hoc background model proposed by Collar and Fields, who claimed to find a large excess of signal-like events in ourmore » data. Finally, we confirm the strong preference for a signal hypothesis in their analysis under these assumptions, but excesses are observed in both single- and multiple-scatter events, which implies the signal is not caused by WIMPs, but rather reflects the inadequacy of their background model.« less

  2. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.

    PubMed

    Cushing, Scott K; Bristow, Alan D; Wu, Nianqiang

    2015-11-28

    Plasmonics can enhance solar energy conversion in semiconductors by light trapping, hot electron transfer, and plasmon-induced resonance energy transfer (PIRET). The multifaceted response of the plasmon and multiple interaction pathways with the semiconductor makes optimization challenging, hindering design of efficient plasmonic architectures. Therefore, in this paper we use a density matrix model to capture the interplay between scattering, hot electrons, and dipole-dipole coupling through the plasmon's dephasing, including both the coherent and incoherent dynamics necessary for interactions on the plasmon's timescale. The model is extended to Shockley-Queisser limit calculations for both photovoltaics and solar-to-chemical conversion, revealing the optimal application of each enhancement mechanism based on plasmon energy, semiconductor energy, and plasmon dephasing. The results guide application of plasmonic solar-energy harvesting, showing which enhancement mechanism is most appropriate for a given semiconductor's weakness, and what nanostructures can achieve the maximum enhancement.

  3. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  4. The ACT{sup 2} project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect

    Crawley, D.B.; Krieg, B.L.

    1991-11-01

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project`s pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  5. The ACT sup 2 project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect

    Crawley, D.B. ); Krieg, B.L. )

    1991-11-01

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project's pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  6. Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation.

    PubMed

    Smejkal, Benjamin; Helk, Bernhard; Rondeau, Jean-Michel; Anton, Sabine; Wilke, Angelika; Scheyerer, Peter; Fries, Jacqueline; Hekmat, Dariusch; Weuster-Botz, Dirk

    2013-07-01

    Macromolecular bioproducts like therapeutic proteins have usually been crystallized with µL-scale vapor diffusion experiments for structure determination by X-ray diffraction. Little systematic know-how exists for technical-scale protein crystallization in stirred vessels. In this study, the Fab-fragment of the therapeutic antibody Canakinumab was successfully crystallized in a stirred-tank reactor on a 6 mL-scale. A four times faster onset of crystallization of the Fab-fragment was observed compared to the non-agitated 10 µL-scale. Further studies on a liter-scale with lysozyme confirmed this effect. A 10 times faster onset of crystallization was observed in this case at an optimum stirrer speed. Commonly suggested scale-up criteria (i.e., minimum stirrer speed to keep the protein crystals in suspension or constant impeller tip speed) were shown not to be successful. Therefore, the criterion of constant maximum local energy dissipation was applied for scale-up of the stirred crystallization process for the first time. The maximum local energy dissipation was estimated by measuring the drop size distribution of an oil/surfactant/water emulsion in stirred-tank reactors on a 6 mL-, 100 mL-, and 1 L-scale. A comparable crystallization behavior was achieved in all stirred-tank reactors when the maximum local energy dissipation was kept constant for scale-up. A maximum local energy dissipation of 2.2 W kg(-1) was identified to be the optimum for lysozyme crystallization at all scales under study.

  7. Method of achieving the controlled release of thermonuclear energy

    DOEpatents

    Brueckner, Keith A.

    1986-01-01

    A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

  8. Achieving Self-Reliance: Backyard Energy Lessons.

    ERIC Educational Resources Information Center

    Cook, Stephen

    Appropriate technology (the process most appropriate for local cultural, economic, and social conditions) is geared toward projects which: are small in scale, decentralized, and energy efficient; use local materials, labor, and ingenuity; are not capital-intensive; and maximize the use of renewable energy resources. Descriptions of such projects…

  9. Achieving Energy Independence by Reviving America's Cities.

    ERIC Educational Resources Information Center

    Goldstein, Neil; Winterer, Amey

    1982-01-01

    Discusses how it is in our nation's energy interest that cities and city living prosper and that movement of people out of cities and into nonurban areas be reversed. However, national energy policy itself favors suburban sprawl-type development and works against city revival. (AM)

  10. Robust Maximum Lifetime Routing and Energy Allocation in Wireless Sensor Networks

    DOE PAGES

    Paschalidis, Ioannis Ch.; Wu, Ruomin

    2012-01-01

    We consider the maximum lifetime routing problem in wireless sensor networks in two settings: (a) when nodes’ initial energy is given and (b) when it is subject to optimization. The optimal solution and objective value provide optimal flows and the corresponding predicted lifetime, respectively. We stipulate that there is uncertainty in various network parameters (available energy and energy depletion rates). In setting (a) we show that for specific, yet typical, network topologies, the actual network lifetime will reach the predicted value with a probability that converges to zero as the number of nodes grows large. In setting (b) the samemore » result holds for all topologies. We develop a series of robust problem formulations, ranging from pessimistic to optimistic. A set of parameters enable the tuning of the conservatism of the formulation to obtain network flows with a desirably high probability that the corresponding lifetime prediction is achieved. We establish a number of properties for the robust network flows and energy allocations and provide numerical results to highlight the tradeoff between predicted lifetime and the probability achieved. Further, we analyze an interesting limiting regime of massively deployed sensor networks and essentially solve a continuous version of the problem.« less

  11. Achieving Energy Efficiency Through Real-Time Feedback

    SciTech Connect

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  12. Modulation of low energy electrons and protons near solar maximum

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Meyer, P.

    1975-01-01

    The intensities of cosmic-ray electrons in the energy range from 24 to 235 MeV and of protons in the ranges 40 to 150 MeV and greater than 700 MeV are compared with the neutron intensity data over the period 1968 to 1972. Correlation plots between these various components show a marked break following the June 9, 1969 Forbush decrease. The resulting hysteresis curve is best explained as a sudden change in the rigidity dependence of solar modulation. A variation in the size of the solar cavity is also possible but not likely.

  13. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions. PMID:26282441

  14. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  15. States that give the maximum signal-to-quantum noise ratio for a fixed energy

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.

    1976-01-01

    Under a radiation power constraint, the maximum signal-to-quantum noise ratio obtainable for any state of a radiation field is found. This maximum value is achieved by the two-photon coherent states introduced previously to describe two-photon lasers.

  16. Using the network to achieve energy efficiency

    SciTech Connect

    Giglio, M.

    1995-12-01

    Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997. Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.

  17. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  18. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 deg. continuous arc proton therapy and for 180 deg. split arc proton therapy (two 90 degree sign arcs) using CT profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  19. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  20. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  1. On the minimum coupling required for maximum theoretical power capture from vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Kim, D.; Hewa-Kasakarage, N. N.; Yoon, S.; Hall, N. A.

    2012-09-01

    The minimum transducer coupling to enable maximum theoretical power capture from vibration energy harvesters is derived, leading to the simple conclusion that the product of the transducer coupling coefficient and resonance quality factor must be greater than two. Maximum theoretical power capture is experimentally demonstrated on a micromachined piezoelectric energy harvester comprised of a 20 μm thick epitaxial silicon cantilever with 800 nm thick lead-zirconate-titanate along the top surface and a bulk silicon mass at the tip. The coupling of these structures, although small (κ2=0.0033), is entirely sufficient to enable maximum theoretical power capture owing to light damping (Q =906).

  2. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  3. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed.

    PubMed

    Pan, Shu-Yuan; Chiang, Pen-Chi; Chen, Yi-Hung; Chen, Chun-Da; Lin, Hsun-Yu; Chang, E-E

    2013-01-01

    Accelerated carbonation of basic oxygen furnace slag (BOFS) coupled with cold-rolling wastewater (CRW) was performed in a rotating packed bed (RPB) as a promising process for both CO2 fixation and wastewater treatment. The maximum achievable capture capacity (MACC) via leaching and carbonation processes for BOFS in an RPB was systematically determined throughout this study. The leaching behavior of various metal ions from the BOFS into the CRW was investigated by a kinetic model. In addition, quantitative X-ray diffraction (QXRD) using the Rietveld method was carried out to determine the process chemistry of carbonation of BOFS with CRW in an RPB. According to the QXRD results, the major mineral phases reacting with CO2 in BOFS were Ca(OH)2, Ca2(HSiO4)(OH), CaSiO3, and Ca2Fe1.04Al0.986O5. Meanwhile, the carbonation product was identified as calcite according to the observations of SEM, XEDS, and mappings. Furthermore, the MACC of the lab-scale RPB process was determined by balancing the carbonation conversion and energy consumption. In that case, the overall energy consumption, including grinding, pumping, stirring, and rotating processes, was estimated to be 707 kWh/t-CO2. It was thus concluded that CO2 capture by accelerated carbonation of BOFS could be effectively and efficiently performed by coutilizing with CRW in an RPB. PMID:24236803

  4. Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed.

    PubMed

    Pan, Shu-Yuan; Chiang, Pen-Chi; Chen, Yi-Hung; Chen, Chun-Da; Lin, Hsun-Yu; Chang, E-E

    2013-01-01

    Accelerated carbonation of basic oxygen furnace slag (BOFS) coupled with cold-rolling wastewater (CRW) was performed in a rotating packed bed (RPB) as a promising process for both CO2 fixation and wastewater treatment. The maximum achievable capture capacity (MACC) via leaching and carbonation processes for BOFS in an RPB was systematically determined throughout this study. The leaching behavior of various metal ions from the BOFS into the CRW was investigated by a kinetic model. In addition, quantitative X-ray diffraction (QXRD) using the Rietveld method was carried out to determine the process chemistry of carbonation of BOFS with CRW in an RPB. According to the QXRD results, the major mineral phases reacting with CO2 in BOFS were Ca(OH)2, Ca2(HSiO4)(OH), CaSiO3, and Ca2Fe1.04Al0.986O5. Meanwhile, the carbonation product was identified as calcite according to the observations of SEM, XEDS, and mappings. Furthermore, the MACC of the lab-scale RPB process was determined by balancing the carbonation conversion and energy consumption. In that case, the overall energy consumption, including grinding, pumping, stirring, and rotating processes, was estimated to be 707 kWh/t-CO2. It was thus concluded that CO2 capture by accelerated carbonation of BOFS could be effectively and efficiently performed by coutilizing with CRW in an RPB.

  5. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    SciTech Connect

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  6. Enhancement of the maximum proton energy by funnel-geometry target in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Dapeng; Li, Yuxiao

    2016-09-01

    Enhancement of the maximum proton energy using a funnel-geometry target is demonstrated through particle simulations of laser-plasma interactions. When an intense short-pulse laser illuminate a thin foil target, the foil electrons are pushed by the laser ponderomotive force, and then form an electron cloud at the target rear surface. The electron cloud generates a strong electrostatic field, which accelerates the protons to high energies. If there is a hole in the rear of target, the shape of the electron cloud and the distribution of the protons will be affected by the protuberant part of the hole. In this paper, a funnel-geometry target is proposed to improve the maximum proton energy. Using particle-in-cell 2-dimensional simulations, the transverse electric field generated by the side wall of four different holes are calculated, and protons inside holes are restricted to specific shapes by these field. In the funnel-geometry target, more protons are restricted near the center of the longitudinal accelerating electric field, thus protons experiencing longer accelerating time and distance in the sheath field compared with that in a traditional cylinder hole target. Accordingly, more and higher energy protons are produced from the funnel-geometry target. The maximum proton energy is improved by about 4 MeV compared with a traditional cylinder-shaped hole target. The funnel-geometry target serves as a new method to improve the maximum proton energy in laser-plasma interactions.

  7. Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.

    PubMed

    Lee, Jae Bong; Derome, Dominique; Dolatabadi, Ali; Carmeliet, Jan

    2016-02-01

    The maximum spreading of an impinging droplet on a rigid surface is studied for low to high impact velocity, until the droplet starts splashing. We investigate experimentally and numerically the role of liquid properties, such as surface tension and viscosity, on drop impact using three liquids. It is found that the use of the experimental dynamic contact angle at maximum spreading in the Kistler model, which is used as a boundary condition for the CFD-VOF calculation, gives good agreement between experimental and numerical results. Analytical models commonly used to predict the boundary layer thickness and time at maximum spreading are found to be less correct, meaning that energy balance models relying on these relations have to be considered with care. The time of maximum spreading is found to depend on both the impact velocity and surface tension, and neither dependency is predicted correctly in common analytical models. The relative proportion of the viscous dissipation in the total energy budget increases with impact velocity with respect to surface energy. At high impact velocity, the contribution of surface energy, even before splashing, is still substantial, meaning that both surface energy and viscous dissipation have to be taken into account, and scaling laws depending only on viscous dissipation do not apply. At low impact velocity, viscous dissipation seems to play an important role in low-surface-tension liquids such as ethanol. PMID:26745364

  8. Optimization Correction Strength Using Contra Bending Technique without Anterior Release Procedure to Achieve Maximum Correction on Severe Adult Idiopathic Scoliosis

    PubMed Central

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Purnaning, Dyah; Kurniawati, Tri

    2016-01-01

    Adult scoliosis is defined as a spinal deformity in a skeletally mature patient with a Cobb angle of more than 10 degrees in the coronal plain. Posterior-only approach with rod and screw corrective manipulation to add strength of contra bending manipulation has correction achievement similar to that obtained by conventional combined anterior release and posterior approach. It also avoids the complications related to the thoracic approach. We reported a case of 25-year-old male adult idiopathic scoliosis with double curve. It consists of main thoracic curve of 150 degrees and lumbar curve of 89 degrees. His curve underwent direct contra bending posterior approach using rod and screw corrective manipulation technique to achieve optimal correction. After surgery the main thoracic Cobb angle becomes 83 degrees and lumbar Cobb angle becomes 40 degrees, with 5 days length of stay and less than 800 mL blood loss during surgery. There is no complaint at two months after surgery; he has already come back to normal activity with good functional activity. PMID:27064801

  9. Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    PubMed Central

    Yu, Yimin; Song, Chao; Liu, Ming; Gong, Haigang

    2011-01-01

    In wireless sensor networks (WSNs), the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas), the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT), which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms. PMID:22163950

  10. The NASA High Energy Solar Physics (HESP) mission for the next solar maximum.

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Dennis, B. R.; Ramaty, R.; Emslie, A. G.; Canfield, R.; Doschek, G.

    The NASA High Energy Solar Physics (HESP) mission offers the opportunity for major breakthroughs in the understanding of the fundamental energy release and particle acceleration processes at the core of the solar flare problem. Recently, the HESP mission has been adapted to Lightsats, lighter, smaller, cheaper spacecraft: the baseline HESP mission now includes two Pegasus-class spacecraft. A launch by the end of the year 2000 is desirable to be in time for the next solar activity maximum.

  11. Which Tibial Tray Design Achieves Maximum Coverage and Ideal Rotation: Anatomic, Symmetric, or Asymmetric? An MRI-based study.

    PubMed

    Stulberg, S David; Goyal, Nitin

    2015-10-01

    Two goals of tibial tray placement in TKA are to maximize coverage and establish proper rotation. Our purpose was to utilize MRI information obtained as part of PSI planning to determine the impact of tibial tray design on the relationship between coverage and rotation. MR images for 100 consecutive knees were uploaded into PSI software. Preoperative planning software was used to evaluate 3 different tray designs: anatomic, symmetric, and asymmetric. Approximately equally good coverage was achieved with all three trays. However, the anatomic compared to symmetric/asymmetric trays required less malrotation (0.3° vs 3.0/2.4°; P < 0.001), with a higher proportion of cases within 5° of neutral (97% vs 73/77%; P < 0.001). In this study, the anatomic tibia optimized the relationship between coverage and rotation.

  12. [ADVANCE-ON Trial; How to Achieve Maximum Reduction of Mortality in Patients With Type 2 Diabetes].

    PubMed

    Kanorskiĭ, S G

    2015-01-01

    Of 10,261 patients with type 2 diabetes who survived to the end of a randomized ADVANCE trial 83% were included in the ADVANCE-ON project for observation for 6 years. The difference in the level of blood pressure which had been achieved during 4.5 years of within trial treatment with fixed perindopril/indapamide combination quickly vanished but significant decrease of total and cardiovascular mortality in the group of patients treated with this combination for 4.5 years was sustained during 6 years of post-trial follow-up. The results can be related to gradually weakening protective effect of perindopril/indapamide combination on cardiovascular system, and are indicative of the expedience of long-term use of this antihypertensive therapy for maximal lowering of mortality of patients with diabetes. PMID:26164995

  13. A New Maximum Likelihood Approach for Free Energy Profile Construction from Molecular Simulations.

    PubMed

    Lee, Tai-Sung; Radak, Brian K; Pabis, Anna; York, Darrin M

    2013-01-01

    A novel variational method for construction of free energy profiles from molecular simulation data is presented. The variational free energy profile (VFEP) method uses the maximum likelihood principle applied to the global free energy profile based on the entire set of simulation data (e.g from multiple biased simulations) that spans the free energy surface. The new method addresses common obstacles in two major problems usually observed in traditional methods for estimating free energy surfaces: the need for overlap in the re-weighting procedure and the problem of data representation. Test cases demonstrate that VFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct the overall free energy profiles. For typical chemical reactions, only ~5 windows and ~20-35 independent data points per window are sufficient to obtain an overall qualitatively correct free energy profile with sampling errors an order of magnitude smaller than the free energy barrier. The proposed approach thus provides a feasible mechanism to quickly construct the global free energy profile and identify free energy barriers and basins in free energy simulations via a robust, variational procedure that determines an analytic representation of the free energy profile without the requirement of numerically unstable histograms or binning procedures. It can serve as a new framework for biased simulations and is suitable to be used together with other methods to tackle with the free energy estimation problem.

  14. Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Xu, Wei

    2016-02-01

    This paper investigates the nonlinear structure between carbon and energy markets by employing the maximum overlap wavelet transform (MODWT) as well as the multifractal detrended cross-correlation analysis based on maximum overlap wavelet transform (MFDCCA-MODWT). Based on the MODWT multiresolution analysis and the statistic Qcc(m) significance, relatively significant cross-correlations are obtained between carbon and energy future markets either on different time scales or on the whole. The result of the Granger causality test indicates bidirectional Granger causality between carbon and electricity future markets, although the Granger causality relationship between the carbon and oil price is not evident. The existence of multifractality for the returns between carbon and energy markets is proven with the MFDCCA-MODWT algorithm. In addition, results of investigating the origin of multifractality demonstrate that both long-range correlations and fat-tailed distributions play important roles in the contributions of multifractality.

  15. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  16. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  17. On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Reville, B.; Bell, A. R.

    2014-04-01

    The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

  18. Achieving high energy absorption capacity in cellular bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-05-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed.

  19. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  20. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage. PMID:27394100

  1. Maximum efficiency of state-space models of nanoscale energy conversion devices.

    PubMed

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  2. Maximum efficiency of state-space models of nanoscale energy conversion devices

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Nitzan, Abraham

    2016-07-01

    The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.

  3. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    NASA Astrophysics Data System (ADS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-03-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  4. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors.

    PubMed

    Wang, Heming; Park, Jae-Do; Ren, Zhiyong

    2012-05-01

    Microbial fuel cell (MFC) technology offers a sustainable approach to harvest electricity from biodegradable materials. Energy production from MFCs has been demonstrated using external resistors or charge pumps, but such methods can only dissipate energy through heat or receive electrons passively from the MFC without any controllability. This study developed a new approach and system that can actively extract energy from MFC reactors at any operating point without using any resistors, especially at the peak power point to maximize energy production. Results show that power harvesting from a recirculating-flow MFC can be well maintained by the maximum power point circuit (MPPC) at its peak power point, while a charge pump was not able to change operating point due to current limitation. Within 18-h test, the energy gained from the MPPC was 76.8 J, 76 times higher than the charge pump (1.0 J) that was commonly used in MFC studies. Both conditions resulted in similar organic removal, but the Coulombic efficiency obtained from the MPPC was 21 times higher than that of the charge pump. Different numbers of capacitors could be used in the MPPC for various energy storage requirements and power supply, and the energy conversion efficiency of the MPPC was further characterized to identify key factors for system improvement. This active energy harvesting approach provides a new perspective for energy harvesting that can maximize MFC energy generation and system controllability.

  5. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  6. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  7. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Falconer, D. A.

    2009-05-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are LWLSG, a gauge of the total free energy in an active region's magnetic field, and LΦ, a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 RSun central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size LΦ of the active region, (2) in (Log LWLSG, Log LΦ) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active-region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: áBñ ≡ ΦA ≈ 300 G, where Φ is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (< 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program.

  8. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  9. Nonlinear processes in cosmic-ray precursor of strong supernova shock: Maximum energy and average energy spectrum of accelerated particles

    NASA Astrophysics Data System (ADS)

    Ptuskin, V. S.; Zirakashvili, V. N.

    The instability in the cosmic-ray precursor of a supernova shock is studied. The level of turbulence in this region determines the maximum energy of accelerated particles. The consideration is not limited by the case of weak turbulence. It is assumed that the Kolmogorov type nonlinear wave interactions together with the ion-neutral collisions restrict the amplitude of random magnetic field. As a result, the maximum energy of accelerated particles strongly depends on the age of a SNR. The average spectrum of cosmic rays injected in the interstellar medium in the course of adiabatic SNR evolution takes the approximate form E-2 at energies larger than 10 30 GeV/nucleon with the maximum energy that is close to the position of the knee in cosmic-ray spectrum at 4 × 1015 eV. At an earlier stage of SNR evolution the ejecta-dominated stage, the particles are accelerated to higher energies and have a rather steep power-law distribution. These results suggest that the knee may mark the transition from the ejecta-dominated to the adiabatic evolution of SNR shocks which accelerate cosmic rays.

  10. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum

    NASA Astrophysics Data System (ADS)

    Greenspan, M. E.; Hamilton, D. C.

    2002-04-01

    Close to the peak of a magnetic storm, the ratio of the O+ to the H+ contribution to the ring current energy, U(O+)/U(H+), depends on both solar EUV flux and storm size. This ratio provides a lower limit on the importance of the ionospheric plasma source compared to the solar wind source since only the ionosphere supplies O+ while both the solar wind and the ionosphere supply H+. We have used measurements from the CHEM ion spectrometer on the Active Magnetospheric Particle Tracer Explorers (AMPTE) CCE spacecraft to assess U(O+)/U(H+) near storm maximum. CHEM measured equatorial ion composition over the energy per charge range 1.5-300 keV/e for more than 4 years, from solar minimum through much of the rising phase of Solar Cycle 22. Thus our data set is large, including 67 magnetic storms with minimum Dst values less than -50 nT. To estimate the O+ and H+ contributions to the ring current energy, we have multiplied local measurements of each ion's energy density along the CCE trajectory by the appropriate dipole L shell volume and summed over L values from two to seven. We have used a bilinear regression to assess the dependence of U(O+)/U(H+) on solar EUV flux, parameterized by F10.7, and storm size, parameterized by minimum Dst value Dstmin. We have found that both F10.7 and Dstmin are important (and nearly independent) predictors of U(O+)/U(H+). Only four storms of 67 had U(O+)/U(H+) > 1. Two of the four were fairly small, with |Dstmin| < 100 nT but with high F10.7 values. This shows that O+ can sometimes contribute the majority of the ring current energy during small storms when the solar EUV flux is high (i.e., near solar maximum) as well as during very large storms throughout the solar cycle.

  11. Reducing start-up time and minimizing energy losses of Microbial Fuel Cells using Maximum Power Point Tracking strategy

    NASA Astrophysics Data System (ADS)

    Molognoni, Daniele; Puig, Sebastià; Balaguer, M. Dolors; Liberale, Alessandro; Capodaglio, Andrea G.; Callegari, Arianna; Colprim, Jesús

    2014-12-01

    Microbial Fuel Cells (MFCs) are considered to be an environmental friendly energy conversion technology. The main limitations that delay their industrialization include low current and power densities achievable and long start-up times. Maximum Power Point Tracking (MPPT) has been proposed as a method to enhance MFCs electrical performances. However, the specialized literature is still lacking of experimental works on scaled-up reactors and/or real wastewater utilization. This study evaluates the impact of a MPPT system applied to MFCs treating swine wastewater in terms of start-up time and long-term performance. For this purpose, two replicate cells were compared, one with applied MPPT control and one working with fixed resistance. Both MFCs were continuously fed with swine wastewater to validate the control system under real and dynamic conditions. The study demonstrated that the automatic resistance control was able to reduce the start-up time of about one month. Moreover, MPPT system increased of 40% the Coulombic efficiency at steady-state conditions, reduced energy losses associated with anode and cathode reactions and limited methanogenic activity in the anode chamber. A power density of 5.0 ± 0.2 W m-3 NAC was achieved feeding the system at an organic loading rate of 10 kg COD m-3 d-1.

  12. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  13. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  14. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  15. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  16. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  17. Microwatt power consumption maximum power point tracking circuit using an analogue differentiator for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Zhu, M.

    2015-12-01

    A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.

  18. Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

  19. Design strategies for achieving high triplet energy electron transporting host materials for blue electrophosphorescence

    SciTech Connect

    Sapochak, Linda S.; Padmaperuma, Asanga B.; Vecchi, Paul A.; Qiao, Hong; Burrows, Paul E.

    2006-12-01

    High efficiency small molecule organic light emitting devices (OLEDs) based on light emission from an electrophosphorescent dopant dispersed in an organic host matrix are well known. Achieving blue phosphorescent OLEDs is particularly challenging because the host triplet energy should ideally be > 2.8 eV to prevent back-transfer of energy from the dopant to the host matrix resulting in loss of efficiency. A design strategy for developing new host materials with high triplet energies by using phosphine oxide (P=O) moieties as points of saturation in order to build sublimable, electron transporting host materials starting from small, wide bandgap molecular building blocks (i.e., biphenyl, phenyl, naphthalene, octafluorobiphenyl, and N-ethylcarbazole) is described. Electrophosphorescent OLEDs using the organic phosphine oxide compounds as host materials for the sky blue organometallic phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic) give maximum external quantum efficiencies of ~ 8% and maximum luminance power efficiencies up to 25 lm/W.

  20. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    SciTech Connect

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  1. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  2. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  3. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  4. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  5. Perspectives on achieving sustainable energy production and use

    EPA Science Inventory

    The traditional definition of sustainability calls for polices and strategies that meet society's present needs without compromising the ability of future generations to meet their own needs. Achieving operational sustainability requires three critical elements: advances in scien...

  6. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.7 Water used to achieve energy efficiency. ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 435.7 Section...

  7. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    PubMed

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure. PMID:25950392

  8. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    PubMed

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  9. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    SciTech Connect

    Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  10. Optimizing Bi2O3 and TiO2 to achieve the maximum non-linear electrical property of ZnO low voltage varistor

    PubMed Central

    2013-01-01

    Background In fabrication of ZnO-based low voltage varistor, Bi2O3 and TiO2 have been used as former and grain growth enhancer factors respectively. Therefore, the molar ratio of the factors is quit important in the fabrication. In this paper, modeling and optimization of Bi2O3 and TiO2 was carried out by response surface methodology to achieve maximized electrical properties. The fabrication was planned by central composite design using two variables and one response. To obtain actual responses, the design was performed in laboratory by the conventional methods of ceramics fabrication. The actual responses were fitted into a valid second order algebraic polynomial equation. Then the quadratic model was suggested by response surface methodology. The model was validated by analysis of variance which provided several evidences such as high F-value (153.6), very low P-value (<0.0001), adjusted R-squared (0.985) and predicted R-squared (0.947). Moreover, the lack of fit was not significant which means the model was significant. Results The model tracked the optimum of the additives in the design by using three dimension surface plots. In the optimum condition, the molars ratio of Bi2O3 and TiO2 were obtained in a surface area around 1.25 point that maximized the nonlinear coefficient around 20 point. Moreover, the model predicted the optimum amount of the additives in desirable condition. In this case, the condition included minimum standard error (0.35) and maximum nonlinearity (20.03), while molar ratio of Bi2O3 (1.24 mol%) and TiO2 (1.27 mol%) was in range. The condition as a solution was tested by further experiments for confirmation. As the experimental results showed, the obtained value of the non-linearity, 21.6, was quite close to the predicted model. Conclusion Response surface methodology has been successful for modeling and optimizing the additives such as Bi2O3 and TiO2 of ZnO-based low voltage varistor to achieve maximized non-linearity properties. PMID

  11. Preferential flow in connected soil structures and the principle of "maximum energy dissipation": A thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2009-04-01

    Helmholtz free energy. Thermodynamic equilibrium is a state of minimum free energy. The latter is determined by potential energy and capillary energy in soil, which in turn strongly depends on soil moisture, pore size distribution and depth to groundwater. The objective of this study is threefold. First, we will introduce the necessary theoretical background. Second we suggest ? based on simulations with a physically based hydrological model ? that water flow in connected preferential pathways assures a faster relaxation towards thermodynamic equilibrium through a faster drainage of ?excess water? and a faster redistribution of ?capillary water? within the soil. The latter process is of prime importance in case of cohesive soils where the pore size distribution is dominated by medium and small pores. Third, an application of a physically based hydrological model to predict water flow and runoff response from a pristine catchment in the Chilenean Andes underpins this hypothesis. Behavioral model structures that allow a good match of the observed hydrographs turned out to be most efficient in dissipating free energy by means of preferential flow. It seems that a population of connected preferential pathways is favourable both for resilience and stability of these soils during extreme events and to retain water resources for the ecosystem at the same time. We suggest that this principle of ?maximum energy dissipation? may on the long term help us to better understand why soil structures remain stable, threshold nature of preferential as well as offer a means to further reduce model structural uncertainty. Bloeschl, G. 2006. Idle thoughts on a unifying theory of catchment Hydrology. Geophysical Research Abstracts, Vol. 8, 10677, 2006 SRef-ID: 1607-7962/gra/EGU06-A-10677 European Geosciences Union 2006 Kleidon, A., and S. Schymanski (2008), Thermodynamics and optimality of the water budget on land: A review, Geophys. Res. Lett., 35, L20404, doi:10.1029/ 2008GL035393.

  12. Achieving Energy Savings in Municipal Construction in Long Beach California

    SciTech Connect

    2013-03-01

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program. The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAE baseline by about 45%.

  13. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH_{2} Targets.

    PubMed

    Wagner, F; Deppert, O; Brabetz, C; Fiala, P; Kleinschmidt, A; Poth, P; Schanz, V A; Tebartz, A; Zielbauer, B; Roth, M; Stöhlker, T; Bagnoud, V

    2016-05-20

    We present a study of laser-driven ion acceleration with micrometer and submicrometer thick plastic targets. Using laser pulses with high temporal contrast and an intensity of the order of 10^{20}  W/cm^{2} we observe proton beams with cutoff energies in excess of 85 MeV and particle numbers of 10^{9} in an energy bin of 1 MeV around this maximum. We show that applying the target normal sheath acceleration mechanism with submicrometer thick targets is a very robust way to achieve such high ion energies and particle fluxes. Our results are backed with 2D particle in cell simulations furthermore predicting cutoff energies above 200 MeV for acceleration based on relativistic transparency. This predicted regime can be probed after a few technically feasible adjustments of the laser and target parameters.

  14. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH2 Targets

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Deppert, O.; Brabetz, C.; Fiala, P.; Kleinschmidt, A.; Poth, P.; Schanz, V. A.; Tebartz, A.; Zielbauer, B.; Roth, M.; Stöhlker, T.; Bagnoud, V.

    2016-05-01

    We present a study of laser-driven ion acceleration with micrometer and submicrometer thick plastic targets. Using laser pulses with high temporal contrast and an intensity of the order of 1020 W /cm2 we observe proton beams with cutoff energies in excess of 85 MeV and particle numbers of 109 in an energy bin of 1 MeV around this maximum. We show that applying the target normal sheath acceleration mechanism with submicrometer thick targets is a very robust way to achieve such high ion energies and particle fluxes. Our results are backed with 2D particle in cell simulations furthermore predicting cutoff energies above 200 MeV for acceleration based on relativistic transparency. This predicted regime can be probed after a few technically feasible adjustments of the laser and target parameters.

  15. Achieving High Aqueous Energy Storage via Hydrogen-Generation Passivation.

    PubMed

    Wang, Yuhang; Cui, Xiaoqi; Zhang, Yueyu; Zhang, Lijuan; Gong, Xingao; Zheng, Gengfeng

    2016-09-01

    A new design strategy for polyimides/carbon nanotube networks is reported, aiming to passivate the hydrogen-evolution mechanism on the molecular structures of electrodes, thus substantially boosting their aqueous energy-storage capabilities. The intrinsic sluggish hydrogen-evolution activity of polyimides is further passivated via Li(+) association during battery charging, leading to a much wider voltage window and exceptional energy-storage capability.

  16. Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2016-07-01

    Longwave radiation and turbulent heat fluxes are the mechanisms by which the Earth's surface transfers heat into the atmosphere, thus affecting the surface temperature. However, the energy partitioning between the radiative and turbulent components is poorly constrained by energy and mass balances alone. We use a simple energy balance model with the thermodynamic limit of maximum power as an additional constraint to determine this partitioning. Despite discrepancies over tropical oceans, we find that the broad variation of heat fluxes and surface temperatures in the ERA-Interim reanalyzed observations can be recovered from this approach. The estimates depend considerably on the formulation of longwave radiative transfer, and a spatially uniform offset is related to the assumed cold temperature sink at which the heat engine operates. Our results suggest that the steady state surface energy partitioning may reflect the maximum power constraint.

  17. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  18. Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Araudo, Anabella T.; Bell, Anthony R.; Crilly, Aidan; Blundell, Katherine M.

    2016-08-01

    It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ˜100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.

  19. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  20. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  1. Verification and validation of the maximum entropy method of moment reconstruction of energy dependent neutron flux

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Spencer

    Verification and Validation of reconstructed neutron flux based on the maximum entropy method, is presented in this paper. The verification is carried out by comparing the neutron flux spectrum from the maximum entropy method with Monte Carlo N Particle 5 version 1.40 (MCNP5) and Attila-7.1.0-beta (Attila). A spherical 100% 235U critical assembly is modeled as the test case to compare the three methods. The verification error range for the maximum entropy method is 15% to 23% where MCNP5 is taken to be the comparison standard. Attila relative error for the critical assembly is 20% to 35%. Validation is accomplished by comparing a neutron flux spectrum that is back calculated from foil activation measurements performed in the GODIVA experiment (GODIVA). The error range of the reconstructed flux compared to GODIVA is 0%-10%. The error range of the neutron flux spectrum from MCNP5 compared to GODIVA is 0%-20% and the Attila error range compared to the GODIVA is 0%-35%. The maximum entropy method for reconstructing flux is shown to be a fast reliable method, compared to either Monte Carlo methods (MCNP5) or 30 multienergy group methods (Attila) and with respect to the GODIVA experiment.

  2. Maximum Jailbreak

    NASA Astrophysics Data System (ADS)

    Singleton, B.

    First formulated one hundred and fifty years ago by the heretical scholar Nikolai Federov, the doctrine of cosmism begins with an absolute refusal to treat the most basic factors conditioning life on Earth ­ gravity and death ­ as necessary constraints on action. As manifest through the intoxicated cheers of its early advocates that humans should storm the heavens and conquer death, cosmism's foundational gesture was to conceive of the earth as a trap. Its duty was therefore to understand the duty of philosophy, economics and design to be the creation of means to escape it. This could be regarded as a jailbreak at the maximum possible scale, a heist in which the human species could steal itself from the vault of the Earth. After several decades of relative disinterest new space ventures are inspiring scientific, technological and popular imaginations, this essay explores what kind of cosmism might be constructed today. In this paper cosmism's position as a means of escape is both reviewed and evaluated by reflecting on the potential of technology that actually can help us achieve its aims and also through the lens and state-ofthe-art philosophy of accelerationism, which seeks to outrun modern tropes by intensifying them.

  3. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    PubMed

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  4. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Munro, R. H.

    1985-01-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided.

  5. On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Nakshatrala, K. B.

    2016-01-01

    We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high Péclet numbers. The significant contribution of this paper is to incorporate advection (which makes the spatial part of the differential operator non-self-adjoint) into the non-negative computational framework, and overcome numerical challenges associated with advection. We employ low-order mixed finite element formulations based on least-squares formalism, and enforce explicit constraints on the discrete problem to meet the desired properties. The resulting constrained discrete problem belongs to convex quadratic programming for which a unique solution exists. Maximum principles and the non-negative constraint give rise to bound constraints while element-wise species balance gives rise to equality constraints. The resulting convex quadratic programming problems are solved using an interior-point algorithm. Several numerical results pertaining to advection-dominated problems are presented to illustrate the robustness, convergence, and the overall performance of the proposed computational framework.

  6. Decade of the sun: program plan for the maximum implementation of solar energy through 1990. Final report

    SciTech Connect

    Not Available

    1981-01-01

    This report presents 'a plan for the maximum feasible solar implementation in California by 1990'. Through a legislative mandate, the California Energy Commission has identified the technically feasible solar potential in the state, the policy options to approach the potential, and a reasonable estimate of solar use. This report only includes mature and direct solar technologies, both active and passive, that are commercially available and cost-effective when compared to the marginal cost of new, nonrenewable energy supplies. Decade of the Sun includes an assessment of the status and potential of solar technologies in the residential, commercial, industrial and agricultural sectors, and makes policy recommendations to the legislature.

  7. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  8. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials.

    PubMed

    Woll, K; Bergamaschi, A; Avchachov, K; Djurabekova, F; Gier, S; Pauly, C; Leibenguth, P; Wagner, C; Nordlund, K; Mücklich, F

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (± 0.33) ms(-1) and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material.

  9. Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials

    PubMed Central

    Woll, K.; Bergamaschi, A.; Avchachov, K.; Djurabekova, F.; Gier, S.; Pauly, C.; Leibenguth, P.; Wagner, C.; Nordlund, K.; Mücklich, F.

    2016-01-01

    Established and already commercialized energetic materials, such as those based on Ni/Al for joining, lack the adequate combination of high energy density and ductile reaction products. To join components, this combination is required for mechanically reliable bonds. In addition to the improvement of existing technologies, expansion into new fields of application can also be anticipated which triggers the search for improved materials. Here, we present a comprehensive characterization of the key parameters that enables us to classify the Ru/Al system as new reactive material among other energetic systems. We finally found that Ru/Al exhibits the unusual integration of high energy density and ductility. For example, we measured reaction front velocities up to 10.9 (±0.33) ms−1 and peak reaction temperatures of about 2000 °C indicating the elevated energy density. To our knowledge, such high temperatures have never been reported in experiments for metallic multilayers. In situ experiments show the synthesis of a single-phase B2-RuAl microstructure ensuring improved ductility. Molecular dynamics simulations corroborate the transformation behavior to RuAl. This study fundamentally characterizes a Ru/Al system and demonstrates its enhanced properties fulfilling the identification requirements of a novel nanoscaled energetic material. PMID:26822309

  10. Reconstruction of the energy and depth of maximum of cosmic-ray air showers from LOPES radio measurements

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.; Lopes Collaboration

    2014-09-01

    LOPES is a digital radio interferometer located at Karlsruhe Institute of Technology (KIT), Germany, that measures radio emission from extensive air showers at MHz frequencies in coincidence with KASCADE-Grande. In this article, we explore a method (slope method) that leverages the slope of the measured radio lateral distribution to reconstruct crucial attributes of primary cosmic rays. First, we present an investigation of the method on the basis of pure simulations. Second, we directly apply the slope method to LOPES measurements. Applying the slope method to simulations, we obtain uncertainties on the reconstruction of energy and depth of shower maximum (Xmax) of 13% and 50 g /cm2, respectively. Applying it to LOPES measurements, we are able to reconstruct energy and Xmax of individual events with upper limits on the precision of 20%-25% for the primary energy and 95 g /cm2 for Xmax, despite strong human-made noise at the LOPES site.

  11. Design of Cellular Composite Sandwich Panels for Maximum Blast Resistance Via Energy Absorption

    NASA Astrophysics Data System (ADS)

    McConnell, Jennifer Righman; Su, Hong

    2016-06-01

    This paper presents a design methodology for optimizing the energy absorption under blast loads of cellular composite sandwich panels. A combination of dynamic finite element analysis (FEA) and simplified analytical modeling techniques are used. The analytical modeling calculates both the loading effects and structural response resulting from user-input charge sizes and standoff distances and offers the advantage of expediting iterative design processes. The FEA and the analytical model results are compared and contrasted then used to compare the energy response of various cellular composite sandwich panels under blast loads, where various core shapes and dimensions are the focus. As a result, it is concluded that the optimum shape consists of vertically-oriented webs while the optimum dimensions can be generally described as those which cause the most inelasticity without failure of the webs. These dimensions are also specifically quantified for select situations. This guidance is employed, along with the analytical method developed by the authors and considerations of the influences of material properties, to suggest a general design procedure that is a simple yet sufficiently accurate method for design. The suggested design approach is also demonstrated through a design example.

  12. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    SciTech Connect

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael; Kiggans Jr, James O

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into a bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.

  13. Combined design of recurve actuators and drive electronics for maximum energy efficiency

    NASA Astrophysics Data System (ADS)

    Seresta, Omprakash; Ragon, Scott A.; Zhu, Huiyu; Gurdal, Zafer; Lindner, Douglas K.

    2004-07-01

    Smart structures typically consist of many interacting components, which result in a closed loop formed by an actuator, structure, sensors, controller, and drive circuit components. Despite the recognition of component interactions, much of the traditional design approach for such systems is highly compartmentalized and sequential. The primary objective of the present work is to develop a basic understanding of the energy flow and dynamic interaction between the electrical and mechanical subsystems of smart actuators. When operating from portable power sources, a crucial factor in determining the performance of such a smart system is the battery capacity required for the actuator to operate through a given time span along with its life time. The real and reactive power in such a system will determine the battery life and size separately. While the real power is dissipated only in the drive circuit, the reactive power of the circuit and the actuator cannot be calculated individually, where the interaction arises. Multi-objective function optimization problem, which combines the real and reactive power by different weights, will result in a better balanced solution than optimizing either one of them separately. Genetic algorithm is applied for discrete component selection to generate more realistic designs. The optimization result is illustrated in the paper, as well as their relationship with multi-objective functions.

  14. Maximum likelihood.

    PubMed

    Yang, Shuying; De Angelis, Daniela

    2013-01-01

    The maximum likelihood method is a popular statistical inferential procedure widely used in many areas to obtain the estimates of the unknown parameters of a population of interest. This chapter gives a brief description of the important concepts underlying the maximum likelihood method, the definition of the key components, the basic theory of the method, and the properties of the resulting estimates. Confidence interval and likelihood ratio test are also introduced. Finally, a few examples of applications are given to illustrate how to derive maximum likelihood estimates in practice. A list of references to relevant papers and software for a further understanding of the method and its implementation is provided.

  15. Comparison of attitudinal and achievement outcomes of innovative and conventional energy education units

    SciTech Connect

    O'Brien, E.F.

    1983-01-01

    The purposes of this research were to 1) compare Agriculture, Energy and Society (AES) , a unit of Project for an Energy-Enriched Curriculum and promoted nationwide by National Science Teachers Association, with the most widely used secondary school energy unit Ecological Relationships (ER), a unit of Modern Biology, for its relative ability to encourage student attitudes toward energy conservation and student achievements in reference to energy topics; and 2) investigate various student characteristics, such as sex and grade point average, which might differentially account for the range of student attitudes and achievements found over a four-week period. The study utilized a two-way factorial design. The sample was composed of 200 tenth-grade biology students from ten public schools who were randomly assigned to treatments. The results of this research are encouraging since the AES appears to be a promising adjunct to the teaching of energy topics and more recently developed NSTA units can now be researched.

  16. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  17. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  18. Achieving Maximum Integration Utilizing Requirements Flow Down

    NASA Technical Reports Server (NTRS)

    Archiable, Wes; Askins, Bruce

    2011-01-01

    A robust and experienced systems engineering team is essential for a successful program. It is often a challenge to build a core systems engineering team early enough in a program to maximize integration and assure a common path for all supporting teams in a project. Ares I was no exception. During the planning of IVGVT, the team had many challenges including lack of: early identification of stakeholders, team training in NASA s system engineering practices, solid requirements flow down and a top down documentation strategy. The IVGVT team started test planning early in the program before the systems engineering framework had been matured due to an aggressive schedule. Therefore the IVGVT team increased their involvement in the Constellation systems engineering effort. Program level requirements were established that flowed down to IVGVT aligning all stakeholders to a common set of goals. The IVGVT team utilized the APPEL REQ Development Management course providing the team a NASA focused model to follow. The IVGVT team engaged directly with the model verification and validation process to assure that a solid set of requirements drove the need for the test event. The IVGVT team looked at the initial planning state, analyzed the current state and then produced recommendations for the ideal future state of a wide range of systems engineering functions and processes. Based on this analysis, the IVGVT team was able to produce a set of lessons learned and to provide suggestions for future programs or tests to use in their initial planning phase.

  19. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, J.; Parolari, A.; Huang, S. Y.

    2014-12-01

    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  20. Exchange coupling interaction in L10-FePd/α-Fe nanocomposite magnets with large maximum energy products.

    PubMed

    Sakuma, Noritsugu; Ohshima, Tsubasa; Shoji, Tetsuya; Suzuki, Yoshihito; Sato, Ryota; Wachi, Ayako; Kato, Akira; Kawai, Yoichiro; Manabe, Akira; Teranishi, Toshiharu

    2011-04-26

    Nanocomposite magnets (NCMs) consisting of hard and soft magnetic phases are expected to be instrumental in overcoming the current theoretical limit of magnet performance. In this study, structural analyses were performed on L1(0)-FePd/α-Fe NCMs with various hard/soft volume fractions, which were formed by annealing Pd/γ-Fe(2)O(3) heterostructured nanoparticles and pure Pd nanoparticles. The sample with a hard/soft volume ratio of 82/18 formed by annealing at 773 K had the largest maximum energy product (BH(max) = 10.3 MGOe). In such a sample, the interface between the hard and soft phases was coherent and the phase sizes were optimized, both of which effectively induced exchange coupling. This exchange coupling was directly observed by visualizing the magnetic interaction between the hard and soft phases using a first-order reversal curve diagram, which is a valuable tool to improve the magnetic properties of NCMs.

  1. Population variation and individual maximum size in two leech populations: energy extraction from cannibalism or niche widening?

    PubMed

    Persson, Lennart; Elliott, J Malcolm

    2013-05-01

    The theory of cannibal dynamics predicts a link between population dynamics and individual life history. In particular, increased individual growth has, in both modeling and empirical studies, been shown to result from a destabilization of population dynamics. We used data from a long-term study of the dynamics of two leech (Erpobdella octoculata) populations to test the hypothesis that maximum size should be higher in a cycling population; one of the study populations exhibited a delayed feedback cycle while the other population showed no sign of cyclicity. A hump-shaped relationship between individual mass of 1-year-old leeches and offspring density the previous year was present in both populations. As predicted from the theory, the maximum mass of individuals was much larger in the fluctuating population. In contrast to predictions, the higher growth rate was not related to energy extraction from cannibalism. Instead, the higher individual mass is suggested to be due to increased availability of resources due to a niche widening with increased individual body mass. The larger individual mass in the fluctuating population was related to a stronger correlation between the densities of 1-year-old individuals and 2-year-old individuals the following year in this population. Although cannibalism was the major mechanism regulating population dynamics, its importance was negligible in terms of providing cannibalizing individuals with energy subsequently increasing their fecundity. Instead, the study identifies a need for theoretical and empirical studies on the largely unstudied interplay between ontogenetic niche shifts and cannibalistic population dynamics. PMID:23053229

  2. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect

    Nuckolls, J.H.

    1994-06-01

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  3. A Combined Maximum-likelihood Analysis of the High-energy Astrophysical Neutrino Flux Measured with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2015-08-01

    Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies ≳ 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 ± 0.09 and a flux at 100 TeV of ({6.7}-1.2+1.1)× {10}-18 {{GeV}}-1 {{{s}}}-1 {{sr}}-1 {{cm}}-2. Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1σ (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a νe fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6σ (p = 0.014%).

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  5. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  6. Maximum energy product at elevated temperatures for hexagonal strontium ferrite (SrFe12O19) magnet

    SciTech Connect

    Park, J; Hong, YK; Kim, SG; Kim, S; Liyanage, LSI; Lee, J; Lee, W; Abo, GS; Hur, KH; An, SY

    2014-04-01

    The electronic structure of hexagonal strontium ferrite (SrFe12O19) was calculated based on the density functional theory (DFT) and generalized gradient approximation (GGA). The GGA+U method was used to improve the description of localized Fe 3d electrons. Three different effective U (U-eff) values of 3.7, 7.0, and 10.3 eV were used to calculate three sets of exchange integrals for 21 excited states. We then calculated the temperature dependence of magnetic moments m(T) for the five sublattices (2a, 2b, 12k, 4f(1), and 4f(2)) using the exchange integrals. The m(T) of the five sublattices are inter related to the nearest neighbors, where the spins are mostly anti-ferromagnetically coupled. The five sublattice m(T) were used to ()brain the saturation magnetization M-s(T) of SrFe12O19, which is in good agreement with the experimental values. The temperature dependence of maximum energy product. ((BII)(max)(T)) was calculated using the calculated M-s(T). (C) 2013 Elsevier B.V. All rights reserved.

  7. Maximum energy product at elevated temperatures for hexagonal strontium ferrite (SrFe12O19) magnet

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Hong, Yang-Ki; Kim, Seong-Gon; Kim, Sungho; Liyanage, Laalitha S. I.; Lee, Jaejin; Lee, Woncheol; Abo, Gavin S.; Hur, Kang-Heon; An, Sung-Yong

    2014-04-01

    The electronic structure of hexagonal strontium ferrite (SrFe12O19) was calculated based on the density functional theory (DFT) and generalized gradient approximation (GGA). The GGA+U method was used to improve the description of localized Fe 3d electrons. Three different effective U (Ueff) values of 3.7, 7.0, and 10.3 eV were used to calculate three sets of exchange integrals for 21 excited states. We then calculated the temperature dependence of magnetic moments m(T) for the five sublattices (2a, 2b, 12k, 4f1, and 4f2) using the exchange integrals. The m(T) of the five sublattices are inter-related to the nearest neighbors, where the spins are mostly anti-ferromagnetically coupled. The five sublattice m(T) were used to obtain the saturation magnetization Ms(T) of SrFe12O19, which is in good agreement with the experimental values. The temperature dependence of maximum energy product ((BH)max(T)) was calculated using the calculated Ms(T).

  8. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    SciTech Connect

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  9. How America can look within to achieve energy security and reduce global warming.

    SciTech Connect

    Richter, B.; Goldston, D.; Crabtree, G.; Glicksman, L.; Goldstein, D.; Greene, D.; Kammen, D.; Levin, M.; Lubell, M.; Savitz, M.; Sperling, D.; Schlachter, F.; Scofield, J.; Dawson, J.

    2008-12-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America's great hidden energy reserves. We should begin tapping it now. Whether you want the United States to achieve greater energy security by weaning itself off foreign oil, sustain strong economic growth in the face of worldwide competition or reduce global warming by decreasing carbon emissions, energy efficiency is where you need to start. Thirty-five years ago the U.S. adopted national strategies, implemented policies and developed technologies that significantly improved energy efficiency. More than three decades have passed since then, and science and technology have progressed considerably, but U.S. energy policy has not. It is time to revisit the issue. In this report we examine the scientific and technological opportunities and policy actions that can make the United States more energy efficient, increase its security and reduce its impact on global warming. We believe the findings and recommendations will help Congress and the next administration to realize these goals. Our focus is on the transportation and buildings sectors of the economy. The opportunities are huge and the costs are small.

  10. The quality transformation: A catalyst for achieving energy`s strategic vision

    SciTech Connect

    1995-01-01

    This plan describes the initial six corporate quality goals for DOE. It also includes accompanying performance measures which will help DOE determine progress towards meeting these goals. The six goals are: (1) There is effective use of performance measurement based on regular assessment of Energy operations using the Presidential Award for Quality, the Malcolm Baldrige National Quality Award, or equivalent criteria. (2) All managers champion continuous quality improvement training for all employees through planning, attendance, and active application. (3) The Department leadership has provided the environment in which employees are enabled to satisfy customer requirements and realize their full potential. (4) The Department management practices foster employee involvement, development and recognition. (5) The Department continuously improves customer service and satisfaction, and internal and external customers recognize Energy as an excellent service provider. (6) The Department has a system which aligns strategic and operational planning with strategic intent, ensures this planning drives resource allocation, provides for regular evaluation of results, and provides feedback.

  11. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses

    PubMed Central

    Ruban, Alexander V.; Belgio, Erica

    2014-01-01

    The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977–982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or ‘wasteful’ NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane. PMID:24591709

  12. The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses.

    PubMed

    Ruban, Alexander V; Belgio, Erica

    2014-04-19

    The principle of quantifying the efficiency of protection of photosystem II (PSII) reaction centres against photoinhibition by non-photochemical energy dissipation (NPQ) has been recently introduced by Ruban & Murchie (2012 Biochim. Biophys. Acta 1817, 977-982 (doi:10.1016/j.bbabio.2012.03.026)). This is based upon the assessment of two key parameters: (i) the relationship between the PSII yield and NPQ, and (ii) the fraction of intact PSII reaction centres in the dark after illumination. In this paper, we have quantified the relationship between the amplitude of NPQ and the light intensity at which all PSII reaction centres remain intact for plants with different levels of PsbS protein, known to play a key role in the process. It was found that the same, nearly linear, relationship exists between the levels of the protective NPQ component (pNPQ) and the tolerated light intensity in all types of studied plants. This approach allowed for the quantification of the maximum tolerated light intensity, the light intensity at which all plant leaves become photoinhibited, the fraction of (most likely) unnecessary or 'wasteful' NPQ, and the fraction of photoinhibited PSII reaction centres under conditions of prolonged illumination by full sunlight. It was concluded that the governing factors in the photoprotection of PSII are the level and rate of protective pNPQ formation, which are often in discord with the amplitude of the conventional measure of photoprotection, the quickly reversible NPQ component, qE. Hence, we recommend pNPQ as a more informative and less ambiguous parameter than qE, as it reflects the effectiveness and limitations of the major photoprotective process of the photosynthetic membrane.

  13. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    SciTech Connect

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

  14. Pathways to achieve universal household access to modern energy by 2030

    NASA Astrophysics Data System (ADS)

    Pachauri, Shonali; van Ruijven, Bas J.; Nagai, Yu; Riahi, Keywan; van Vuuren, Detlef P.; Brew-Hammond, Abeeku; Nakicenovic, Nebojsa

    2013-06-01

    A lack of access to modern energy impacts health and welfare and impedes development for billions of people. Growing concern about these impacts has mobilized the international community to set new targets for universal modern energy access. However, analyses exploring pathways to achieve these targets and quantifying the potential costs and benefits are limited. Here, we use two modelling frameworks to analyse investments and consequences of achieving total rural electrification and universal access to clean-combusting cooking fuels and stoves by 2030. Our analysis indicates that these targets can be achieved with additional investment of US200565-86 billion per year until 2030 combined with dedicated policies. Only a combination of policies that lowers costs for modern cooking fuels and stoves, along with more rapid electrification, can enable the realization of these goals. Our results demonstrate the critical importance of accounting for varying demands and affordability across heterogeneous household groups in both analysis and policy setting. While the investments required are significant, improved access to modern cooking fuels alone can avert between 0.6 and 1.8 million premature deaths annually in 2030 and enhance wellbeing substantially.

  15. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at < 200 W/m2 irradiation; 0.99 power factor, 87% efficiency and 0.088 distortion factor for dc supplies; 1 ns synchronization resolution via Ethernet; database accelerators allowing 85% energy savings for servers; adaptive software yielding energy reduction of 73% for e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  16. Performance Achievements and Challenges for FELs based on Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2006-08-27

    During the past decade several groups have assembled free electron lasers based on energy recovered linacs (ERLs). Such arrangements have been built to obtain high average power electron and photon beams, by using high repetition rate beam pulses driving FEL oscillators. In this paper the performance of many existing and several proposed facilities from around the world are reviewed. Going forward, many questions must be addressed to achieve still better performance including: higher average current injectors, better optimized accelerating cavities, higher energy acceptance and lower loss beam recirculation systems, and better optical cavity designs for dealing with the optical beam power circulating in the ERL FELs. This paper presents some of the current thinking on each of these issues.

  17. Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010

    SciTech Connect

    Thornton, Brian A.; Rosenberg, Michael I.; Richman, Eric E.; Wang, Weimin; Xie, YuLong; Zhang, Jian; Cho, Heejin; Mendon, Vrushali V.; Athalye, Rahul A.; Liu, Bing

    2011-05-24

    This Technical Support Document presents the energy and cost savings analysis that PNNL conducted to measure the potential energy savings of 90.1-2010 relative to 90.1-2004. PNNL conducted this analysis with inputs from many other contributors and source of information. In particular, guidance and direction was provided by the Simulation Working Group under the auspices of the SSPC90.1. This report documents the approach and methodologies that PNNL developed to evaluate the energy saving achieved from use of ASHRAE/IES Standard 90.1-2010. Specifically, this report provides PNNL’s Progress Indicator process and methodology, EnergyPlus simulation framework, prototype model descriptions. This report covers the combined upgrades from 90.1-2004 to 90.1-2010, resulting in a total of 153 addenda. PNNL has reviewed and considered all 153 addenda for quantitative analysis in the Progress Indicator process. 53 of those are included in the quantitative analysis. This report provides information on the categorization of all of the addenda, a summary of the content, and deeper explanation of the impact and modeling of 53 identified addenda with quantitative savings.

  18. Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter.

    PubMed

    Yu, Ling; Wu, Zhongbin; Xie, Guohua; Zhong, Cheng; Zhu, Zece; Cong, Hengjiang; Ma, Dongge; Yang, Chuluo

    2016-09-21

    A new orange-red thermally activated delayed fluorescence (TADF) emitter is designed and synthesized by incorporating a fluorine-substituted quinoxaline as an electron-acceptor and a phenoxazine as an electron-donor. The rational molecular design enables small singlet-triplet energy splitting (ΔEST) and high fluorescence radiative rate (k) for long-wavelength TADF emitters. The organic light emitting diodes (OLEDs) employing the new TADF emitter achieve maximum external quantum efficiencies (EQEs) of 13.9% and 9.0% for the vacuum- and solution-processed OLEDs, respectively.

  19. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  20. Why do the Solar Type III Burst emit the maximum of their radio energy around 1 MHz ?

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Krupar, Vratislav; Kontar, Eduard; Zaslavsky, Arnaud; Pascal, Louis; Reid, Hamish; Lecacheux, Alain; Bonnin, Xavier; Santolik, Ondrej; Vilmer, Nicole

    2014-05-01

    We present a statistical survey of a few hundred of Type III bursts observed from about 100 KHz up to about 400 MHz. When displayed as a function of the frequency, the radio flux exhibits a clear maximum at about 1 MHz. This property, already reported in previous studies, will be described in more details and possible explanations about its origin will be discussed.

  1. SU-E-T-539: Maximum Energy of Helium and Carbon Ions Clinically Needed for Spine, Lung, Prostate and Pancreas Cancer

    SciTech Connect

    Pompos, A; Choy, H; Jia, X; Jiang, S; Timmerman, R

    2015-06-15

    Purpose: Maximum available kinetic energy of accelerated heavy ions is a critical parameter to consider during the establishment of a heavy ion therapy center. It dictates the maximum range in tissue and determines the size and cost of ion gantry. We have started planning our heavy ion therapy center and we report on the needed ion range. Methods: We analyzed 50 of random SBRT-spine, SBRT- lung, prostate and pancreatic cancer patients from our photon clinic. In the isocentric axial CT cut we recorded the maximum water equivalent depth (WED4Field) of PTV’s most distal edge in four cardinal directions and also in a beam direction that required the largest penetration, WEDGantry. These depths were then used to calculate the percentage of our patients we would be able to treat as a function of available maximum carbon and helium beam energy. Based on the Anterior-Posterior WED for lung patients and the maximum available ion energy we estimated the largest possible non-coplanar beam entry angle φ (deviation from vertical) in the isocentric vertical sagittal plane. Results: We found that if 430MeV/u C-12, equivalently 220MeV/u He-4, beams are available, more than 96% (98%) of all patients can be treated without any gantry restrictions (in cardinals angles only) respectively. If the energy is reduced to 400MeV/u C-12, equivalently 205MeV/u He-4, the above fractions reduce to 80% (87%) for prostate and 88% (97%) for other sites. This 7% energy decrease translates to almost 5% gantry size and cost decrease for both ions. These energy limits in combination with the WED in the AP direction for lung patients resulted in average non-coplanar angles of φ430MeV/u = 68°±8° and φ400MeV/u = 65°±10° if nozzle clearance permits them. Conclusion: We found that the two worldwide most common maximum carbon beam energies will treat above 80% of all our patients.

  2. Furnace veneering systems of special design help achieve energy reduction goals at Armco

    SciTech Connect

    Caspersen, L.J.

    1982-12-01

    A steel company conserves energy by veneering reheat furnaces with a ceramic fiber modular system. The furnace lining system incorporates several grades of veneering materials (modules, cements, coatings) whose application is matched to the exact conditions in the furnace. Zoned linings utilize a combination of grades of alumina-silica modules to achieve thermally efficient yet durable performance. High temperature cements exhibit good tackiness, easy module penetration and high strength retention after firing. A protective coating is sprayed in a thin layer over the modules and can be easily reapplied at a later date should it be necessary. Benefits include greater thermal control (temperature responsiveness and heating uniformity), less over-firing, less fuel use, and less heat loss. Fuel efficiency is increased by 20 to 50%.

  3. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    SciTech Connect

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  4. The radio emission pattern of air showers as measured with LOFAR—a tool for the reconstruction of the energy and the shower maximum

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2015-05-01

    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.

  5. The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures.

    PubMed

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-05-12

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256

  6. The principle of ‘maximum energy dissipation’: a novel thermodynamic perspective on rapid water flow in connected soil structures

    PubMed Central

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-01-01

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy. PMID:20368256

  7. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant

    SciTech Connect

    2008-09-01

    The U. S. Steel Minntac plant in Mt. Iron, MN, achieved annual savings of $760,000 and 95,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  8. Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant

    SciTech Connect

    Not Available

    2008-09-01

    This case study describes how the U. S. Steel Minntac plant in Mt. Iron, Minnesota, achieved annual savings of $760,000 and 95,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  9. Differential CO{sub 2} based demand control ventilation (maximum energy savings and optimized IAQ): History, theory and myths

    SciTech Connect

    Di Giacomo, S.M.

    1999-10-01

    Demand control ventilation (DCV) utilizing continuous outdoor and indoor (differential) carbon dioxide (CO{sub 2}) measurements is an elegant closed loop feedback control methodology for determining damper position in a continuously changing HVAC system environment and subsequently maintaining a constant steady-state ventilation air (CFM) per person level. This article deals directly with the numerous misconceptions surrounding this technology as well as its applications as an energy conservation measure and commissioning tool. Summarized below are some of the benefits of adopting the DCV technology utilizing differential CO{sub 2} measurements. DCV, when used as an HVAC VAV or CV mix air return system energy savings retrofit tool, can save energy when it functions in conjunction with existing (base case) energy savings control methodologies. This means that DCV control algorithms must be suspended, through computer programming, whenever normal free cooling opportunities exist--otherwise, energy consumption will increase. For example: If free cooling economizer controls exist in the base case, then the engineer must ensure that they continue to exist in the retrofit case.

  10. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    SciTech Connect

    Birol, Fatih

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  11. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  12. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.

    PubMed

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*10(5) tons of standard coal and 1.74*10(6) tons of CO2, respectively. PMID:26074060

  13. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    PubMed Central

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  14. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  15. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production.

    PubMed

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-15

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*10(5) tons of standard coal and 1.74*10(6) tons of CO2, respectively.

  16. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  17. Investigation of the maximum accessible kinetic energy of fragments in the neutron-induced fission of {sup 238}U nuclei

    SciTech Connect

    Khryachkov, V. A. Bondarenko, I. P.; Ivanova, T. A.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2013-03-15

    The masses, total kinetic energies (TKE), and emission angles of fragments originating from the fission of {sup 238}U nuclei that was induced by 5- and 6.5-MeV neutrons were measured by using digital methods for processing signals. A detailed analysis of the shape of digital signals made it possible to reduce substantially the contribution of fragments whose TKE values were distorted because of a superimposition of signals from recoil protons and from alpha particles produced in the spontaneous decay of uranium. The total statistics exceeded two million events for either neutron energy, and this permitted performing a detailed analysis of fission-fragment yields in the region of the highest attainable TKE values. An analysis of fragment yields made it possible to draw specific conclusions on the structure of the potential surface of fissile nuclei.

  18. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  19. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    PubMed

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  20. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1 017.8 eV

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2014-12-01

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1 017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  1. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE PAGES

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  2. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $10^{17.8}$ eV

    SciTech Connect

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  3. Minimizing the probable maximum flood

    SciTech Connect

    Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )

    1994-06-01

    This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.

  4. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    SciTech Connect

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  5. Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern

    NASA Astrophysics Data System (ADS)

    Huang, He Qing; Chang, Howard H.; Nanson, Gerald C.

    2004-04-01

    Although the Bélanger-Böss theorem of critical flow has been widely applied in open channel hydraulics, it was derived from the laws governing ideal frictionless flow. This study explores a more general expression of this theorem and examines its applicability to flow with friction and sediment transport. It demonstrates that the theorem can be more generally presented as the principle of minimum energy (PME), with maximum efficiency of energy use and minimum friction or minimum energy dissipation as its equivalents. Critical flow depth under frictionless conditions, the best hydraulic section where friction is introduced, and the most efficient alluvial channel geometry where both friction and sediment transport apply are all shown to be the products of PME. Because PME in liquids characterizes the stationary state of motion in solid materials, flow tends to rapidly expend excess energy when more than minimally demanded energy is available. This leads to the formation of relatively stable but dynamic energy-consuming meandering and braided channel planforms and explains the existence of various extremal hypotheses.

  6. Reprint of : Connection between wave transport through disordered 1D waveguides and energy density inside the sample: A maximum-entropy approach

    NASA Astrophysics Data System (ADS)

    Mello, Pier A.; Shi, Zhou; Genack, Azriel Z.

    2016-08-01

    We study the average energy - or particle - density of waves inside disordered 1D multiply-scattering media. We extend the transfer-matrix technique that was used in the past for the calculation of the intensity beyond the sample to study the intensity in the interior of the sample by considering the transfer matrices of the two segments that form the entire waveguide. The statistical properties of the two disordered segments are found using a maximum-entropy ansatz subject to appropriate constraints. The theoretical expressions are shown to be in excellent agreement with 1D transfer-matrix simulations.

  7. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    SciTech Connect

    Schenkel, Roland

    2012-06-19

    have recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.

  8. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    NASA Astrophysics Data System (ADS)

    Schenkel, Roland

    2012-06-01

    recently been proposed for energy production, is critically reviewed. There are major challenges remaining that are shortly outlined. Scientific/technical achievements that are required in the light of the Fukushima accident are highlighted.

  9. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork.

  10. Is the Consumption of Energy Drinks Associated With Academic Achievement Among College Students?

    PubMed

    Champlin, Sara E; Pasch, Keryn E; Perry, Cheryl L

    2016-08-01

    Despite widely reported side effects, use of energy drinks has increased among college students, who report that they consume energy drinks to help them complete schoolwork. However, little is known about the association between energy drink use and academic performance. We explored the relationship between energy drink consumption and current academic grade point average (GPA) among first-year undergraduate students. Participants included 844 first-year undergraduates (58.1 % female; 50.7 % White). Students reported their health behaviors via an online survey. We measured energy drink consumption with two measures: past month consumption by number of drinks usually consumed in 1 month and number consumed during the last occasion of consumption. We used multiple linear regression modeling with energy drink consumption and current GPA, controlling for gender, race, weekend and weekday sleep duration, perceived stress, perceived stress management, media use, and past month alcohol use. We found that past month energy drink consumption quantity by frequency (p < 0.001), and energy drinks consumed during the last occasion (p < 0.001), were associated with a lower GPA. Energy drinks consumed during the last occasion of consumption (p = 0.01) remained significantly associated with a lower GPA when controlling for alcohol use. While students report using energy drinks for school-related reasons, our findings suggest that greater energy drink consumption is associated with a lower GPA, even after controlling for potential confounding variables. Longitudinal research is needed that addresses whether GPA declines after continued use of energy drinks or if students struggling academically turn to energy drinks to manage their schoolwork. PMID:27236788

  11. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals. A Review of Current Practices and Considerations

    SciTech Connect

    Bird, Lori; Sumner, Jenny

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  12. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals. A Review of Current Practices and Considerations.

    SciTech Connect

    Bird, Lori; Sumner, Jenny

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon "footprinting" and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  13. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals: A Review of Current Practices and Considerations

    SciTech Connect

    Bird, L.; Sumner, J.

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  14. Developments in greenhouse gas emissions and net energy use in Danish agriculture - how to achieve substantial CO(2) reductions?

    PubMed

    Dalgaard, T; Olesen, J E; Petersen, S O; Petersen, B M; Jørgensen, U; Kristensen, T; Hutchings, N J; Gyldenkærne, S; Hermansen, J E

    2011-11-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance.

  15. Observations of Solar Energetic Particle Events over the Polar Regions of the Sun at Solar Maximum with the Ulysses COSPIN High Energy Telescope and IMP-8*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Zhang, M.

    2002-05-01

    The High Energy Telescope (HET) of the Ulysses COSPIN experi-ment measures intensities and spectra of solar energetic particles (SEPs) with good energy and charge resolution at energies above ~30 MeV/n. During the recent passes over the north and south polar re-gions of the sun, Ulysses observed a number of solar energetic particle events associated with solar activity at low latitudes. Where IMP-8 observations were available, all SEP events observed at proton energies >~30 MeV by Ulysses in the polar regions (solar latitudes above 70 degrees) were also observed at IMP-8. HOwever peak intensities were generally lower and the onsets and rises to maximum were in general significantly slower at Ulysses than at IMP. Anisotropies during the onsets of SEP events at Ulysses were in almost all cases directed outward along the nominal Parker spiral interplanetary magnetic field, implying that the source of the particles on the field lines connecting to Ulysses was inside the orbit of Ulysses. In the late stages of events, generally four to five days after onset, particle fluxes at IMP and Ulysses were approximately equal and remained so for the remainder of the decay phase. We will summarize these and other results from both the north and south polar passes and discuss their significance for models of the ac-celeration and propagation of solar energetic particles. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grant NAG5-8032.

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  17. Attitudes toward Nuclear Energy: One Potential Path for Achieving Scientific Literacy.

    ERIC Educational Resources Information Center

    Dulski, Richard E.; And Others

    1995-01-01

    Identifies the attitudes of secondary school students toward several science-related topical areas (i.e., nuclear energy, environmental issues, energy concepts, science concepts, space exploration, and metrication) for the purpose of enhancing students' attitudinal development toward science-related topical areas. Discusses respondents attitude…

  18. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    SciTech Connect

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.

  19. Chrysler: Save Energy Now Assessment Enables a Vehicle Assembly Complex to Achieve Significant Natural Gas Savings

    SciTech Connect

    2008-02-01

    This DOE Save Energy Now case study describes how Chrysler LLC saves more than 70,000 MMBtu and $627,000 annually after increasing the steam system energy efficiency of a truck and minivan assembly plant in St. Louis, Missouri.

  20. Domestic wastewater treatment as a net energy producer--can this be achieved?

    PubMed

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today. PMID:21749111

  1. Domestic wastewater treatment as a net energy producer--can this be achieved?

    PubMed

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  2. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    PubMed

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  3. Achievable rate maximization for decode-and-forward MIMO-OFDM networks with an energy harvesting relay.

    PubMed

    Du, Guanyao; Yu, Jianjun

    2016-01-01

    This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in

  4. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    PubMed

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources.

  5. Achievement of Runaway Electron Energy Dissipation by High-Z Gas Injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.

    2014-10-01

    Disruption runaway electron (RE) formation followed by RE beam-wall strikes is a concern for future tokamaks, motivating the study of mitigation techniques to reduce the RE beam energy in a controlled manner. A promising approach for doing this is the injection of high-Z gas into the RE beam. Massive (100 torr-l) injection of high-Z gas into RE beams in DIII-D is shown to significantly dissipate both RE magnetic and kinetic energy. For example, injection of argon into a typical 300 kA current RE beam is observed to cause a drop in kinetic energy from 50 kJ to 10 kJ in 10 ms, thus rapidly reducing the damage-causing capability of the RE beam. Both the RE kinetic energy and pitch angle are important for determining the resulting wall damage, with high energy, high pitch angle electrons typically considered most dangerous. The RE energy distribution is found to be more skewed toward low energies than predicted by avalanche theory. The pitch angle is not found to be constant, as is frequently assumed, but is shown to drop from sin(θ) ~ 1 for energies less than 1 MeV to sin(θ) ~ 0 . 2 for energies greater than 10 MeV. Injection of high-Z impurities does not appear to change the overall shape of the energy or pitch angle distributions dramatically. The enhanced RE energy dissipation appears to be caused primarily via collisions with the cold plasma leading to line radiation. Synchrotron power loss only becomes significant in the absence of high-Z impurities, while radial transport loss of REs is seen to become dominant if the RE beam moves sufficiently close to the vessel walls. The experiments demonstrate that avalanche theory somewhat underestimates collisional dissipation of REs in the presence of high-Z atoms, even in the absence of radial transport losses, meaning that reducing RE wall damage in large tokamaks should be easier than previously expected. Supported by the US Department of Energy under DE-FG02-07ER54917 and DE-FC02-04ER54698.

  6. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    SciTech Connect

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home

  7. On the influence of statistics on the determination of the mean value of the depth of shower maximum for ultra high energy cosmic ray showers

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Medina-Tanco, G.

    2012-09-01

    The chemical composition of ultra high energy cosmic rays is still uncertain. The latest results obtained by the Pierre Auger Observatory and the HiRes collaboration, concerning the measurement of the mean value and the fluctuations of the atmospheric depth at which the showers reach the maximum development, Xmax, are inconsistent. From comparison with air shower simulations it can be seen that, while the Auger data may be interpreted as a gradual transition to heavy nuclei for energies larger than ˜2-3 × 1018 eV, the HiRes data are consistent with a composition dominated by protons. In Wilk and Wlodarczyk (2011 J. Phys. G: Nucl. Part. Phys. 38 085201), it is suggested that a possible explanation for the observed deviation of the mean value of Xmax from the proton expectation, observed by Auger, could originate in a statistical bias arising from the approximated exponential shape of the Xmax distribution, combined with the decrease of the number of events as a function of primary energy. In this paper, we consider a better description of the Xmax distribution and show that the possible bias in the Auger data is at least one order of magnitude smaller than the one obtained when assuming an exponential distribution. Therefore, we conclude that the deviation of the Auger data from the proton expectation is unlikely to be explained by such statistical effect.

  8. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  9. Achieving cheap clean energy for all in the 21^st Century?

    NASA Astrophysics Data System (ADS)

    Gupta, Rajan

    2006-11-01

    Energy is essential for modern life and is a critical resource that we take for granted. Unfortunately, we are increasingly confronted by many unsettling questions: Is there enough cheap oil and gas remaining and should we start changing our life styles towards energy efficiency? What will be the price of oil and gas next year and will we face shortages? Are rising prices reflective of greed and manipulation or geopolitics or of real constraints? Will renewable sources provide a significant fraction of our energy needs? Is global warming already happening and is it a result of our ``addiction to oil''? If the answer to these is ``yes'', then what can we, as individuals, do to help ourselves, the nation, and the world? This talk will attempt to answer these questions by examining the global oil, gas and other resources, emerging constraints and opportunities, and geopolitics.

  10. Maximum Entropy Fundamentals

    NASA Astrophysics Data System (ADS)

    Harremoeës, P.; Topsøe, F.

    2001-09-01

    In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over the development of natural

  11. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    ERIC Educational Resources Information Center

    Kulo, Violet; Bodzin, Alec

    2013-01-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade…

  12. Improved Student Achievement Using Personalized Online Homework for a Course in Material and Energy Balances

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.

    2011-01-01

    Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and energy balances. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…

  13. Intake and Performance of Yearling Steers Grazing Guineagrass (Panicum maximum cv. Tanzânia) Pasture Supplemented with Different Energy Sources

    PubMed Central

    Santana, M. C. A.; Euclides, V. B. P.; Mancio, A. B.; Medeiros, S. R.; Costa, J. A. R.; Oliveira, R. L.

    2013-01-01

    The aim of this study was to evaluate the efficiency of supplements containing different energy sources in relation to mineral supplementation of steers grazing guineagrass (Panicum maximum cv Tanzânia) pasture, during the dry season. The experimental design was a randomized block with three treatments and four replications. The treatments consisted of a mineral supplementation and two other supplements, one based on corn seed and the other based on soybean hulls, and provided at 0.8% of body weight. Forty-eight, 12 month-old crossbred steers with an average initial body weight of 267 kg, were assigned to twelve paddocks (1,125 ha) of guineagrass. The animals that were fed with soybean hulls and corn seed presented a greater average daily gain (0.982 and 0.937) when compared with the mineral supplementation. Soybean hulls can be used as a satisfactory food source, replacing corn as an energy source in the supplementation of beef cattle without compromising animal performance. PMID:25049797

  14. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    NASA Astrophysics Data System (ADS)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  15. Wastewater as a resource: a unique approach to achieving energy sustainability.

    PubMed

    Sutton, P M; Rittmann, B E; Schraa, O J; Banaszak, J E; Togna, A P

    2011-01-01

    A wastewater-treatment flowsheet was developed to integrate uniquely designed biological processes with physical-chemical unit processes, allowing conversion of the organic carbon in the wastewater to methane, the removal and recovery of phosphorus and nitrogen from the wastewater, and the production of water suitable for reuse. In the flowsheet, energy is derived from the wastewater by first shunting a large fraction of the organic carbon in the wastewater to a solids slurry which is treated via anaerobic digestion. The anaerobic digestion system consists of focused pulsed (FP) pretreatment coupled to anaerobic membrane bioreactors (MBRs). Computer modelling and simulation results are used to optimize design of the system. Energy generation from the system is maximized and costs are reduced by using modest levels of recycle flow from the anaerobic MBRS to the FP pretreatment step.

  16. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting.

    PubMed

    Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi

    2012-12-19

    Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.

  17. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  18. Advanced liquid cooling in HCPVT systems to achieve higher energy efficiencies

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Helmers, H.; Tiwari, M. K.; Escher, W.; Paredes, S.; Neves, P.; Poulikakos, D.; Wiesenfarth, M.; Bett, A. W.; Michel, B.

    2013-09-01

    The benefits of advanced thermal packaging are demonstrated through a receiver package consisting of a monolithic interconnected module (MIM) which is directly attached to a high performance microchannel heat sink. Those packages can be applied in high-concentration photovoltaic systems and the generated heat can be used in addition to the electrical power output (CPVT systems). Thus, the total energy efficiency of the system increases significantly. A detailed exergy analysis of the receiver power output underscores the advantages of the new cooling approach.

  19. Hsp70 chaperones are non-equilibrium machines that achieve ultra-affinity by energy consumption.

    PubMed

    De Los Rios, Paolo; Barducci, Alessandro

    2014-05-27

    70-kDa Heat shock proteins are ATP-driven molecular chaperones that perform a myriad of essential cellular tasks. Although structural and biochemical studies have shed some light on their functional mechanism, the fundamental issue of the role of energy consumption, due to ATP-hydrolysis, has remained unaddressed. Here we establish a clear connection between the non-equilibrium nature of Hsp70, due to ATP hydrolysis, and the determining feature of its function, namely its high affinity for its substrates. Energy consumption can indeed decrease the dissociation constant of the chaperone-substrate complex by several orders of magnitude with respect to an equilibrium scenario. We find that the biochemical requirements for observing such ultra-affinity coincide with the physiological conditions in the cell. Our results rationalize several experimental observations and pave the way for further analysis of non-equilibrium effects underlying chaperone functions.DOI: http://dx.doi.org/10.7554/eLife.02218.001.

  20. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  1. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability

    SciTech Connect

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Kiss, T.; Otsu, T.; Kobayashi, Y.; Shin, S.

    2014-12-15

    The paper describes a time- and angle-resolved photoemission apparatus consisting of a hemispherical analyzer and a pulsed laser source. We demonstrate 1.48-eV pump and 5.92-eV probe measurements at the ⩾10.5-meV and ⩾240-fs resolutions by use of fairly monochromatic 170-fs pulses delivered from a regeneratively amplified Ti:sapphire laser system operating typically at 250 kHz. The apparatus is capable to resolve the optically filled superconducting peak in the unoccupied states of a cuprate superconductor, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. A dataset recorded on Bi(111) surface is also presented. Technical descriptions include the followings: A simple procedure to fine-tune the spatio-temporal overlap of the pump-and-probe beams and their diameters; achieving a long-term stability of the system that enables a normalization-free dataset acquisition; changing the repetition rate by utilizing acoustic optical modulator and frequency-division circuit.

  2. The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index

    NASA Astrophysics Data System (ADS)

    Acomi, N.; Acomi, O. C.; Stanca, C.

    2015-11-01

    To reduce air pollution produced by ships, the International Maritime Organization has developed a set of technical, operational and management measures. The subject of our research addresses the operational measures for minimizing CO2 air emissions and the way how the emission value could be influenced by external factors regardless of ship-owners’ will. This study aims to analyse the air emissions for a loaded voyage leg performed by an oil tanker. The formula that allows us to calculate the predicted Energy Efficiency Operational Index involves the estimation of distance and fuel consumption, while the quantity of cargo is known. The electronic chart display and information system, ECDIS Simulation Software, will be used for adjusting the passage plan in real time, given the predicted severe environmental conditions. The distance will be determined using ECDIS, while the prediction of the fuel consumption will consider the sea trial and the vessel experience records. That way it will be possible to compare the estimated EEOI value in the case of great circle navigation in adverse weather condition with the estimated EEOI value for weather navigation.

  3. Dark Energy, Black Holes and Exploding Stars: NASA's Chandra Observatory Marks Five Years of Scientific Achievement

    NASA Astrophysics Data System (ADS)

    2004-08-01

    On Aug. 12, 1999, NASA's Chandra X-ray Observatory opened its sunshade doors for the first time, allowing celestial X-ray light to reach the observatory's mirrors. This one small step for the observatory proved to be a giant leap for science as Chandra began its mission to shed new light on a violent, mysterious universe invisible to the human eye. The Marshall Center manages the Chandra program. On August 12, 1999, NASA's Chandra X-ray Observatory opened its sunshade doors for the first time, allowing celestial X-ray light to reach the observatory's mirrors. This one small step for the observatory proved to be a giant leap for science as Chandra began its mission to shed new light on a violent, mysterious universe invisible to the human eye. "Humans cannot see X-rays, but Chandra can," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "And what the observatory has revealed in five short years has been nothing short of amazing. Thanks to Chandra, we've gleaned new information on dark energy, black holes, exploding stars and all other categories of astronomical objects." "Chandra's resolving power is equivalent to the ability to read a newspaper headline a half-mile away," said Chandra Program Manager Keith Hefner of the Marshall Center. "It's an engineering marvel that has performed nearly flawlessly and provided major science discoveries over the past five years." A Chandra timeline reveals some of its most noteworthy discoveries: * Chandra finds a ring around the Crab Nebula. After only two months in space, the observatory reveals a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula - the remains of a stellar explosion - providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. (Sept. 28, 1999) * Chandra reveals a possible black hole in the Milky Way. Culminating 25 years of searching by astronomers, researchers say that a faint X-ray source, newly

  4. Dramatically enhanced non-Ohmic properties and maximum stored energy density in ceramic-metal nanocomposites: CaCu3Ti4O12/Au nanoparticles

    PubMed Central

    2013-01-01

    Non-Ohmic and dielectric properties of a novel CaCu3Ti4O12/Au nanocomposite were investigated. Introduction of 2.5 vol.% Au nanoparticles in CaCu3Ti4O12 ceramics significantly reduced the loss tangent while its dielectric permittivity remained unchanged. The non-Ohmic properties of CaCu3Ti4O12/Au (2.5 vol.%) were dramatically improved. A nonlinear coefficient of ≈ 17.7 and breakdown electric field strength of 1.25 × 104 V/m were observed. The maximum stored energy density was found to be 25.8 kJ/m3, which is higher than that of pure CaCu3Ti4O12 by a factor of 8. Au addition at higher concentrations resulted in degradation of dielectric and non-Ohmic properties, which is described well by percolation theory. PMID:24257060

  5. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    NASA Astrophysics Data System (ADS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-05-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation.

  6. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    PubMed

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions. PMID:27500429

  7. Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor.

    PubMed

    Li, Hongsen; Peng, Lele; Zhu, Yue; Zhang, Xiaogang; Yu, Guihua

    2016-09-14

    Simultaneous integration of high-energy output with high-power delivery is a major challenge for electrochemical energy storage systems, limiting dual fine attributes on a device. We introduce a quasi-solid-state sodium ion capacitor (NIC) based on a battery type urchin-like Na2Ti3O7 anode and a capacitor type peanut shell derived carbon cathode, using a sodium ion conducting gel polymer as electrolyte, achieving high-energy-high-power characteristics in solid state. Energy densities can reach 111.2 Wh kg(-1) at power density of 800 W kg(-1), and 33.2 Wh kg(-1) at power density of 11200 W kg(-1), which are among the best reported state-of-the-art NICs. The designed device also exhibits long-term cycling stability over 3000 cycles with capacity retention ∼86%. Furthermore, we demonstrate the assembly of a highly flexible quasi-solid-state NIC and it shows no obvious capacity loss under different bending conditions.

  8. Observations of Cosmic Rays and Solar Energetic Particles from the Ulysses COSPIN High Energy Telescope Following Completion of the Solar Maximum Solar Polar Passes.*

    NASA Astrophysics Data System (ADS)

    McKibben, R. B.; Lopate, C.; Connell, J. J.; Posner, A.

    2003-04-01

    At the end of 2002, following its second pass over the Sun's north polar region, Ulysses had reached a radial distance of about 4.5 AU at a heliographic latitude of 24°N. While solar activity remained high, the modulated intensity of cosmic rays observed by Ulysses’ COSPIN High Energy Telescope had increased significantly from the levels observed early in 2001, which most likely represented the maximum modulation for this solar cycle. Despite continuing solar activity, the new qA<0 magnetic polarity of the Sun's dipole field was fully established for both poles since the change in the North Pole polarity in 2000. Although the current sheet tilt was still large (>40° as reported by the Wilcox Solar Observatory) and the solar wind was still frequently disturbed by solar activity, it is worthwhile to examine the recent increase in the quiet-time cosmic ray fluxes for evidence of the change in latitudinal gradients expected upon change of magnetic polarity. A difficulty is the lack of a well-matched 1 AU base-line to help distinguish spatial from temporal variations following the termination of IMP-8 operations in late 2001. We will summarize Ulysses observations of energetic (>~30 MeV/n) protons and helium through the most recent available data, and will discuss available options for determining baseline fluxes at 1 AU for studies of the radial and latitudinal gradients. **This work was supported in part by NASA/JPL Contract 955432, by NASA Grant NASA 5-28516 and by NSF grant ATM 99-12341.

  9. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  10. Maximum efficiency of an autophase TWT

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. N.; Dimashko, Iu. A.; Kryzhanovskii, V. G.

    1985-10-01

    Formulas are presented for the maximum efficiency of an autophase TWT. It is shown that the maximum efficiency is determined by the ohmic-loss coefficient and is achieved through a successive application of the isoadiabatic-amplification mode and the isoacceptance mode. The efficiency can reach a value of 75-80 percent; further increases may be achieved through an improvement of the capture quality.

  11. EPA Maximum Achievable Contraction of Technocrats Act of 2013

    THOMAS, 113th Congress

    Rep. Griffith, H. Morgan [R-VA-9

    2013-12-03

    12/16/2013 Referred to the Subcommittee on Horticulture, Research, Biotechnology, and Foreign Agriculture. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Lunar Farming: Achieving Maximum Yield for the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.

    1991-01-01

    A look at what it might be like on a lunar farm in the year 2020 is provided from the point of view of the farmer. Of necessity, the farm would be a Controlled Ecological (or Environment) Life-Support System (CELSS) or a bioregenerative life-support system. Topics covered in the imaginary trip through the farm are the light, water, gasses, crops, the medium used for plantings, and the required engineering. The CELSS is designed with four functioning parts: (1) A plant-production facility with higher plants and algae; (2) food technology kitchens; (3) waste processing and recycling facilities; and (4) control systems. In many cases there is not yet enough information to be sure about matters discussed, but the exercise in imagination pinpoints a number of areas that still need considerable research to resolve the problems perceived.

  13. Efficacy of a liquid low-energy formula diet in achieving preoperative target weight loss before bariatric surgery.

    PubMed

    Nielsen, Lone V; Nielsen, Mette S; Schmidt, Julie B; Pedersen, Sue D; Sjödin, Anders

    2016-01-01

    A preoperative weight loss of 8 % is a prerequisite to undergo bariatric surgery (BS) in Denmark. The aim of the present study was to evaluate the efficacy of a 7- or an 11-week low-energy diet (LCD) for achieving preoperative target weight before BS. A total of thirty obese patients (BMI 46·0 (sd 4·4) kg/m(2)) followed an LCD (Cambridge Weight Plan(®), 4184 kJ/d (1000 kcal/d)) for 7 or 11 weeks as preparation for BS. Anthropometric measurements including body composition (dual-energy X-ray absorptiometry), blood parameters and blood pressure were assessed at weeks 0, 7 and 11. At week 7, the majority of patients (77 %) had reached their target weight, and this was achieved after 5·4 (sem 0·3) weeks. Mean weight loss was 9·3 (sem 0·5) % (P < 0·01) and consisted of 41·6 % fat-free mass (FFM) and 58·4 % fat mass. The weight loss was accompanied by a decrease in systolic and diastolic blood pressure (7·1 (sem 2·3) and 7·3 (sem 1·8) mmHg, respectively, all P < 0·01) as well as an improved metabolic profile (8·2 (sem 1·8) % decrease in fasting glucose (P < 0·01), 28·6 (sem 6·4) % decrease in fasting insulin (P < 0·01), 23·1 (sem 2·2) % decrease in LDL (P < 0·01), and 9·7 (sem 4·7) % decrease in TAG (P < 0·05)). Weight, FFM and fat mass continued to decrease from week 7 to 11 (all P < 0·01), whereas no additional improvements was observed in the metabolic parameters. Severely obese patients can safely achieve preoperative target weight on an LCD within 7 weeks as part of preparation for BS. However, the considerable reduction in FFM in severely obese subjects needs further investigation. PMID:27293559

  14. Efficacy of a liquid low-energy formula diet in achieving preoperative target weight loss before bariatric surgery.

    PubMed

    Nielsen, Lone V; Nielsen, Mette S; Schmidt, Julie B; Pedersen, Sue D; Sjödin, Anders

    2016-01-01

    A preoperative weight loss of 8 % is a prerequisite to undergo bariatric surgery (BS) in Denmark. The aim of the present study was to evaluate the efficacy of a 7- or an 11-week low-energy diet (LCD) for achieving preoperative target weight before BS. A total of thirty obese patients (BMI 46·0 (sd 4·4) kg/m(2)) followed an LCD (Cambridge Weight Plan(®), 4184 kJ/d (1000 kcal/d)) for 7 or 11 weeks as preparation for BS. Anthropometric measurements including body composition (dual-energy X-ray absorptiometry), blood parameters and blood pressure were assessed at weeks 0, 7 and 11. At week 7, the majority of patients (77 %) had reached their target weight, and this was achieved after 5·4 (sem 0·3) weeks. Mean weight loss was 9·3 (sem 0·5) % (P < 0·01) and consisted of 41·6 % fat-free mass (FFM) and 58·4 % fat mass. The weight loss was accompanied by a decrease in systolic and diastolic blood pressure (7·1 (sem 2·3) and 7·3 (sem 1·8) mmHg, respectively, all P < 0·01) as well as an improved metabolic profile (8·2 (sem 1·8) % decrease in fasting glucose (P < 0·01), 28·6 (sem 6·4) % decrease in fasting insulin (P < 0·01), 23·1 (sem 2·2) % decrease in LDL (P < 0·01), and 9·7 (sem 4·7) % decrease in TAG (P < 0·05)). Weight, FFM and fat mass continued to decrease from week 7 to 11 (all P < 0·01), whereas no additional improvements was observed in the metabolic parameters. Severely obese patients can safely achieve preoperative target weight on an LCD within 7 weeks as part of preparation for BS. However, the considerable reduction in FFM in severely obese subjects needs further investigation.

  15. Teaching for maximum learning: The Philippine experience

    NASA Astrophysics Data System (ADS)

    Sutaria, Minda C.

    1990-06-01

    The author tells about how the achievement level of Filipono grade school children is being improved through teaching for maximum learning. To promote teaching for maximum learning, it was imperative to identify minimum learning competencies in the new curriculum for each grade level, retrain teachers for teaching for maximum learning, develop appropriate instructional materials, improve the quality of supervision of instruction, install a multi-level (national to school) testing system and redress inequities in the distribution of human and material resources. This systematic approach to solving the problem of low quality of educational outcomes has resulted in a modest but steady improvement in the achievement levels of school children.

  16. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  17. Radiation engineering of optical antennas for maximum field enhancement.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Kim, Myungki; Dhuey, Scott; Lakhani, Amit; Choo, Hyuck; Schuck, Peter James; Cabrini, Stefano; Schwartzberg, Adam M; Bokor, Jeffrey; Yablonovitch, Eli; Wu, Ming C

    2011-07-13

    Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ∼20% higher field enhancement relative to a quarter-wavelength thick dielectric layer.

  18. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  19. The last glacial maximum

    USGS Publications Warehouse

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  20. The Last Glacial Maximum.

    PubMed

    Clark, Peter U; Dyke, Arthur S; Shakun, Jeremy D; Carlson, Anders E; Clark, Jorie; Wohlfarth, Barbara; Mitrovica, Jerry X; Hostetler, Steven W; McCabe, A Marshall

    2009-08-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level approximately 14.5 ka.

  1. Maximum predictive power and the superposition principle

    NASA Technical Reports Server (NTRS)

    Summhammer, Johann

    1994-01-01

    In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

  2. The Solar Maximum observatory

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots.

  3. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  4. Heifer body weight gain and reproductive achievement in response to protein and energy supplementation while grazing dormant range forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...

  5. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    NASA Astrophysics Data System (ADS)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  6. Achieving greenhouse gas emission reductions in developing countries through energy efficient lighting projects in the Clean Development Mechanism (CDM)

    SciTech Connect

    Figueres, C.; Bosi, M.

    2006-11-15

    Energy efficiency can help address the challenge of increasing access to modern energy services, reduce the need for capital-intensive supply investments as well as mitigating climate change. Efficient lighting is a promising sector for improving the adequacy and reliability of power systems and reducing emissions in developing countries. However, these measures are hardly represented in the CDM portfolio. The COP/MOP decision to include programs of activities in the CDM could open the door to the implementation of a large number of energy efficiency projects in developing countries. Since GHG reductions are essentially the emission equivalent of energy savings, the CDM can benefit from long established energy efficiency methodologies for quantifying energy savings and fulfilling CDM methodological requirements. The integration of the CDM into energy efficiency programs could help spur a necessary transformation in the lighting market.

  7. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  8. Maximum bow force revisited.

    PubMed

    Mores, Robert

    2016-08-01

    Schelleng [J. Acoust. Soc. Am. 53, 26-41 (1973)], Askenfelt [J. Acoust. Soc. Am. 86, 503-516 (1989)], Schumacher [J. Acoust. Soc. Am. 96, 1985-1998 (1994)], and Schoonderwaldt, Guettler, and Askenfelt [Acta Acust. Acust. 94, 604-622 (2008)] formulated-in different ways-how the maximum bow force relates to bow velocity, bow-bridge distance, string impedance, and friction coefficients. Issues of uncertainty are how to account for friction or for the rotational admittance of the strings. Related measurements at the respective transitions between regimes of Helmholtz motion and non-Helmholtz motion employ a variety of bowing machines and stringed instruments. The related findings include all necessary parameters except the friction coefficients, leaving the underlying models unconfirmed. Here, a bowing pendulum has been constructed which allows precise measurement of relevant bowing parameters, including the friction coefficients. Two cellos are measured across all strings for three different bow-bridge distances. The empirical data suggest that-taking the diverse elements of existing models as options-Schelleng's model combined with Schumacher's velocity term yields the best fit. Furthermore, the pendulum employs a bow driving mechanism with adaptive impedance which discloses that mentioned regimes are stable and transitions between them sometimes require a hysteresis on related parameters. PMID:27586745

  9. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  10. Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes

    SciTech Connect

    Payne, Christopher T.; Meier, Alan K.

    2004-08-24

    An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a unique opportunity to address the issue of low power mode energy consumption while technology development paths are still flexible.

  11. Users experience in Denmark: Developments, achievements and experience of the Danish activities in wind energy utilization, 1974 - 1981

    NASA Astrophysics Data System (ADS)

    Pedersen, B. M.

    Denmark initiated activities to investigate the possibility of using wind energy as a supplement to the electricity supply. This would eventually alleviate the burden of increasing prices of fossil fuel and also add to the security of supply of energy to the nation. The activities followed two main streams. A governmental R&D programme was formulated and implemented, whereas at the same time private industry embarked on the development of small scale wind energy converting systems (SWECS) for the private user. Two large scale (630 kW) demonstration wind turbines were completed and are now in fully automatic operation. More than 400 SWECS were put into operation, most of them producing electricity for the owners own use but selling surplus power to the utilities.

  12. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    NASA Astrophysics Data System (ADS)

    O'Connor, S. M.; Lynch, J. P.; Gilbert, A. C.

    2014-08-01

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10-60% can be obtained for a sensor network with 10-100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  13. Comment on "Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity"

    NASA Astrophysics Data System (ADS)

    Savir, Yonatan; Tlusty, Tsvi

    2016-05-01

    We examined [Y. Savir and T. Tlusty, Cell 153, 471 (2013), 10.1016/j.cell.2013.03.032] the decoding performance of tRNA by the ribosome. For this purpose, we specified the kinetics of tRNA decoding and the corresponding energy landscape, from which we calculated the steady-state decoding rate RC. Following our work, Xie reexamined [P. Xie, Phys. Rev. E 92, 022716 (2015), 10.1103/PhysRevE.92.022716] the energy landscape of tRNA decoding. His analysis relies on an alternative expression for RC, while claiming that the expression we use is missing some terms. In this Comment we rederive in detail our expression for the steady-state decoding rate RC, show they hold, explain why the alternative expression for RC is inaccurate, and discuss the underlying intuition.

  14. Minimal length, Friedmann equations and maximum density

    NASA Astrophysics Data System (ADS)

    Awad, Adel; Ali, Ahmed Farag

    2014-06-01

    Inspired by Jacobson's thermodynamic approach [4], Cai et al. [5, 6] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation [6] of Friedmann equations to accommodate a general entrop-yarea law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p( ρ, a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p = ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  15. Rapid development of tissue bank achieved by International Atomic Energy Agency (IAEA) Tissue Banking Programme in China.

    PubMed

    Zhang, Yu-Min; Wang, Jian-Ru; Zhang, Nai-Li; Liu, Xiao-Ming; Zhou, Mo; Ma, Shao-Ying; Yang, Ting; Li, Bao-Xing

    2014-09-01

    Before 1986, the development of tissue banking in China has been slow and relatively uncoordinated. Under the support of International Atomic Energy Agency (IAEA), Tissue Banking in China experienced rapid development. In this period, China Institute for Radiation Protection tissue bank mastered systematic and modern tissue banking technique by IAEA training course and gradually developed the first regional tissue bank (Shanxi Provincial Tissue Bank, SPTB) to provide tissue allograft. Benefit from training course, SPTB promoted the development of tissue transplantation by ways of training, brochure, advertisement and meeting. Tissue allograft transplantation acquired recognition from clinic and supervision and administration from government. Quality system gradually is developing and perfecting. Tissue allograft transplantation and tissue bank are developing rapidly and healthy.

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  17. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  18. Reduced Emissions and Lower Costs: Combining Renewable Energy and Energy Efficiency into a Sustainable Energy Portfolio Standard

    SciTech Connect

    Brown, Marilyn A

    2007-01-01

    Combining renewable energy and energy efficiency in Sustainable Energy Portfolio Standards has emerged as a key state and national policy option to achieve greater levels of sustainable energy resources with maximum economic efficiency and equity. One advantage of the SEPS relative to a renewable portfolio standard or a stand-along energy efficiency resource standard is enhanced flexibility and broader options for meeting targets.

  19. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels.

    PubMed

    Ramió-Lluch, Laura; Yeste, Marc; Fernández-Novell, Josep M; Estrada, Efrén; Rocha, Luiz; Cebrián-Pérez, José A; Muiño-Blanco, Teresa; Concha, Ilona I; Ramírez, Alfredo; Rodríguez-Gil, Joan E

    2014-01-01

    Incubation of boar spermatozoa in a capacitation medium with oligomycin A, a specific inhibitor of the F0 component of the mitochondrial ATP synthase, induced an immediate and almost complete immobilisation of cells. Oligomycin A also inhibited the ability of spermatozoa to achieve feasible in vitro capacitation (IVC), as measured through IVC-compatible changes in motility patterns, tyrosine phosphorylation levels of the acrosomal p32 protein, membrane fluidity and the ability of spermatozoa to achieve subsequent, progesterone-induced in vitro acrosome exocytosis (IVAE). Both inhibitory effects were caused without changes in the rhythm of O2 consumption, intracellular ATP levels or mitochondrial membrane potential (MMP). IVAE was accompanied by a fast and intense peak in O2 consumption and ATP levels in control spermatozoa. Oligomycin A also inhibited progesterone-induced IVAE as well as the concomitant peaks of O2 consumption and ATP levels. The effect of oligomycin on IVAE was also accompanied by concomitant alterations in the IVAE-induced changes on intracellular Ca(2+) levels and MMP. Our results suggest that the oligomycin A-sensitive mitochondrial ATP-synthase activity is instrumental in the achievement of an adequate boar sperm motion pattern, IVC and IVAE. However, this effect seems not to be linked to changes in the overall maintenance of adequate energy levels in stages other than IVAE.

  20. Arctic Sea Ice Maximum 2011

    NASA Video Gallery

    AMSR-E Arctic Sea Ice: September 2010 to March 2011: Scientists tracking the annual maximum extent of Arctic sea ice said that 2011 was among the lowest ice extents measured since satellites began ...

  1. Principles of maximum entropy and maximum caliber in statistical physics

    NASA Astrophysics Data System (ADS)

    Pressé, Steve; Ghosh, Kingshuk; Lee, Julian; Dill, Ken A.

    2013-07-01

    The variational principles called maximum entropy (MaxEnt) and maximum caliber (MaxCal) are reviewed. MaxEnt originated in the statistical physics of Boltzmann and Gibbs, as a theoretical tool for predicting the equilibrium states of thermal systems. Later, entropy maximization was also applied to matters of information, signal transmission, and image reconstruction. Recently, since the work of Shore and Johnson, MaxEnt has been regarded as a principle that is broader than either physics or information alone. MaxEnt is a procedure that ensures that inferences drawn from stochastic data satisfy basic self-consistency requirements. The different historical justifications for the entropy S=-∑ipilog⁡pi and its corresponding variational principles are reviewed. As an illustration of the broadening purview of maximum entropy principles, maximum caliber, which is path entropy maximization applied to the trajectories of dynamical systems, is also reviewed. Examples are given in which maximum caliber is used to interpret dynamical fluctuations in biology and on the nanoscale, in single-molecule and few-particle systems such as molecular motors, chemical reactions, biological feedback circuits, and diffusion in microfluidics devices.

  2. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  3. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  4. Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique

    NASA Astrophysics Data System (ADS)

    Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.

    2014-03-01

    Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.

  5. The Maximum Density of Water.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1985-01-01

    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  6. Abolishing the maximum tension principle

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Mariusz P.; Gohar, H.

    2015-09-01

    We find the series of example theories for which the relativistic limit of maximum tension Fmax =c4 / 4 G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  7. Maximum entropy beam diagnostic tomography

    SciTech Connect

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs.

  8. Maximum cooling and maximum efficiency of thermoacoustic refrigerators

    NASA Astrophysics Data System (ADS)

    Tartibu, L. K.

    2016-01-01

    This work provides valid experimental evidence on the difference between design for maximum cooling and maximum efficiency for thermoacoustic refrigerators. In addition, the influence of the geometry of the honeycomb ceramic stack on the performance of thermoacoustic refrigerators is presented as it affects the cooling power. Sixteen cordierite honeycomb ceramic stacks with square cross sections having four different lengths of 26, 48, 70 and 100 mm are considered. Measurements are taken at six different locations of the stack hot ends from the pressure antinode, namely 100, 200, 300, 400, 500 and 600 mm respectively. Measurement of temperature difference across the stack ends at steady state for different stack geometries are used to compute the cooling load and the coefficient of performance. The results obtained with atmospheric air showed that there is a distinct optimum depending on the design goal.

  9. Maximizing and Optimizing the Large Scale Deployment of Renewable Energy: Achieving the U.S. Government's Goal of 20% by 2030

    NASA Astrophysics Data System (ADS)

    Alliss, R.; Apling, D.; Kiley, H.; Mason, M.

    2011-12-01

    The United States Government has an ambitious goal of growing renewable energy from 1% to 20% by 2030. Two key challenges exist in order to realize this target: Creating system-level approaches to overall generation capacity expansion and integration, including difficult policy changes, and addressing the variability issues of wind and solar generation. These challenges are addressed using MORE Power (Maximizing and Optimizing Renewable Energy), a system level planning tool designed to optimize the placement of wind and solar sites to maximize high quality, useable power. This planning tool uses historical, high resolution, measurements of wind and solar parameters along with a unique, non-linear, optimization algorithm to optimize the placement of sites given a set of user specified input parameters. MORE Power is quantifying the real value of transmission as an enabler to aggregate diverse variable resources which in turn is incentivizing transmission developers to expand the grid. In addition, the issue of grid stability becomes even more critical as larger deployment of renewable resources come online. MORE Power is identifying the benefits of larger balancing areas as an enabler for greater stability and therefore a reduced need to keep transmission capacity in reserve. In the end, by addressing and minimizing the impacts of the natural variability of wind and solar, a reduction in price volatility results which favorably impacts the consumer. This presentation will show examples of how MORE Power is being used to address the variability issue of renewables in order to achieve the 20% deployment target by 2030.

  10. The maximum rate of mammal evolution.

    PubMed

    Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D

    2012-03-13

    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  11. The maximum rate of mammal evolution

    NASA Astrophysics Data System (ADS)

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.

    2012-03-01

    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  12. The maximum rate of mammal evolution.

    PubMed

    Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D

    2012-03-13

    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461

  13. The maximum rate of mammal evolution

    PubMed Central

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.

    2012-01-01

    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461

  14. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (incorporated by reference, see § 435.3), and (2) If life-cycle cost-effective, achieve energy consumption... reduction is not life-cycle cost-effective, the design of the proposed building shall be modified so as to achieve an energy consumption level at or better than the maximum level of energy efficiency that is...

  15. A general optimization for maximum terminal velocity

    NASA Astrophysics Data System (ADS)

    Vulpetti, G.

    1982-09-01

    A numerical model is developed to determine the maximum velocity which can be attained by a rocket propulsion system. Particular attention is given to the ratio of active mass, that which can be converted to propulsive energy, to inert mass, which remains after the propulsive energy is expended. Calculations are based on the law of conservation of energy applied to a spaceship with chemical, laser-sail, interstellar ramjet, and annihilation engines. Limits on the exhaust velocity of the thrust system are neglected. Specific attention is given to relativistic calculations involving the annihilation reactions, noting that classical propulsion systems have critical mass values significantly lower than the propulsion required by extra-solar system flight. Numerical results are presented of critical values of propellant which produce an optimal jet speed, which is determined to be a constant.

  16. The maximum principle for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Akysh, Abdigali Sh.

    2016-08-01

    New connections were established between extreme values of the velocity, the density of kinetic energy (in particular local maximum) and the pressure of the Navier-Stokes equations. Validity of the maximum principle was shown for nonlinear Navier-Stokes equations using these connections, that is fundamentally-key from the mathematical point of view.

  17. The Testability of Maximum Magnitude

    NASA Astrophysics Data System (ADS)

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.

    2012-12-01

    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  18. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks.

    PubMed

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei

    2016-07-30

    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.

  19. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks.

    PubMed

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei

    2016-01-01

    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282

  20. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks

    PubMed Central

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei

    2016-01-01

    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282

  1. Maximum life spur gear design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Mackulin, B. J.; Coe, H. H.; Coy, J. J.

    1991-01-01

    Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application.

  2. Project ACHIEVE final report

    SciTech Connect

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  3. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    PubMed

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  4. Physically constrained maximum likelihood mode filtering.

    PubMed

    Papp, Joseph C; Preisig, James C; Morozov, Andrey K

    2010-04-01

    Mode filtering is most commonly implemented using the sampled mode shapes or pseudoinverse algorithms. Buck et al. [J. Acoust. Soc. Am. 103, 1813-1824 (1998)] placed these techniques in the context of a broader maximum a posteriori (MAP) framework. However, the MAP algorithm requires that the signal and noise statistics be known a priori. Adaptive array processing algorithms are candidates for improving performance without the need for a priori signal and noise statistics. A variant of the physically constrained, maximum likelihood (PCML) algorithm [A. L. Kraay and A. B. Baggeroer, IEEE Trans. Signal Process. 55, 4048-4063 (2007)] is developed for mode filtering that achieves the same performance as the MAP mode filter yet does not need a priori knowledge of the signal and noise statistics. The central innovation of this adaptive mode filter is that the received signal's sample covariance matrix, as estimated by the algorithm, is constrained to be that which can be physically realized given a modal propagation model and an appropriate noise model. Shallow water simulation results are presented showing the benefit of using the PCML method in adaptive mode filtering.

  5. Discrimination networks for maximum selection.

    PubMed

    Jain, Brijnesh J; Wysotzki, Fritz

    2004-01-01

    We construct a novel discrimination network using differentiating units for maximum selection. In contrast to traditional competitive architectures like MAXNET the discrimination network does not only signal the winning unit, but also provides information about its evidence. In particular, we show that a discrimination network converges to a stable state within finite time and derive three characteristics: intensity normalization (P1), contrast enhancement (P2), and evidential response (P3). In order to improve the accuracy of the evidential response we incorporate distributed redundancy into the network. This leads to a system which is not only robust against failure of single units and noisy data, but also enables us to sharpen the focus on the problem given in terms of a more accurate evidential response. The proposed discrimination network can be regarded as a connectionist model for competitive learning by evidence.

  6. Graded Achievement, Tested Achievement, and Validity

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2015-01-01

    Twenty-eight studies of grades, over a century, were reviewed using the argument-based approach to validity suggested by Kane as a theoretical framework. The review draws conclusions about the meaning of graded achievement, its relation to tested achievement, and changes in the construct of graded achievement over time. "Graded…

  7. Multiple Early Eocene Thermal Maximums

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Zachos, J. C.; Thomas, E.; Kelly, D. C.; Donner, B.; Westerhold, T.

    2004-12-01

    Periodic dissolution horizons signifying abrupt shoaling of the lysocline and CCD are characteristic features of deep-sea sections and often attributed to Milankovitch forcing via their diagnostic frequencies. Prominent dissolution horizons also correspond to abrupt climate events, such as the Paleocene-Eocene thermal maximum (PETM), as a result of input of significant CH4 - CO2 into the ocean-atmosphere system. The question arises whether other significant dissolution horizons identified in sediments of late Paleocene and early Eocene age similar to the recently identified ELMO (Lourens et al., 2004) were formed as a result of greenhouse gas input, or whether they were related to cumulative effects of periodic changes in ocean chemistry and circulation. Here we report the discovery of a 3rd thermal maximum in early Eocene (about 52 Ma) sediments recovered from the South Atlantic during ODP Leg 208. The prominent clay layer was named the "X" event and was identified within planktonic foraminifer zone P7 and calcareous nannofossil zone CP10 at four Walvis Ridge Transect sites with a water depth range of 2000 m (Sites 1262 to 1267). Benthics assemblages are composed of small individuals, have low diversity and high dominance. Dominant taxa are Nuttallides truempyi and various abyssaminids, resembling the post PETM extinction assemblages. High-resolution bulk carbonate \\delta13C measurements of one of the more shallow Sites 1265 reveal a rapid about 0.6 per mill drop in \\delta13C and \\delta18O followed by an exponential recovery to pre-excursion \\delta13C values well known for the PETM and also observed for the ELMO. The planktonic foraminiferal \\delta13C records of Morozovella subbotina and Acaranina soldadoensis in the deepest Site 1262 show a 0.8 to 0.9 per mill drop, whereas the \\delta13C drop of benthic foraminifera Nuttallides truempyi is slightly larger (about 1 per mill). We are evaluating mechanisms for the widespread change in deep-water chemistry, its

  8. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  9. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  10. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  11. Lighting Energy Management for Colleges and Universities.

    ERIC Educational Resources Information Center

    National Lighting Bureau, Washington, DC.

    Colleges and universities probably rely on more types of lighting than do other facilities. This booklet is intended to help administrators achieve the goal of lighting energy management--gaining maximum benefit from illumination systems while minimizing energy waste. The development of a lighting energy management plan requires knowledge of the…

  12. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  13. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  14. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  15. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  16. A maximum hypothesis of transpiration

    NASA Astrophysics Data System (ADS)

    Wang, Jingfeng; Bras, Rafael L.; Lerdau, Manuel; Salvucci, Guido D.

    2007-09-01

    We hypothesize that the system of liquid water in leaf tissues and the water vapor in the atmosphere tends to evolve towards a potential equilibrium as quickly as possible by maximization of the transpiration rate. We make two assumptions in formulating the transpiration rate: (1) stomatal aperture is directly controlled by guard cell turgor (or leaf water potential); (2) CO2 flux can be used as a nonparametric equivalent of stomatal conductance for a given stomatal function (not necessarily optimal in terms of the water use efficiency for photosynthesis). Transpiration is then expressed as a function of leaf temperature, CO2 flux (as a surrogate of stomatal conductance), and sensible heat flux characterizing the transport mechanism at a given level of radiative energy input. Maximization of transpiration constrained by the energy balance equation leads to vanishing derivatives of transpiration with respect to leaf temperature and CO2 flux. We have obtained observational evidence in support of the proposed hypothesis.

  17. 25 CFR 273.4 - Policy of maximum Indian participation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Policy of maximum Indian participation. 273.4 Section 273.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR INDIAN SELF-DETERMINATION AND... achievement and satisfaction which education can and should provide. Consistent with this concept,...

  18. 25 CFR 273.4 - Policy of maximum Indian participation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Policy of maximum Indian participation. 273.4 Section 273.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR INDIAN SELF-DETERMINATION AND... achievement and satisfaction which education can and should provide. Consistent with this concept,...

  19. 25 CFR 273.4 - Policy of maximum Indian participation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Policy of maximum Indian participation. 273.4 Section 273.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR INDIAN SELF-DETERMINATION AND... achievement and satisfaction which education can and should provide. Consistent with this concept,...

  20. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating Pressure (MOP), and to utilize these risk analyses in the identification of appropriate assessment...

  1. Maximum Likelihood Analysis in the PEN Experiment

    NASA Astrophysics Data System (ADS)

    Lehman, Martin

    2013-10-01

    The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.

  2. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  3. Diffusivity Maximum in a Reentrant Nematic Phase

    PubMed Central

    Stieger, Tillmann; Mazza, Marco G.; Schoen, Martin

    2012-01-01

    We report molecular dynamics simulations of confined liquid crystals using the Gay–Berne–Kihara model. Upon isobaric cooling, the standard sequence of isotropic–nematic–smectic A phase transitions is found. Upon further cooling a reentrant nematic phase occurs. We investigate the temperature dependence of the self-diffusion coefficient of the fluid in the nematic, smectic and reentrant nematic phases. We find a maximum in diffusivity upon isobaric cooling. Diffusion increases dramatically in the reentrant phase due to the high orientational molecular order. As the temperature is lowered, the diffusion coefficient follows an Arrhenius behavior. The activation energy of the reentrant phase is found in reasonable agreement with the reported experimental data. We discuss how repulsive interactions may be the underlying mechanism that could explain the occurrence of reentrant nematic behavior for polar and non-polar molecules. PMID:22837730

  4. Investigation of Maximum Power Point Tracking for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric

    2013-07-01

    In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.

  5. The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle

    SciTech Connect

    Lee, Chiun-Chang

    2014-05-15

    The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem. Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.

  6. Maximum Parsimony on Phylogenetic networks

    PubMed Central

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  7. Hydraulic Limits on Maximum Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  8. Estimating the maximum potential revenue for grid connected electricity storage :

    SciTech Connect

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  9. Metaldyne. Plant-Wide Assessment at Royal Oak Finds Opportunities to Improve Manufacturing Effciency, Reduce Energy Use, and Achieve Sigificant Cost Savings

    SciTech Connect

    None, None

    2005-05-01

    This case study prepared for the U.S. Department of Energy's Industrial Technologies Program describes a plant-wide energy assessment conducted at the Metaldyne, Inc., forging plant in Royal Oak, Michigan. The assessment focused on reducing the plant's operating costs, inventory, and energy use. If the company were to implement all the recommendations that came out of the assessment, its total annual energy savings for electricity would be about 11.5 million kWh and annual cost savings would be $12.6 million.

  10. Maximum windmill efficiency in finite time

    NASA Astrophysics Data System (ADS)

    Huleihil, Mahmoud

    2009-05-01

    The fraction of the kinetic energy of the wind impinging on the rotor-swept area that a wind turbine can convert to useful power has been shown by Betz in an idealized laminar-flow model to have an upper limit of 16/27 or 59% approximately [I. H. Shames, Mechanics of Fluids, 2nd ed. (McGraw-Hill, New York, 1982), pp. A26-A31]. This figure is known as Betz number. Other studies [A. Rauh and W. Seelret, Appl. Energy 17, 15 (1984)] suggested that this figure should be considered as a guideline. In this paper, a new model is introduced and its efficiency at maximum power output is derived. The derived value is shown to be a function of the Betz number B and given by the formula ηmp=1-√1-B . This value is 36.2%, which agrees well with those of actually operating wind turbines. As a guideline, the wind turbine efficiency can be considered to be within the range of the two numbers of merit, the Betz number and ηmp.

  11. Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Zhou, Haijun

    2011-05-01

    In this brief report we explore the energy landscapes of two spin glass models using a greedy single-spin flipping process, Gmax. The ground-state energy density of the random maximum two-satisfiability problem is efficiently approached by Gmax. The achieved energy density e(t) decreases with the evolution time t as e(t)-e(∞)=h(log10t)-z with a small prefactor h and a scaling coefficient z>1, indicating an energy landscape with deep and rugged funnel-shape regions. For the ±J Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly gets trapped to a local minimal region of the energy landscape.

  12. Generalized relativistic wave equations with intrinsic maximum momentum

    NASA Astrophysics Data System (ADS)

    Ching, Chee Leong; Ng, Wei Khim

    2014-05-01

    We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wave functions of one-dimensional Klein-Gordon and Dirac equation with linear confining potentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential is stronger than vector potential. The energy spectrum of the systems studied is bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.

  13. Building Eco-Informatics: Examining the Dynamics of Eco-Feedback Design and Peer Networks to Achieve Sustainable Reductions in Energy Consumption

    ERIC Educational Resources Information Center

    Jain, Rishee K.

    2013-01-01

    The built environment accounts for a substantial portion of energy consumption in the United States and in many parts of the world. Due to concerns over rising energy costs and climate change, researchers and practitioners have started exploring the area of eco-informatics to link information from the human, natural and built environments.…

  14. 14 CFR 1261.102 - Maximum amount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Maximum amount. 1261.102 Section 1261.102...) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30, 1988, the maximum amount that may be paid under the Military Personnel and Civilian Employees' Claim Act...

  15. 14 CFR 1261.102 - Maximum amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Maximum amount. 1261.102 Section 1261.102...) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30, 1988, the maximum amount that may be paid under the Military Personnel and Civilian Employees' Claim Act...

  16. 49 CFR 107.329 - Maximum penalties.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... maximum civil penalty is $110,000 if the violation results in death, serious illness or severe injury to... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum penalties. 107.329 Section 107.329... PROGRAM PROCEDURES Enforcement Compliance Orders and Civil Penalties § 107.329 Maximum penalties. (a)...

  17. 49 CFR 107.329 - Maximum penalties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maximum civil penalty is $110,000 if the violation results in death, serious illness or severe injury to... 49 Transportation 2 2011-10-01 2011-10-01 false Maximum penalties. 107.329 Section 107.329... PROGRAM PROCEDURES Enforcement Compliance Orders and Civil Penalties § 107.329 Maximum penalties. (a)...

  18. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... person's earnings record is limited. This limited amount is called the family maximum. The family maximum... the persons entitled to benefits on the insured individual's compensation would, except for the.... The maximum is computed as follows: (i) 150 percent of the first $230 of the individual's...

  19. 49 CFR 107.329 - Maximum penalties.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maximum civil penalty is $110,000 if the violation results in death, serious illness or severe injury to... 49 Transportation 2 2012-10-01 2012-10-01 false Maximum penalties. 107.329 Section 107.329... PROGRAM PROCEDURES Enforcement Compliance Orders and Civil Penalties § 107.329 Maximum penalties. (a)...

  20. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  2. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...) of the Act. (4) If the Administrator has either proposed a relevant emission standard pursuant to... the MACT emission limitation or standard as determined according to the principles set forth...

  3. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...) of the Act. (4) If the Administrator has either proposed a relevant emission standard pursuant to... the MACT emission limitation or standard as determined according to the principles set forth...

  4. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...) of the Act. (4) If the Administrator has either proposed a relevant emission standard pursuant to... the MACT emission limitation or standard as determined according to the principles set forth...

  5. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...) of the Act. (4) If the Administrator has either proposed a relevant emission standard pursuant to... the MACT emission limitation or standard as determined according to the principles set forth...

  6. Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

    NASA Astrophysics Data System (ADS)

    Mangold, Claudia; Neogi, Sanghamitra; Donadio, Davide

    2016-08-01

    Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ˜7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

  7. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    SciTech Connect

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products, and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.

  8. Assessment of the Potential to Achieve very Low Energy Use in Public Buildings in China with Advanced Window and Shading Systems

    DOE PAGES

    Lee, Eleanor; Pang, Xiufeng; McNeil, Andrew; Hoffmann, Sabine; Thanachareonkit, Anothai; Li, Zhengrong; Ding, Yong

    2015-05-29

    As rapid growth in the construction industry continues to occur in China, the increased demand for a higher standard living is driving significant growth in energy use and demand across the country. Building codes and standards have been implemented to head off this trend, tightening prescriptive requirements for fenestration component measures using methods similar to the U.S. model energy code American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1. The objective of this study is to (a) provide an overview of applicable code requirements and current efforts within China to enable characterization and comparison of window and shading products,more » and (b) quantify the load reduction and energy savings potential of several key advanced window and shading systems, given the divergent views on how space conditioning requirements will be met in the future. System-level heating and cooling loads and energy use performance were evaluated for a code-compliant large office building using the EnergyPlus building energy simulation program. Commercially-available, highly-insulating, low-emittance windows were found to produce 24%–66% lower perimeter zone HVAC electricity use compared to the mandated energy-efficiency standard in force (GB 50189-2005) in cold climates like Beijing. Low-e windows with operable exterior shading produced up to 30%–80% reductions in perimeter zone HVAC electricity use in Beijing and 18%–38% reductions in Shanghai compared to the standard. The economic context of China is unique since the cost of labor and materials for the building industry is so low. Broad deployment of these commercially available technologies with the proper supporting infrastructure for design, specification, and verification in the field would enable significant reductions in energy use and greenhouse gas emissions in the near term.« less

  9. Comparing Science Achievement Constructs: Targeted and Achieved

    ERIC Educational Resources Information Center

    Ferrara, Steve; Duncan, Teresa

    2011-01-01

    This article illustrates how test specifications based solely on academic content standards, without attention to other cognitive skills and item response demands, can fall short of their targeted constructs. First, the authors inductively describe the science achievement construct represented by a statewide sixth-grade science proficiency test.…

  10. Mobility and Reading Achievement.

    ERIC Educational Resources Information Center

    Waters, Theresa Z.

    A study examined the effect of geographic mobility on elementary school students' achievement. Although such mobility, which requires students to make multiple moves among schools, can have a negative impact on academic achievement, the hypothesis for the study was that it was not a determining factor in reading achievement test scores. Subjects…

  11. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    SciTech Connect

    Parker, D.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  12. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    SciTech Connect

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  13. Achieving a Net Zero Energy Retrofit – in a humid, temperate climate – lessons from the University of Hawai’i at Mānoa

    SciTech Connect

    Regnier, Cindy; Harding, Ari; Robinson, Alastair

    2015-07-01

    The University of Hawai’i at Mānoa (UHM) partnered with the US Department of Energy (DOE) and the Hawai`i Clean Energy Initiative to develop and implement solutions to retrofit exiting buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program1. Kuykendall Hall, located on the UHM campus in Honolulu, was the focus of a CBP analysis and design collaboration among the University of Hawai’i, their consultants, and Lawrence Berkeley National Laboratory (LBNL). Kuykendall Hall consists of two 1960s-era wings – a four-story wing containing classrooms, and a seven-story tower containing offices – with a total floor area of approximately 76,000 square feet (ft²).

  14. CORA: Emission Line Fitting with Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Ness, Jan-Uwe; Wichmann, Rainer

    2011-12-01

    The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.

  15. CORA - emission line fitting with Maximum Likelihood

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Wichmann, R.

    2002-07-01

    The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.

  16. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  17. Approach trajectory planning system for maximum concealment

    NASA Technical Reports Server (NTRS)

    Warner, David N., Jr.

    1986-01-01

    A computer-simulation study was undertaken to investigate a maximum concealment guidance technique (pop-up maneuver), which military aircraft may use to capture a glide path from masked, low-altitude flight typical of terrain following/terrain avoidance flight enroute. The guidance system applied to this problem is the Fuel Conservative Guidance System. Previous studies using this system have concentrated on the saving of fuel in basically conventional land and ship-based operations. Because this system is based on energy-management concepts, it also has direct application to the pop-up approach which exploits aircraft performance. Although the algorithm was initially designed to reduce fuel consumption, the commanded deceleration is at its upper limit during the pop-up and, therefore, is a good approximation of a minimum-time solution. Using the model of a powered-lift aircraft, the results of the study demonstrated that guidance commands generated by the system are well within the capability of an automatic flight-control system. Results for several initial approach conditions are presented.

  18. 50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Minimum and maximum deposits; maximum time... Capital Construction Fund Agreement § 259.34 Minimum and maximum deposits; maximum time to deposit. (a... than prescribed herein: Provided, The party demonstrates to the Secretary's satisfaction...

  19. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar

  20. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  1. 5 CFR 1600.22 - Maximum contributions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum contributions. 1600.22 Section 1600.22 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD EMPLOYEE CONTRIBUTION ELECTIONS AND CONTRIBUTION ALLOCATIONS Program of Contributions § 1600.22 Maximum contributions. (a)...

  2. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...

  3. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...

  4. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...

  5. Maximum entropy image reconstruction from projections

    NASA Astrophysics Data System (ADS)

    Bara, N.; Murata, K.

    1981-07-01

    The maximum entropy method is applied to image reconstruction from projections, of which angular view is restricted. The relaxation parameters are introduced to the maximum entropy reconstruction and after iteration the median filtering is implemented. These procedures improve the quality of the reconstructed image from noisy projections

  6. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...

  7. 7 CFR 1778.11 - Maximum grants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Maximum grants. 1778.11 Section 1778.11 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not... the filing of an application. (b) Grants made for repairs, partial replacement, or...

  8. 7 CFR 1778.11 - Maximum grants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Maximum grants. 1778.11 Section 1778.11 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not... the filing of an application. (b) Grants made for repairs, partial replacement, or...

  9. 13 CFR 130.440 - Maximum grant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...

  10. 13 CFR 130.440 - Maximum grant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...

  11. 13 CFR 130.440 - Maximum grant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...

  12. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...

  13. 13 CFR 130.440 - Maximum grant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Maximum grant. 130.440 Section 130.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS DEVELOPMENT CENTERS § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the...

  14. 49 CFR 107.329 - Maximum penalties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... violation, except the maximum civil penalty is $175,000 if the violation results in death, serious illness... civil penalty is $175,000 if the violation results in death, serious illness or severe injury to any... 49 Transportation 2 2013-10-01 2013-10-01 false Maximum penalties. 107.329 Section...

  15. 49 CFR 107.329 - Maximum penalties.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... violation, except the maximum civil penalty is $175,000 if the violation results in death, serious illness... civil penalty is $175,000 if the violation results in death, serious illness or severe injury to any... 49 Transportation 2 2014-10-01 2014-10-01 false Maximum penalties. 107.329 Section...

  16. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  17. General Achievement Trends: Oklahoma

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  18. General Achievement Trends: Georgia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  19. General Achievement Trends: Nebraska

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  20. General Achievement Trends: Arkansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  1. General Achievement Trends: Maryland

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  2. General Achievement Trends: Maine

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  3. General Achievement Trends: Iowa

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  4. General Achievement Trends: Texas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  5. General Achievement Trends: Hawaii

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  6. General Achievement Trends: Kansas

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  7. General Achievement Trends: Florida

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  8. General Achievement Trends: Massachusetts

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  9. General Achievement Trends: Tennessee

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  10. General Achievement Trends: Alabama

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  11. General Achievement Trends: Virginia

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  12. General Achievement Trends: Michigan

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  13. General Achievement Trends: Colorado

    ERIC Educational Resources Information Center

    Center on Education Policy, 2009

    2009-01-01

    This general achievement trends profile includes information that the Center on Education Policy (CEP) and the Human Resources Research Organization (HumRRO) obtained from states from fall 2008 through April 2009. Included herein are: (1) Bullet points summarizing key findings about achievement trends in that state at three performance…

  14. Inverting the Achievement Pyramid

    ERIC Educational Resources Information Center

    White-Hood, Marian; Shindel, Melissa

    2006-01-01

    Attempting to invert the pyramid to improve student achievement and increase all students' chances for success is not a new endeavor. For decades, educators have strategized, formed think tanks, and developed school improvement teams to find better ways to improve the achievement of all students. Currently, the No Child Left Behind Act (NCLB) is…

  15. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  16. School Effects on Achievement.

    ERIC Educational Resources Information Center

    Nichols, Robert C.

    The New York State Education Department conducts a Pupil Evaluation Program (PEP) in which each year all third, sixth, and ninth grade students in the state are given a series of achievement tests in reading and mathematics. The data accumulated by the department includes achievement test scores, teacher characteristics, building and curriculum…

  17. Heritability of Creative Achievement

    ERIC Educational Resources Information Center

    Piffer, Davide; Hur, Yoon-Mi

    2014-01-01

    Although creative achievement is a subject of much attention to lay people, the origin of individual differences in creative accomplishments remain poorly understood. This study examined genetic and environmental influences on creative achievement in an adult sample of 338 twins (mean age = 26.3 years; SD = 6.6 years). Twins completed the Creative…

  18. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  19. Achieving Public Schools

    ERIC Educational Resources Information Center

    Abowitz, Kathleen Knight

    2011-01-01

    Public schools are functionally provided through structural arrangements such as government funding, but public schools are achieved in substance, in part, through local governance. In this essay, Kathleen Knight Abowitz explains the bifocal nature of achieving public schools; that is, that schools are both subject to the unitary Public compact of…

  20. Student Achievement Factors

    ERIC Educational Resources Information Center

    Bertolini, Katherine; Stremmel, Andrew; Thorngren, Jill

    2012-01-01

    Effective practices for education are essential to insure public investment in our schools provides the maximum yield for our students, communities, states, and nation. The challenge has been defining and measuring terms such as effective, proficient, and sufficient when we examine instructional practice, student outcomes and funding equity. This…

  1. Studies on design of 351  nm focal plane diagnostic system prototype and focusing characteristic of SGII-upgraded facility at half achievable energy performance.

    PubMed

    Liu, Chong; Ji, Lailin; Yang, Lin; Zhao, Dongfeng; Zhang, Yanfeng; Liu, Dong; Zhu, Baoqiang; Lin, Zunqi

    2016-04-01

    In order to obtain the intensity distribution of a 351 nm focal spot and smoothing by spectral dispersion (SSD) focal plane profile of a SGII-upgraded facility, a type of off-axis imaging system with three spherical mirrors, suitable for a finite distance source point to be imaged near the diffraction limit has been designed. The quality factor of the image system is 1.6 times of the diffraction limit tested by a 1053 nm point source. Because of the absence of a 351 nm point source, we can use a Collins diffraction imaging integral with respect to λ=351  nm, corresponding to a quality factor that is 3.8 times the diffraction limit at 351 nm. The calibration results show that at least the range of ±10  mrad of view field angle and ±50  mm along the axial direction around the optimum object distance can be satisfied with near diffraction limited image that is consistent with the design value. Using this image system, the No. 2 beam of the SGII-upgraded facility has been tested. The test result of the focal spot of final optics assembly (FOA) at 351 nm indicates that about 80% of energy is encompassed in 14.1 times the diffraction limit, while the output energy of the No. 2 beam is 908 J at 1053 nm. According to convolution theorem, the true value of a 351 nm focal spot of FOA is about 12 times the diffraction limit because of the influence of the quality factor. Further experimental studies indicate that the RMS value along the smoothing direction is less than 15.98% in the SSD spot test experiment. Computer simulations show that the quality factor of the image system used in the experiment has almost no effect on the SSD focal spot test. The image system can remarkably distort the SSD focal spot distribution under the circumstance of the quality factor 15 times worse than the diffraction limit. The distorted image shows a steep slope in the contour of the SSD focal spot along the smoothing direction that otherwise has a relatively flat top region

  2. On the efficiency at maximum cooling power

    NASA Astrophysics Data System (ADS)

    Apertet, Y.; Ouerdane, H.; Michot, A.; Goupil, C.; Lecoeur, Ph.

    2013-08-01

    The efficiency at maximum power (EMP) of heat engines operating as generators is one corner stone of finite-time thermodynamics, the Curzon-Ahlborn efficiency \\eta_CA being considered as a universal upper bound. Yet, no valid counterpart to \\eta_CA has been derived for the efficiency at maximum cooling power (EMCP) for heat engines operating as refrigerators. In this letter we analyse the reasons of the failure to obtain such a bound and we demonstrate that, despite the introduction of several optimisation criteria, the maximum cooling power condition should be considered as the genuine equivalent of maximum power condition in the finite-time thermodynamics frame. We then propose and discuss an analytic expression for the EMCP in the specific case of exoreversible refrigerators.

  3. 14 CFR 65.47 - Maximum hours.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all...

  4. 14 CFR 65.47 - Maximum hours.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all...

  5. 14 CFR 65.47 - Maximum hours.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all...

  6. Maximum-Likelihood Detection Of Noncoherent CPM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  7. Maximum forces and deflections from orthodontic appliances.

    PubMed

    Burstone, C J; Goldberg, A J

    1983-08-01

    The maximum bending moment of an orthodontic wire is an important parameter in the design and use of an orthodontic appliance. It is the wire property that determines how much force an appliance can deliver. A bending test which allows direct measurement of the maximum bending moment was developed. Data produced from this test are independent of wire length and configuration. The maximum bending moment, percent recovery, and maximum springback were determined for round and rectangular cross sections of stainless steel, nickel-titanium, and beta-titanium wires. The data suggest the need for more specifically defining maximum moment and maximum springback. Three maximum bending moments are described: Me, My, and Mult. My and Mult are clinically the most significant. Appliances that are required to have no permanent deformation must operate below My. Appliances that exhibit marked permanent deformation may be used in some applications and, if so, higher bending moments can be produced. In order of magnitude, the maximum bending moment at yield is largest in stainless steel, beta-titanium, and nickel-titanium for a given cross section. Nickel-titanium and beta-titanium have significantly larger springback than stainless steel determined at the moment at yield. Nickel-titanium did not follow the theoretical ratio between ultimate bending moment and the bending moment at yield, exhibiting a very large ratio. The study supports the hypothesis that most orthodontic appliances are activated in a range where both plastic and elastic behavior occurs; therefore, the use of yield strengths for calculation of force magnitude can lead to a significant error in predicting the forces delivered. PMID:6576645

  8. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance. PMID:17337710

  9. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  10. Student Achievement and Motivation

    ERIC Educational Resources Information Center

    Flammer, Gordon H.; Mecham, Robert C.

    1974-01-01

    Compares the lecture and self-paced methods of instruction on the basis of student motivation and achieveme nt, comparing motivating and demotivating factors in each, and their potential for motivation and achievement. (Authors/JR)

  11. North Atlantic Deep Water Production during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-06-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  12. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  13. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  14. Maximum patch method for directional dark matter detection

    SciTech Connect

    Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter

    2008-07-01

    Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.

  15. Maximum orbit plane change with heat-transfer-rate considerations

    NASA Technical Reports Server (NTRS)

    Lee, J. Y.; Hull, D. G.

    1990-01-01

    Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.

  16. 44 CFR 321.4 - Achieving production readiness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... achieve a capability for maximum production of “urgent” items during the initial phase of war, the... power, fuel, and water, or on long-distance communications; with spare replacements for...

  17. 44 CFR 321.4 - Achieving production readiness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... achieve a capability for maximum production of “urgent” items during the initial phase of war, the... power, fuel, and water, or on long-distance communications; with spare replacements for...

  18. 44 CFR 321.4 - Achieving production readiness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... achieve a capability for maximum production of “urgent” items during the initial phase of war, the... power, fuel, and water, or on long-distance communications; with spare replacements for...

  19. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  20. Maximum permissible voltage of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.

    2014-06-01

    Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  1. Cell Development obeys Maximum Fisher Information

    PubMed Central

    Frieden, B. Roy; Gatenby, Robert A.

    2014-01-01

    Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10μm and concentric nuclear membrane (NM) diameter 6μm. The NM contains ≈ 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order δI = 0 and approximate 2nd-order δ2I ≈ 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1–4 proteins, a 4nm size for the EGFR protein and the flux value F ≈1016 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL → IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information → non-equilibrium, one condition for life. PMID:23747917

  2. Maximum magnitude earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    McGarr, A.

    2014-02-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  3. Mapping the MPM maximum flow algorithm on GPUs

    NASA Astrophysics Data System (ADS)

    Solomon, Steven; Thulasiraman, Parimala

    2010-11-01

    The GPU offers a high degree of parallelism and computational power that developers can exploit for general purpose parallel applications. As a result, a significant level of interest has been directed towards GPUs in recent years. Regular applications, however, have traditionally been the focus of work on the GPU. Only very recently has there been a growing number of works exploring the potential of irregular applications on the GPU. We present a work that investigates the feasibility of Malhotra, Pramodh Kumar and Maheshwari's "MPM" maximum flow algorithm on the GPU that achieves an average speedup of 8 when compared to a sequential CPU implementation.

  4. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  5. Surface tension maximum of liquid 3He

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Hasegawa, Syuichi; Suzuki, Masaru; Okuda, Yuichi

    2000-07-01

    The surface tension of liquid 3He was measured using the capillary-rise method. Suzuki et al. have reported that its temperature dependence was almost quenched below 120 mK. Here we have examined it with higher precision and found that it has a small maximum around 100 mK. The amount of the maximum is about 3×10 -4 as a fraction of the surface tension at 0 K. The density of liquid 3He increases with temperature by about 5×10 -4 in Δ ρ/ ρ between 0 and 100 mK. This density change could be one of the reasons of the surface tension maximum around 100 mK.

  6. Maximum likelihood clustering with dependent feature trees

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.

  7. Estimating maximum global wind power availability and associated climatic consequences

    NASA Astrophysics Data System (ADS)

    Miller, Lee; Gans, Fabian; Kleidon, Axel

    2010-05-01

    Estimating maximum global wind power availability and associated climatic consequences Wind speed reflects the continuous generation of kinetic energy and its dissipation, primarily in the atmospheric boundary layer. When wind turbines extract kinetic wind energy, less kinetic energy remains in the atmosphere in the mean state. While this effect does not play a significant role for a single turbine, it becomes a critical factor for the estimation of large-scale wind power availability. This extraction of kinetic energy by turbines also competes with the natural processes of kinetic energy dissipation, thus setting fundamental limits on extractability that are not considered in previous large-scale studies [1,2,3]. Our simple momentum balance model using ECMWF climate data illustrates a fundamental limit to global wind power extractability and thereby electricity potential (93TW). This is independent of engineering advances in turbine design and wind farm layout. These results are supported by similar results using a global climate model of intermediate complexity. Varying the surface drag coefficient with different simulations allows us to directly relate changes in atmospheric and boundary layer dissipation with resulting climate indices and wind power potential. These new estimates of the maximum power generation by wind turbines are well above the currently installed capacity. Hence, present day installations are unlikely to have a global impact. However, when compared to the current human energy demand of 17TW combined with plans by the US and EU to drastically increase onshore and offshore wind turbine installations [4,5,6], understanding the climatic response and ultimate limitations of wind power as a large-scale renewable energy source is critical. [1] Archer, C., and M.Z. Jacobson, (2005) Evaluation of global wind power, J. Geophys. Res. 110:D12110. [2] Lu, X., M.B. McElroy, and J. Kiviluoma, (2009) Global potential for wind-generated electricity, Proc

  8. Triadic conceptual structure of the maximum entropy approach to evolution.

    PubMed

    Herrmann-Pillath, Carsten; Salthe, Stanley N

    2011-03-01

    Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law. PMID:21055440

  9. Maximum-Entropy Inference with a Programmable Annealer

    NASA Astrophysics Data System (ADS)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  10. Maximum-Entropy Inference with a Programmable Annealer.

    PubMed

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A

    2016-03-03

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  11. From Maximum Entropy Models to Non-Stationarity and Irreversibility

    NASA Astrophysics Data System (ADS)

    Cofre, Rodrigo; Cessac, Bruno; Maldonado, Cesar

    The maximum entropy distribution can be obtained from a variational principle. This is important as a matter of principle and for the purpose of finding approximate solutions. One can exploit this fact to obtain relevant information about the underlying stochastic process. We report here in recent progress in three aspects to this approach.1- Biological systems are expected to show some degree of irreversibility in time. Based on the transfer matrix technique to find the spatio-temporal maximum entropy distribution, we build a framework to quantify the degree of irreversibility of any maximum entropy distribution.2- The maximum entropy solution is characterized by a functional called Gibbs free energy (solution of the variational principle). The Legendre transformation of this functional is the rate function, which controls the speed of convergence of empirical averages to their ergodic mean. We show how the correct description of this functional is determinant for a more rigorous characterization of first and higher order phase transitions.3- We assess the impact of a weak time-dependent external stimulus on the collective statistics of spiking neuronal networks. We show how to evaluate this impact on any higher order spatio-temporal correlation. RC supported by ERC advanced Grant ``Bridges'', BC: KEOPS ANR-CONICYT, Renvision and CM: CONICYT-FONDECYT No. 3140572.

  12. Triadic conceptual structure of the maximum entropy approach to evolution.

    PubMed

    Herrmann-Pillath, Carsten; Salthe, Stanley N

    2011-03-01

    Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law.

  13. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  14. Iowa Women of Achievement.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This issue of the Goldfinch highlights some of Iowa's 20th century women of achievement. These women have devoted their lives to working for human rights, education, equality, and individual rights. They come from the worlds of politics, art, music, education, sports, business, entertainment, and social work. They represent Native Americans,…

  15. Achieving Peace through Education.

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    While it is generally agreed that peace is desirable, there are barriers to achieving a peaceful world. These barriers are classified into three major areas: (1) an erroneous view of human nature; (2) injustice; and (3) fear of world unity. In a discussion of these barriers, it is noted that although the consciousness and conscience of the world…

  16. Increasing Male Academic Achievement

    ERIC Educational Resources Information Center

    Jackson, Barbara Talbert

    2008-01-01

    The No Child Left Behind legislation has brought greater attention to the academic performance of American youth. Its emphasis on student achievement requires a closer analysis of assessment data by school districts. To address the findings, educators must seek strategies to remedy failing results. In a mid-Atlantic district of the Unites States,…

  17. Leadership Issues: Raising Achievement.

    ERIC Educational Resources Information Center

    Horsfall, Chris, Ed.

    This document contains five papers examining the meaning and operation of leadership as a variable affecting student achievement in further education colleges in the United Kingdom. "Introduction" (Chris Horsfall) discusses school effectiveness studies' findings regarding the relationship between leadership and effective schools, distinguishes…

  18. Achievements or Disasters?

    ERIC Educational Resources Information Center

    Goodwin, MacArthur

    2000-01-01

    Focuses on policy issues that have affected arts education in the twentieth century, such as: interest in discipline-based arts education, influence of national arts associations, and national standards and coordinated assessment. States that whether the policy decisions are viewed as achievements or disasters are for future determination. (CMK)

  19. Achieving True Consensus.

    ERIC Educational Resources Information Center

    Napier, Rod; Sanaghan, Patrick

    2002-01-01

    Uses the example of Vermont's Middlebury College to explore the challenges and possibilities of achieving consensus about institutional change. Discusses why, unlike in this example, consensus usually fails, and presents four demands of an effective consensus process. Includes a list of "test" questions on successful collaboration. (EV)

  20. School Students' Science Achievement

    ERIC Educational Resources Information Center

    Shymansky, James; Wang, Tzu-Ling; Annetta, Leonard; Everett, Susan; Yore, Larry D.

    2013-01-01

    This paper is a report of the impact of an externally funded, multiyear systemic reform project on students' science achievement on a modified version of the Third International Mathematics and Science Study (TIMSS) test in 33 small, rural school districts in two Midwest states. The systemic reform effort utilized a cascading leadership strategy…

  1. Essays on Educational Achievement

    ERIC Educational Resources Information Center

    Ampaabeng, Samuel Kofi

    2013-01-01

    This dissertation examines the determinants of student outcomes--achievement, attainment, occupational choices and earnings--in three different contexts. The first two chapters focus on Ghana while the final chapter focuses on the US state of Massachusetts. In the first chapter, I exploit the incidence of famine and malnutrition that resulted to…

  2. Assessing Handwriting Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Teachers in the school setting need to emphasize quality handwriting across the curriculum. Quality handwriting means that the written content is easy to read in either manuscript or cursive form. Handwriting achievement can be assessed, but not compared to the precision of assessing basic addition, subtraction, multiplication, and division facts.…

  3. Intelligence and Educational Achievement

    ERIC Educational Resources Information Center

    Deary, Ian J.; Strand, Steve; Smith, Pauline; Fernandes, Cres

    2007-01-01

    This 5-year prospective longitudinal study of 70,000+ English children examined the association between psychometric intelligence at age 11 years and educational achievement in national examinations in 25 academic subjects at age 16. The correlation between a latent intelligence trait (Spearman's "g"from CAT2E) and a latent trait of educational…

  4. Explorations in achievement motivation

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1982-01-01

    Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.

  5. NCLB: Achievement Robin Hood?

    ERIC Educational Resources Information Center

    Bracey, Gerald W.

    2008-01-01

    In his "Wall Street Journal" op-ed on the 25th of anniversary of "A Nation At Risk", former assistant secretary of education Chester E. Finn Jr. applauded the report for turning U.S. education away from equality and toward achievement. It was not surprising, then, that in mid-2008, Finn arranged a conference to examine the potential "Robin Hood…

  6. Achieving All Our Ambitions

    ERIC Educational Resources Information Center

    Hartley, Tricia

    2009-01-01

    National learning and skills policy aims both to build economic prosperity and to achieve social justice. Participation in higher education (HE) has the potential to contribute substantially to both aims. That is why the Campaign for Learning has supported the ambition to increase the proportion of the working-age population with a Level 4…

  7. INTELLIGENCE, PERSONALITY AND ACHIEVEMENT.

    ERIC Educational Resources Information Center

    MUIR, R.C.; AND OTHERS

    A LONGITUDINAL DEVELOPMENTAL STUDY OF A GROUP OF MIDDLE CLASS CHILDREN IS DESCRIBED, WITH EMPHASIS ON A SEGMENT OF THE RESEARCH INVESTIGATING THE RELATIONSHIP OF ACHIEVEMENT, INTELLIGENCE, AND EMOTIONAL DISTURBANCE. THE SUBJECTS WERE 105 CHILDREN AGED FIVE TO 6.3 ATTENDING TWO SCHOOLS IN MONTREAL. EACH CHILD WAS ASSESSED IN THE AREAS OF…

  8. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  9. Appraising Reading Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    To determine quality sequence in pupil progress, evaluation approaches need to be used which guide the teacher to assist learners to attain optimally. Teachers must use a variety of procedures to appraise student achievement in reading, because no one approach is adequate. Appraisal approaches might include: (1) observation and subsequent…

  10. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN...

  11. Universality of efficiency at maximum power.

    PubMed

    Esposito, Massimiliano; Lindenberg, Katja; Van den Broeck, Christian

    2009-04-01

    We investigate the efficiency of power generation by thermochemical engines. For strong coupling between the particle and heat flows and in the presence of a left-right symmetry in the system, we demonstrate that the efficiency at maximum power displays universality up to quadratic order in the deviation from equilibrium. A maser model is presented to illustrate our argument.

  12. Teaching Media Studies in Maximum Security Prisons.

    ERIC Educational Resources Information Center

    Corcoran, Farrel

    Some of the difficulties involved in teaching inside maximum security prisons, and ways a media studies teacher met these challenges, are described in this paper. The first section of the paper deals with the prison security system and the stresses it can cause for both teacher and student, while the second section discusses the influence of the…

  13. Maximum phonation time: variability and reliability.

    PubMed

    Speyer, Renée; Bogaardt, Hans C A; Passos, Valéria Lima; Roodenburg, Nel P H D; Zumach, Anne; Heijnen, Mariëlle A M; Baijens, Laura W J; Fleskens, Stijn J H M; Brunings, Jan W

    2010-05-01

    The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia versus a group of healthy control subjects matched by age and gender. Over a period of maximally 6 weeks, three video recordings were made of five subjects' maximum phonation time trials. A panel of five experts were responsible for all measurements, including a repeated measurement of the subjects' first recordings. Patients showed significantly shorter maximum phonation times compared with healthy controls (on average, 6.6 seconds shorter). The averaged interclass correlation coefficient (ICC) over all raters per trial for the first day was 0.998. The averaged reliability coefficient per rater and per trial for repeated measurements of the first day's data was 0.997, indicating high intrarater reliability. The mean reliability coefficient per day for one trial was 0.939. When using five trials, the reliability increased to 0.987. The reliability over five trials for a single day was 0.836; for 2 days, 0.911; and for 3 days, 0.935. To conclude, the maximum phonation time has proven to be a highly reliable measure in voice assessment. A single rater is sufficient to provide highly reliable measurements.

  14. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN...

  15. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN...

  16. Weak scale from the maximum entropy principle

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  17. Maximum entropy analysis of hydraulic pipe networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2014-12-01

    A Maximum Entropy (MaxEnt) method is developed to infer mean external and internal flow rates and mean pressure gradients (potential differences) in hydraulic pipe networks, without or with sufficient constraints to render the system deterministic. The proposed method substantially extends existing methods for the analysis of flow networks (e.g. Hardy-Cross), applicable only to deterministic networks.

  18. 5 CFR 9701.312 - Maximum rates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may...

  19. Comparing maximum pressures in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W; Lee, Stephen M

    1922-01-01

    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

  20. 7 CFR 1778.11 - Maximum grants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...

  1. 7 CFR 1778.11 - Maximum grants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...

  2. 7 CFR 1778.11 - Maximum grants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...

  3. Maximum Possible Transverse Velocity in Special Relativity.

    ERIC Educational Resources Information Center

    Medhekar, Sarang

    1991-01-01

    Using a physical picture, an expression for the maximum possible transverse velocity and orientation required for that by a linear emitter in special theory of relativity has been derived. A differential calculus method is also used to derive the expression. (Author/KR)

  4. 24 CFR 200.15 - Maximum mortgage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Maximum mortgage. 200.15 Section 200.15 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  5. Maximum rotation frequency of strange stars

    SciTech Connect

    Zdunik, J.L.; Haensel, P. )

    1990-07-15

    Using the MIT bag model of strange-quark matter, we calculate the maximum angular frequency of the uniform rotation of strange stars. After studying a broad range of the MIT bag-model parameters, we obtain an upper bound of 12.3 kHz.

  6. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping

    PubMed Central

    Bobbert, Maarten F.; Richard Casius, L. J.

    2011-01-01

    The purpose of this study was to understand how humans regulate their ‘leg stiffness’ in hopping, and to determine whether this regulation is intended to minimize energy expenditure. ‘Leg stiffness’ is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m−1 kg−1 at 26 cm to 150 N m−1 kg−1 at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height. PMID:21502123

  7. Segmenting pectoralis muscle on digital mammograms by a Markov random field-maximum a posteriori model.

    PubMed

    Ge, Mei; Mainprize, James G; Mawdsley, Gordon E; Yaffe, Martin J

    2014-10-01

    Accurate and automatic segmentation of the pectoralis muscle is essential in many breast image processing procedures, for example, in the computation of volumetric breast density from digital mammograms. Its segmentation is a difficult task due to the heterogeneity of the region, neighborhood complexities, and shape variability. The segmentation is achieved by pixel classification through a Markov random field (MRF) image model. Using the image intensity feature as observable data and local spatial information as a priori, the posterior distribution is estimated in a stochastic process. With a variable potential component in the energy function, by the maximum a posteriori (MAP) estimate of the labeling image, given the image intensity feature which is assumed to follow a Gaussian distribution, we achieved convergence properties in an appropriate sense by Metropolis sampling the posterior distribution of the selected energy function. By proposing an adjustable spatial constraint, the MRF-MAP model is able to embody the shape requirement and provide the required flexibility for the model parameter fitting process. We demonstrate that accurate and robust segmentation can be achieved for the curving-triangle-shaped pectoralis muscle in the medio-lateral-oblique (MLO) view, and the semielliptic-shaped muscle in cranio-caudal (CC) view digital mammograms. The applicable mammograms can be either "For Processing" or "For Presentation" image formats. The algorithm was developed using 56 MLO-view and 79 CC-view FFDM "For Processing" images, and quantitatively evaluated against a random selection of 122 MLO-view and 173 CC-view FFDM images of both presentation intent types.

  8. Segmenting pectoralis muscle on digital mammograms by a Markov random field-maximum a posteriori model

    PubMed Central

    Ge, Mei; Mainprize, James G.; Mawdsley, Gordon E.; Yaffe, Martin J.

    2014-01-01

    Abstract. Accurate and automatic segmentation of the pectoralis muscle is essential in many breast image processing procedures, for example, in the computation of volumetric breast density from digital mammograms. Its segmentation is a difficult task due to the heterogeneity of the region, neighborhood complexities, and shape variability. The segmentation is achieved by pixel classification through a Markov random field (MRF) image model. Using the image intensity feature as observable data and local spatial information as a priori, the posterior distribution is estimated in a stochastic process. With a variable potential component in the energy function, by the maximum a posteriori (MAP) estimate of the labeling image, given the image intensity feature which is assumed to follow a Gaussian distribution, we achieved convergence properties in an appropriate sense by Metropolis sampling the posterior distribution of the selected energy function. By proposing an adjustable spatial constraint, the MRF-MAP model is able to embody the shape requirement and provide the required flexibility for the model parameter fitting process. We demonstrate that accurate and robust segmentation can be achieved for the curving-triangle-shaped pectoralis muscle in the medio-lateral-oblique (MLO) view, and the semielliptic-shaped muscle in cranio-caudal (CC) view digital mammograms. The applicable mammograms can be either “For Processing” or “For Presentation” image formats. The algorithm was developed using 56 MLO-view and 79 CC-view FFDM “For Processing” images, and quantitatively evaluated against a random selection of 122 MLO-view and 173 CC-view FFDM images of both presentation intent types. PMID:26158068

  9. Maximum entropy production in environmental and ecological systems.

    PubMed

    Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M

    2010-05-12

    The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.

  10. Energy Savings Measure Packages: Existing Homes

    SciTech Connect

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  11. Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons

    NASA Astrophysics Data System (ADS)

    Sandberg, Henrik; Delvenne, Jean-Charles; Newton, Nigel J.; Mitter, Sanjoy K.

    2014-10-01

    We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must necessarily include an external power source, which we prove both from classical thermodynamics arguments and from a version of Landauer's memory erasure argument extended to nonequilibrium linear systems.

  12. Maximum work extraction and implementation costs for nonequilibrium Maxwell's demons.

    PubMed

    Sandberg, Henrik; Delvenne, Jean-Charles; Newton, Nigel J; Mitter, Sanjoy K

    2014-10-01

    We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must necessarily include an external power source, which we prove both from classical thermodynamics arguments and from a version of Landauer's memory erasure argument extended to nonequilibrium linear systems. PMID:25375450

  13. Theoretical Analysis of Maximum Flow Declination Rate versus Maximum Area Declination Rate in Phonation

    ERIC Educational Resources Information Center

    Titze, Ingo R.

    2006-01-01

    Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…

  14. 50 CFR 259.34 - Minimum and maximum deposits; maximum time to deposit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Minimum and maximum deposits; maximum time to deposit. 259.34 Section 259.34 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES...

  15. Developability assessment of clinical drug products with maximum absorbable doses.

    PubMed

    Ding, Xuan; Rose, John P; Van Gelder, Jan

    2012-05-10

    Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies.

  16. The maximum intelligible range of the human voice

    NASA Astrophysics Data System (ADS)

    Boren, Braxton

    This dissertation examines the acoustics of the spoken voice at high levels and the maximum number of people that could hear such a voice unamplified in the open air. In particular, it examines an early auditory experiment by Benjamin Franklin which sought to determine the maximum intelligible crowd for the Anglican preacher George Whitefield in the eighteenth century. Using Franklin's description of the experiment and a noise source on Front Street, the geometry and diffraction effects of such a noise source are examined to more precisely pinpoint Franklin's position when Whitefield's voice ceased to be intelligible. Based on historical maps, drawings, and prints, the geometry and material of Market Street is constructed as a computer model which is then used to construct an acoustic cone tracing model. Based on minimal values of the Speech Transmission Index (STI) at Franklin's position, Whitefield's on-axis Sound Pressure Level (SPL) at 1 m is determined, leading to estimates centering around 90 dBA. Recordings are carried out on trained actors and singers to determine their maximum time-averaged SPL at 1 m. This suggests that the greatest average SPL achievable by the human voice is 90-91 dBA, similar to the median estimates for Whitefield's voice. The sites of Whitefield's largest crowds are acoustically modeled based on historical evidence and maps. Based on Whitefield's SPL, the minimal STI value, and the crowd's background noise, this allows a prediction of the minimally intelligible area for each site. These yield maximum crowd estimates of 50,000 under ideal conditions, while crowds of 20,000 to 30,000 seem more reasonable when the crowd was reasonably quiet and Whitefield's voice was near 90 dBA.

  17. Maximum independent set on diluted triangular lattices

    NASA Astrophysics Data System (ADS)

    Fay, C. W., IV; Liu, J. W.; Duxbury, P. M.

    2006-05-01

    Core percolation and maximum independent set on random graphs have recently been characterized using the methods of statistical physics. Here we present a statistical physics study of these problems on bond diluted triangular lattices. Core percolation critical behavior is found to be consistent with the standard percolation values, though there are strong finite size effects. A transfer matrix method is developed and applied to find accurate values of the density and degeneracy of the maximum independent set on lattices of limited width but large length. An extrapolation of these results to the infinite lattice limit yields high precision results, which are tabulated. These results are compared to results found using both vertex based and edge based local probability recursion algorithms, which have proven useful in the analysis of hard computational problems, such as the satisfiability problem.

  18. Maximum-entropy description of animal movement.

    PubMed

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  19. Maximum constrained sparse coding for image representation

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhao, Danpei; Jiang, Zhiguo

    2015-12-01

    Sparse coding exhibits good performance in many computer vision applications by finding bases which capture highlevel semantics of the data and learning sparse coefficients in terms of the bases. However, due to the fact that bases are non-orthogonal, sparse coding can hardly preserve the samples' similarity, which is important for discrimination. In this paper, a new image representing method called maximum constrained sparse coding (MCSC) is proposed. Sparse representation with more active coefficients means more similarity information, and the infinite norm is added to the solution for this purpose. We solve the optimizer by constraining the codes' maximum and releasing the residual to other dictionary atoms. Experimental results on image clustering show that our method can preserve the similarity of adjacent samples and maintain the sparsity of code simultaneously.

  20. Zipf's law, power laws and maximum entropy

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2013-04-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  1. Model Fit after Pairwise Maximum Likelihood

    PubMed Central

    Barendse, M. T.; Ligtvoet, R.; Timmerman, M. E.; Oort, F. J.

    2016-01-01

    Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log–likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two–way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations. PMID:27148136

  2. Pareto versus lognormal: A maximum entropy test

    NASA Astrophysics Data System (ADS)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  3. Finding maximum colorful subtrees in practice.

    PubMed

    Rauf, Imran; Rasche, Florian; Nicolas, François; Böcker, Sebastian

    2013-04-01

    In metabolomics and other fields dealing with small compounds, mass spectrometry is applied as a sensitive high-throughput technique. Recently, fragmentation trees have been proposed to automatically analyze the fragmentation mass spectra recorded by such instruments. Computationally, this leads to the problem of finding a maximum weight subtree in an edge-weighted and vertex-colored graph, such that every color appears, at most once in the solution. We introduce new heuristics and an exact algorithm for this Maximum Colorful Subtree problem and evaluate them against existing algorithms on real-world and artificial datasets. Our tree completion heuristic consistently scores better than other heuristics, while the integer programming-based algorithm produces optimal trees with modest running times. Our fast and accurate heuristic can help determine molecular formulas based on fragmentation trees. On the other hand, optimal trees from the integer linear program are useful if structure is relevant, for example for tree alignments.

  4. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097

  5. Evaluation of the Maximum Allowable Cost Program

    PubMed Central

    Lee, A. James; Hefner, Dennis; Dobson, Allen; Hardy, Ralph

    1983-01-01

    This article summarizes an evaluation of the Maximum Allowable Cost (MAC)-Estimated Acquisition Cost (EAC) program, the Federal Government's cost-containment program for prescription drugs.1 The MAC-EAC regulations which became effective on August 26, 1976, have four major components: (1) Maximum Allowable Cost reimbursement limits for selected multisource or generically available drugs; (2) Estimated Acquisition Cost reimbursement limits for all drugs; (3) “usual and customary” reimbursement limits for all drugs; and (4) a directive that professional fee studies be performed by each State. The study examines the benefits and costs of the MAC reimbursement limits for 15 dosage forms of five multisource drugs and EAC reimbursement limits for all drugs for five selected States as of 1979. PMID:10309857

  6. Pareto versus lognormal: a maximum entropy test.

    PubMed

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  7. Maximum hydrocarbon window determination in South Louisiana

    SciTech Connect

    Leach, W.G. )

    1993-03-29

    This is the third and final part of a three part article about the distribution of hydrocarbons in the Tertiary sands of South Louisiana. Based on many individual plots, it was found that hydrocarbon distribution will vary according to the depth of abnormal pressure and lithology. The relation of maximum hydrocarbon distribution to formation fracture strength or depth opens the door to the use of a maximum hydrocarbon window (MHW) technique. This MHW technique can be used as a decision making tool on how deep to drill a well, particularly how deep to drill a well below the top of abnormal pressure. The paper describes the benefits of the MHW technique and its future potential for exploration and development operations.

  8. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  9. MAXIMUM LIKELIHOOD ESTIMATION FOR SOCIAL NETWORK DYNAMICS

    PubMed Central

    Snijders, Tom A.B.; Koskinen, Johan; Schweinberger, Michael

    2014-01-01

    A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator. PMID:25419259

  10. 5 CFR 534.203 - Maximum stipends.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... training program Maximums by grade and step 1 L-A Below high school graduation GS-1-1 (minus 3 steps). L-1... year postgraduate predoctoral GS-7-1 (minus 3 steps). L-6 Third year medical school GS-7-1 (minus 3 steps). L-7 Third year postgraduate predoctoral GS-9-1 (minus 3 steps). L-7 Fourth year medical...

  11. 5 CFR 534.203 - Maximum stipends.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training program Maximums by grade and step 1 L-A Below high school graduation GS-1-1 (minus 3 steps). L-1... year postgraduate predoctoral GS-7-1 (minus 3 steps). L-6 Third year medical school GS-7-1 (minus 3 steps). L-7 Third year postgraduate predoctoral GS-9-1 (minus 3 steps). L-7 Fourth year medical...

  12. 5 CFR 534.203 - Maximum stipends.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training program Maximums by grade and step 1 L-A Below high school graduation GS-1-1 (minus 3 steps). L-1... year postgraduate predoctoral GS-7-1 (minus 3 steps). L-6 Third year medical school GS-7-1 (minus 3 steps). L-7 Third year postgraduate predoctoral GS-9-1 (minus 3 steps). L-7 Fourth year medical...

  13. 5 CFR 534.203 - Maximum stipends.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... training program Maximums by grade and step 1 L-A Below high school graduation GS-1-1 (minus 3 steps). L-1... year postgraduate predoctoral GS-7-1 (minus 3 steps). L-6 Third year medical school GS-7-1 (minus 3 steps). L-7 Third year postgraduate predoctoral GS-9-1 (minus 3 steps). L-7 Fourth year medical...

  14. Tissue radiation response with maximum Tsallis entropy.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar

    2010-10-01

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature. PMID:21230944

  15. Maximum privacy without coherence, zero-error

    NASA Astrophysics Data System (ADS)

    Leung, Debbie; Yu, Nengkun

    2016-09-01

    We study the possible difference between the quantum and the private capacities of a quantum channel in the zero-error setting. For a family of channels introduced by Leung et al. [Phys. Rev. Lett. 113, 030512 (2014)], we demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is maximum given the quantum output dimension.

  16. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  17. Maximum entropy and Bayesian methods. Proceedings.

    NASA Astrophysics Data System (ADS)

    Grandy, W. T., Jr.; Schick, L. H.

    This volume contains a selection of papers presented at the Tenth Annual Workshop on Maximum Entropy and Bayesian Methods. The thirty-six papers included cover a wide range of applications in areas such as economics and econometrics, astronomy and astrophysics, general physics, complex systems, image reconstruction, and probability and mathematics. Together they give an excellent state-of-the-art overview of fundamental methods of data analysis.

  18. Tissue radiation response with maximum Tsallis entropy.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar

    2010-10-01

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  19. Maximum-biomass prediction of homofermentative Lactobacillus.

    PubMed

    Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei

    2016-07-01

    Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. PMID:26896862

  20. Maximum saliency bias in binocular fusion

    NASA Astrophysics Data System (ADS)

    Lu, Yuhao; Stafford, Tom; Fox, Charles

    2016-07-01

    Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.

  1. "SPURS" in the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Schmitt, Raymond

    2014-05-01

    The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

  2. Does achievement motivation mediate the semantic achievement priming effect?

    PubMed

    Engeser, Stefan; Baumann, Nicola

    2014-10-01

    The aim of our research was to understand the processes of the prime-to-behavior effects with semantic achievement primes. We extended existing models with a perspective from achievement motivation theory and additionally used achievement primes embedded in the running text of excerpts of school textbooks to simulate a more natural priming condition. Specifically, we proposed that achievement primes affect implicit achievement motivation and conducted pilot experiments and 3 main experiments to explore this proposition. We found no reliable positive effect of achievement primes on implicit achievement motivation. In light of these findings, we tested whether explicit (instead of implicit) achievement motivation is affected by achievement primes and found this to be the case. In the final experiment, we found support for the assumption that higher explicit achievement motivation implies that achievement priming affects the outcome expectations. The implications of the results are discussed, and we conclude that primes affect achievement behavior by heightening explicit achievement motivation and outcome expectancies. PMID:24820250

  3. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy

    SciTech Connect

    Huang, Chen-Yu; Oborn, Bradley M.; Guatelli, Susanna; Allen, Barry J.

    2012-03-15

    Purpose: Metastatic melanoma lesions experienced marked regression after systemic targeted alpha therapy in a phase 1 clinical trial. This unexpected response was ascribed to tumor antivascular alpha therapy (TAVAT), in which effective tumor regression is achieved by killing endothelial cells (ECs) in tumor capillaries and, thus, depriving cancer cells of nutrition and oxygen. The purpose of this paper is to quantitatively analyze the therapeutic efficacy and safety of TAVAT by building up the testing Monte Carlo microdosimetric models. Methods: Geant4 was adapted to simulate the spatial nonuniform distribution of the alpha emitter {sup 213}Bi. The intraluminal model was designed to simulate the background dose to normal tissue capillary ECs from the nontargeted activity in the blood. The perivascular model calculates the EC dose from the activity bound to the perivascular cancer cells. The key parameters are the probability of an alpha particle traversing an EC nucleus, the energy deposition, the lineal energy transfer, and the specific energy. These results were then applied to interpret the clinical trial. Cell survival rate and therapeutic gain were determined. Results: The specific energy for an alpha particle hitting an EC nucleus in the intraluminal and perivascular models is 0.35 and 0.37 Gy, respectively. As the average probability of traversal in these models is 2.7% and 1.1%, the mean specific energy per decay drops to 1.0 cGy and 0.4 cGy, which demonstrates that the source distribution has a significant impact on the dose. Using the melanoma clinical trial activity of 25 mCi, the dose to tumor EC nucleus is found to be 3.2 Gy and to a normal capillary EC nucleus to be 1.8 cGy. These data give a maximum therapeutic gain of about 180 and validate the TAVAT concept. Conclusions: TAVAT can deliver a cytotoxic dose to tumor capillaries without being toxic to normal tissue capillaries.

  4. Achieving yield gains in wheat.

    PubMed

    Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo

    2012-10-01

    Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.

  5. A Maximum-Likelihood Approach to Force-Field Calibration.

    PubMed

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2

  6. Middle Holocene thermal maximum in eastern Beringia

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; Bartlein, P. J.

    2015-12-01

    A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.

  7. Maximum aposteriori joint source/channel coding

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Gibson, Jerry D.

    1991-01-01

    A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed.

  8. Dynamical maximum entropy approach to flocking

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M.

    2014-04-01

    We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

  9. Multiperiod Maximum Loss is time unit invariant.

    PubMed

    Kovacevic, Raimund M; Breuer, Thomas

    2016-01-01

    Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant. PMID:27563531

  10. Maximum profit performance of an absorption refrigerator

    SciTech Connect

    Chen, L.; Sun, F.; Wu, C.

    1996-12-01

    The operation of an absorption refrigerator is viewed as a production process with exergy as its output. The relations between the optimal profit and COP (coefficient of performance), and the COP bound at the maximum profit of the refrigerator are derived based on a general heat transfer law. The results provide a theoretical basis for developing and utilizing a variety of absorption refrigerators. The focus of this paper is to search the compromise optimization between economics (profit) and the utilization factor (COP) for finite-time endoreversible thermodynamic cycles.

  11. Maximum Temperature Detection System for Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  12. Maximum a posteriori decoder for digital communications

    NASA Technical Reports Server (NTRS)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  13. Achieving closure at Fernald

    SciTech Connect

    Bradburne, John; Patton, Tisha C.

    2001-02-25

    When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

  14. Numerical simulation of head-on droplet collision: Effect of viscosity on maximum deformation

    NASA Astrophysics Data System (ADS)

    Dai, Meizhong; Schmidt, David P.

    2005-04-01

    Numerical simulation of head-on collision of two equal-size droplets is conducted to observe the effect of viscosity on the maximum deformation amplitude using a moving-mesh finite-volume method. Recent experimental results by Willis and Orme [Exp. Fluids 34, 28 (2003)] have shown that the maximum deformation amplitude depends on the viscosity coefficient, and thus the percentage of energy that is dissipated until the instant of maximum deformation increases with the increasing fluid viscosity. This observation contradicts previous results by Jiang, Umemura, and Law [J. Fluid Mech. 234, 171 (1992)]. The numerical results in this Letter show that the dissipated energy and the maximum deformation depend on the collision Reynolds number, which is consistent with Willis and Orme (2003). However, this dependence decreases with increasing Reynolds number, which suggests that the effect caused by viscosity on maximum deformation becomes insignificant at sufficiently high Reynolds number.

  15. Combining Experiments and Simulations Using the Maximum Entropy Principle

    PubMed Central

    Boomsma, Wouter; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, Kresten

    2014-01-01

    A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges. PMID:24586124

  16. Combining experiments and simulations using the maximum entropy principle.

    PubMed

    Boomsma, Wouter; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, Kresten

    2014-02-01

    A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges. PMID:24586124

  17. Combining experiments and simulations using the maximum entropy principle.

    PubMed

    Boomsma, Wouter; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, Kresten

    2014-02-01

    A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.

  18. Maximum neighborhood margin criterion in face recognition

    NASA Astrophysics Data System (ADS)

    Han, Pang Ying; Teoh, Andrew Beng Jin

    2009-04-01

    Feature extraction is a data analysis technique devoted to removing redundancy and extracting the most discriminative information. In face recognition, feature extractors are normally plagued with small sample size problems, in which the total number of training images is much smaller than the image dimensionality. Recently, an optimized facial feature extractor, maximum marginal criterion (MMC), was proposed. MMC computes an optimized projection by solving the generalized eigenvalue problem in a standard form that is free from inverse matrix operation, and thus it does not suffer from the small sample size problem. However, MMC is essentially a linear projection technique that relies on facial image pixel intensity to compute within- and between-class scatters. The nonlinear nature of faces restricts the discrimination of MMC. Hence, we propose an improved MMC, namely maximum neighborhood margin criterion (MNMC). Unlike MMC, which preserves global geometric structures that do not perfectly describe the underlying face manifold, MNMC seeks a projection that preserves local geometric structures via neighborhood preservation. This objective function leads to the enhancement of classification capability, and this is testified by experimental results. MNMC shows its performance superiority compared to MMC, especially in pose, illumination, and expression (PIE) and face recognition grand challenge (FRGC) databases.

  19. Probably maximum flood of the Sava River

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Vidmar, Andrej; Raj, Mojca Å.

    2010-05-01

    The Nuclear Power Plant Krško (NEK) situated on the left bank of the Save River close to the border of Croatia. Probably Maximum Flood, on the location of the NEK could result in combination of probably maximum precipitation, sequential storm before PMP or snowmelt on the Sava River watershed. Mediterranean climate characterises very high precipitation and temporary high snow pack. The HBV-96 model as Integrated Hydrological Modelling System (IHMS) used for modelling. Model was calibrated and verification for daily time step at first for time period 1190-2006. Calibration and verification for hourly time step was done for period 1998-1999. The stream routing parameters were calibrated for flood event in years 1998 and 2007 and than verification for flood event in 1990. Discharge routing data analysis shown that possible inundation of Ljubljana and Savinja valley was not properly estimated. The flood areas are protected with levees and water does not spread over flooded areas in events used for calibration. Inundated areas in Ljubljana valley and Savinja valley are protected by levees and model could not simulate properly inundation of PMF. We recalibrate parameters controlled inundation on those areas for the worst scenario. Calculated PMF values drop down tramendosly after recalibration.

  20. Maximum Correntropy Criterion for Robust Face Recognition.

    PubMed

    He, Ran; Zheng, Wei-Shi; Hu, Bao-Gang

    2011-08-01

    In this paper, we present a sparse correntropy framework for computing robust sparse representations of face images for recognition. Compared with the state-of-the-art l(1)norm-based sparse representation classifier (SRC), which assumes that noise also has a sparse representation, our sparse algorithm is developed based on the maximum correntropy criterion, which is much more insensitive to outliers. In order to develop a more tractable and practical approach, we in particular impose nonnegativity constraint on the variables in the maximum correntropy criterion and develop a half-quadratic optimization technique to approximately maximize the objective function in an alternating way so that the complex optimization problem is reduced to learning a sparse representation through a weighted linear least squares problem with nonnegativity constraint at each iteration. Our extensive experiments demonstrate that the proposed method is more robust and efficient in dealing with the occlusion and corruption problems in face recognition as compared to the related state-of-the-art methods. In particular, it shows that the proposed method can improve both recognition accuracy and receiver operator characteristic (ROC) curves, while the computational cost is much lower than the SRC algorithms.