Science.gov

Sample records for achieve mission success

  1. GRAIL project management: Launching on cost, schedule, and spec and achieving full mission success

    NASA Astrophysics Data System (ADS)

    Taylor, R. L.; Zuber, M. T.; Lehman, D. H.; Hoffman, T. L.

    The Gravity Recovery And Interior Laboratory (GRAIL) project, a NASA Discovery Program mission with a cost cap, was launched September 10, 2011, on spec, on time and under budget. Led by Principal Investigator (PI) Dr. Maria T. Zuber of MIT and managed by the Jet Propulsion Laboratory, with Lockheed Martin as spacecraft contractor and the late Sally Ride as Education and Public Outreach Lead, GRAIL completed its Prime Mission in May 2012, successfully meeting its objectives-to precisely map the gravitational field of the Moon to reveal its internal structure “ from crust to core,” determine its thermal evolution, and extend this knowledge to other planets. This paper updates last year's IEEE Aerospace Conference paper [1], summarizing key development challenges and accomplishments through completion of the Primary Mission, and reporting progress in the Extended Mission.

  2. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  3. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  4. Humanitarian Surgical Missions: Planning for Success.

    PubMed

    Boston, Mark; Horlbeck, Drew

    2015-09-01

    Humanitarian surgical missions can provide much needed care for those who are otherwise unable to receive such care because of limited local health care resources and cost. These missions also offer excellent training opportunities and can be life-changing experiences for those who participate in them. A successful humanitarian surgical mission requires careful planning and coordination and can be challenging for those tasked with the responsibilities to organize and lead these missions. This article addresses many of the issues and challenges encountered when planning and leading humanitarian surgical missions and offers a template to be used by those who take on these challenges.

  5. Systems Engineering Technical Authority: A Path to Mission Success

    NASA Technical Reports Server (NTRS)

    Andary, James F.; So, Maria M.; Breindel, Barry

    2008-01-01

    The systems engineering of space missions to study planet Earth has been an important focus of the National Aeronautics and Space Administration (NASA) since its inception. But all space missions are becoming increasingly complex and this fact, reinforced by some major mishaps, has caused NASA to reevaluate their approach to achieving safety and mission success. A new approach ensures that there are adequate checks and balances in place to maximize the probability of safety and mission success. To this end the agency created the concept of Technical Authority which identifies a key individual accountable and responsible for the technical integrity of a flight mission as well as a project-independent reporting path. At the Goddard Space Flight Center (GSFC) this responsibility ultimately begins with the Mission Systems Engineer (MSE) for each satellite mission. This paper discusses the Technical Authority process and then describes some unique steps that are being taken at the GSFC to support these MSEs in meeting their responsibilities.

  6. Achieving Information Dominance: Seven Imperatives for Success

    DTIC Science & Technology

    2002-06-01

    ACHIEVING INFORMATION DOMINANCE : SEVEN IMPERATIVES FOR SUCCESS Topical Area: C4ISR and Space Dr. Tom Kaye and Mr. George Galdorisi Dr. Tom Kaye Mr...00-00-2002 4. TITLE AND SUBTITLE Achieving Information Dominance : Seven Imperatives for Success 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...time. 3 ACHIEVING INFORMATION DOMINANCE : SEVEN IMPERATIVES FOR SUCCESS by Dr. Tom Kaye and Mr. George Galdorisi An integrated joint and combined C4ISR

  7. Teaching for Successful Intelligence Raises School Achievement.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.; Torff, Bruce; Grigorenko, Elena

    1998-01-01

    A "successful intelligence" intervention improved school achievement for a group of 225 ethnically diverse third-graders, both on performance assessments measuring analytical, creative, and practical achievements and on conventional multiple-choice memory assessments. Teaching for triarchic thinking facilitates factual recall, because learning…

  8. Flight Test Success through Effective Mission Assurance Strategy

    DTIC Science & Technology

    2008-11-19

    design limits Pinched or nicked lanyard FT-6 FPA half blinded No failsafe software FOD FT-7 No DACS response Poor potting compound choice FOD FT-8 TVA...short Exposed hot pins FOD FT-9 DACS nozzle break Poor material properties, excessive shocks Ground handling damage FT-3 FT-4 Date 01-Aug-1995 13-Oct...achieve mission success • Require unfettered access to the highest organizational leadership, programs and supply chain • Be empowered and

  9. DINS - Lessons learned and successes achieved

    NASA Astrophysics Data System (ADS)

    Traeger, J.; Quasius, G.

    It is pointed out that the Dormant Inertial Navigation System (DINS) is the first Ring Laser gyro system developed for maneuvering reentry vehicles. The DINS is a pure strapdown system. It provides attitude reference, navigation, and flight control information to the maneuvering reentry vehicle. Two flight tests in which DINS was aboard the Advanced Maneuvering Reentry Vehicle were highly successful. The tests involved the launch of the vehicle by a Minuteman I for a flight from VAFB to Kwajalein. Attention is given to a DINS mission description, a DINS system description, ground test programs, and the flight test program.

  10. Implementing Strategies to Achieve Successful Student Transitions

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2010

    2010-01-01

    This is the fourth in a series of eight newsletters highlighting best practices presented at the 2009 HSTW Staff Development Conference in Atlanta. These newsletters contain information about successful actions schools across the nation are taking to join hands-on and heads-on learning in ways that increase student motivation and achievement. This…

  11. Successful Black Farmers: Factors in Their Achievement.

    ERIC Educational Resources Information Center

    Brown, Minnie M.; Larson, Olaf F.

    This paper identifies individual and institutional factors which have facilitated or inhibited the achievement of successful black farmers. The information derived from the case studies is used to develop a model which can be used in working effectively with black farmers. The thirteen case studies discussed focus on the following: (1) reasons for…

  12. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph F.; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface sample to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that utilizes the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  13. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; McGuire, Jill; Pellegrino, Joseph; Strube, Matthew; Aranyos, Thomas; Reed, Benjamin

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface samples, and equipment to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, reuse and/or repurpose flight hardware, and minimize resources needed for refurbishment. In space servicing is a means to achieving these goals. By designing a mission architecture that relies on the concept of in space servicing (robotic and manned), maximum supportability can be achieved.

  14. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, James A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  15. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, Jim

    2010-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  16. Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1994-01-01

    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

  17. Achieving Supportability on Exploration Missions with In-Space Servicing

    NASA Technical Reports Server (NTRS)

    Bacon, Charles; Pellegrino, Joseph; McGuire, Jill; Henry, Ross; DeWeese, Keith; Reed, Benjamin; Aranyos, Thomas

    2015-01-01

    One of the long-term exploration goals of NASA is manned missions to Mars and other deep space robotic exploration. These missions would include sending astronauts along with scientific equipment to the surface of Mars for extended stay and returning the crew, science data and surface samples, and equipment to Earth. In order to achieve this goal, multiple precursor missions are required that would launch the crew, crew habitats, return vehicles and destination systems into space. Some of these payloads would then rendezvous in space for the trip to Mars, while others would be sent directly to the Martian surface. To support such an ambitious mission architecture, NASA must reduce cost, simplify logistics, re-use and or re-purpose flight hardware, and minimize resources needed for refurbishment. In-space servicing is a means to achieving these goals. By designing a mission architecture that relies on the concept of in-space servicing (robotic and manned), maximum supportability can be achieved.

  18. Achieving Successful School-University Collaboration.

    ERIC Educational Resources Information Center

    Borthwick, Arlene C.; Stirling, Terry; Nauman, April D.; Cook, Dale L.

    2003-01-01

    Investigated essential elements required to establish and maintain successful school-university partnerships as reported by principals, teachers, and university coordinators involved in both voluntary and mandated partnerships. Results identified five factors representing different perspectives on key elements for successful partnerships, with…

  19. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After a successful mission of nearly nine days and 3.6 million miles, the orbiter Discovery glides to Earth on runway 33 at the Shuttle Landing Facility. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. The crew consisted of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA).

  1. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery lowers its nose wheel after touching down on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The STS-95 crew is composed of Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After nine days and 3.6 million miles in space, orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95. The STS-95 crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  4. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Seen from across the creek bordering runway 33 at the Shuttle Landing Facility, orbiter Discovery touches down after a successful mission of nine days and 3.6 million miles. Flying above it (left) is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. Discovery prepares to land after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  6. Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Orbiter Discovery touches down in a cloud of smoke on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. Achieving an Institution's Values, Vision, and Mission

    ERIC Educational Resources Information Center

    Calder, William B.

    2014-01-01

    The measures of institutional success are more meaningful through the further realization of the institution's vision and mission and how the institution is supporting its declared values through various initiatives and behaviours. Institutions and their leaders rely on these statements as foundational pillars by which to launch new programs,…

  8. Leadership Strategies: Achieving Personal and Professional Success.

    PubMed

    Menaker, Ronald

    2016-01-01

    Physicians and allied health staff in healthcare are finding themselves in situations characterized by uncertainty, chaos, and ambiguity, with high levels of burnout. A major influence is an aging U.S. population, resulting in increasing cost and reimbursement pressures. Medical group practices need leaders who have the capability to thrive in this environment. This article presents an integrated leadership model offering strategies and insights gained from keeping a journal for 40 years. Strategies to be shared include leading self through learning, leading others by developing relationships, leading organizations by achieving excellence, and achieving work-life integration and synergy.

  9. Achieving Successful School-University Collaboration.

    ERIC Educational Resources Information Center

    Borthwick, Arlene C.; Stirling, Terry; Cook, Dale

    This study investigated participant perceptions of essential elements for establishing and maintaining successful school-university partnerships for school improvement, noting differences in perceptions of participants involved in voluntary partnerships versus those involved in partnerships required by the school district (schools placed on…

  10. Achieving Small School Success in Washington State

    ERIC Educational Resources Information Center

    Boyle, Martin

    2003-01-01

    Of Washington State's 296 school districts, two-thirds have 2,000 or fewer students. These small school districts provide unique learning opportunities for Washington's children, but also present special challenges to achieving the higher standards called for in the state education reform bill and recent federal legislation. This report provides…

  11. Managing External Relations: The Lifeblood of Mission Success

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2007-01-01

    The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.

  12. Succession planning for mission. The Wheaton Franciscan system has a new method for training mission leaders.

    PubMed

    McGuire, Terrance P; Rocole, Terri

    2005-01-01

    As part of a succession-planning approach to provide new and expanding leadership for its Mission Services Department, Wheaton Franciscan Services, Inc. (WSFI), Wheaton, IL, implemented a "learning contract" for new mission leaders in its member organizations. This article focuses on training for the mission leader at one such organization, All Saints Healthcare, Racine, WI. The contract includes expectations for the new leader, which, if met, provide the preparation thought to be essential for the new leader to perform effectively in the role. The contract has two parts: first, internal training, including formal mentoring relationships among the new mission leader, WFSI's mission leaders, and the CEOs of member organizations; and, second, external education, including participation in a master's degree program and attendance at various ministry educational programs that pertain to the role.

  13. Space Technology 5 - A Successful Micro-Satellite Constellation Mission

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Webb, Evan H.

    2007-01-01

    The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.

  14. Aerobot measurements successfully obtained during Solo Spirit Balloon Mission

    NASA Astrophysics Data System (ADS)

    Avidson, Raymond E.; Bowman, Judd D.; Guinness, Edward A.; Johnson, Sarah S.; Slavney, S. H.; Stein, Thomas C.; Bachelder, Aaron D.; Cameron, Jonathan M.; Cutts, James A.; Ivlev, Robert V.; Kahn, Ralph A.

    Robotic balloons, also known as aerobots, have become candidates for collecting atmospheric data and detailed surface observations of Venus, Mars, and Titan. A mission to Venus over a decade ago used two of them. Their inclusion last year in attempts by a balloonist to circumnavigate the Earth aptly demonstrated their utility for remote sensing and in situ observations of planetary atmospheres.To simulate aspects of an aerobot mission, a small payload to measure local atmospheric conditions and balloon position and velocity was included on Solo Spirit “Round the World” flights during January and August of last year. These missions, flown in Roziere balloons, were attempts by Steve Fossett to become the first person to circumnavigate the globe in a balloon without stopping. Neither attempt was successful, but the aerobot came through with flying colors.

  15. The Kaguya Mission: Science Achievements and Data Release

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-05-01

    Lunar orbiter Kaguya (SELENE) has impacted the Moon on July 10, 2009. The Kaguya mission has completed to observe the whole Moon for total twenty months; checkout term of three months, nominal one of ten months, and the extension of seven months. In the extended mission before the impact the measurements of magnetic field and gamma-ray from lower orbits have been perrformed successfully in addition to low altitude observation by Terraine Camera, Multiband Imager, and HDTV Camera. New data of intense magnetic anomaly and GRS data with higher spacial resolution has been acquired to study elemental distribution and magnetism of the Moon. New information and insights have been brought to lunar sciences in topography, gra-vimetry, geology, mineralogy, lithology, plasma physics. On November 1, 2009 the Kaguya team has released science data to the public as an international promise. The archive data can be accessed through Kaguya homepage of JAXA. Image gallary and 3D GIS system have been also put on view from the same homepage.

  16. DICE Mission Design, Development, and Implementation: Success and Challenges

    NASA Astrophysics Data System (ADS)

    Stromberg, E.; Swenson, C.; Fish, C. S.; Crowley, G.; Barjatya, A.; Petersen, J.

    2012-12-01

    Funded by the NSF CubeSat and NASA ELaNa programs, the Dynamic Ionosphere CubeSat Experiment (DICE) mission consists of two 1.5U CubeSats which were launched into an eccentric low Earth orbit on October 28, 2011. Each identical spacecraft carries two Langmuir probes to measure ionospheric in-situ plasma densities, electric field probes to measure in-situ DC and AC electric fields, and a magnetometer to measure in-situ DC and AC magnetic fields. Given the tight integration of these multiple sensors with the CubeSat platforms, each of the DICE spacecraft is effectively a "sensor-sat" capable of comprehensive ionospheric diagnostics. Over time, the sensor-sats will separate relative to each other due to differences in the ejection velocity and enable accurate identification of geospace storm-time features, such as the geomagnetic Storm Enhanced Density (SED) bulge and plume. The use of two identical sensor-sats permits the de-convolution of spatial and temporal ambiguities in the observations of the ionosphere from a moving platform. In addition to demonstrating nanosat constellation science, the DICE mission downlink communications system is operating at 3 Mbit/s. To our knowledge, this transmission rate is a factor of 100 or more greater than previous CubeSat missions to date. This paper will focus on the DICE mission design, implementation, and on-orbit operations successes as well as the challenges faced in implementing a high-return science mission with limited resources. Specifically, it will focus on the lessons learned in integrating, calibrating, and managing a small constellation of sensor-sats for global science measurements.

  17. Helping Students Improve Academic Achievement and School Success Behavior

    ERIC Educational Resources Information Center

    Brigman, Greg; Campbell, Chari

    2003-01-01

    This article describes a study evaluating the impact of school-counselor-led interventions on student academic achievement and school success behavior. A group counseling and classroom guidance model called student success skills (SSS) was the primary intervention. The focus of the SSS model was on three sets of skills identified in several…

  18. Leadership Effects on Student Achievement and Sustained School Success

    ERIC Educational Resources Information Center

    Jacobson, Stephen

    2011-01-01

    Purpose: The purpose of this paper is to examine the effects of leadership on student achievement and sustained school success, especially in challenging, high-poverty schools. Design/methodology/approach: The paper combines a review of the leadership literature with findings drawn from longitudinal studies of the International Successful School…

  19. Management Succession, School Socioeconomic Context, and Basic Skills Achievement.

    ERIC Educational Resources Information Center

    Rowan, Brian; Denk, Charles E.

    1984-01-01

    This study assessed the effects of a change in principals (management succession) on school level basic skills achievement using longitudinal data on 149 San Francisco Bay Area Schools. The findings indicate that changes can affect school achievement, but that leadership effects develop slowly and are conditioned by a schools' socioeconomic…

  20. Lunar RFC Reliability Testing for Assured Mission Success

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2008-01-01

    NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated", these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development. When well-known reliability estimation techniques are applied to the hydrogen oxygen RFC to determine the amount of testing that will be required to assure RFC unit reliability over life of the mission, the analysis indicates the reliability testing phase by itself will take at least 2 yr, and could take up to 6 yr depending on the number of QA units that are built and tested and the individual unit reliability that is desired. The cost and schedule impacts of reliability development need to be considered in NASA's Exploration Technology Development Program (ETDP) plans, since life cycle testing to build meaningful reliability data is the only way to assure "return to the moon, this time to stay, then on to Mars" mission success.

  1. Building Capability, Empowering Students, and Achieving Success: The Financial Empowerment for Student Success Initiative

    ERIC Educational Resources Information Center

    Broun, Dan

    2014-01-01

    The Financial Empowerment for Student Success (FESS) Initiative was a two-year initiative focused on increasing student success through the provision of financial services. Achieving the Dream, Inc. and MDC, Inc. joined together, with funding from the Bank of America Charitable Foundation, to support three Achieving the Dream Leader Colleges to…

  2. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  3. Raising Academic Achievement: A Study of 20 Successful Programs.

    ERIC Educational Resources Information Center

    Jurich, Sonia; Estes, Steve

    This document contains information about the methodology and findings of a study that identified 20 programs across the United States that have been successful in raising student's academic achievement. Part 1 contains the following items: (1) an explanation of the process and criteria used to select the 20 examples of excellence drawn from the 96…

  4. Mission Statements--Rhetoric, Reality, or Road Map to Success?

    ERIC Educational Resources Information Center

    Keeling, Mary

    2013-01-01

    Mission statements are expected elements of business plans and corporate communications. Yet, practice in creating them and monitoring their impact varies and skeptics wonder about their usefulness. A survey of business literature provides a context for school library mission statements. Mission statements define the nature, purpose, and role of…

  5. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  6. STS-3, busiest and most successful test mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A short description of the Space Shuttle Orbiter Columbia's third orbital test flight is presented. Included are discussions of the space science mission, medical and materials processing experiments, as well as the minor problems encountered.

  7. Space Shuttle Discovery lifts off successfully on mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Space Shuttle Discovery soars above billowing clouds of steam and smoke into clear blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. The crew members are Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA); Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original Mercury 7 astronauts. Glenn is making his second voyage into space after 36 years. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.

  8. The Development of the TRMM Mission and the Reasons for its Scientific Success

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Adler, Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A short history of the development of the TRMM mission will be described focusing on the development of the science requirements, the close collaboration between the U.S. and Japan, and the technological and scientific success of the mission. The initial TRMM science workshop was held in 1986 and with the science requirements derived from that start a set of instruments were developed to measure tropical precipitation for the first mission with that parameter as the principal focus. Implementation of the mission concept was carried out by through close cooperation between U.S. and Japanese scientists, engineers and managers. The Tropical Rainfall Measuring Mission (TRMM) has now completed three years in orbit. A short summary of research highlights will be presented and these successes will be traced back to the scientific and programmatic approaches used to develop and manage the mission. Plans for a Global Precipitation Mission (GPM) based on the successful approach used for TRMM will also be outlined.

  9. A Framework for the Statistical Analysis of Probability of Mission Success Based on Bayesian Theory

    DTIC Science & Technology

    2014-06-01

    Mission Success Prediction Capability (MSPC) is a Model-Based Systems Engineering ( MBSE ) approach to mission planning, used for the analysis of complex... MBSE ) approach to mission planning, used for the analysis of complex systems of precision strike (air-to-surface) weapons. This report focuses on...Based Systems Engineering ( MBSE ) approach to mission planning. It focuses on holistically analysing complex systems, more specifically those of

  10. Imagining Success: Multiple Achievement Goals and the Effectiveness of Imagery

    PubMed Central

    Blankert, Tim; Hamstra, Melvyn R. W.

    2017-01-01

    ABSTRACT Imagery (richly imagining carrying out a task successfully) is a popular performance-enhancement tool in many domains. This experiment sought to test whether pursuing two achievement goals (vs. one) benefits performance after an imagery exercise. We examined mastery goals (aiming to improve skill level) and performance goals (aiming to outperform others) among 65 tennis players who were assigned to a mastery goal condition, a performance goal condition, or a mastery goal and performance goal condition. After reading instructions for a service task, which included the goal manipulation, participants completed 20 tennis services. They then completed an imagery exercise and, finally, completed another 20 services. Postimagery service performance was better in the dual-goal condition than in the other conditions. PMID:28366970

  11. Engineering a Successful Mission: Lessons from the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Everett, David F.

    2011-01-01

    Schedule pressure is common in the commercial world, where late delivery of a product means delayed income and loss of profit. 12 Research spacecraft developed by NASA, on the other hand, tend to be driven by the high cost of launch vehicles and the public scrutiny of failure-- the primary driver is ensuring proper operation in space for a system that cannot be retrieved for repair. The Lunar Reconnaissance Orbiter (LRO) development faced both schedule pressure and high visibility. The team had to balance the strong push to meet a launch date against the need to ensure that this first mission for Exploration succeeded. This paper will provide an overview of the mission from concept through its first year of operation and explore some of the challenges the systems engineering team faced taking a mission from preliminary design review to pre-ship review in 3 years.

  12. Mission Success and Environmental Protection: Orbital Debris Considerations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2007-01-01

    The current U.S. National Space Policy specifically calls on U.S. Government entities "to follow the United States Government Orbital Debris Mitigation Standard Practices, consistent with mission requirements and cost effectiveness, in the procurement and operation of spacecraft, launch services, and the operation of tests and experiments in space. Early assessment (pre-PDR) of orbital debris mitigation compliance is essential to minimize development impacts. Orbital debris mitigation practices today are the most effective means to protect the near-Earth space environment for future missions.

  13. Visions of success and achievement in recreation-related USDA Forest Service NEPA processes

    SciTech Connect

    Stern, Marc J.; Blahna, Dale J.; Cerveny, Lee K.; Mortimer, Michael J.

    2009-07-15

    The National Environmental Policy Act (NEPA) is incorporated into the planning and decision-making culture of all natural resource agencies in the U.S. Yet, we know little about how the attitudes and internal interactions of interdisciplinary (ID) teams engaged in NEPA processes influence process outcomes. We conducted a web-based survey of 106 ID team leaders involved with environmental analyses (EA) or environmental impact statements (EIS) for projects dealing with recreation and travel management on national forests. We explore how they define success in these processes and identify factors most powerfully associated with perceptions of positive outcomes. The survey revealed a tremendous diversity in definitions of success. Strong correlations between the perceived importance of particular indicators of success and their achievement suggest that pre-conceived notions may often help to shape process outcomes. Regression analyses revealed the following factors as the best predictors of ID team leaders' perception of an 'excellent outcome': achievement of the agency mission, whether compromise had taken place between the interested parties, team satisfaction and harmony, timely process completion, and project implementation. Yet, respondents consistently ranked compromise with interested parties and team member satisfaction among the least important measures of successful NEPA processes. Results suggest that clarifying appropriate measures of success in NEPA processes across the agency could make ID team performance more consistent. The research also suggests that greater attention to ID team interactions, both internally and between teams and interested publics, could result in better outcomes.

  14. The successful conclusion of the Deep Space 1 Mission: important results without a flashy title

    NASA Technical Reports Server (NTRS)

    Rayman, M. D.

    2002-01-01

    In September 2001, Deep Space 1 (DS1) completed a high-risk and flawless encounter with comet 19P/Borrelly. Its data provide a detailed view of this comet and offere surprising and exciting insights. With this successful conclusion of its extended mission, DS1 undertook a hyperextended mission. Following this period of extremely agressive testing, with no further technology or science objectives, the mission was terminated on December 18, 2001, with the powering off of the spacecraft's trnasmitter, although the receiver was left on. By the end of its mission, DS1 had returned a wealth of important science data and engineering data for future missions.

  15. Assuring that Lessons Learned Critical to Mission Success Get Used

    NASA Technical Reports Server (NTRS)

    Oberhettinger, David

    2012-01-01

    NASA has an established process for documenting and disseminating lessons learned from spaceflight missions and related activities. However, independent assessments of the NASA lessons learned process conducted in 2002, 2003, and 2011 have concluded that NASA programs and projects are failing to heed and apply these lessons learned. JPL recently completed implementation of a three-pronged approach to assure that NASA lessons learned get used by JPL spaceflight projects.

  16. Nimbus-7 (-G) post launch report: Mission success

    NASA Technical Reports Server (NTRS)

    Edelson, B. I.

    1983-01-01

    Nimbus-7, the last of the Nimbus series satellites, was launched from the Space and Missile Test Center at Vandenberg Air Force Base, California on October 24, 1978. The purpose of the mission was to collect global data of the Earth's atmosphere, oceans and polar ice with a payload of eight interdisciplinary research experiments. These experiments represent both domestic and international, scientific and governmental communities.

  17. Atlantis lands at KSC after successful STS-101 mission

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its drag chute billowing behind, Space Shuttle Atlantis is silhouetted against the bright lights on Runway 15, Shuttle Landing Facility, as it rolls to a stop. Two rainbows appear above the lights. The landing of Atlantis completed the 9-day, 20-hour, 9-minute-long STS-101 mission. At the controls are Commander James D. Halsell Jr. and Pilot Scott 'Doc' Horowitz. Also onboard the orbiter are Mission Specialists Mary Ellen Weber, James S. Voss, Jeffrey N. Williams, Susan J. Helms and Yury Usachev of Russia. Main gear touchdown was at 2:20:17 a.m. EDT, landing on orbit 155 of the mission. Nose gear touchdown was at 2:20:30 a.m. EDT, and wheel stop at 2:21:19 a.m. EDT. The crew is returning from the third flight to the International Space Station. This was the 98th flight in the Space Shuttle program and the 21st for Atlantis, also marking the 51st landing at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  18. LARES successfully launched in orbit: Satellite and mission description

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Ciufolini, Ignazio

    2013-10-01

    On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically 'frame-dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei-Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation system. The data exploitation phase started immediately after the launch under a new contract between ASI and those universities. Tracking of the satellite is provided by the International Laser Ranging Service. Due to its particular design, LARES is the orbiting object with the highest known mean density in the solar system. In this paper, it is shown that this peculiarity makes it the best proof particle ever manufactured. Design aspects, mission objectives and preliminary data analysis will be also presented.

  19. A Framework for Achieving e-Business Success

    ERIC Educational Resources Information Center

    Kumar, U.; Maheshwari, M.; Kumar, V.

    2004-01-01

    This paper presents the findings of an empirical study of critical factors associated with e-business success. An a priori model relating the success factors to e-business success is developed. The study uses the "balanced scorecard" methodology to measure the success of e-business organizations, as the authors believe that financial measures are…

  20. How NASA Utilizes Dashboards to Help Ensure Mission Success

    NASA Technical Reports Server (NTRS)

    Blakeley, Chris

    2013-01-01

    NASA is actively planning to expand human spaceflight and robotic exploration beyond low Earth orbit. To prepare for the challenge of exploring these destinations in space, NASA conducts missions here on Earth in remote locations that have physical similarities to extreme space environments. Program managers for the Advanced Exploration Systems program requested a simple way to track financial information to ensure that each task stayed within their budgetary constraints. Using SAP BusinessObjects Dashboards (Formerly Xcelsius), a dashboard was created to satisfy all of their key requirements. Lessons learned, along with some tips and tricks, will be highlighted during this session.

  1. ALMA Achieves Major Milestone With Antenna-Link Success

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO

  2. DOE Success Stories: The Energy Mission in the Marketplace

    DOE R&D Accomplishments Database

    1995-05-01

    Many outputs of Department of Energy research and development have had substantial economic success in the marketplace and have proven to be fundamentally important in technical areas, positioning U.S. industry at the forefront of global competition.

  3. End-of-Mission Passivation: Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  4. Success and Interactive Learning: Sailing toward Student Achievement

    ERIC Educational Resources Information Center

    Midcap, Richard; Seitzer, Joan; Holliday, Randy; Childs, Amy; Bowser, Dana

    2008-01-01

    Success and Interactive Learning's (SAIL) front-loaded retention activities and unique financial incentives have combined to improve retention, persistence, and success of first-time college students. Its effectiveness has been validated through a comparison of retention rates and aggregate quality-point averages of SAIL cohorts with those rates…

  5. Microbial Impact on Success of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Groves, T. O.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The purpose of this study is to identify microbiological risks associated with space exploration and identify potential countermeasures available. Identification of microbial risks associated with space habitation requires knowledge of the sources and expected types of microbial agents. Crew data along with environmental data from water, surfaces, air, and free condensate are utilized in risk examination. Data from terrestrial models are also used. Microbial risks to crew health include bacteria, fungi, protozoa, and viruses. Adverse effects of microbes include: infections, allergic reactions, toxin production, release of volatiles, food spoilage, plant disease, material degradation, and environmental contamination. Risk is difficult to assess because of unknown potential changes in microbes (e.g., mutation) and the human host (e.g., immune changes). Prevention of adverse microbial impacts is preferred over remediation. Preventative measures include engineering measures (e.g., air filtration), crew microbial screening, acceptability standards, and active verification by onboard monitoring. Microbiological agents are important risks to human health and performance during space flight and risks increase with mission duration. Acceptable risk level must be defined. Prevention must be given high priority. Careful screening of crewmembers and payloads is an important element of any risk mitigation plan. Improved quantitation of microbiological risks is a high priority.

  6. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. Achieving succession planning and implementation: one healthcare network's story.

    PubMed

    Capuano, Terry Ann; MacKenzie, Richard

    2013-01-01

    Frequent transitions in leadership can cause inefficiency, inconsistency, and lack of alignment with priorities and strategy. Retaining management talent and collaboratively planning their succession can help ensure organizational survival. Succession planning, in healthcare and other industries, addresses some of these concerns; however, there is a dearth of descriptive articles emphasizing "how to." This article demonstrates one healthcare network's comprehensive system for succession planning and implementation. Leaders looking to plan their human resource processes for organizational sustainability would be able to emulate and adapt practices for their networks.

  8. People First Mission Always: A Historical Examination of the Need to Find the Balance Between Protecting the Force and Achieving the Mission

    DTIC Science & Technology

    2013-06-13

    protection policy must balance the competing interests of the state in order to allow for mission success, while still maintaining the combat effectiveness...people, can be equated to the possible effects of force protection on the success of the mission. Political and military resolve encapsulates two parts

  9. Defining and Achieving Student Success: University Faculty and Student Perspectives.

    ERIC Educational Resources Information Center

    Dean, Anne M.; Camp, William G.

    The question of how agricultural education students and faculty define and hope to foster student success was studied at a large southeastern land-grant university with a college of agriculture that included 1,497 students and 193 faculty. The study questions were explored in 2 focus groups containing a total of 7 faculty members and 8 focus…

  10. An Analysis of How Multicultural Adult Orphans Achieve Economic Success

    ERIC Educational Resources Information Center

    Simonee, Saundra W.

    2014-01-01

    Successful multicultural adult orphans who were not adopted pose an interesting challenge in their history, their physical, psychological, social emotional and personal identity development. One must understand their journey from orphanhood to adulthood and their current prominent status in life to build a contextualized personal story (Banks,…

  11. Achieving Success in Obtaining Grant Funding as a Research Scholar

    ERIC Educational Resources Information Center

    Cherubini, Lorenzo

    2014-01-01

    The process of writing successful grant proposals has received not so dubious attention in the last several decades. This article provides contextual significance resulting from a review of literature spanning 1975 to 2013. I identify essential vocabulary stemming from the literature review to familiarize the reader with the terminology associated…

  12. Orchestrating ACO success: how top performers achieve shared savings.

    PubMed

    Harris, John M; Elizondo, Idette; Brown, Amanda M

    2016-03-01

    Leaders of the top-performing accountable care organizations in the Medicare Shared Savings Program attribute the success of their organizations in large part to seven strategies: Seek action-oriented leadership. Transform primary care physician practices. Keep patients out of the emergency department. Ensure all transitions are smooth. Make effective use of available data. Share information on physician performance. Keep patients engaged.

  13. Achieving Solution Success: An Investigation of User Participation Approaches

    ERIC Educational Resources Information Center

    Mattia, Angela Marie

    2009-01-01

    User participation and its relationship to system success have been discussed in the information systems (IS) literature from many theoretical and practical perspectives. In reality, most of this discussion is grounded in empirical research that has yielded mixed results on the importance of user participation and its relationship to system…

  14. Future Achievement Orientations: Job Training and Economic Success.

    ERIC Educational Resources Information Center

    Hubbard, Robert L.

    The research had four purposes: describe the concept of future orientation; develop measures of future constructs; determine the impact of background, labor markets, and job training on future orientations; and evaluate the validity of the measures as predictors of training outcomes and economic success. Data were collected from a sample of men in…

  15. The Balanced Reading Program: Helping All Students Achieve Success.

    ERIC Educational Resources Information Center

    Blair-Larsen, Susan M., Ed.; Williams, Kathryn A., Ed.

    This book explains the methodologies, techniques, strategies, and knowledge base necessary to achieve a balanced reading program. The book's contributors define the key elements in a balanced reading program and provide guidelines for implementing a balanced instructional program in the classroom. Following an introduction which addresses…

  16. A Successful Community-based Partnership: Formation and Achievements.

    ERIC Educational Resources Information Center

    Rothman, Nancy L.; Lourie, Rita; Dyer, Annette; Gass, Diane L.

    2000-01-01

    Describes the formation and achievements of an academic-community partnership between the Department of Nursing, Temple University, and two Philadelphia, Pennsylvania, public housing developments. Focuses on the community-developed, community-based public health initiative, "Lead Awareness: North Philly Style," which demonstrates the…

  17. Student achievement and NCLEX-RN success: Problems that persist.

    PubMed

    Carrick, Jo Anne

    2011-01-01

    While most nurse graduates are successful on the NCLEX-RN licensure examination, certain students continue to be at risk for failure. To understand the complexity of at-risk students and NCLEX-RN failure, systems theory was used to analyze the interdependency of the nursing education system and the nursing student learning system. From this perspective, these problems relate to flaws in perceived learning gaps and student outcome measures. Predicting NCLEX-RN success is further complicated because students leave the teaching system prior to taking the exam, making them vulnerable to other influencing variables. The student's approach to learning (SAL) theory was used to aid in identifying effective strategies. The literature supports this theoretical approach, which targets changing the teaching and learning environment. However, there is limited research on the nursing student's approach to learning, on the benefits of innovative student-centered learning environments, and the most effective use of NCLEX-RN assessment products.

  18. Are You Truly All In? Achieving Program Management Success

    DTIC Science & Technology

    2014-08-01

    Edition Are you an entrepreneur ? Are you passionate about the successes of your program and your team? Does “risk” not only describe threats but areas for...the future entrepreneurial program managers (PMs) within the Department of Defense (DoD)? Today, the label entrepreneur is attached to breakthrough...communications in the early 21st century. In these and many more cases, entrepreneurs were the visionaries who implemented in- novative solutions to solve

  19. Nuclear power supplies: their potential and the practical problems to their achievement for space missions

    SciTech Connect

    Colston, B.W.; Brehm, R.L.

    1985-01-01

    The anticipated growth of the space station power requirement provides a good example of the problem the space nuclear power supply developers have to contend with: should a reactor power supply be developed that attempts to be all things to all missions, i.e., is highly flexible in its ability to meet a wide variety of missions, or should the development of a reactor system await a specific mission definition and be customized to this mission. This leads, of course, to a chicken-and-egg situation. For power requirements of several hundreds of kilowatts or more, no nuclear power source exists or is even far enough along in the definition stage (much less the development stage) for NASA to reasonably assume probable availability within the next 10 years. The real problem of space nuclear power is this ''chicken-and-egg'' syndrome: DOE will not develop a space reactor system for NASA without a firm mission, and NASA will not specify a firm mission requiring a space reactor because such a system doesn't exist and is perceived not to be developable within the time frame of the mission. The problem is how to break this cycle. The SP-100 program has taken an important first step to breaking this cycle, but this program is much more design-specific than what is required to achieve a broad technology base and latitude in achievable power level. In contrast to the SP-100 approach, a wider perspective is required: the development of the appropriate technologies for power levels can be broken into ranges, say, from 100 kWe to 1000 kWe, and from 1000 kWe to 10,000 kWe.

  20. Achieving Success Connecting Academic and Practicing Clinicians Through Telemedicine

    PubMed Central

    Gonzalez-Espada, Wilson J.; Hall-Barrow, Julie; Hall, R. Whit; Burke, Bryan L.; Smith, Christopher E.

    2017-01-01

    Objective Practicing clinicians, especially in rural areas, are often isolated from learning opportunities and interaction with subspecialty providers. The Pediatric Physician Learning and Collaborative Education (Peds PLACE), an interactive educational telemedicine program, was developed to address this need. We evaluated the success of this program through surveys with practicing and academic physicians. Methods Peds PLACE was assessed using two evaluation forms collected from October 2007 to May 2008. One of them was completed by 197 attendees from the University of Arkansas for Medical Sciences (UAMS) and 172 from remote sites. Another form was completed by 131 participants from Arkansas Children's Hospital (ACH), an academic free standing children's hospital. Both evaluation forms asked participants to use a 5-point Likert scale to rank a number of criteria and included a section for participants to write comments and recommendations. Additional data was collected through an open-response email survey of participants. Results 95% of the participants agreed that the presentations related to their professional needs, 98% agreed that it increased their subject matter knowledge, 81% evaluated the presentations as some of the best they have attended, and 93% agreed that the information would translate into professional practice, enhancing patient care. Health personnel from UAMS evaluated the presentations significantly higher than remote participants. Nursing staff evaluated the presentations significantly higher than medical staff. Comments were generally positive and correlated with the Likert scale data. Conclusion Participants reported being highly satisfied with Peds PLACE and considered it an effective way to address the continuing education needs of practitioners throughout Arkansas, especially in rural and underserved areas. PMID:19204057

  1. The Achievement Gap: Factors That Influenced the Achievement of Successful Black Students

    ERIC Educational Resources Information Center

    Morton, Kwame R., Sr.

    2011-01-01

    The academic underperformance of Black students when compared to their White peers has confounded educators nationwide. This discrepancy in academic performance commonly referred to as the achievement gap has become a national crisis which has led to one of the most significant educational reforms undertaken in the United States of America in the…

  2. Patients' Perceptions of the Causes of Their Success and Lack of Success in Achieving Their Potential in Spinal Cord Rehabilitation

    ERIC Educational Resources Information Center

    Belciug, Marian P.

    2012-01-01

    The objective of this study was to examine the patients' perception of the causes of their success and lack of success in achieving their potential in rehabilitation and their emotional reactions to the outcome of their rehabilitation. Thirty-five patients with spinal cord injury who were participating in the Rehabilitation Program at Hamilton…

  3. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    NASA Astrophysics Data System (ADS)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  4. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed across the creek bordering runway 33, orbiter Discovery prepares to touch down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Flying above it is the Shuttle Training Aircraft. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. IT Project Success w\\7120 and 7123 NPRs to Achieve Project Success

    NASA Technical Reports Server (NTRS)

    Walley, Tina L.

    2009-01-01

    This slide presentation reviews management techniques to assure information technology development project success. Details include the work products, the work breakdown structure (WBS), system integration, verification and validation (IV&V), and deployment and operations. An example, the NASA Consolidated Active Directory (NCAD), is reviewed.

  6. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  7. The Integrated Medical Model: Statistical Forecasting of Risks to Crew Health and Mission Success

    NASA Technical Reports Server (NTRS)

    Fitts, M. A.; Kerstman, E.; Butler, D. J.; Walton, M. E.; Minard, C. G.; Saile, L. G.; Toy, S.; Myers, J.

    2008-01-01

    The Integrated Medical Model (IMM) helps capture and use organizational knowledge across the space medicine, training, operations, engineering, and research domains. The IMM uses this domain knowledge in the context of a mission and crew profile to forecast crew health and mission success risks. The IMM is most helpful in comparing the risk of two or more mission profiles, not as a tool for predicting absolute risk. The process of building the IMM adheres to Probability Risk Assessment (PRA) techniques described in NASA Procedural Requirement (NPR) 8705.5, and uses current evidence-based information to establish a defensible position for making decisions that help ensure crew health and mission success. The IMM quantitatively describes the following input parameters: 1) medical conditions and likelihood, 2) mission duration, 3) vehicle environment, 4) crew attributes (e.g. age, sex), 5) crew activities (e.g. EVA's, Lunar excursions), 6) diagnosis and treatment protocols (e.g. medical equipment, consumables pharmaceuticals), and 7) Crew Medical Officer (CMO) training effectiveness. It is worth reiterating that the IMM uses the data sets above as inputs. Many other risk management efforts stop at determining only likelihood. The IMM is unique in that it models not only likelihood, but risk mitigations, as well as subsequent clinical outcomes based on those mitigations. Once the mathematical relationships among the above parameters are established, the IMM uses a Monte Carlo simulation technique (a random sampling of the inputs as described by their statistical distribution) to determine the probable outcomes. Because the IMM is a stochastic model (i.e. the input parameters are represented by various statistical distributions depending on the data type), when the mission is simulated 10-50,000 times with a given set of medical capabilities (risk mitigations), a prediction of the most probable outcomes can be generated. For each mission, the IMM tracks which conditions

  8. ESA's Spaceborne Lidar Mission ADM-Aeolus; Recent Achievements and Preparations for Launch

    NASA Astrophysics Data System (ADS)

    Grete Straume, Anne; Elfving, Anders; Wernham, Denny; Culoma, Alain; Mondin, Linda; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Buscaglione, Fabio; Dehn, Angelika

    2016-06-01

    Within ESA's Living Planet Programme, the Atmospheric Dynamics Mission (ADM-Aeolus) was chosen as the second Earth Explorer Core mission in 1999. It shall demonstrate the potential of high spectral resolution Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP). Spin-off products are profiles of cloud and aerosol optical properties. ADM-Aeolus carries the novel Doppler Wind lidar instrument ALADIN. Recently the two ALADIN laser transmitters were successfully qualified and delivered for further instrument integration. The instrument delivery will follow later this year and the satellite qualification and launch readiness is scheduled for 2016. In February 2015, an Aeolus Science and Calibration and Validation (CAL/VAL) Workshop was held in ESA-ESRIN, Frascati, Italy, bringing industry, the user community and ESA together to prepare for the Aeolus Commissioning and Operational Phases. During the Workshop the science, instrument and product status, commissioning phase planning and the extensive number of proposals submitted in response to the Aeolus CAL/VAL call in 2014 were presented and discussed. A special session was dedicated to the Aeolus CAL/VAL Implementation Plan. In this paper, the Aeolus mission, status and launch preparation activities are described.

  9. Techniques for Assuring NASA Mission Success Using Redundancy and Multi-Functionality Designs

    NASA Technical Reports Server (NTRS)

    Shivers, Herb

    2010-01-01

    Topics include NASA centers around the country; 2009 highlights of significant successes in space transportation, exploration, and science; significant accomplishments; places to explore include Lagrange points, near-Earth objects, Mars and the Moon, and International Space Station research; Marshall's missions include propulsion and transportation systems, life support systems, and earth and space science spacecraft, systems, and operations; project lifecycle management model; motivation of avionics fault-tolerance, redundancy needs and concerns, redundancy versus reliability; parallel-series configurations; effect of adding redundancy on mission success; example of rules-based approach where reliability and safety interaction impacts design; impact of common cause failure; approach ot bottom-up reliability analysis; three factors that lead to redundant system failure; Apollo 13 multi-functional reliability and example; and mitigating the risk of single string spacecraft architecture;.

  10. Analysing Global Achievements in Orbital Lifetime Reduction at the End of LEO Missions

    NASA Astrophysics Data System (ADS)

    Krag, Holger; Lemmens, Stijn; Flohrer, Tim; Klinkard, Heiner

    2013-08-01

    The major driver for future debris proliferation, besides the intentional and unintentional release of objects, is the abundance of objects with large masses and sizes in orbit that could be involved in catastrophic collisions. Mitigation measures thus concentrate on the prevention of object release (explosions, mission-related objects, SRM (Solid Rocket Motor) exhaust products), the disposal of objects and active collision avoidance. As ESA's simulations show, the most effective means of stabilizing the space debris environment is the removal of mass from regions with high spatial densities. A limitation of the residence time of controlled objects in altitudes below 2000km to 25 years followed by either atmospheric re-entry or reboost to higher altitudes allows to limit the growth of object numbers in the densely populated LEO environment. This is the most relevant requirement for operations. In this paper we look into the achievements of all spacefaring nations with respect to this requirement. For this purpose, ESA has developed a method to determine the operational status of running missions, by monitoring their manoeuvre activity with the help of the publicly available orbit data distributed by the US Strategic Command (USSTRATCOM). Missions that have been found to have terminated their operational life will be processed to determine the remaining orbital lifetime. The results will be presented in a statistical manner.

  11. A Review of Communications Satellites and Related Spacecraft for Factors Influencing Mission Success. Volume 2

    DTIC Science & Technology

    1975-11-17

    satellite and related spacecraft programs to identify factors influencing mission success. Includes a summary of military and commercial programs to date... commercial Japanese CS. Simi- larly, there is some design commonality evident in Intelsat IV, Intelsat IVA, and the AT&T COMSTAR. (These...generation Intelsat commercial satellites. DSCS II is also known as Program 777. The DSCS II satellite was designed and fabricated by the TRW Systems

  12. Apollo 14 mission: Failure to achieve docking probe capture latch engagement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Six docking attempts were required in order to successfully achieve capture latch engagement during the transposition and docking phase following translunar injection. After docking, the probe and drogue were examined by the crew. Probe operation appeared normal and radial marks were noted on the drogue. During all subsequent operations, the probe operated properly.

  13. Academic Success of Montgomery College Students in the Achieving Collegiate Excellence and Success (ACES) Program: 2014-2015

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth; Wolanin, Natalie

    2016-01-01

    The Office of Shared Accountability in Montgomery County Public Schools (MCPS) is conducting a multiyear evaluation of the Achieving Collegiate Excellence and Success (ACES) program. The ACES program is a collaboration between MCPS, Montgomery College (MC) and the Universities at Shady Grove to create a seamless pathway from high school to college…

  14. Why achievement motivation predicts success in business but failure in politics: the importance of personal control.

    PubMed

    Winter, David G

    2010-12-01

    Several decades of research have established that implicit achievement motivation (n Achievement) is associated with success in business, particularly in entrepreneurial or sales roles. However, several political psychology studies have shown that achievement motivation is not associated with success in politics; rather, implicit power motivation often predicts political success. Having versus lacking control may be a key difference between business and politics. Case studies suggest that achievement-motivated U.S. presidents and other world leaders often become frustrated and thereby fail because of lack of control, whereas power-motivated presidents develop ways to work with this inherent feature of politics. A reevaluation of previous research suggests that, in fact, relationships between achievement motivation and business success only occur when control is high. The theme of control is also prominent in the development of achievement motivation. Cross-national data are also consistent with this analysis: In democratic industrialized countries, national levels of achievement motivation are associated with strong executive control. In countries with low opportunity for education (thus fewer opportunities to develop a sense of personal control), achievement motivation is associated with internal violence. Many of these manifestations of frustrated achievement motivation in politics resemble authoritarianism. This conclusion is tested by data from a longitudinal study of 113 male college students, showing that high initial achievement motivation combined with frustrated desires for control is related to increases in authoritarianism (F-scale scores) during the college years. Implications for the psychology of leadership and practical politics are discussed.

  15. The Impact of Reading Success Academy on High School Reading Achievement

    ERIC Educational Resources Information Center

    Burlison, Kelly; Chave, Josh

    2014-01-01

    The study explores the effectiveness of the Reading Success Academy on the reading achievement of the selected group of ninth-grade students in a comprehensive high school. We examine in what ways the Reading Success Academy may improve the reading proficiency rates and amount of reading growth of ninth-grade students. The results indicate that…

  16. Black High Achieving Undergraduate Mathematics Majors Discuss Success and Persistence in Mathematics

    ERIC Educational Resources Information Center

    Ellington, Roni M.; Frederick, Rona

    2010-01-01

    Experiences of eight Black high-achieving college junior and senior mathematics majors are examined to discern which social and cultural factors shape success and persistence in mathematics. College persistence literature as well as mathematics education studies that document Black students' success in mathematics were used as frameworks to…

  17. The Impact of Achievement Press on Student Success in Elementary Schools

    ERIC Educational Resources Information Center

    Smith, Page A.; Kearney, W. Sean

    2013-01-01

    Purpose: The purpose of this study is to examine the relative impact of achievement press on student success in elementary schools in the Southwestern USA. Design/methodology/approach: Data from individual teacher assessments and student achievement tests are collected and aggregated at the campus level. Hierarchical linear modeling is utilized to…

  18. Arts Achieve, Impacting Student Success in the Arts: Preliminary Findings after One Year of Implementation

    ERIC Educational Resources Information Center

    Mastrorilli, Tara M.; Harnett, Susanne; Zhu, Jing

    2014-01-01

    The "Arts Achieve: Impacting Student Success in the Arts" project involves a partnership between the New York City Department of Education (NYCDOE) and five of the city's premier arts organizations. "Arts Achieve" provides intensive and targeted professional development to arts teachers over a three-year period. The goal of the…

  19. Identity Formation, Achievement, and Fear of Success in College Men and Women

    ERIC Educational Resources Information Center

    Orlofsky, Jacob L.

    1978-01-01

    Male and female college undergraduates were classified according to Marcia's identity statuses (achievement, moratorium, foreclosure, and diffusion). Sex differences related to identity status, and relationship of identity status to achievement need, fear of success, fear of failure, and self esteem were also discussed. (CP)

  20. Relationship between Achievement Goals, Meta-Cognition and Academic Success in Pakistan

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Yousuf, Muhammad Imran; Hussain, Shafqat; Noreen, Shumaila

    2009-01-01

    The research was the replication of the study done by Coutinho (2006) and it aimed at finding the relationship between achievement goals, meta-cognition and academic success. Achievement goals were further divided into two types: mastery and performance. The participants were 119 students enrolled in M. A. Education, Department of Education at the…

  1. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  2. Lunar Regenerative Fuel Cell (RFC) Reliability Testing for Assured Mission Success

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2009-01-01

    NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) Regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated," these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development.When well-known reliability estimation techniques are applied to the hydrogen oxygen RFC to determine the amount of testing that will be required to assure RFC unit reliability over life of the mission, the analysis indicates the reliability testing phase by itself will take at least 2 yr, and could take up to 6 yr depending on the number of QA units that are built and tested and the individual unit reliability that is desired. The cost and schedule impacts of reliability development need to be considered in NASA's Exploration Technology Development Program (ETDP) plans, since life cycle testing to build meaningful reliability data is the only way to assure "return to the moon, this time to stay, then on to Mars" mission success.

  3. Goals of biomedical support of a mission to Mars and possible approaches to achieving them.

    PubMed

    Grigoriev, A I; Kozlovskaya, I B; Potapov, A N

    2002-04-01

    The main medical and biological problems associated with a piloted mission to Mars are discussed. Prerequisites for the mission are described, based on our experience with biomedical support of prolonged piloted missions. The most important factors are developing countermeasures against the prolonged effects of microgravity and hypogravity; solving a complex of psychological problems; developing methods to protect against cosmic radiation; and creating effective and reliable life support systems. Some aspects of the likely risks involved in such a mission are also reviewed.

  4. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    NASA Technical Reports Server (NTRS)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  5. Developing a Latino Mentoring Program: Project MALES (Mentoring to Achieve Latino Educational Success)

    ERIC Educational Resources Information Center

    Sáenz, Victor B.; Ponjuan, Luis; Segovia, Jorge, Jr.; Del Real Viramontes, José

    2015-01-01

    This chapter highlights the development of Project MALES (Mentoring to Achieve Latino Educational Success). At the center of Project MALES is a mentoring program that aims to cultivate an engaged support network for males of color at the University of Texas at Austin and across surrounding communities. Specifically, there is a discussion of the…

  6. Success in Higher Education: The Challenge to Achieve Academic Standing and Social Position

    ERIC Educational Resources Information Center

    Life, James

    2015-01-01

    When students look at their classmates in the classroom, consciously or unconsciously, they see competitors both for academic recognition and social success. How do they fit in relation to others and how do they succeed in achieving both? Traditional views on the drive to succeed and the fear of failure are well known as motivators for achieving…

  7. Identifying Predictors of College Success through an Examination of AVID Graduates' College Preparatory Achievements

    ERIC Educational Resources Information Center

    Watt, Karen M.; Huerta, Jeffery J.; Alkan, Ersan

    2011-01-01

    This mixed-methods research investigates the high school college preparatory achievements and college success of 50 high school graduates who participated in Advancement Via Individual Determination (AVID) and belonged to groups underrepresented in higher education. High performance on the Texas Assessment of Knowledge and Skills (TAKS) and…

  8. Closing the Math Achievement Gap: Institutions Find Success with MyMathLab

    ERIC Educational Resources Information Center

    Stewart, Pearl

    2012-01-01

    Institutions find success with Pearson Education's MyMathLab. The Department of Mathematical Sciences at the University of Memphis (UM) reported a narrowing of the achievement gap between Black and White students. According to the study conducted by UM professors and titled "The Effectiveness of Blended Instruction in Postsecondary General…

  9. Predicting College Success: Achievement, Demographic, and Psychosocial Predictors of First-Semester College Grade Point Average

    ERIC Educational Resources Information Center

    Saltonstall, Margot

    2013-01-01

    This study seeks to advance and expand research on college student success. Using multinomial logistic regression analysis, the study investigates the contribution of psychosocial variables above and beyond traditional achievement and demographic measures to predicting first-semester college grade point average (GPA). It also investigates if…

  10. Indicators of Success in Achieving the El Centro College Goals, 1997-2000.

    ERIC Educational Resources Information Center

    El Centro Coll., Dallas, TX.

    This is a report on indicators of success in achieving community college goals at El Centro College (Texas). The report provides statistics from 1997-2000 and focuses on the progress of nine goals: (1) institutionalizing service beyond expectation--according to student satisfaction surveys, campus changes that have occurred between 1996 and 1999…

  11. Student Success Skills: An Evidence-Based Cognitive and Social Change Theory for Student Achievement

    ERIC Educational Resources Information Center

    Lemberger, Matthew E.; Brigman, Greg; Webb, Linda; Moore, Molly M.

    2012-01-01

    An overview of the Student Success Skills program is offered, including descriptions of the curricular structure, extant research support related to SSS effectiveness for academic achievement and improved school behaviors, and a theory of change for student development. Recent research has demonstrated the value of the SSS program as it connects…

  12. Achievement Motivation, Anxiety and Academic Success in First Year Master of Nursing Students.

    ERIC Educational Resources Information Center

    McEwan, Lynn; Goldenberg, Dolly

    1999-01-01

    A study of 41 graduate nursing students found they had high achievement motivation and academic ability. Trait anxiety was the only valid predictor of academic success. Academic ability and inherent anxiety had greater potential for predicting students who would succeed. (Author/SK)

  13. Courageous Conversations: Achieving the Dream and the Importance of Student Success

    ERIC Educational Resources Information Center

    Change: The Magazine of Higher Learning, 2009

    2009-01-01

    Achieving the Dream: Community Colleges Count is a national initiative dedicated to the premise that community colleges should be as successful at student retention and graduation, particularly for students of color and low-income, as they are at enrollment. On campus, the initiative is focused on creating a culture of evidence, one in which data…

  14. Collaborating with Parents for Early School Success: The Achieving-Behaving-Caring Program

    ERIC Educational Resources Information Center

    McConaughy, Stephanie H.; Kay, Pam; Welkowitz, Julie A.; Hewitt, Kim; Fitzgerald, Martha D.

    2007-01-01

    The Achieving-Behaving-Caring (ABC) Program is an evidence-based approach to addressing the needs of elementary students at risk for emotional and behavioral difficulties and promoting successful home-school collaboration. This practical guide demonstrates how classroom teachers and parents can work together to boost individual children's…

  15. ALAS: Achievement for Latinos through Academic Success. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2006

    2006-01-01

    "ALAS," an acronym for "Achievement for Latinos through Academic Success" that means "wings" in Spanish, is a middle school (or junior high school) intervention designed to address student, school, family, and community factors that affect dropping out. Each student is assigned a counselor who monitors attendance,…

  16. Count Us In. Achieving Success for Deaf Pupils. Practical Examples from Primary, Secondary, and Special Schools

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2007

    2007-01-01

    "Count Us in: Achieving Success for Deaf Pupils" is a timely report. It comes when schools are becoming more confident in dealing with a wide range of additional support for learning needs. Schools are also more aware that they need to personalise experiences in order to meet pupils' learning needs. The report does point to strengths…

  17. Food for Thought, Health for Success: Pursuing Policy that Supports Student Wellness and Achievement

    ERIC Educational Resources Information Center

    Groginsky, Scott; Trujillo, Tara

    2009-01-01

    As schools work to ensure that all students have the skills and competencies to succeed in work and life, and with growing expectations for success on standardized assessments at the federal, state and local levels, education leaders increasingly understand the importance of student wellness to achieving these goals. This report outlines why…

  18. The Achieving Success Everyday Group Counseling Model: Implications for Professional School Counselors

    ERIC Educational Resources Information Center

    Steen, Sam; Henfield, Malik S.; Booker, Beverly

    2014-01-01

    This article presents the Achieving Success Everyday (ASE) group counseling model, which is designed to help school counselors integrate students' academic and personal-social development into their group work. We first describe this group model in detail and then offer one case example of a middle school counselor using the ASE model to conduct a…

  19. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  20. Achieving Higher Levels of Success for A.D.H.D. Students Working in Collaborative Groups

    ERIC Educational Resources Information Center

    Simplicio, Joseph S. C.

    2007-01-01

    This article explores a new and innovative strategy for helping students with Attention Deficit Hyperactivity Disorder (A.D.H.D.) achieve higher levels of academic success when working in collaborative groups. Since the research indicates that students with this disorder often have difficulty in maintaining their concentration this strategy is…

  1. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    PubMed

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills.

  2. Pregnancy in end-stage renal disease patients on dialysis: how to achieve a successful delivery.

    PubMed

    Manisco, Gianfranco; Potì', Marcello; Maggiulli, Giuseppe; Di Tullio, Massimo; Losappio, Vincenzo; Vernaglione, Luigi

    2015-06-01

    Pregnancy in women with chronic kidney disease has always been considered as a challenging event both for the mother and the fetus. Over the years, several improvements have been achieved in the outcome of pregnant chronic renal patients with increasing rates of successful deliveries. To date, evidence suggests that the stage of renal failure is the main predictive factor of worsening residual kidney function and complications in pregnant women. Moreover, the possibility of success of the pregnancy depends on adequate depurative and pharmacological strategies in patients with end-stage renal disease. In this paper, we propose a review of the current literature about this topic presenting our experience as well.

  3. Pregnancy in end-stage renal disease patients on dialysis: how to achieve a successful delivery

    PubMed Central

    Manisco, Gianfranco; Potì’, Marcello; Maggiulli, Giuseppe; Di Tullio, Massimo; Losappio, Vincenzo; Vernaglione, Luigi

    2015-01-01

    Pregnancy in women with chronic kidney disease has always been considered as a challenging event both for the mother and the fetus. Over the years, several improvements have been achieved in the outcome of pregnant chronic renal patients with increasing rates of successful deliveries. To date, evidence suggests that the stage of renal failure is the main predictive factor of worsening residual kidney function and complications in pregnant women. Moreover, the possibility of success of the pregnancy depends on adequate depurative and pharmacological strategies in patients with end-stage renal disease. In this paper, we propose a review of the current literature about this topic presenting our experience as well. PMID:26034591

  4. Virtual Wingman: Harnessing the Future Unstructured Information Environment to Achieve Mission Success

    DTIC Science & Technology

    2010-12-01

    328,514 to 95,551 units) in hand- held, man- pack , and small form-fit radios.81 This decrease in available tactical radios comes as the United States...remarks that “our lack of attention to place, time, function, and human considerations means that these fancy new technologies fail to deliver their

  5. Automated Mars surface sample return mission concepts for achievement of essential scientific objectives

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Norton, H. N.; Darnell, W. L.

    1975-01-01

    Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.

  6. An integrated mission approach to the space exploration initiative will ensure success

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1990-10-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earth in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space Exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as return on investment'' and commercial product potential'' of the technologies developed. 7 refs., 3 figs.

  7. An integrated mission approach to the space exploration initiative will ensure success

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E. )

    1991-01-05

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as return on investment'' and commercial product potential'' of the technologies developed.

  8. Parental Involvement and Adolescents' Educational Success: The Roles of Prior Achievement and Socioeconomic Status.

    PubMed

    Benner, Aprile D; Boyle, Alaina E; Sadler, Sydney

    2016-06-01

    Parental educational involvement in primary and secondary school is strongly linked to students' academic success; however; less is known about the long-term effects of parental involvement. In this study, we investigated the associations between four aspects of parents' educational involvement (i.e., home- and school-based involvement, educational expectations, academic advice) and young people's proximal (i.e., grades) and distal academic outcomes (i.e., educational attainment). Attention was also placed on whether these relations varied as a function of family socioeconomic status or adolescents' prior achievement. The data were drawn from 15,240 10th grade students (50 % females; 57 % White, 13 % African American, 15 % Latino, 9 % Asian American, and 6 % other race/ethnicity) participating in the Education Longitudinal Study of 2002. We observed significant links between both school-based involvement and parental educational expectations and adolescents' cumulative high school grades and educational attainment. Moderation analyses revealed that school-based involvement seemed to be particularly beneficial for more disadvantaged youth (i.e., those from low-SES families, those with poorer prior achievement), whereas parents' academic socialization seemed to better promote the academic success of more advantaged youth (i.e., those from high-SES families, those with higher prior achievement). These findings suggest that academic interventions and supports could be carefully targeted to better support the educational success of all young people.

  9. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    NASA Astrophysics Data System (ADS)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International

  10. Achieving recognition that mental health is part of the mission of CDC.

    PubMed

    Safran, Marc A

    2009-11-01

    For much of its history the U.S. Centers for Disease Control and Prevention (CDC) considered mental health to be outside of its mission. That assumption persisted even after CDC became a leading public health agency and began to face important mental health issues. This narrative describes how the organizational paradigm indicating that mental health was not mission related was challenged and superseded by a new paradigm recognizing mental health as part of CDC's public health mission. Even after the CDC Mental Health Work Group's establishment in 2000, CDC took eight more years to overcome powerful remnants of the old paradigm that had for so long excluded, minimized, or discouraged attention to mental health. The CDC Mental Health Work Group led the agency's mental health efforts without funding or dedicated staffing but with more than 100 CDC professionals from multiple disciplines and centers serving as voluntary members, in addition to their other CDC responsibilities.

  11. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    NASA Technical Reports Server (NTRS)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  12. An integrated mission approach to the space exploration initiative will ensure success

    NASA Astrophysics Data System (ADS)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  13. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    NASA Astrophysics Data System (ADS)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  14. Stories of Success: Understanding Academic Achievement of Hispanic Students in Science

    NASA Astrophysics Data System (ADS)

    Harris, Amanda

    A review of the literature shows that there is much evidence to suggest the challenges facing Hispanic students in American public schools. Hispanic enrollment in K--12 public schools has increased from 6 to 19% in the last thirty years, yet schools have not made adequate adjustments to accommodate this changing population. Issues such as remedial tracking and cultural differences have led to low high school graduate rates for Hispanic students and inequities in schooling experiences (Gay, 2000). Particularly in the area of science, Hispanic students struggle with academic success (Cole & Espinoza, 2008). Despite these obstacles, some Hispanic students are academically successful (Rochin & Mello, 2007; Merisotis & Kee, 2006). This dissertation tells the stories of these Hispanic students who have been successful in science in secondary public schools. This study followed a grounded theory methodology and utilized individual interviews to collect data about Hispanics who have demonstrated achievement in the area of science. Through the analysis of these interviews, factors were identified which may have contributed to the success of these Hispanics in the field of science. Implications for future practice in public schools are also discussed.

  15. Self-esteem memories: feeling good about achievement success, feeling bad about relationship distress.

    PubMed

    Pillemer, David B; Ivcevic, Zorana; Gooze, Rachel A; Collins, Katherine A

    2007-09-01

    College students and middle-aged adults provided memories of occasions when they felt especially good or especially bad about themselves. Probes directed the memory search to several age intervals during childhood, adolescence, and adulthood. Predominant themes represented in self-esteem memories differed consistently as a function of emotional valence. Memories of positive self-worth frequently focused on achievement/mastery themes, whereas memories of negative self-worth frequently focused on interpersonal/affiliation themes. When people evaluate the self through the lens of autobiographical memory, interpersonal distress is portrayed as especially damaging and achievement success is portrayed as especially enhancing. The asymmetry between positive and negative self-esteem memories is explained using multiple theoretical perspectives within social and personality psychology.

  16. Collagenase Dupuytren Contracture: Achieving Single Treatment Success with a Hand Therapist-Based Protocol

    PubMed Central

    Malafa, Menyoli M.; Lehrman, Craig; Criley, Jerry W.

    2016-01-01

    Background: Surgery remains the gold standard in the treatment of Dupuytren contracture but is technically demanding, carries significant risk of complications, and requires prolonged recovery time. Collagenase injection is an efficacious alternative to surgery; however, contracture release often requires multiple treatments spaced a month apart. We report our experience with a new collagenase treatment protocol aimed to minimize the total treatment time per joint contracture. Methods: We performed a single institution retrospective review of patients with Dupuytren contracture treated with collagenase using our protocol from 2011 to 2013. Patients returned 24 hours after collagenase injection for cord manipulation by a certified hand therapist while under digital block. Treatment success was defined as reduction in contracture to 5 degrees or less. Successfully treated joints were evaluated for recurrence (>10 degrees contracture) at 30-day and 6-month follow-up appointments. Serious adverse events, including skin tears, were recorded. Results: Success was achieved in 36 of 47 treated joints (76.6%) after a single injection. There were 2 recurrences in 32 joints at 30-day follow-up (6.2%) and no recurrences in 17 joints available at 6-month follow-up. Skin tears were the only serious adverse event occurring in 18 of 47 cord ruptures (38.3%). All healed secondarily without complication. Conclusions: Our protocol preserves treatment efficacy while maximizing efficiency. Achieving successful cord rupture with a single injection allows earlier return of function, reduced cost of treatment, and increased convenience for the patient. Patients, particularly those with greater contractures, should be counseled regarding the risk of skin tear during cord manipulation. PMID:27014558

  17. Achievement goals, beliefs about the causes of success and reported emotion in post-16 physical education.

    PubMed

    Spray, C M; Biddle, S J; Fox, K R

    1999-03-01

    The main aim of this study was to examine whether goal orientations of male and female adolescents involved in an optional post-16 physical education (PE) programme were related in a conceptually consistent manner with their beliefs about the causes of success in PE. We also determined relationships between these achievement goal-belief dimensions and reported enjoyment and boredom within PE classes. Participants (n = 171) in a sixth-form college PE programme completed an inventory assessing their task and ego goal orientations, beliefs about the determinants of success in PE, and emotion in PE activities at college. Separate factor analyses of goal orientations and beliefs for male and female students revealed two goal-belief dimensions. The first dimension showed ego orientation was linked to the view that ability and deceptive tactics lead to success. The second dimension suggested task orientation was associated with the belief that success is the result of hard work and effort. This task goal-belief factor was found to be more strongly correlated with enjoyment in PE among female students than among males. For boys, the task goal-belief factor was correlated significantly and negatively with boredom in PE, but this was not the case for girls. No significant relationships emerged between the ego goal-belief factor and reported emotion in PE among the male and female participants. Facilitating task involvement and beliefs about causes of success that are fundamentally under personal control may, therefore, promote positive affective experiences in sixth-form PE, especially among female students.

  18. Magnetometer Data for the Ages: Achieving complete FGM instrument coverage of the multi-spacecraft Cluster mission (2000 to 2015+)

    NASA Astrophysics Data System (ADS)

    Alconcel, Leah-Nani; Fox, Peter; Colgan, Cary; Oddy, Tim; Brown, Patrick; Carr, Chris

    2016-04-01

    The calibrated dataset from the Cluster magnetometer instruments (FGMs) aboard the four Cluster spacecraft comprises an invaluable contribution to magnetospheric physics. It is also essential for the derivation of some datasets from other instruments, all of which have been made available through ESA's Cluster Science Archive (CSA). The FGM team at Imperial College - the PI institute that built and supports operation of the magnetometers - has regularly provided validated data to the CSA since its inception. Now that other multi-spacecraft missions such as the Magnetospheric Multiscale Mission (MMS) have come online, it will be possible to make inter-mission as well as inter-spacecraft comparisons. The FGM team hopes to enable those comparisons by delivering magnetic field data from periods when the Cluster spacecraft are not otherwise taking science telemetry. These periods are becoming more common as the spacecraft age. Accomplishing this would also achieve near-complete magnetic field coverage throughout the Cluster mission. Preparation of these data to archival standards raises unusual challenges to be discussed in this presentation.

  19. Quality improvement in diabetes--successful in achieving better care with hopes for prevention.

    PubMed

    Haw, J Sonya; Narayan, K M Venkat; Ali, Mohammed K

    2015-09-01

    Diabetes affects 29 million Americans and is associated with billions of dollars in health expenditures and lost productivity. Robust evidence has shown that lifestyle interventions in people at high risk for diabetes and comprehensive management of cardiometabolic risk factors like glucose, blood pressure, and lipids can delay the onset of diabetes and its complications, respectively. However, realizing the "triple aim" of better health, better care, and lower cost in diabetes has been hampered by low adoption of lifestyle interventions to prevent diabetes and poor achievement of care goals for those with diabetes. To achieve better care, a number of quality improvement (QI) strategies targeting the health system, healthcare providers, and/or patients have been evaluated in both controlled trials and real-world programs, and have shown some successes, though barriers still impede wider adoption, effectiveness, real-world feasibility, and scalability. Here, we summarize the effectiveness and cost-effectiveness data regarding QI strategies in diabetes care and discuss the potential role of quality monitoring and QI in trying to implement primary prevention of diabetes more widely and effectively. Over time, achieving better care and better health will likely help bend the ever-growing cost curve.

  20. Applying SE Methods Achieves Project Success to Evaluate Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock for Ethanol Production

    SciTech Connect

    Larry R. Zirker; Christopher T. Wright, PhD; R. Douglas Hamelin

    2008-06-01

    Applying basic systems engineering (SE) tools to the mission analysis phases of a 2.5-million dollar biomass pre-processing project for the U.S. Department of Energy directly assisted the project principal investigator understand the complexity and identify the gaps of a moving-target project and capture the undefined technical/functional requirements and deliverables from the project team and industrial partners. A creative application of various SE tools by non-aerospace systems engineers developed an innovative “big picture” product that combined aspects of mission analysis with a project functional flow block diagram, providing immediate understanding of the depth and breath of the biomass preprocessing effort for all team members, customers, and industrial partners. The “big picture” diagram became the blue print to write the project test plan, and provided direction to bring the project back on track and achieve project success.

  1. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  2. Donde Estan los Estudiantes Puertorriquenos/os Exitosos? [Where Are the Academically Successful Puerto Rican Students?]: Success Factors of High-Achieving Puerto Rican High School Students

    ERIC Educational Resources Information Center

    Antrop-Gonzalez, Rene; Velez, William; Garrett, Tomas

    2005-01-01

    This article describes the 4 success factors that 10 working class Puerto Rican urban high school students attributed to their high academic achievement. These success factors were (a) the acquisition of social capital through religiosity and participation in school and community-based extracurricular activities, (b) having a strong Puerto Rican…

  3. Guidelines for Successful Use and Communication of Instrument Heritage in Early Mission Development with a Focus on Spectrometers

    NASA Technical Reports Server (NTRS)

    Baker, Elizabeth E.

    2012-01-01

    Heritage is important for both cost and risk related issues and as such, it is heavily discussed in NASA proposal evaluations. If used and communicated efficiently, heritage can lower both the perception of risk and the associated costs. Definitions of heritage vary between engineering, cost, and scientific communities, but when applied appropriately, heritage provides a benefit to the proposed mission. By making an instrument at least once before, the cost of producing it again can be reduced. The time and effort needed to develop the instrument concept and test the product represent an expense that can be lowered through the use of a previously built and developed instrument. This same thought can be applied when using a flight spare or build-to-print model of the heritage instrument. The lowered perception of risk is a result of the confidence gained in the instrument through successful use in the target environment. This is extremely important in early mission development to the evaluation board. This analysis will use JPL-managed proposals from 2003 to 2011, including Discovery, New Frontiers, and Mars Scout missions. Through the examination of these proposals and their associated debriefs, a set of guidelines have been created for successful use and communication of instrument heritage in early mission development

  4. Achieving Success with the Research Domain Criteria (RDoC): Going beyond the Matrix

    PubMed Central

    Iacono, William G.

    2016-01-01

    Achieving Research Domain Criteria (RDoC) goals depends in part on how well scientists can grasp its principles and execute studies within its framework. Ford provides an exemplary illustration of a research program that aligns with RDoC guidelines. The future success of RDoC depends not just on research like that of Ford and colleagues. RDoC also must inspire the development of reliable neurobehavioral measures with demonstrable clinical validity that produce replicable findings leading to the establishment of neurocircuit-based behavioral dimensions that inform clinical work. Large samples not typically attainable in a clinical neuroscience laboratory or easily imagined within the confines of the RDoC matrix will be required if RDoC is to develop the insights and tools needed to establish incremental value over the DSM. Innovation that goes beyond reliance on the RDoC matrix and measures of neurocircuitry can help facilitate achievement of RDoC's goal of developing a science of psychopathology based on neurobiological systems. PMID:26877118

  5. Latina/o Student Achievement: A Collaborative Mission of Professional Associations of Higher Education

    ERIC Educational Resources Information Center

    Arredondo, Patricia; Castillo, Linda G.

    2011-01-01

    Latina/o student achievement is a priority for the American Association of Hispanics in Higher Education (AAHHE). To date, AAHHE has worked deliberately on this agenda. However, well-established higher education associations such as the Association of American Universities (AAU) and the Association of Public and Land-grant Universities (APLU) are…

  6. Technical Excellence and Communication, the Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Astrophysics Data System (ADS)

    Malone, Roy W.; Livingston, John M.

    2010-09-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center(MSFC) Safety and Mission Assurance(S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization’s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  7. Technical Excellence and Communication: The Cornerstones for Successful Safety and Mission Assurance Programs

    NASA Technical Reports Server (NTRS)

    Malone, Roy W.; Livingston, John M.

    2010-01-01

    The paper describes the role of technical excellence and communication in the development and maintenance of safety and mission assurance programs. The Marshall Space Flight Center (MSFC) Safety and Mission Assurance (S&MA) organization is used to illustrate philosophies and techniques that strengthen safety and mission assurance efforts and that contribute to healthy and effective organizational cultures. The events and conditions leading to the development of the MSFC S&MA organization are reviewed. Historic issues and concerns are identified. The adverse effects of resource limitations and risk assessment roles are discussed. The structure and functions of the core safety, reliability, and quality assurance functions are presented. The current organization s mission and vision commitments serve as the starting points for the description of the current organization. The goals and objectives are presented that address the criticisms of the predecessor organizations. Additional improvements are presented that address the development of technical excellence and the steps taken to improve communication within the Center, with program customers, and with other Agency S&MA organizations.

  8. The Nativity Mission Center: A Successful Approach to the Education of Latino Boys.

    ERIC Educational Resources Information Center

    Podsiadlo, John J.; Philliber, William W.

    2003-01-01

    Describes the Nativity Mission Center, a nonsectarian school for Latino boys in Manhattan, New York, which provides extended-day, extended-year education and strong graduate support for students who complete eighth grade and enter high school. Over 80 percent of graduates complete high school, 75 percent enter college, and 37 percent graduate with…

  9. Use of Virtual Mission Operations Center Technology to Achieve JPDO's Virtual Tower Vision

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2006-01-01

    The Joint Program Development Office has proposed that the Next Generation Air Transportation System (NGATS) consolidate control centers. NGATS would be managed from a few strategically located facilities with virtual towers and TRACONS. This consolidation is about combining the delivery locations for these services not about decreasing service. By consolidating these locations, cost savings in the order of $500 million have been projected. Evolving to spaced-based communication, navigation, and surveillance offers the opportunity to reduce or eliminate much of the ground-based infrastructure cost. Dynamically adjusted airspace offers the opportunity to reduce the number of sectors and boundary inconsistencies; eliminate or reduce "handoffs;" and eliminate the distinction between Towers, TRACONS, and Enroute Centers. To realize a consolidation vision for air traffic management there must be investment in networking. One technology that holds great potential is the use of Virtual Mission Operations Centers to provide secure, automated, intelligent management of the NGATS. This paper provides a conceptual framework for incorporating VMOC into the NGATS.

  10. [Surgical stabilization of multiple rib fractures successfully achieved with the use of long metalic plates].

    PubMed

    Tanaka, A; Sato, T; Osawa, H; Koyanagi, T; Maekawa, K; Watanabe, N; Nakase, A; Sakata, J; Kamada, K

    1998-05-01

    Surgical stabilization of multiple rib fractures in 5 male patients was successfully achieved with the use of orthopedic A-O metalic plates, which are called reconstruction plates. In each patient, we prevented deformity of the rib cage and flail chest which frequently occurs after multiple rib fractures. Three of these patients received emergency operations because of severe hemopneumothorax and flail chest due to crushing injuries to the chest. They were treated by the standard thoracotomy, hemostasis of intrapleural bleeding, and stabilization of fractured ribs with reconstruction plates, in addition two of the patients underwent a single lobectomy to control the pulmonary hemorrhage. Another two patients were treated with mechanical ventilation and closed-tube thoracotomy following the chest trauma because their thoracic bleeding from drainage tubes was tolerable. But flail chest and respiratory insufficiency did not improve, in spite of positive controlled ventilation as a mode of internal pneumatic stabilization. Then surgical stabilization of the fractured ribs with these plates was carried out ten to twelve days after the accidents in each case. All patients tolerated the surgical procedures well and were successfully removed from the respirator, demonstrating complete stability of the chest wall. The long metal reconstruction plates with many perforations were very useful for the external fixation of segmentary fractured ribs as an external brace. This was because they were long enough to cover the whole length of the fractured ribs and moderately soft enough to be appropriately bent or twisted by hand at the time of operation. Moreover a number of holes in it allowed the suture to pass through the plate and rib, avoiding displacement of the prosthesis. This is the first report which describes the usefulness of orthopedic reconstruction plates for the stabilization of multiple rib fractures.

  11. Qualitative research study of high-achieving females' life experiences impacting success

    NASA Astrophysics Data System (ADS)

    Butcher, Ann Patrice

    2003-07-01

    This qualitative study investigated the life experiences of five academically gifted female students in math and science in reflection of their elementary learning prior to enrollment at a prestigious science and mathematics high school. The elite high school limits admission to the state of Illinois' top students. The purpose of this study is to unfold the story of five academically gifted females in attendance at the elite high school reflecting on their life experiences in elementary school that contributed to their current academic success. Twelve female students, who at the time of this study were currently in their senior year (12th grade) of high school, were solicited from the top academic groups who are regarded by their teachers as highly successful in class. Students were selected as part of the study based on academic status, survey completion and interest in study, Caucasian and Asian ethnicity, locale of elementary school with preference given to the variety of school demographics---urban, suburban, and rural---further defined the group to the core group of five. All female participants were personally interviewed and communicated via Internet with the researcher. Parents and teachers completing surveys as well met the methodological requirements of triangulation. An emergent theme of paternal influence came from the research. Implications supported in the research drawn from this study to increase achievement of academically gifted females include: (a) proper early identification of learner strengths plays a role; (b) learning with appropriate intellectual peers is more important than learning with their age group; (c) teachers are the greatest force for excellent instruction; (d) effective teaching strategies include cooperative learning, multi-sensory learning, problem-based learning, and hands-on science; (e) rigor in math is important; (f) gender and stereotypes need not be barriers; (g) outside interests and activities are important for self

  12. Infantry Rifle Squad Operation Orders: Their Characteristics and Role in Mission Success

    DTIC Science & Technology

    1985-01-01

    Naylor & Dickinson, 1969; ShAflett, 1979; Sorenson, 1971; Steiner. 1972; Tuckman , 1967). Although these models vary in content and level of detail, most...C. - INTRODUCTION " Throughout much of the team/small group literature various models have been proposed to account. for team...of the mission --- movement to contact. The high *’"*i’, degree of leader-subordinate interaction (e.g.. teamwork , planning, "communication) required

  13. Trust: The Key to the Success of Mission Command in the Joint Force

    DTIC Science & Technology

    2015-05-18

    building trust in mission command, a significant priority must be placed on the system and those who educate. Clear priority will build trust in that...steps are taken to prioritize key educational positions. Top instructors facilitate the competence in trust, and the organizations clear priority to...distrust in the organization and the philosophy. A better- rounded and more competent officer developed in a rigorous education process can be more easily

  14. Using the Achieving Success Everyday (ASE) Group Model to Promote Self-Esteem and Academic Achievement for English as a Second Language (ESL) Students

    ERIC Educational Resources Information Center

    Shi, Qi; Steen, Sam

    2012-01-01

    The Achieving Success Everyday (ASE) group model is used to promote self-esteem and academic performance of English as a second language (ESL) students. The findings from the preliminary data indicated that the participants' self-esteem was significantly improved after participation in the group. There was no significant improvement in the total…

  15. Success for All/Exito Para Todos. Effects on the Reading Achievement of Students Acquiring English. Report No. 19.

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Madden, Nancy A.

    While it is important to improve the outcomes of bilingual and English-only reading instruction for English language learners at all grade levels, there is a particular need to see that students are successful in beginning to read in the early elementary grades. One program that has achieved a great deal of success in meeting this goal is called…

  16. The Determination of the Relationship between Academic Achievement in Nursing Courses and Success on the Registered Nurse Licensure Examination.

    ERIC Educational Resources Information Center

    Millican, Julie E.

    The objective of a study was to determine if academic achievement in nursing courses could be used to predict success on the National Council Licensure Examination for Registered Nurses (NCLEX-RN). It investigated the relationship between NCLEX outcomes and academic achievement in theory and clinical courses and the relationship between NCLEX…

  17. The Importance of Need and Success in Motivating Students to Achieve.

    ERIC Educational Resources Information Center

    Bradford, Ronald W.

    1981-01-01

    Teachers can help students become successful if they help students work on the six factors related to success: need, self-esteem, ability, goals, a plan of action, and commitment to the plan of action. (Author/IRT)

  18. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    , solar emission. Dust analyzer instrument PmL for future Russian lander missions intends for investigation the dynamics of dusty plasma near lunar surface. PmL consists of three parts in the case of Luna-Glob: Impact Sensor and two Electric Field Sensors (EFC). There are 9 parts of PmL instrument for Luna-Resource mission: two Impact Sensors, 5 EFC (three on the Boom and two on the lander) and 2 Solar Wind and Dust Analyzers. These days the engineering model of PmL for LG-mission is finished. We obtained first practical results from the simulating chambers with dust particles injectors and plasma inside. All the important achievements are presented in this report as well as the roadmap for further development of PmL instruments in both of Russian lunar missions.

  19. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave

  20. Effectiveness of the Student Success Course on Persistence, Retention, Academic Achievement, and Student Engagement

    ERIC Educational Resources Information Center

    Kimbark, Kris; Peters, Michelle L.; Richardson, Tim

    2017-01-01

    Despite a great increase in the numbers of students enrolling in higher education, specifically at community colleges, the successful completion rates for these students has remained static since the 1970s. When reviewing strategies to increase student retention and successful completion, the Student Success Course (SSC) has emerged as a promising…

  1. Closing the Achievement Gap: Oregon's Plan for Success for All Students

    ERIC Educational Resources Information Center

    Oregon Department of Education, 2005

    2005-01-01

    Susan Castillo, Superintendent of Public Instruction in Oregon, named closing the achievement gap as a top instructional priority in Oregon. Superintendent Castillo notes three aspects to the achievement gap: (1) Performance gap: The discrepancies between the educational achievement and performance of students of diverse races, ethnicities, income…

  2. Research Considerations and Theoretical Application for Best Practices in Higher Education: Latina/os Achieving Success

    ERIC Educational Resources Information Center

    Castellanos, Jeanett; Gloria, Alberta M.

    2007-01-01

    In this work, the authors take a critical look at what general measures of success do and do not disclose about the Latina/o experience in higher education and use that assessment to set forth a reconceptualization of the elements of success within a psychosociocultural (PSC) framework. Using "dichos," or widely used sayings of wisdom…

  3. Most Likely to Achieve: Predicting Early Success of the Practical Nurse Student

    ERIC Educational Resources Information Center

    Cline, April P.

    2013-01-01

    It is important that practical nurse (PN) educators be able to identify which students are likely to be successful in their programs. However, the majority of literature related to predicting success of nursing students has been done on baccalaureate nursing students in the university setting. This study sought to determine whether the same…

  4. Black Hegemony, a Significant Influence in the School Success of High-Achieving African Americans.

    ERIC Educational Resources Information Center

    Murphy, Jean C.

    This is an interpretive study of the influence of Black Hegemony on the academic success of three successful African Americans: Clifton L. Taulbert, Henry Louis Gates, Jr., and Margaret Morgan Lawrence. All three spent their youth in southern communities strongly influenced by Jim Crow laws and customs, and their academic accomplishments were…

  5. Successful Girls? Complicating Post-Feminist, Neoliberal Discourses of Educational Achievement and Gender Equality

    ERIC Educational Resources Information Center

    Ringrose, Jessica

    2007-01-01

    This paper examines how an ongoing educational panic over failing boys has contributed to a new celebratory discourse about successful girls. Rather than conceive of this shift as an anti-feminist feminist backlash, the paper examines how the successful girl discourse is postfeminist, and how liberal feminist theory has contributed to narrowly…

  6. Mind the Gaps: How College Readiness Narrows Achievement Gaps in College Success

    ERIC Educational Resources Information Center

    ACT, Inc., 2010

    2010-01-01

    This report discusses factors that contribute to lower college success rates among underrepresented racial/ethnic minority students and students from lower-income families. The report also shows that "racial/ethnic and family income gaps in college success rates narrow substantially among students who are ready for college." Everyone needs to…

  7. High-school predictors of university achievement: Youths' self-reported relationships with parents, beliefs about success, and university aspirations.

    PubMed

    Kay, Joseph S; Shane, Jacob; Heckhausen, Jutta

    2016-12-01

    Associations between youths' reported relationships with their parents, beliefs about how success is attained, educational aspirations, and university completion were examined. Data come from the German Socioeconomic Panel. At age 17, youth (n = 3284) reported on their relationships with their parents, beliefs about success, and educational aspirations. University completion was assessed up to eight years later. At age 17, perceptions of parental warmth and interest in youths' academics were associated with beliefs that success is due to merit (positively) and that success is due to external factors or dominance over others (negatively). Beliefs that success is due to merit and external factors were associated with educational aspirations positively and negatively respectively. Educational aspirations positively predicted university completion up to eight years later. Relationships with parents had stronger associations with achievement when parents completed a university degree; beliefs about success had stronger associations with aspirations when parents did not.

  8. Achieving a Doctorate: Metalearning and Research Development Programmes Supporting Success for International Distance Students

    ERIC Educational Resources Information Center

    Wisker, Gina; Robinson, Gillian; Trafford, Vernon; Lilly, Jaki; Warnes, Mark

    2004-01-01

    Most studies on metalearning and metacognition have focused on undergraduates where reflective and active awareness of learning practices and achievements, or metalearning, has been seen to be useful, indeed essential for the learning achievement of undergraduates (Biggs et al., 2001; Veenman & Verheig, 2003). This paper reports on the latest…

  9. Literacy Achievement and Diversity: Keys to Success for Students, Teachers, and Schools. Multicultural Education Series

    ERIC Educational Resources Information Center

    Au, Kathryn H.

    2011-01-01

    "Literacy Achievement and Diversity" is the indispensable collection to the wisdom of respected literacy researcher Kathy Au. In this timely book, Au addresses the question of what educators can do to close the literacy achievement gap. She begins by outlining theory and research and then provides practical strategies to help teachers improve the…

  10. Relations between Personality Traits, Language Learning Styles and Success in Foreign Language Achievement

    ERIC Educational Resources Information Center

    Erton, Ismail

    2010-01-01

    The purpose of this paper is to show that the reflections of different personality types can be observed in students' developing different learning styles for themselves. It is hypothesized that personality may be a dominant factor in achieving the educational goals through several learning styles in foreign language achievement. To clarify this…

  11. The Rosetta mission

    NASA Astrophysics Data System (ADS)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  12. Failure Is Not Final: Leaders Can Rebound and Achieve Future Success

    DTIC Science & Technology

    2008-05-01

    have overcome failure to forge greater successes. The author, while writing tIns paper, refers to leaders as gender neutral, defaulting to the male sex ...education by devouring books on wide-ranging subjects. During his stay in the sma1125-fami1y town ofNew Salem, Lincoln made the acquaintance of Ann ...his early combat engagements. While Grant was experiencing professional success in the Mexican War, he was also aggressively courting Julia Dent before

  13. Mission impossible: upholding successfully a charge of infanticide in the Albanian legal practice

    PubMed Central

    Myftari, Kreshnik; Vyshka, Gentian

    2014-01-01

    Infanticide is a horrendous crime universally condemned from all ethical, juridical and moral standpoints. However, legislation on infanticide foresees mitigating circumstances for infanticidal mothers, with sentences by far disproportionate to the severity of the crime. The main justification for this abstaining from severe punishments has been the so-called post puerperal psychosis, whose diagnostic criteria and existence are still very confusing. Psychiatric experts and even jurors show excessive feelings of empathy toward defendant mothers, and fair verdicts under this setting and with this judicial tradition are questionable. Albanian courts have in some cases even denied defendant mothers the unwilling albeit necessary psychiatric treatment, thus exposing them to recidivism and to other social difficulties. Upholding the charge of infanticide in an Albanian court is hereby an impossible enterprise, with high chances for defendants to achieve acquittal on mental insanity grounds. Through describing three cases of infanticide and filicide in recent years of Albanian judicial proceedings, authors raise the concern formulated from other sources regarding the excessive empathy surrounding infanticidal mothers, a deleterious obstacle toward achieving justice. PMID:25512825

  14. School Success and Professional Achievement of Three Women of Serbian-Rom, Italian-Sinti and Albanian-Ashkali Origin

    ERIC Educational Resources Information Center

    Bolognesi, Ivana

    2010-01-01

    The following study, conducted in Italy, based on an analysis of the school biographies of three women of Roma, Sinti and Ashkali origin, highlights paths and educational contexts that lead young Roma not only to school success but also to professional achievement. What emerges from the accounts of the family lives and school histories of these…

  15. Helping Middle School Girls at Risk for School Failure Recover Their Confidence and Achieve School Success: An Experimental Study

    ERIC Educational Resources Information Center

    Mann, Michael J.

    2013-01-01

    Middle school girls who are at risk have experienced a disproportionate number of intense and disruptive traumatic life events. Such events can adversely affect healthy development and often contribute to higher levels of school failure and problem behavior. Few programs focus on helping at-risk middle school girls achieve school success through…

  16. Examining the Role, Values, and Legal Policy Issues Facing Public Library Resources in Supporting Students to Achieve Academic Success

    ERIC Educational Resources Information Center

    Achinewhu-Nworgu, Elizabeth; Azaiki, Steve; Nworgu, Queen Chioma

    2016-01-01

    This paper aims to present the role, values, and legal policy issues facing public Library resources in supporting students to achieve academic success. Research indicates that majority of people that own or work in the Library tend to ignore some of the vital roles, values and legal policy issues paramount to libraries. Some of these issues are…

  17. Evaluation of Achieving Collegiate Excellence and Success Program: Student Outcomes Year One, Grades 11 and 12. Evaluation Brief

    ERIC Educational Resources Information Center

    Wolanin, Natalie; Modarresi, Shahpar

    2015-01-01

    The Office of Shared Accountability in Montgomery County (Maryland) Public Schools (MCPS) is conducting a multiyear evaluation of the "Achieving Collegiate Excellence and Success" (ACES) program. ACES is a collaboration between MCPS, Montgomery College (MC), and the Universities at Shady Grove (USG) to create a seamless pathway from high…

  18. Differential Validity and Utility of Successive and Simultaneous Approaches to the Development of Equivalent Achievement Tests in French and English

    ERIC Educational Resources Information Center

    Rogers, W. Todd; Gierl, Mark J.; Tardif, Claudette; Lin, Jie; Rinaldi, Christina

    2003-01-01

    Described in this paper are the first three activities of a research program designed to assess the differential validity and utility of successive and simultaneous approaches to the development of equivalent achievement tests in the French and English languages. Two teams of multilingual/multicultural French-English teachers used the simultaneous…

  19. The Experience of First-Year African American Male College Students Who Did Not Achieve Academic Success: Case Study

    ERIC Educational Resources Information Center

    Haywood, Jerry L.

    2012-01-01

    The goal of this study was to examine the experience of African American males who did not achieve academic success in their first year of college at a predominately White institution (PWI) in Southwestern Georgia. This study used a qualitative case study design to investigate the experience held by this target group. The qualitative case study…

  20. Guide to Success for Organisations in Achieving Employment Outcomes for Aboriginal and Torres Strait Islander People

    ERIC Educational Resources Information Center

    Giddy, Kristine; Lopez, Jessica; Redman, Anne

    2009-01-01

    Helping Aboriginal and Torres Strait Islander job-seekers find and keep a job has been the focus of recent reforms announced by the Australian Government. This guide describes seven essential characteristics of employment service organisations that lead to successful employment outcomes for their Indigenous clients. Based on a selection of…

  1. Research Considerations and Theoretical Application for Best Practices in Higher Education: Latina/os Achieving Success

    ERIC Educational Resources Information Center

    Castellanos, Jeanett; Gloria, Alberta M.

    2007-01-01

    This scholarly article addresses the Latina/o undergraduate experiences proposing a (re)definition of educational success. Discussing strength-based practices of "familia", mentorship, cultural congruity, and professional development from a psychosociocultural (PSC) approach, the article presents practical recommendations and directions for…

  2. Gender Differences in Planning, Attention, Simultaneous, and Successive (PASS) Cognitive Processes and Achievement.

    ERIC Educational Resources Information Center

    Naglieri, Jack A.; Rojahn, Johannes

    2001-01-01

    Examined 1,100 boys and 1,100 girls who matched the U.S. population using the Planning, Attention, Simultaneous, Successive (PASS) cognitive-processing theory, built on the neuropsychological work of A.R. Luria (1973). Results illustrate that the PASS theory offers a useful way to examine gender differences in cognitive performance. (BF)

  3. The Interplay between Educational Achievement, Occupational Success, and Well-Being

    ERIC Educational Resources Information Center

    Samuel, Robin; Bergman, Manfred Max; Hupka-Brunner, Sandra

    2013-01-01

    Many studies have examined the effect of life events, education, and income on well-being. Conversely, research concerning well-being as a predictor of life course outcomes is sparse. Diener's suggestion "to inquire about the effects of well-being on future behavior and success" has, with some exceptions, not yet come to fruition. This…

  4. Investigating Leadership Practices in Successful Schools Serving ELA Learners with a Focus on Mathematics Achievement

    ERIC Educational Resources Information Center

    Holloway, Susan

    2013-01-01

    This study defines and analyzes the successful leadership practice of a principal of an urban K-8 school serving English Language Learners in the western United States during the 2012-2013 academic year. Focusing on the self-identified leadership practice of a school leader evidenced to positively affect student learning, this study seeks to…

  5. Transformation and School Success: The Politics and Culture of Educational Achievement.

    ERIC Educational Resources Information Center

    Erickson, Frederick

    1987-01-01

    Explanations for the low school performance of minority children are critiqued. When these explanations are considered in light of social theory, it can be seen how the legitimacy of schools and teachers are factors in school success. A new, more culturally responsive pedagogy is necessary. (VM)

  6. Academic Persistence and Achievement of Remedial Students in a Community College's Success Program.

    ERIC Educational Resources Information Center

    Grunder, Patricia G.; Hellmich, David M.

    1996-01-01

    Assesses the effectiveness of Santa Fe Community College's "College Success Program" by looking at the academic performance of remedial students who participated in the program as freshmen. Findings indicate that the program decreased the course failure rate for African-American and female students, and increased grade-point average for…

  7. Achieving the Dream: A Look at Hispanic Student Success at Community Colleges in Texas

    ERIC Educational Resources Information Center

    Williams, Audrey R.

    2013-01-01

    In the last decade, higher education institutions have come under attack for their inability to enhance graduation rates. Although community colleges are known for their open-door enrollment policy, they are currently challenged to improve student success. This study was designed to determine which strategies have been most effective in…

  8. Examining the Success Factors of High-Achieving Puerto Rican Male High-School Students

    ERIC Educational Resources Information Center

    Garrett, Tomas; Antrop-Gonzalez, Rene; Velez, William

    2010-01-01

    This article works to dispel the myth that Latino urban high-school students are not capable of performing at high academic levels. Whereas much educational research emphasizes the academic underachievement of urban Latino students, this article counteracts this research by describing the four success factors that three working-class Puerto Rican…

  9. High Enrollment Course Success Factors in Virtual School: Factors Influencing Student Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Feng; Cavanaugh, Cathy

    2011-01-01

    This paper describes a study of success factors in high enrollment courses in a K-12 virtual school learning environment. The influence of variables: time student spent in the learning management system (LMS), number of times logged into the LMS, teacher comment, participation in free or reduced lunch programs, student status in the virtual school…

  10. The Chang'E-1 orbiter plays a distinctive role in China's first successful selenodetic lunar mission

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Su, Xiaoli; Huang, Qian; Yan, Jianguo

    2011-12-01

    The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang'E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang'E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang'E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang'E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang'E-1 selenodetic data.

  11. Sustaining Success toward Closing the Achievement Gap: A Case Study of One Urban High School

    ERIC Educational Resources Information Center

    Cabrera, Kimberly Elizabeth

    2010-01-01

    Since the introduction of the Coleman Report (1966), the focus on closing the achievement gap has been a critical component of educational policy for political leaders and field research by educators. The economic crisis which California and the nation at large currently face creates a challenging situation in attempting to narrow the gap.…

  12. Saving for Success: Financial Education and Savings Goal Achievement in Individual Development Accounts

    ERIC Educational Resources Information Center

    Grinstead, Mary L.; Mauldin, Teresa; Sabia, Joseph J.; Koonce, Joan; Palmer, Lance

    2011-01-01

    Using microdata from the American Dream Demonstration, the current study examines factors associated with savings and savings goal achievement (indicated by a matched withdrawal) among participants of individual development account (IDA) programs. Multinomial logit results show that hours of participation in financial education programs, higher…

  13. School Counseling to Close the Achievement Gap: A Social Justice Framework for Success

    ERIC Educational Resources Information Center

    Holcomb-McCoy, Cheryl

    2007-01-01

    School counselors can play a powerful role in closing the achievement gap when they incorporate the principles of social justice into their practice. In this much-needed resource for preservice and inservice counselors, the author addresses factors (such as racism, sexism, heterosexism, and classism) that can contribute to academic failure, and…

  14. Strategies for Success: Links to Increased Mathematics Achievement Scores of English-Language Learners

    ERIC Educational Resources Information Center

    Pray, Lisa; Ilieva, Vessela

    2011-01-01

    This research investigates the link between mathematic teachers' use of English-language learner (ELL) strategies and the mathematics achievement of their students who are ELLs. Interviews and observations of mathematic teachers who taught ELLs were used to document instructional strategies use. The findings from the interviews and observations…

  15. The Achievement Gap among Newcomer Immigrant Adolescents: Life Stressors Hinder Latina/o Academic Success

    ERIC Educational Resources Information Center

    Patel, Sita G.; Barrera, Alinne Z.; Strambler, Michael J.; Muñoz, Ricardo F.; Macciomei, Erynn

    2016-01-01

    This study compares life stressors and school outcomes among newcomer immigrant adolescents from Latin America, Asia, and the Caribbean. Participants attended a predominantly low-income, urban international public high school in the northeast. The Latina/o students were exposed to more life stressors and had lower attendance and achievement than…

  16. Predicting Student Success on the Third Grade Reading Achievement Assessment in Ohio

    ERIC Educational Resources Information Center

    Cramer, Todd M.

    2010-01-01

    Since the passage of the first Elementary and Secondary Education Act in 1965, increasing reading achievement for all students has been a focus for our nation. Unfortunately, our country still has over 30 million citizens who are illiterate (Mukherjee, 2007). One of the challenges for schools is to accurately identify students in need of early…

  17. The Interplay of Orthodontics, Periodontics, and Restorative Dentistry to Achieve Aesthetic and Functional Success.

    PubMed

    Trushkowsky, Richard D; Alsadah, Zainab; Brea, Luis M; Oquendo, Anabella

    2015-07-01

    Previously dentists focused on repair and maintenance of function. However, the emphasis of many patients and dentists is now on esthetics. Often there is a need for the disciplines of orthodontics, periodontics, restorative dentistry, and maxillofacial surgery to work together in order to achieve optimum results. Currently the sequencing planning process begins with esthetics and then function, structure, and ultimately biology.

  18. SAIL--A Way to Success and Independence for Low-Achieving Readers.

    ERIC Educational Resources Information Center

    Bergman, Janet L.

    1992-01-01

    Argues that providing students with a repertoire of important learning strategies is one crucial way of helping all students to become independent readers, thinkers, and learners. Describes a third grade reading environment and the practices of the Students Achievement Independent Learning Program (SAIL). (PRA)

  19. Preadmission Academic Achievement Criteria as Predictors of Nursing Program Completion and NCLEX-RN Success

    ERIC Educational Resources Information Center

    Rogers, Tanya L.

    2009-01-01

    Admission policies and practices in higher education, including those in nursing programs, are diverse; yet administrators have traditionally relied upon preadmission academic achievement for selection of qualified students. Higher education administrators have the responsibility to serve the institution and all of its constituents, ensuring that…

  20. Leveraging Quality Improvement to Achieve Student Learning Assessment Success in Higher Education

    ERIC Educational Resources Information Center

    Glenn, Nancy Gentry

    2009-01-01

    Mounting pressure for transformational change in higher education driven by technology, globalization, competition, funding shortages, and increased emphasis on accountability necessitates that universities implement reforms to demonstrate responsiveness to all stakeholders and to provide evidence of student achievement. In the face of the demand…

  1. Urban Professional Development Working to Create Successful Teachers and Achieving Students

    ERIC Educational Resources Information Center

    Yost, Deborah S.; Vogel, Robert

    2007-01-01

    With the advent of No Child Left Behind Act of 2001, schools are being held accountable for measurable increases in student academic achievement as evidenced by performance on standardized tests. This movement has significant implications for the professional development of teachers who are ultimately responsible for ensuring that their…

  2. Lessons in Literacy: Case Studies of Successful Strategies for Raising Achievement in Multilingual Schools.

    ERIC Educational Resources Information Center

    Campbell, Bernard, Ed.

    The group of case studies details ways in which elementary, middle, and secondary schools in Bradford (England) have responded to recent developments in literacy education and developed whole- school approaches to improving achievement in literacy within multilingual school populations. Case study titles include: "The Literacy Lesson: A…

  3. Marked for Success: Secondary School Performance and University Achievement in Biology

    ERIC Educational Resources Information Center

    Comer, Keith; Broght, Erik; Sampson, Kaylene

    2011-01-01

    Building on Shulruf, Hattie and Tumen (2008), this work examines the capacity of various National Certificate in Educational Achievement (NCEA)-derived models to predict first-year performance in Biological Sciences at a New Zealand university. We compared three models: (1) the "best-80" indicator as used by several New Zealand…

  4. Closing the Achievement Gap: Principles for Improving the Educational Success of All Students. ERIC Digest.

    ERIC Educational Resources Information Center

    Schwartz, Wendy

    This digest reviews educational policies and practices that have been proven effective in closing the achievement gap, offering a list of resources with detailed information about them. The digest focuses on state and district roles (e.g., developing and implementing educational goals, rigorous standards, and accountability standards and providing…

  5. A mentoring program to help junior faculty members achieve scholarship success.

    PubMed

    Kohn, Harold

    2014-03-12

    The University of North Carolina Eshelman School of Pharmacy launched the Bill and Karen Campbell Faculty Mentoring Program (CMP) in 2006 to support scholarship-intensive junior faculty members. This report describes the origin, expectations, principles, and best practices that led to the introduction of the program, reviews the operational methods chosen for its implementation, provides information about its successes, and analyzes its strengths and limitations.

  6. Reducing the Risk and Improving Mission Success for NASA's Human Mission to a Near-Earth Asteroid: How Many Robotic Surveyors?

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2011-01-01

    NASA's recent attention and interest in sending a human mission to land on a Near-Earth asteroid raises the question of need for a robotic surveyor. This paper describes a Bayesian approach for comparing the productivity and cost-risk tradeoffs of sending (versus not sending) one or more robotic surveyor missions prior to a human mission to land on an asteroid. The probability of finding an asteroid suitable for landing was derived from an analysis of more than 1200 asteroids in order to define a quantitative estimate of suitability. The low cost of the surveyors relative to the human mission underlined the multi-surveyor strategy as relatively inexpensive insurance against the risks of encountering an unsuitable asteroid for landing on arrival by a human mission.

  7. Recipe for Success: An Updated Parents' Guide to Improving Colorado Schools and Student Achievement. Second Edition.

    ERIC Educational Resources Information Center

    Taher, Bonnie; Durr, Pamela

    This guide describes ways that parents can help improve student achievement and school quality. It answers such questions as how to choose the right early-education opportunity for a preschooler, how to make sure a 5-year-old is ready for school, how to help a daughter do well in school, how to work with a daughter's or son's teachers, how to help…

  8. Mismatched partners that achieve postpairing behavioral similarity improve their reproductive success

    PubMed Central

    Laubu, Chloé; Dechaume-Moncharmont, François-Xavier; Motreuil, Sébastien; Schweitzer, Cécile

    2016-01-01

    Behavioral similarity between partners is likely to promote within-pair compatibility and to result in better reproductive success. Therefore, individuals are expected to choose a partner that is alike in behavioral type. However, mate searching is very costly and does not guarantee finding a matching partner. If mismatched individuals pair, they may benefit from increasing their similarity after pairing. We show in a monogamous fish species—the convict cichlid—that the behavioral similarity between mismatched partners can increase after pairing. This increase resulted from asymmetrical adjustment because only the reactive individual became more alike its proactive partner, whereas the latter did not change its behavior. The mismatched pairs that increased their similarity not only improved their reproductive success but also raised it up to the level of matched pairs. While most studies assume that assortative mating results from mate choice, our study suggests that postpairing adjustment could be an alternative explanation for the high behavioral similarity between partners observed in the field. It also explains why interindividual behavioral differences can be maintained within a given population. PMID:26973869

  9. Career inflection points of women who successfully achieved the hospital CEO position.

    PubMed

    Sexton, Donald W; Lemak, Christy Harris; Wainio, Joyce Anne

    2014-01-01

    Women are significantly underrepresented in hospital CEO positions, and this gender disparity has changed little over the past few decades. The purpose of this study was to analyze the career trajectories of successful female healthcare executives to determine factors that generated inflections in their careers. Using qualitative research methodology, we studied the career trajectories of 20 women who successfully ascended into a hospital CEO position. Our findings revealed 25 inflection points related to education and training, experience, career management, family, networking, and mentorship and sponsorship. We found substantial differences in the career inflection points by functional background. Inflections were more pronounced early in the careers of women in healthcare management, while clinical and administrative support executives experienced more inflections later as they took on responsibilities outside of their professional roles. Only two inflections were common among all the executives: completing a graduate degree and obtaining experience as a chief operating officer. More importantly, our findings show that organizational support factors are critical for the career advancement of women. We conclude with recommendations for individuals in an effort to enhance their career trajectories. We also provide recommended activities for organizations to support the careers of women in healthcare leadership.

  10. The Development of Computational Biology in South Africa: Successes Achieved and Lessons Learnt

    PubMed Central

    Mulder, Nicola J.; Christoffels, Alan; de Oliveira, Tulio; Gamieldien, Junaid; Hazelhurst, Scott; Joubert, Fourie; Kumuthini, Judit; Pillay, Ché S.; Snoep, Jacky L.; Tastan Bishop, Özlem; Tiffin, Nicki

    2016-01-01

    Bioinformatics is now a critical skill in many research and commercial environments as biological data are increasing in both size and complexity. South African researchers recognized this need in the mid-1990s and responded by working with the government as well as international bodies to develop initiatives to build bioinformatics capacity in the country. Significant injections of support from these bodies provided a springboard for the establishment of computational biology units at multiple universities throughout the country, which took on teaching, basic research and support roles. Several challenges were encountered, for example with unreliability of funding, lack of skills, and lack of infrastructure. However, the bioinformatics community worked together to overcome these, and South Africa is now arguably the leading country in bioinformatics on the African continent. Here we discuss how the discipline developed in the country, highlighting the challenges, successes, and lessons learnt. PMID:26845152

  11. The Development of Computational Biology in South Africa: Successes Achieved and Lessons Learnt.

    PubMed

    Mulder, Nicola J; Christoffels, Alan; de Oliveira, Tulio; Gamieldien, Junaid; Hazelhurst, Scott; Joubert, Fourie; Kumuthini, Judit; Pillay, Ché S; Snoep, Jacky L; Tastan Bishop, Özlem; Tiffin, Nicki

    2016-02-01

    Bioinformatics is now a critical skill in many research and commercial environments as biological data are increasing in both size and complexity. South African researchers recognized this need in the mid-1990s and responded by working with the government as well as international bodies to develop initiatives to build bioinformatics capacity in the country. Significant injections of support from these bodies provided a springboard for the establishment of computational biology units at multiple universities throughout the country, which took on teaching, basic research and support roles. Several challenges were encountered, for example with unreliability of funding, lack of skills, and lack of infrastructure. However, the bioinformatics community worked together to overcome these, and South Africa is now arguably the leading country in bioinformatics on the African continent. Here we discuss how the discipline developed in the country, highlighting the challenges, successes, and lessons learnt.

  12. Evaluation of pollutants removal efficiency to achieve successful urban river restoration.

    PubMed

    Cha, Sung Min; Ham, Young Sik; Ki, Seo Jin; Lee, Seung Won; Cho, Kyung Hwa; Park, Yongeun; Kim, Joon Ha

    2009-01-01

    Greater efforts to provide alternative scenarios are key to successful urban stream restoration planning. In this study, we discuss two different aspects of water quality management schemes, biodegradation and human health, which are incorporated in the restoration project of original, pristine condition of urban stream at the Gwangju (GJ) Stream, Korea. For this study, monthly monitoring of biochemical oxygen demand (BOD(5)) and fecal indicator bacteria (FIB) data were obtained from 2003 to 2008 and for 2008, respectively, and these were evaluated to explore pollutant magnitude and variation with respect to space and time window. Ideal scenarios to reduce target pollutants were determined based on their seasonal characteristics and correlations between the concentrations at a water intake and discharge point, where we suggested an increase of environmental flow and wetland as pollutants reduction drawing for BOD(5) and FIB, respectively. The scenarios were separately examined by the Qual2E model and hypothetically (but planned) constructed wetland, respectively. The results revealed that while controlling of the water quality at the intake point guaranteed the lower pollution level of BOD(5) in the GJ Stream, a wetland constructed at the discharge point may be a promising strategy to mitigate mass loads of FIB. Overall, this study suggests that a combination of the two can be plausible scenarios not only to support sustainable urban water resources management, but to enhance a quality of urban stream restoration assignment.

  13. How to successfully achieve salt restriction in dialysis patients? What are the outcomes?

    PubMed

    Ok, Ercan

    2010-01-01

    Despite the fact that dietary salt restriction is the most logical measure to prevent accumulation of salt and water in patients without renal function, it is not applied in most dialysis centers. In this review, the reasons for this unlucky development are analyzed. First, it appears that many dialysis patients are slightly overhydrated, but this is often not noticed and, if so, the deleterious effects in the long run are not appreciated. These consist not only of 'drug-resistant' hypertension, but also dilatation of the cardiac compartments leading to preventable cardiovascular events. Second, there are practical reasons why salt restriction is neglected. It is very difficult to buy salt-poor food. Salt consumption is an addiction, which can be overcome, but time and efforts are needed to achieve that. Suggestions are made how to reach that goal. Finally, examples are given how cardiac damage (often considered irreversible) can be improved or even cured by a 'volume control' strategy, whose crucial part is serious salt restriction.

  14. Achieving success: assessing the role of and building a business case for technology in healthcare.

    PubMed

    Neumann, C L; Blouin, A S; Byrne, E M

    1999-01-01

    As the healthcare market continues to evolve, technology will play an increasingly important role in an integrated delivery system's ability to provide high-quality, cost-effective care. Healthcare leaders must be proactive and forward thinking about their technology investments. The financial investment for technology innovation can be significant. Therefore, it is important that healthcare executives deliberately design the role of technology and develop a consistent method for evaluating, identifying, and prioritizing technology investments. The article begins by describing technology's role in a healthcare organization as a window to the organization, a key driver of business strategy, and a high-performance enabler, and it develops a seven-step process for building a business case to ensure that an organization's technology investments are wise, well-reasoned, and will provide value to its customers. In addition, the article discusses the importance of combining people and process reengineering with new technology to exponentially increase the value to an organization. Healthcare leaders must understand the multiple roles of technology and consistently develop a business case when making technology investment decisions. Organizations driven by such an understanding will have a robust infrastructure of enabling technology designed to integrate people and process elements with technology to achieve the goals and initiatives of the organization. These organizations will lead the healthcare industry into the next millennium.

  15. Perceived Academic Control and Academic Emotions Predict Undergraduate University Student Success: Examining Effects on Dropout Intention and Achievement.

    PubMed

    Respondek, Lisa; Seufert, Tina; Stupnisky, Robert; Nett, Ulrike E

    2017-01-01

    The present study addressed concerns over the high risk of university students' academic failure. It examined how perceived academic control and academic emotions predict undergraduate students' academic success, conceptualized as both low dropout intention and high achievement (indicated by GPA). A cross-sectional survey was administered to 883 undergraduate students across all disciplines of a German STEM orientated university. The study additionally compared freshman students (N = 597) vs. second-year students (N = 286). Using structural equation modeling, for the overall sample of undergraduate students we found that perceived academic control positively predicted enjoyment and achievement, as well as negatively predicted boredom and anxiety. The prediction of dropout intention by perceived academic control was fully mediated via anxiety. When taking perceived academic control into account, we found no specific impact of enjoyment or boredom on the intention to dropout and no specific impact of all three academic emotions on achievement. The multi-group analysis showed, however, that perceived academic control, enjoyment, and boredom among second-year students had a direct relationship with dropout intention. A major contribution of the present study was demonstrating the important roles of perceived academic control and anxiety in undergraduate students' academic success. Concerning corresponding institutional support and future research, the results suggested distinguishing incoming from advanced undergraduate students.

  16. Perceived Academic Control and Academic Emotions Predict Undergraduate University Student Success: Examining Effects on Dropout Intention and Achievement

    PubMed Central

    Respondek, Lisa; Seufert, Tina; Stupnisky, Robert; Nett, Ulrike E.

    2017-01-01

    The present study addressed concerns over the high risk of university students' academic failure. It examined how perceived academic control and academic emotions predict undergraduate students' academic success, conceptualized as both low dropout intention and high achievement (indicated by GPA). A cross-sectional survey was administered to 883 undergraduate students across all disciplines of a German STEM orientated university. The study additionally compared freshman students (N = 597) vs. second-year students (N = 286). Using structural equation modeling, for the overall sample of undergraduate students we found that perceived academic control positively predicted enjoyment and achievement, as well as negatively predicted boredom and anxiety. The prediction of dropout intention by perceived academic control was fully mediated via anxiety. When taking perceived academic control into account, we found no specific impact of enjoyment or boredom on the intention to dropout and no specific impact of all three academic emotions on achievement. The multi-group analysis showed, however, that perceived academic control, enjoyment, and boredom among second-year students had a direct relationship with dropout intention. A major contribution of the present study was demonstrating the important roles of perceived academic control and anxiety in undergraduate students' academic success. Concerning corresponding institutional support and future research, the results suggested distinguishing incoming from advanced undergraduate students. PMID:28326043

  17. Achievability for telerobotic systems

    NASA Astrophysics Data System (ADS)

    Kress, Reid L.; Draper, John V.; Hamel, William R.

    2001-02-01

    Methods are needed to improve the capabilities of autonomous robots to perform tasks that are difficult for contemporary robots, and to identify those tasks that robots cannot perform. Additionally, in the realm of remote handling, methods are needed to assess which tasks and/or subtasks are candidates for automation. We are developing a new approach to understanding the capability of autonomous robotic systems. This approach uses formalized methods for determining the achievability of tasks for robots, that is, the likelihood that an autonomous robot or telerobot can successfully complete a particular task. Any autonomous system may be represented in achievability space by the volume describing that system's capabilities within the 3-axis space delineated by perception, cognition, and action. This volume may be thought of as a probability density with achievability decreasing as the distance from the centroid of the volume increases. Similarly, any task may be represented within achievability space. However, as tasks have more finite requirements for perception, cognition, and action, each may be represented as a point (or, more accurately, as a small sphere) within achievability space. Analysis of achievability can serve to identify, a priori, the survivability of robotic systems and the likelihood of mission success; it can be used to plan a mission or portions of a mission; it can be used to modify a mission plan to accommodate unpredicted occurrences; it can also serve to identify needs for modifications to robotic systems or tasks to improve achievability. .

  18. An analysis of perfusion technology preadmission factors effects on academic success, perfusion certification achievement, and career placement.

    PubMed

    Palmer, David A

    2007-12-01

    This retrospective study was designed to evaluate the contribution of grade point average (GPA) and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) practical scores toward predicting perfusion academic success, career placement as a clinical perfusionist, and certification success or failure. The files of 95 students enrolled in the perfusion technology program at Carlow University-University of Pittsburgh Medical Center School of Cardiovascular Perfusion (CARLOW-UPMC) from 1995 through 2005 were reviewed to obtain admission and academic data. The independent variables used were WAIS-R practical results of the picture completion (PC), picture arrangement (PA), block design (BD), object assembly (OA) and digit symbol (DS) tests, undergraduate grade point average (UGPA), science grade point average (SGPA), and anatomy and physiology grade point average (APGPA). The dependent variables used were perfusion grade point average (PGPA), career placement status as a clinical perfusionist (CAREER), and success or failure on the American Board of Cardiovascular Perfusion (ABCP) certification examination. The research plan consisted of logistic and multiple linear regression analyses to determine which of the WAIS-R and GPA independent variables were significantly associated with the dependent variables. UGPA, SGPA, and APGPA all correlate at the 5% level with success achieving high PGPA. WAIS-R measures were not significant indicators of academic success. PGPA, UGPA, SGPA, and APGPA did not significantly correlate with any of the tested WAIS-R scores. PC, BD, and OA scores correlate well with CAREER. OA and DS scores correlate at the p = 0.05 level with ABCP certification success.

  19. Packaging a Successful NASA Mission to Reach a Large Audience with a Small Budget. Earth's Dynamic Space: Solar-Terrestrial Physics and NASA's Polar Mission

    NASA Technical Reports Server (NTRS)

    Fox, Nicola J.; Goldberg, Richard; Barnes, Robin J.; Sigwarth, John B.; Beisser, Kerri B.; Moore, Thomas E.; Hoffman, Robert A.; Russell, Christopher T.; Scudder, Jack D.; Spann, James F.

    2004-01-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  20. Packaging a successful NASA mission to reach a large audience within a small budget. Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.

    2004-12-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  1. The Reciprocal Relations between Self-Concept, Motivation and Achievement: Juxtaposing Academic Self-Concept and Achievement Goal Orientations for Mathematics Success

    ERIC Educational Resources Information Center

    Seaton, Marjorie; Parker, Philip; Marsh, Herbert W.; Craven, Rhonda G.; Yeung, Alexander Seeshing

    2014-01-01

    Research suggests that motivated students and those with high academic self-concepts perform better academically. Although substantial evidence supports a reciprocal relation between academic self-concept and achievement, there is less evidence supporting a similar relation between achievement goal orientations and achievement. There is also a…

  2. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  3. The Ice, Cloud, and land Elevation Satellite (ICESat) Summary Mission Timeline and Performance Relative to Pre-Launch Mission Success Criteria

    NASA Technical Reports Server (NTRS)

    Webb, Charles E.; Zwally H. Jay; Abdalati, Waleed

    2012-01-01

    The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.

  4. Achieving successful evidence-based practice implementation in juvenile justice: The importance of diagnostic and evaluative capacity.

    PubMed

    Walker, Sarah Cusworth; Bumbarger, Brian K; Phillippi, Stephen W

    2015-10-01

    Evidence-based programs (EBPs) are an increasingly visible aspect of the treatment landscape in juvenile justice. Research demonstrates that such programs yield positive returns on investment and are replacing more expensive, less effective options. However, programs are unlikely to produce expected benefits when they are not well-matched to community needs, not sustained and do not reach sufficient reach and scale. We argue that achieving these benchmarks for successful implementation will require states and county governments to invest in data-driven decision infrastructure in order to respond in a rigorous and flexible way to shifting political and funding climates. We conceptualize this infrastructure as diagnostic capacity and evaluative capacity: Diagnostic capacity is defined as the process of selecting appropriate programing and evaluative capacity is defined as the ability to monitor and evaluate progress. Policy analyses of Washington State, Pennsylvania and Louisiana's program implementation successes are used to illustrate the benefits of diagnostic and evaluate capacity as a critical element of EBP implementation.

  5. Hitchhiker mission operations: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Anderson, Kathryn

    1995-01-01

    What is mission operations? Mission operations is an iterative process aimed at achieving the greatest possible mission success with the resources available. The process involves understanding of the science objectives, investigation of which system capabilities can best meet these objectives, integration of the objectives and resources into a cohesive mission operations plan, evaluation of the plan through simulations, and implementation of the plan in real-time. In this paper, the authors present a comprehensive description of what the Hitchhiker mission operations approach is and why it is crucial to mission success. The authors describe the significance of operational considerations from the beginning and throughout the experiment ground and flight systems development. The authors also address the necessity of training and simulations. Finally, the authors cite several examples illustrating the benefits of understanding and utilizing the mission operations process.

  6. Achievement Emotions as Predictors of High School Science Success among African-American and European American Students

    ERIC Educational Resources Information Center

    Bowe, Marilyn Louise Simmons

    2012-01-01

    The literature includes few studies of the interrelations of achievement goals and achievement emotions with respect to minority students and science achievement. The objective of this study was to test the control-value theory (CVT) of achievement emotions to determine if the eight discrete achievement emotions would be predictive of test scores…

  7. A Two-Year Study of Hard-Core Unemployed Clerical Workers: Effects of Scholastic Achievement, Clerical Skill, and Self-Esteem on Job Success

    ERIC Educational Resources Information Center

    Beatty, Richard W.

    1975-01-01

    This study was designed to longitudinally assess the predictive validity and the nature of the relationships of scholastic achievement, clerical skill, and social self-esteem with the job success of hard-core unemployed clerical workers. (Author/RK)

  8. Narrowing the Achievement Gap and Sustaining Success: A Qualitative Study of the Norms, Practices, and Programs of a Successful High School with Urban Characteristics

    ERIC Educational Resources Information Center

    Senesac, Donald Raymond

    2010-01-01

    The academic achievement gap is the manifestation of differential learning outcomes for students typified by membership in an ethnic minority sub group or economically disadvantaged sub group. Addressing the achievement gap has become vital for the nation as a whole, and even more critical for the state of California because the majority of…

  9. Review of "Failure Is Not an Option: How Principals, Teachers, Students and Parents from Ohio's High-Achieving, High-Poverty Schools Explain Their Success"

    ERIC Educational Resources Information Center

    Paige, Mark

    2013-01-01

    This Public Agenda report profiles nine high-poverty schools in Ohio that the authors believe have exhibited "sustained success." It first lists 11 commonly accepted attributes they assert are demonstrated across the profiled schools. The report then offers six general recommendations for other schools to achieve and sustain success,…

  10. A Study of Home Environment, Academic Achievement and Teaching Aptitude on Training Success of Pre-Service Elementary Teachers of India

    ERIC Educational Resources Information Center

    Rani, Sunita; Siddiqui, M. A.

    2015-01-01

    The primary intend of the study was to explore the relationship of Arts, Science and Commerce stream and training success and the influence of Home Environment, Academic Achievement and Teaching Aptitude on training success of ETE trainees. The study analyzed the numerical data from a survey of 380 teacher trainees of three DIETs of Delhi, India.…

  11. The Superintendent Beliefs and Leadership Practices in a School District that Has Successfully Increased the Achievement of Traditionally Marginalized Students

    ERIC Educational Resources Information Center

    Fairbanks-Schutz, Jo-Ellen M.

    2010-01-01

    Superintendent leadership can influence student achievement and with the alarming gap between the academic achievement of traditionally marginalized students and their peers, superintendents have an ethical duty to lead their districts in closing these achievement gaps. Spillane, Halverson, and Diamond (2001) suggested that to have a more complete…

  12. Markedly Improved Success Rate of Endoscopically Assisted Third Ventriculostomy Is Achieved by Routine Placement of External Lumbar Drain

    PubMed Central

    Watkins, Justen; Cabanne, Marc; Miulli, Dan

    2017-01-01

    Hydrocephalus is a major cause of patient decreased quality of life and high health care financial burden in the United States and throughout the world. The placement of ventricular shunts (ventriculoperitoneal shunt) has proven to be a safe treatment for hydrocephalus, but it is associated with a high complication rate leading to a lower quality of life and continued financial burden for patients, their families, and society as a whole. The endoscopically assisted third ventriculostomy (ETV) has been practiced as an alternative to ventricular shunting since the 1990s. Success rates vary widely and there are many factors which contribute to the varying success rates. The ETV procedure has the potential to alleviate much of the overall quality of life issues and some of the financial burdens associated with hydrocephalus provided success rates can be increased and the procedure and management techniques are adopted more widely. Common techniques have been published in the past which report associated improvements in success rates amongst individual surgeons. Here, we report a novel perioperative technique and management strategy that displays a higher than reported success rate. Our methods and results show potential to significantly improve overall ETV success rates if reproduced and subsequently adopted widely. We retrospectively studied records of 24 adult patients with hydrocephalus who were treated with an ETV procedure. Routinely, we placed an external lumbar drain postoperatively which was continued for a minimum of 2 days. There was a 95.8% success rate at 30 days. The overall success rate was 83.3%. This is significantly higher than the average of the predicted success scores calculated by the ETV success scoring system (71.8%). It is also significantly higher than previous studies' reported ETV success rates in adults. We propose additional similar studies to be performed to test the reproducibility of increased success rates using our technique, ideally

  13. Beginning Mathematics Teachers from Alternative Certification Programs: Their Success in the Classroom and How They Achieved It

    ERIC Educational Resources Information Center

    Ham, Edward

    2011-01-01

    This dissertation focuses on beginning mathematics teachers from alternative certification programs and their perceptions of what is required to be successful. A mixed-methods research study was completed with several goals in mind: (1) identifying how beginning mathematics teachers define success in the classroom during their earliest years, (2)…

  14. The Application of Lean Thinking Principles and Kaizen Practices for the Successful Development and Implementation of the Ares I-X Flight Test Rocket and Mission

    NASA Technical Reports Server (NTRS)

    Askins, B. R.; Davis, S. R.; Heitzman, K. S.; Olsen, R. A.

    2011-01-01

    On October 28, 2009 the Ares I-X flight test rocket launched from Kennedy Space Center and flew its suborbital trajectory as designed. The mission was successfully completed as data from the test, and associated development activities were analyzed, transferred to stakeholders, and well documented. Positive lessons learned from Ares I-X were that the application of lean thinking principles and kaizen practices are effective in streamlining development activities. Ares I-X, like other historical rocket development projects, was hampered by technical, cost, and schedule challenges and if not addressed boldly could have resulted in cancellation of the test. The mission management team conducted nine major meetings, referred to as lean events, across its elements to assess plans, procedures, processes, requirements, controls, culture, organization, use of resources, and anything that could be changed to optimize schedule or reduce risk. The preeminent aspect of the lean events was the focus on value added activities and the removal or at least reduction in non-value activities. Trained Lean Six Sigma facilitators assisted the Ares I-X developers in conducting the lean events. They indirectly helped formulate the mission s own unique methodology for assessing schedule. A core team was selected to lead the events and report to the mission manager. Each activity leveraged specialized participants to analyze the subject matter and its related processes and then recommended alternatives and solutions. Stakeholders were the event champions. They empowered and encouraged the team to succeed. The keys to success were thorough preparation, honest dialog, small groups, adherence to the Ares I-X ground rules, and accountability through disciplined reporting and tracking of actions. This lean event formula was game-changing as demonstrated by the success of Ares I-X. It is highly recommended as a management tool to help develop other complex systems efficiently. The key benefits

  15. Bright and Beautiful: High Achieving Girls, Ambivalent Femininities, and the Feminization of Success in the Primary School

    ERIC Educational Resources Information Center

    Renold, Emma; Allan, Alexandra

    2006-01-01

    This paper refocuses attention on and problematizes girls' experiences of school achievement and the construction of schoolgirl femininities. In particular, it centres on the relatively neglected experiences and identity work of high achieving primary school girls. Drawing upon ethnographic data (observations, interviews, and pupil diaries) from a…

  16. Achievement Emotions as Predictors of High School Science Success Among African-American and European American Students

    NASA Astrophysics Data System (ADS)

    Bowe, Marilyn Louise Simmons

    The literature includes few studies of the interrelations of achievement goals and achievement emotions with respect to minority students and science achievement. The objective of this study was to test the control-value theory (CVT) of achievement emotions to determine if the eight discrete achievement emotions would be predictive of test scores on the High School Graduation Test (GHSGT)-Science for African-American compared to European-American science students. Convenience cluster sampling was employed to select 160 students who were all juniors in the same public high school at the time that they took the GHSGT-Science. The central research question for this study aimed to uncover whether any of the eight achievement emotions identified in CVT would contribute significantly to the predictability of science achievement as measured by GHSGT-Science scores. Data were collected using a nonexperimental, cross sectional design survey. Data were analyzed using a hierarchal, forced entry, multiple regression analysis. Key results indicated that the eight achievement emotions were predictive of GHSGT-Science score outcomes. Positive social change at the individual level could reflect a boost in confidence for African American science students and help decrease the achievement gap in science, technology, engineering, and mathematics (STEM) endeavors between European Americans and African-American students. Educators may consider the importance of achievement emotions in science outcomes by including social emotional learning (SEL) as a part of the regular science curriculum. Future researchers should repeat the study in a school district where the population is available to support the desired cluster sample of equal parts European Americans to African Americans and male to female students.

  17. State Policies to Achieve the Dream in Five States: An Audit of State Policies to Aid Student Access to and Success in Community Colleges in the First Five Achieving the Dream States

    ERIC Educational Resources Information Center

    Dougherty, Kevin J.; Reid, Monica; Nienhusser, H. Kenny

    2006-01-01

    In 2003, the Lumina Foundation for Education launched a major initiative, "Achieving the Dream: Community Colleges Count," to increase student success at community colleges. The initiative focuses on colleges with high enrollments of low-income students and students of color. In the first round, 27 colleges in five states were selected.…

  18. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; Saint-Jacques, D.; Heldmann, J. L.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  19. The Application of Lean Thinking Principles and Kaizen Practices for the Successful Development and Implementation of the Ares I-X Flight Test Rocket and Mission

    NASA Technical Reports Server (NTRS)

    Askins, B. R.; Davis, S. R.; Heitzman, K. S.; Olsen, R. A.

    2011-01-01

    On October 28, 2009 the Ares I-X flight test rocket launched from Kennedy Space Center and flew its suborbital trajectory as designed. The mission was successfully completed as data from the test, and associated development activities were analyzed, transferred to stakeholders, and well documented. A positive lesson learned from Ares I-X was that the application of lean thinking principles and kaizen practices was very effective in streamlining development activities. Ares I-X, like other historical rocket development projects, was hampered by technical, cost, and schedule challenges and if not addressed boldly could have resulted in cancellation of the test. The mission management team conducted nine major meetings, referred to as lean events, across its elements to assess plans, procedures, processes, requirements, controls, culture, organization, use of resources, and anything that could be changed to optimize schedule or reduce risk. The preeminent aspect of the lean events was the focus on value added activities and the removal or at least reduction in non-value added activities. Trained Lean Six Sigma facilitators assisted the Ares I-X developers in conducting the lean events. They indirectly helped formulate the mission s own unique methodology for assessing schedule. A core team was selected to lead the events and report to the mission manager. Each activity leveraged specialized participants to analyze the subject matter and its related processes and then recommended alternatives and solutions. Stakeholders were the event champions. They empowered and encouraged the team to succeed. The keys to success were thorough preparation, honest dialog, small groups, adherence to the Ares I-X ground rules, and accountability through disciplined reporting and tracking of actions. This lean event formula was game-changing as demonstrated by Ares I-X. It is highly recommended as a management tool to help develop other complex systems efficiently. The key benefits for

  20. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  1. Cost-Effective Live-Fire Test and Evaluation Strategies: The Missions and Means Framework

    DTIC Science & Technology

    2006-04-01

    A methodology is presented for constructing cost-effective live-fire test and evaluation (LFT&E) programs within the Missions and Means Framework environment...tasks and achieving mission success in the joint environment. A Missions and Means Framework -based system of systems task-focused LFT&E strategy is

  2. A preliminary study of achievement, attitudes toward success in mathematics, and mathematics anxiety with technology-based instruction in brief calculus.

    PubMed

    Alkhateeb, Haitham M

    2002-02-01

    This study was designed to compare achievement, attitudes toward success in mathematics, and mathematics anxiety of college students taught brief calculus using a graphic calculator, with the achievement and attitudes and anxiety of students taught using the computer algebra system Maple, using a technology based text book. 50 men and 50 women, students in three classes at a large public university in the southwestern United States, participated. Students' achievement in brief calculus was measured by performance on a teacher-made achievement test given at the end of the study. Analysis of variance showed no significant difference in achievement between the groups. To measure change in attitudes and anxiety, responses to paper-and-pencil inventories indicated significant differences in favor of students using the computer.

  3. An Examination of Successful Leadership Behaviors Exhibited by Middle School Principals in Stimulating and Sustaining African-American Students' Achievement on the California Standards Test in Mathematics

    ERIC Educational Resources Information Center

    Williams, Jacqueline

    2013-01-01

    The purpose of this research study was to examine leadership behaviors of middle school principals who have been successful in stimulating and sustaining African-American students' mathematics achievement on the California Standards Test. Specifically, this research sought to answer the following questions: 1) How do middle school principal…

  4. School Improvement in Petersburg: A Comprehensive Three-Year Study of the Partnership for Achieving Successful Schools Initiative Model IV Intervention. Final Evaluation Report

    ERIC Educational Resources Information Center

    Edwards, Joanna; Smith, Karen; Marr, Linda; Wyshynski, Laura

    2005-01-01

    Dr. Jo Lynne DeMary, Virginia's state superintendent of public instruction, requested that the Appalachia Educational Laboratory at Edvantia work in partnership with the Virginia Department of Education and Petersburg City Schools to design and test the Partnership for Achieving Successful Schools Initiative (PA+SS) Model IV Intervention. The goal…

  5. The Impacts of Success for All on Reading Achievement in Grades 3-5: Does Intervening during the Later Elementary Grades Produce the Same Benefits as Intervening Early?

    ERIC Educational Resources Information Center

    Hanselman, Paul; Borman, Geoffrey D.

    2013-01-01

    We evaluate the impact of Success for All literacy instruction in grades 3 through 5 using data from the same cluster randomized trial used to evaluate effects in the earlier grades (K-2). In contrast to the early benefits, there is no effect on reading achievement in the later grades, either overall or for students and schools with high or low…

  6. Comparative Evaluation: Participants versus Nonparticipants in the Achieving Collegiate Excellence and Success (ACES) Program at Montgomery County Public Schools in Year One and Year Two

    ERIC Educational Resources Information Center

    Modarresi, Shahpar; Wolanin, Natalie; Cooper-Martin, Elizabeth

    2016-01-01

    The Achieving Collegiate Excellence and Success (ACES) program is a collaboration between MCPS, Montgomery College, and the Universities at Shady Grove to create a seamless pathway from high school to college completion; it targets students who are underrepresented in higher education, the first in their family to attend college, or both. As one…

  7. Using the Comprehensive Nursing Achievement Test as a Predictor of Success on the National Council Licensure Examination. Learning Theory and Applications Seminar.

    ERIC Educational Resources Information Center

    Balint, Marilyn

    A study examined the feasibility of using the Comprehensive Nursing Achievement Test as a predictor of nursing students' eventual success on the National Council Licensure Examination (NCLEX-RN). The predictive validity of other factors, such as age, college entrance test scores, and grades in second-year nursing courses, was also examined.…

  8. Enabling and Enhancing Space Mission Success and Reduction of Risk through the Application of an Integrated Data Architecture

    NASA Technical Reports Server (NTRS)

    Brummett, Robert C.

    2008-01-01

    The engineering phases of design, development, test, and evaluation (DDT and E) and subsequent planning, preparation, and operation (Ops) of space vehicles in a complex and distributed environment requires massive and continuous flows of information across the enterprise and across temporal stages of the vehicle lifecycle. The resulting capabilities at each subsequent stage depend in part on the capture, preparation, storage, and subsequent provision of information from prior stages. The United States National Aeronautics and Space Administration (NASA) is currently designing a fleet of new vehicles that will replace the Space Shuttle and expand space operations and exploration capabilities. This includes the 2 stage human rated lift vehicle Ares 1 and its associated crew vehicle the Orion, and a service module; the heavy lift cargo vehicle, Ares 5, and an associated cargo stage known as the Earth Departure Stage; and a Lunar Lander vehicle that contains a descent stage, and ascent stage, and a habitation module. A variety of concurrent assorted ground operations infrastructure including software and facilities are also being developed, assorted technology and assembly designs and development for equipment such as EVA suits, life support systems, command and control technologies are also in the pipeline. The development is occurring in a distributed manner, with project deliverables being contributed by a large and diverse assortment of vendors and most space faring nations. Critical information about all of the components, software, and procedures must be shared during the DDT and E phases and then made readily available to the mission operations staff for access during the planning, preparation, and operations phases, and also need to be readily available for system to system interactions. The Constellation Data Systems Project (CxDS) is identifying the needs, and designing and deploying systems and processes to support these needs. This paper details the steps

  9. Picturing Success: Young Femininities and the (Im)Possibilities of Academic Achievement in Selective, Single-Sex Education

    ERIC Educational Resources Information Center

    Allan, Alexandra

    2010-01-01

    Over the last decade it is young women who have come to be widely understood as the bearers of educational qualifications. It is girls who are now seen to have "the world at their feet" and to be able to attain the glittering prizes of academic success associated with elite universities and top occupations. And it is upper-middle-class…

  10. Syntheses of Research and Practice: Implications for Achieving Schooling Success for Children at Risk. Publication Series #93-5.

    ERIC Educational Resources Information Center

    Alves-Zervos, K. L., Ed.; Shafer, J. R., Ed.

    This six-article document examines the research base that can be used in formulating plans to improve the chances of schooling success for all students. Each article summarizes well-confirmed knowledge in a particular area, giving attention first to the research literature, and then to the tested experiences and practices of leading professionals.…

  11. Effects of Resource Allocation on Student Academic Achievement and Self-Perceptions of Success in an Urban Setting

    ERIC Educational Resources Information Center

    Harris, Kimberly

    2014-01-01

    Civil Rights legislation, now 50 years old, "de facto" segregation based on socioeconomic factors, such as poverty and ethnicity in urban areas translates into the surrounding schools, with a legacy of limited funding, reduced services, and teachers with limited training to successfully engage students in high poverty areas. This study…

  12. On the Road to Success: Helping African-American Males Improve Their Academic Achievement in Public Schools

    ERIC Educational Resources Information Center

    Foy, Tami

    2010-01-01

    In this study, the researcher intended to provide insights into the lives of African-American male students who are striving to become better students. The researcher also attempted to answer the following question: How can African-American males learn to be more successful not only in school but in their lives in general? The mixed-methods…

  13. A Methodology to Assist Faculty in Developing Successful Approaches for Achieving Learner Centered Information Systems Curriculum Outcomes: Team Based Methods

    ERIC Educational Resources Information Center

    Wagner, Teresa A.; Longenecker, Herbert E., Jr.; Landry, Jeffrey P.; Lusk, C. Scott; Saulnier, Bruce M.

    2008-01-01

    All industries face the interrelated challenges of identifying and training the critical skills needed to be successful in the workplace. Specifically of interest to the information systems field is that any newly trained IS professional has to be equipped to solve increasingly difficult problems with great confidence and competence. In this paper…

  14. A Validation Study of the Planning, Attention, Simultaneous, and Successive (PASS) Theory and Its Relationship to Reading Achievement in Adults

    ERIC Educational Resources Information Center

    Walker, Justin Moore

    2010-01-01

    This study set out to determine if the Planning, Attention, Simultaneous, Successive (PASS) cognitive processing model, a model previously investigated with children, would hold its factorial structure with adults. A collection of PASS experimental tasks were analyzed through Maximum Likelihood Factor Analysis. A four-factor solution consistent…

  15. Addressing Achievement Gaps: Advancing Success for Black Men in College. Policy Notes. Volume 22, Number 1, Spring 2015

    ERIC Educational Resources Information Center

    Yaffe, Deborah

    2015-01-01

    This issue of ETS Policy Notes (Vol. 22, No. 1) provides highlights from a recent symposium sponsored by ETS and the Children Defense Fund (CDF), "Advancing Success for Black Men in College," held on June 23, 2014, in Washington, DC. The symposium is part of a two-conference series: It was the 18th of ETS's "Addressing Achievement…

  16. Educational Attainment and Success in the New Economy: An Analysis of Challenges for Improving Hispanic Students' Achievement.

    ERIC Educational Resources Information Center

    Council of Economic Advisers, Washington, DC.

    This report examines education and the economic rewards to education among Hispanic Americans, documenting the gap in educational outcomes for Hispanics relative to non-Hispanic Whites. It also provides evidence about the increasing importance of education to economic success among Hispanics in the new economy, highlighting the high-paying sector…

  17. Interdisciplinary collaboration: the slogan that must be achieved for models of delivering critical care to be successful.

    PubMed

    Irwin, Richard S; Flaherty, Helen M; French, Cynthia T; Cody, Shawn; Chandler, M Willis; Connolly, Ann; Lilly, Craig M

    2012-12-01

    There is wide acceptance of the concept that interdisciplinary collaboration is an essential building block for successful health-care teams. This belief is grounded in our understanding of how teams function to address complex care needs that change with acute illness or injury. This general agreement has been validated in studies that have reported favorable outcomes associated with successfully implementing interdisciplinary models of health-care delivery in non-critical care settings. The very short time frames over which the care needs of critically ill or injured adults change and the team approach taken by nearly all ICUs strongly suggest that interdisciplinary collaboration is also beneficial in this setting. In this commentary, we define interdisciplinary collaboration and share the story of how we successfully redesigned and transformed our system-wide, interdisciplinary collaborative model for delivering critical care in order to share the lessons we learned as the process evolved with those who are about to embark on a similar challenge. We anticipate that those health-care systems that successfully implement interdisciplinary collaboration will be ahead of the curve in providing high-quality care at as low a cost as possible. Such institutions will also potentially be better positioned for improving teaching and providing a better foundation for critical care research in their institutions.

  18. Determining Minimum Cognitive Scores for the First-Time Academic Achievement Success on the Education Doctoral Comprehensive Examination

    ERIC Educational Resources Information Center

    Cavil, Jafus Kenyatta

    2009-01-01

    This purpose of the present study was to estimate minimum admission requirements using cognitive measures that will maximize candidate success on the doctoral comprehensive examination. Moreover, the present study established minimum scores on the Graduate Record Examinations (verbal and quantitative components) that will maximize doctoral student…

  19. "If You Can Dream It, You Can Achieve It." Parent Memorable Messages as Indicators of College Student Success

    ERIC Educational Resources Information Center

    Kranstuber, Haley; Carr, Kristen; Hosek, Angela M.

    2012-01-01

    This study investigated various aspects of parents' memorable messages about college as they relate to indicators of college student success. Findings revealed that parents' memorable messages about college focused on working (and playing) hard, the necessity of attending college, providing encouragement and support, and general advice based on…

  20. The Effect of Poverty on the Achievement of Urban African American Male Students Successfully Completing High School

    ERIC Educational Resources Information Center

    Welch, Amy L.

    2013-01-01

    The purpose of this study was to determine the impact of poverty on the achievement of African American male high school students attending the same large Midwest urban school district. Cumulative grade point average (GPA) at the tenth grade level were compared to the level of poverty provided through census data of African American male tenth…

  1. Achieving Business Success by Developing Clients and Community: Lessons from Leading Companies, Emerging Economies and a Nine Year Case Study

    ERIC Educational Resources Information Center

    Bernardez, Mariano

    2005-01-01

    Empirical evidence and recent revisions of conventional business doctrine indicate that companies that actively promote social performance and develop their clients' markets and skills as part of business strategy have a better chance of achieving sustainable profitability and growth than those that do not. This article discusses how landmark…

  2. Explaining the Success of High-Achieving 2nd-Generation Latino Students at Elite Colleges and Universities

    ERIC Educational Resources Information Center

    Kula, Stacy M.

    2013-01-01

    Latinos represent the largest minority population in the US, yet are one of the most underserved groups in the educational system. As such, they have been the focus of much attention by educational researchers. However, there is little work enabling researchers to understand how many factors might interactively support achievement. Moreover, the…

  3. Dressed for Success? The Effect of School Uniforms on Student Achievement and Behavior. NBER Working Paper No. 17337

    ERIC Educational Resources Information Center

    Gentile, Elisabetta; Imberman, Scott A.

    2011-01-01

    Uniform use in public schools is rising, but we know little about how they affect students. Using a unique dataset from a large urban school district in the southwest United States, we assess how uniforms affect behavior, achievement and other outcomes. Each school in the district determines adoption independently, providing variation over schools…

  4. Building a Culture of Evidence for Community College Student Success: Early Progress in the Achieving the Dream Initiative

    ERIC Educational Resources Information Center

    Brock, Thomas; Jenkins, Davis; Ellwein, Todd; Miller, Jennifer; Gooden, Susan; Martin, Kasey; MacGregor, Casey; Pih, Michael

    2007-01-01

    Can community colleges make better use of data to improve student outcomes? That's the fundamental idea behind "Achieving the Dream: Community Colleges Count," a bold initiative launched in 2003 by Lumina Foundation for Education to help community college students succeed--particularly, low-income students and students of color, who have…

  5. A Phenomenological Investigation of Student Achievement: Perceptions of Academic Success as Told by Single African American and Hispanic Mothers

    ERIC Educational Resources Information Center

    Stewart, Shawn M.

    2010-01-01

    A number of factors seem to contribute to low student achievement in the organization of education. Some of these factors exist prior to children reaching school age. It seems as though a vast quantity of minority students struggle academically. Research supports the belief that socioeconomic status, ethnicity, and single-parent families have an…

  6. Early Reading Success and Its Relationship to Reading Achievement and Reading Volume: Replication of "10 Years Later"

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Murdoch, Amy

    2014-01-01

    Cunningham and Stanovich reported a longitudinal investigation over 10 years that examined the unique influence of exposure to print in explaining individual differences on various measures of reading achievement and declarative (general) knowledge. The present study replicated their investigation with a larger number of participants and…

  7. A Positive Psychological Viewpoint for Success at School--10 Characteristic Strengths of the Finnish High-Achieving Students

    ERIC Educational Resources Information Center

    Salmela, Mari; Uusiautti, Satu

    2015-01-01

    People who exploit their strengths flourish; they are not only engaged with their goals, but also to their well-being and the content of life. In this study, interest focused on the high-achieving students in the Finnish general upper secondary education, in other words, on straight-A graduates' characteristic strengths. This was a narrative study…

  8. Mission Level Autonomy for USSV

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  9. STARS MDT-II targets mission

    SciTech Connect

    Sims, B.A.; White, J.E.

    1997-08-01

    The Strategic Target System (STARS) was launched successfully on August 31, 1996 from the Kauai Test Facility (KTF) at the Pacific Missile Range Facility (PMRF). The STARS II booster delivered a payload complement of 26 vehicles atop a post boost vehicle. These targets were designed and the mission planning was achieved to provide for a dedicated mission for view by the Midcourse Space Experiment (MSX) Satellite Sensor Suite. Along with the MSX Satellite, other corollary sensors were involved. Included in these were the Airborne Surveillance Test Bed (AST) aircraft, the Cobra Judy sea based radar platform, Kwajalein Missile Range (KMR), and the Kiernan Reentry Measurements Site (KREMS). The launch was a huge success from all aspects. The STARS Booster flew a perfect mission from hardware, software and mission planning respects. The payload complement achieved its desired goals. All sensors (space, air, ship, and ground) attained excellent coverage and data recording.

  10. Evidence-based strategies of graduate students to achieve success in a hybrid Web-based course.

    PubMed

    Kumrow, David E

    2007-03-01

    Web-based hybrid courses are gaining in popularity in institutions of higher learning for both undergraduate and graduate nursing education. The purpose of this study was to examine how predictive the five self-regulatory resource management strategies of time management, study environment, effort regulation, help seeking, and peer learning are in determining whether a student will be successful academically within a hybrid learning environment. The sample consisted of 38 graduate nursing students enrolled in two sections--one hybrid and the other lecture--of a health care economics course at a major, public, urban, 4-year university. The results of the study revealed that students in the hybrid section had significantly higher end-of-course grades and a significantly higher favorable rating (affective behavior) of their method of instruction. Of the five resource management strategies examined, only help seeking showed a significant correlation with end-of-course grades in both sections.

  11. An analysis of predictors of enrollment and successful achievement for girls in high school Advanced Placement physics

    NASA Astrophysics Data System (ADS)

    Depalma, Darlene M.

    A problem within science education in the United States persists. U.S students rank lower in science than most other students from participating countries on international tests of achievement (National Center for Education Statistics, 2003). In addition, U.S. students overall enrollment rate in high school Advanced Placement (AP) physics is still low compared to other academic domains, especially for females. This problem is the background for the purpose of this study. This investigation examined cognitive and motivational variables thought to play a part in the under-representation of females in AP physics. Cognitive variables consisted of mathematics, reading, and science knowledge, as measured by scores on the 10th and 11th grade Florida Comprehensive Assessment Tests (FCAT). The motivational factors of attitude, stereotypical views toward science, self-efficacy, and epistemological beliefs were measured by a questionnaire developed with questions taken from previously proven reliable and valid instruments. A general survey regarding participation in extracurricular activities was also included. The sample included 12th grade students from two high schools located in Seminole County, Florida. Of the 106 participants, 20 girls and 27 boys were enrolled in AP physics, and 39 girls and 20 boys were enrolled in other elective science courses. Differences between males and females enrolled in AP physics were examined, as well as differences between females enrolled in AP physics and females that chose not to participate in AP physics, in order to determine predictors that apply exclusively to female enrollment in high school AP physics and predictors of an anticipated science related college major. Data were first analyzed by Exploratory Factor Analysis, followed by Analysis of Variance (ANOVA), independent t-tests, univariate analysis, and logistic regression analysis. One overall theme that emerged from this research was findings that refute the ideas that

  12. Program control for mission success

    NASA Technical Reports Server (NTRS)

    Longanecker, G. W.

    1994-01-01

    This article suggests that in order to be able to exercise control over a particular program, the program itself must be controllable. A controllable program therefore, according to the author, is one that has been properly scoped technically, realistically scheduled, and adequately budgeted. The article delves indepth into each of the above aspects of a controllable program and discusses both the pros and cons of each.

  13. ORION: A Supersynchronous Transfer Orbit mission

    NASA Technical Reports Server (NTRS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-01-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  14. Central sensitization does not identify patients with carpal tunnel syndrome who are likely to achieve short-term success with physical therapy.

    PubMed

    Fernández-de-Las-Peñas, César; Cleland, Joshua A; Ortega-Santiago, Ricardo; de-la-Llave-Rincon, Ana Isabel; Martínez-Perez, Almudena; Pareja, Juan A

    2010-11-01

    The aim of the current study was to identify whether hyperexcitability of the central nervous system is a prognostic factor for individuals with carpal tunnel syndrome (CTS) likely to experience rapid and clinical self-reported improvement following a physical therapy program including soft tissue mobilization and nerve slider neurodynamic interventions. Women presenting with clinical and electrophysiological findings of CTS were involved in a prospective single-arm trial. Participants underwent a standardized examination and then a physical therapy session. The physical therapy sessions included both soft tissue mobilization directed at the anatomical sites of potential median nerve entrapment and a passive nerve slider neurodynamic technique targeted to the median nerve. Pressure pain thresholds (PPT) over the median, radial and ulnar nerves, C5-C6 zygapophyseal joint, carpal tunnel and tibialis anterior muscle were assessed bilaterally. Additionally, thermal detection and pain thresholds were measured over the carpal tunnel and thenar eminence bilaterally to evaluate central nervous system excitability. Subjects were classified as responders (having achieved a successful outcome) or non-responders based on self-perceived recovery. Variables were entered into a stepwise logistic regression model to determine the most accurate variables for determining prognosis. Data from 72 women were included in the analysis, of which 35 experienced a successful outcome (48.6%). Three variables including PPT over the C5-C6 joint affected side <137 kPa, HPT carpal tunnel affected side <39.6º and general health >66 points were identified. If 2 out of 3 variables were present (LR + 14.8), the likelihood of success increased from 48.6 to 93.3%. We identified 3 factors that may be associated with a rapid clinical response to both soft tissue mobilization and nerve slider neurodynamic techniques targeted to the median nerve in women presenting with CTS. Our results support that

  15. Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards Environmental Energy Technologies DivisionMarch 2011

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Goldman, Charles

    2011-03-22

    Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers in aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.

  16. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  17. International Task Force on Volunteer Cleft Missions.

    PubMed

    Yeow, Vincent K L; Lee, Seng-Teik T; Lambrecht, Thomas J; Barnett, John; Gorney, Mark; Hardjowasito, Widanto; Lemperle, Gottfried; McComb, Harold; Natsume, Nagato; Stranc, Mirek; Wilson, Libby

    2002-01-01

    The International Task Force on Volunteer Cleft Missions was set up to provide a report to be presented at the Eighth International Congress of Cleft Palate and Associated Craniofacial Anomalies on September 12, 1997, in Singapore. The aim of the report was to provide data from a wide range of different international teams performing volunteer cleft missions and, thereafter, based on the collected data, to identify common goals and aims of such missions. Thirteen different groups actively participating in volunteer cleft missions worldwide were selected from the International Confederation of Plastic and Reconstructive Surgery's list of teams actively participating in volunteer cleft missions. Because of the time frame within which the committee had to work, three groups that did not respond by the stipulated deadline were omitted from the committee. The represented members and their respective institutions have undertaken more than 50 volunteer cleft missions to underdeveloped nations worldwide within the last 3 years. They have visited over 20 different countries, treating more than 3,500 patients worldwide. Based on the data collected and by consensus, the committee outlined recommendations for future volunteer cleft missions based on 1) mission objectives, 2) organization, 3) personal health and liability, 4) funding, 5) trainees in volunteer cleft missions, and 6) public relations. The task force believed that all volunteer cleft missions should have well-defined objectives, preferably with long-term plans. The task force also decided that it was impossible to achieve a successful mission without good organization and close coordination. All efforts should be made, and care taken, to ensure that there is minimal morbidity and no mortality. Finally, as ambassadors of goodwill and humanitarian aid, the participants must make every effort to understand and respect local customs and protocol. The main aims are to provide top-quality surgical service, train local

  18. Achieving high treatment success for multidrug-resistant TB in Africa: initiation and scale-up of MDR TB care in Ethiopia—an observational cohort study

    PubMed Central

    Meressa, Daniel; Hurtado, Rocío M; Andrews, Jason R; Diro, Ermias; Abato, Kassim; Daniel, Tewodros; Prasad, Paritosh; Prasad, Rebekah; Fekade, Bekele; Tedla, Yared; Yusuf, Hanan; Tadesse, Melaku; Tefera, Dawit; Ashenafi, Abraham; Desta, Girma; Aderaye, Getachew; Olson, Kristian; Thim, Sok; Goldfeld, Anne E

    2015-01-01

    Background In Africa, fewer than half of patients receiving therapy for multidrug-resistant TB (MDR TB) are successfully treated, with poor outcomes reported for HIV-coinfected patients. Methods A standardised second-line drug (SLD) regimen was used in a non-governmental organisation–Ministry of Health (NGO-MOH) collaborative community and hospital-based programme in Ethiopia that included intensive side effect monitoring, adherence strategies and nutritional supplementation. Clinical outcomes for patients with at least 24 months of follow-up were reviewed and predictors of treatment failure or death were evaluated by Cox proportional hazards models. Results From February 2009 to December 2014, 1044 patients were initiated on SLD. 612 patients with confirmed or presumed MDR TB had ≥24 months of follow-up, 551 (90.0%) were confirmed and 61 (10.0%) were suspected MDR TB cases. 603 (98.5%) had prior TB treatment, 133 (21.7%) were HIV coinfected and median body mass index (BMI) was 16.6. Composite treatment success was 78.6% with 396 (64.7%) cured, 85 (13.9%) who completed treatment, 10 (1.6%) who failed, 85 (13.9%) who died and 36 (5.9%) who were lost to follow-up. HIV coinfection (adjusted HR (AHR): 2.60, p<0.001), BMI (AHR 0.88/kg/m2, p=0.006) and cor pulmonale (AHR 3.61, p=0.003) and confirmed MDR TB (AHR 0.50, p=0.026) were predictive of treatment failure or death. Conclusions We report from Ethiopia the highest MDR TB treatment success outcomes so far achieved in Africa, in a setting with severe resource constraints and patients with advanced disease. Intensive treatment of adverse effects, nutritional supplementation, adherence interventions and NGO-MOH collaboration were key strategies contributing to success. We argue these approaches should be routinely incorporated into programmes. PMID:26506854

  19. Conference Report: Cultural and Linguistic Advancement for Mission Success: Enhancing Language, Regional and Cultural Capabilities Across Whole of Government for an Effective COIN Strategy

    DTIC Science & Technology

    2012-05-01

    gouvernement en vue d’obtenir une stratégie anti-insurrectionnelle (COIN) efficace. Cette conférence s’est déroulée du 22 au 24 février 2012, au...linguistique visant le succès des missions : amélioration des capacités culturelles, régionales et linguistiques à la grandeur du gouvernement en vue...succès des missions : amélioration des capacités culturelles, régionales et linguistiques à la grandeur du gouvernement en vue d’obtenir une stratégie

  20. Mission planning with ROSAT.

    NASA Astrophysics Data System (ADS)

    Snowden, S. L.; Schmitt, J. H. M. M.

    The mission planning activities for the satellite bourne X-ray observatory ROSAT are discussed. Responsibility is shared between the Max Planck Institute for Extraterrestrial Physics (MPE), which provides the sientific and calibration program input, and the German Space Operations Center (GSOC), whose responsibility it is to generate a mission timeline satisfying all operational constraints. An optimum solution for the mission timeline is achieved using an efficient networking procedure.

  1. Mission-Driven Media: Not Just Survival, but Success. A Report of the Aspen Institute Forum on Diversity and the Media (Aspen, Colorado, July 11-14, 2001).

    ERIC Educational Resources Information Center

    Levi, Titus

    This report of the Aspen Institute Forum on Diversity and the Media, supported and funded by the Ford Foundation, is not a typical Aspen Institute forum report. It explores an issue--the sustainability of mission-driven media--and through this discussion becomes a kind of resource guide for managers and others who desire to preserve and promote…

  2. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  3. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  4. Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 1: Command Lineage Scientific Achievement and Major Tenant Missions

    DTIC Science & Technology

    2003-08-01

    atomic bombs, code-named through 1950 as Pincher, Broiler , Grabber, and Sizzle. During 1945-1946, the United States and Britain withdraw their occupation... Digest 53. 5 (May 1970): 163, 171. 250 Termena, Peiffer, and Carlin, Logistics, ca.1981, 212-213. 251 Closeout History Air Force Systems Command 1...Section of the Logistics Planning Division, Plans (T-5) at Wright Field digested German World War II achievements, including German submarine pens, and

  5. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  6. Mission engineering

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul; Fatig, Michael

    1993-01-01

    Goddard Space Flight Center's projects are facing new challenges with respect to the cost effective development and operation of spaceflight missions. Challenges, such as cost limits, compression of schedules, rapidly changing technology, and increasing mission complexity are making the mission development process more dynamic. A concept of 'Mission Engineering' as a means of addressing these challenges is proposed. It is an end-to-end, multimission development methodology that seeks to integrate the development processes between the space, ground, science, and operations segments of a mission. It thereby promotes more mission-oriented system solutions, within and across missions.

  7. Use of hardware-in-the-loop (HWIL) testing from early software development through final system test to mitigate risk and to assure mission success for the Hera targets program

    NASA Astrophysics Data System (ADS)

    Marcin, Michael, Jr.

    1996-05-01

    . Comparisons of flight data from three of our test flights and corresponding CIL/HWIL runs show an excellent match of flight performance to pre-flight predictions. The CIL/HWIL testing on the HERA targets program made it possible to have a high degree of confidence in the flight software and hardware before our first mission. We achieved first flight success due in part to the extensive software and hardware testing in the CIL/HWIL environment from software development through system qualification.

  8. From GOCE to the Next Generation Gravity Mission

    NASA Astrophysics Data System (ADS)

    Cesare, Stefano; Allasio, Andrea; Anselmi, Alberto; Dionisio, Sabrina; Mottini, Sergio; Parisch, Manilo; Massotti, Luca; Silvestrin, Pierluigi

    2015-03-01

    ESA’s gravity mission GOCE, carried out with extraordinary success between 2009 and 2013, was the result of more than twenty years of system studies and technology developments in which Thales Alenia Space Italia (TAS-I) always played a major role. Already while GOCE was being developed, ESA began promoting preparatory studies for a Next Generation Gravity Mission (NGGM). While GOCE aimed to provide a high resolution static map of Earth’s gravity, the objective of NGGM is long-term monitoring of the time-variable gravity field with high temporal and spatial resolution. The new mission implies new measurement techniques and instrumentation, a new mission scenario and different spacecraft design drivers. Despite the differences, however, the achievements of GOCE (demonstration of long-duration wide-band drag free control, ultra-sensitive accelerometers, stable noncryogenic temperature control in low earth orbit, etc.) stand as the basis on which the new mission is being created.

  9. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  10. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr. (Editor); Homick, Jerry L. (Editor)

    2003-01-01

    Neurolab (STS-90) represents a major scientific achievement that built upon the knowledge and capabilities developed during the preceding 15 successful Spacelab module missions. NASA proposed a dedicated neuroscience research flight in response to a Presidential declaration that the 1990's be the Decade of the Brain. Criteria were established for selecting research proposals in partnership with the National Institutes of Health (NM), the National Science Foundation, the Department of Defense, and a number of the International Space Agencies. The resulting Announcement of Opportunity for Neurolab in 1993 resulted in 172 proposals from scientists worldwide. After an NIH-managed peer review, NASA ultimately selected 26 proposals for flight on the Neurolab mission.

  11. A decision support tool for synchronizing technology advances with strategic mission objectives

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Willoughby, John K.

    1992-01-01

    Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.

  12. Lessons in Success: A Multi-Campus Study of Factors Influencing Academic Accomplishment among High-Achieving African American Students at Private Liberal Arts Colleges

    ERIC Educational Resources Information Center

    Johnson, Ryan A.

    2013-01-01

    The purpose of this study was to explore the academic experiences of highly successful African-American male graduates of small, private liberal arts colleges using a qualitative approach. Fourteen highly successful alumni from selective, private colleges were purposefully selected for the study, including seven African-American males and seven…

  13. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  14. The Role of Stanford Achievement Test 10[TM] Subtests in Sixth Grade as a Predictor of Success on ACT's Eighth Grade Explore Exam[TM

    ERIC Educational Resources Information Center

    Potts, Jeffrey D.

    2011-01-01

    The purpose of this study was to determine if there was a predictive correlation between a specific sixth grade achievement test known as the Stanford Achievement Test 10 and the eighth grade college readiness assessment instrument known as the Explore Exam for a group of North Texas students. Following an assessment during sixth grade, via the…

  15. [Consideration of the achievements of successive presidents of the Japan Pharmaceutical Association in the post-war Showa period--their thoughts and steps for establishing practice rights].

    PubMed

    Nishikawa, Takashi

    2008-01-01

    The system of separating the dispensing and prescribing of drugs was legally established in 1956 on the recommendation of the American Pharmaceutical Association mission to Japan in 1949. However, serious disagreements between medical and pharmaceutical practitioners impeded implementation of the system, and the separation practice was not initiated until 1975 when the Japan Pharmaceutical Association and the Japan Medical Association established friendly relations. The system finally took root in the 1990s, and the Japan Pharmaceutical Association has since continued to further improve the system.

  16. The GLAST mission

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2006-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is a next-generation high-energy gamma-ray telescope for studying high energy gamma-ray emission from astrophysical sources. The main instrument is the Large Area Telescope (LAT) which operated in the energy band from 20 MeV to greater than 300 GeV. A second instrument, the Glast Burst Monitor to provide supportive observations of gamma-ray bursts at lower energies. The LAT is a solid state pair-conversion telescope which will have capabilities well beyond those achieved by the highly successful EGRET instrument on the Compton Gamma-ray Observatory. The sensitivity achieved on the entire sky after a single day's observation is similar to the point source sensitivity of EGRET for its entire mission. The large effective area will allow flares from AGN to be detected at much lower flux levels and on far shorter time intervals that has previously been possible from space. The very large field of view will make it possible to monitor approx. 20% of the sky at any instant, and the entire sky on timescale of a few hours. In this talk I will describe the design of the GLAST instruments and discuss their science capabilities.

  17. Lessons Learned from the Clementine Mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    According to BMDO, the Clementine mission achieved many of its technology objectives during its flight to the Moon in early 1994 but, because of a software error, was unable to test the autonomous tracking of a cold target. The preliminary analyses of the returned lunar data suggest that valuable scientific measurements were made on several important topics but that COMPLEX's highest-priority objectives for lunar science were not achieved. This is not surprising given that the rationale for Clementine was technological rather than scientific. COMPLEX lists below a few of the lessons that may be learned from Clementine. Although the Clementine mission was not conceived as a NASA science mission exactly like those planned for the Discovery program, many operational aspects of the two are similar. It is therefore worthwhile to understand the strengths and faults of the Clementine approach. Some elements of the Clementine operation that led to the mission's success include the following: (1) The mission's achievements were the responsibility of a single organization and its manager, which made that organization and that individual accountable for the final outcome; (2) The sponsor adopted a hands-off approach and set a minimum number of reviews (three); (3) The sponsor accepted a reasonable amount of risk and allowed the project team to make the trade-offs necessary to minimize the mission's risks while still accomplishing all its primary objectives; and (4) The development schedule was brief and the agreed-on funding (and funding profile) was adhered to. Among the operational shortcomings of Clementine were the following: (1) An overly ambitious schedule and a slightly lean budget (meaning insufficient time for software development and testing, and leading ultimately to human exhaustion); and (2) No support for data calibration, reduction, and analysis. The principal lesson to be learned in this category is that any benefits from the constructive application of higher

  18. Mariner Missions

    NASA Astrophysics Data System (ADS)

    Snyder, C.; Murdin, P.

    2000-11-01

    Mariner was the name given to the earliest set of American space missions to explore the planets and to the spacecraft developed to carry them out. The missions were planned and executed by the JET PROPULSION LABORATORY (JPL) of the California Institute of Technology, which had been designated by the National Aeronautics and Space Administration (NASA) as its lead center for planetary missions....

  19. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  20. Supportability Issues and Approaches for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watson, J. K.; Ivins, M. S.; Cunningham, R. A.

    2006-01-01

    Maintaining and repairing spacecraft systems hardware to achieve required levels of operational availability during long-duration exploration missions will be challenged by limited resupply opportunities, constraints on the mass and volume available for spares and other maintenance-related provisions, and extended communications times. These factors will force the adoption of new approaches to the integrated logistics support of spacecraft systems hardware. For missions beyond the Moon, all spares, equipment, and supplies must either be prepositioned prior to departure from Earth of human crews or carried with the crews. The mass and volume of spares must be minimized by enabling repair at the lowest hardware levels, imposing commonality and standardization across all mission elements at all hardware levels, and providing the capability to fabricate structural and mechanical spares as required. Long round-trip communications times will require increasing levels of autonomy by the crews for most operations including spacecraft maintenance. Effective implementation of these approaches will only be possible when their need is recognized at the earliest stages of the program, when they are incorporated in operational concepts and programmatic requirements, and when diligence is applied in enforcing these requirements throughout system design in an integrated way across all contractors and suppliers. These approaches will be essential for the success of missions to Mars. Although limited duration lunar missions may be successfully accomplished with more traditional approaches to supportability, those missions will offer an opportunity to refine these concepts, associated technologies, and programmatic implementation methodologies so that they can be most effectively applied to later missions.

  1. Two successful pregnancies achieved by converting an in vitro fertilization cycle to an intrauterine insemination cycle in five cases with documented premature ovulation

    PubMed Central

    Vicdan, Kubilay; Akarsu, Cem; Sözen, Eran; Buluç, Burcu; Üstündağ, Deniz K.; Biberoğlu, Kutay

    2016-01-01

    We here report two successful pregnancies obtained by converting an in vitro fertilization (IVF) cycle to an intrauterine insemination (IUI) cycle in five poor responder patients whose oocyte pick-up (OPU) procedures were canceled due to documented premature ovulation immediately before OPU. To our knowledge, this is the first article that demonstrates that switching an IVF cycle to an IUI cycle when premature ovulation occurs on the day of OPU can produce successful pregnancies, even in poor responder patients. PMID:27990093

  2. NEAR Shoemaker spacecraft mission operations

    NASA Astrophysics Data System (ADS)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  3. Apollo 17 Mission Report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  4. Failure Is Not an Option: How Principals, Teachers, Students and Parents from Ohio's High-Achieving, High-Poverty Schools Explain Their Success

    ERIC Educational Resources Information Center

    Hagelskamp, Carolin; DiStasi, Christopher

    2012-01-01

    Why do some schools in high-poverty communities produce remarkable stories of success while others fail? This study, conducted by Public Agenda and sponsored by the Ohio Business Roundtable, the Ohio Department of Education and The Ohio State University, attempts to shed light on this fundamentally important question by talking directly to…

  5. Social Security. Little Success Achieved in Rehabilitating Disabled Beneficiaries. Report to the Chairman, Subcommittee on Social Security, Committee on Ways and Means, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    The relationship between the Social Security Disability Insurance (SSDI) Program and vocational rehabilitation (VR) programs was reviewed. Focus was on the extent to which VR services are successful in returning SSDI beneficiaries to productive employment. The review was carried out in 10 states with widely varying practices in referring SSDI…

  6. Addressing Achievement Gaps: Black Male Teens--Moving to Success in the High School Years. Policy Notes. Volume 21, Number 3, Winter 2013

    ERIC Educational Resources Information Center

    Yaffe, Deborah

    2013-01-01

    This issue of ETS Policy Notes (Vol. 21, No. 3) provides highlights from the symposium, "Black Male Teens: Moving to Success in the High School Years" held on June 24, 2013, in Washington, DC. The third in a series of four symposia cosponsored by ETS and the Children's Defense Fund (CDF), the seminar examined the education and status of…

  7. Effects of Bilingual and English as a Second Language Adaptations of Success for All on the Reading Achievement of Students Acquiring English.

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Madden, Nancy

    1999-01-01

    Studied the effects of two adaptations of the Success for All program, a Spanish bilingual version (Exito para Todos) and an adaptation that integrates English-as-a-Second-Language strategies with English reading instruction using data from six studies. Notes substantially positive effects of both approaches on students acquiring English. (SLD)

  8. Effects of Bilingual and English as a Second Language Adaptations of Success for All on the Reading Achievement of Students Acquiring English.

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Madden, Nancy A.

    Two adaptations of Success for All, a comprehensive instructional reform program for elementary schools, have been used with students acquiring English as a second language. One is a Spanish bilingual version called "Exito para Todos," in which students are taught to read in Spanish and then transitioned to English reading, usually in…

  9. Schooling by Design: Mission, Action, and Achievement

    ERIC Educational Resources Information Center

    Wiggins, Grant; McTighe, Jay

    2007-01-01

    An essential part of moving forward with the Understanding by Design[R] framework is to make sure its principles and strategies are reflected in all aspects of your school improvement efforts, including curriculum planning, leadership, teacher professional development, and action research. Here's a book designed to help you. From creating your…

  10. Reading Achievement: Characteristics Associated with Success and Failure: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," April through June 1978 (Vol. 38 Nos. 10 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 20 titles deal with a variety of topics, including the following: the relationships between reading achievement and such factors as dependency, attitude toward reading, mastery of word attack skills, reaction time on selected…

  11. Successful Family Engagement in the Classroom: What Teachers Need to Know and Be Able to Do to Engage Families in Raising Student Achievement

    ERIC Educational Resources Information Center

    Spielberg, Lela

    2011-01-01

    There is widespread agreement that family engagement leads to increased student achievement, reduced drop-out rates, and a host of other positive outcomes for kids. Teachers are rarely trained or supported in engaging families, and, according to the 2005 MetLife Survey of the American Teacher, find family engagement to be their biggest challenge.…

  12. Black Students and Mathematics Achievement: A Mixed-Method Analysis of In-School and Out-of-School Factors Shaping Student Success

    ERIC Educational Resources Information Center

    Russell, Nicole M.

    2011-01-01

    Achievement gap language has become associated with the observed disparities on a number of educational measures between the academic performances of Black and White students. This theoretical lens is problematic because it sends an unintended message that Black students are not worthy of study in their own right. Using a mixed-methodological…

  13. Making a Way to Success: Self-Authorship and Academic Achievement of First-Year African American Students at Historically Black Colleges

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L.

    2014-01-01

    The purpose of the study was to estimate the relationship between academic achievement in college, as defined by first-year grade point average (GPA), and self-authorship among African American first-year students at an HBCU (N = 140), using hierarchical linear regression techniques. A single research question guided this investigation: What is…

  14. Reading Achievement: Characteristics Associated with Success and Failure: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," July through December 1979 (Vol. 40 Nos. 1 through 6).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. Among the topics covered in the 26 titles are the following: self concept and reading achievement; eye movement patterns and reading ability; psychological and neuropsychological measures of performance of children with variations in…

  15. A Qualitative Study: The Impact of Selected Non-Cognitive Variables on the Academic Success and Achievement of Culturally Diverse Academic Scholarship Students

    ERIC Educational Resources Information Center

    Wilson, Linda Louise

    2009-01-01

    The study examined whether select non-cognitive variables such as, (Sedlacek, 1989, 1991, 1993, 2004; Tracey & Sedlacek 1984, 1985, 1987, 1989) impacted the academic achievement, retention and graduation rates of culturally diverse academic scholarship students at a predominantly white higher education institutions. The subjects of the study…

  16. Reading Achievement: Characteristics Associated with Success and Failure: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1980 (Vol. 40 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 25 titles deal with a variety of topics, including the following: (1) reading comprehension and visual creativity; (2) family interaction and reading achievement in high school males; (3) conceptual tempo, Piagetian level of…

  17. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  18. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  19. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  20. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  1. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs.

    PubMed

    Krickhahn, Mareike; Bühler, Christoph; Meyer, Thomas; Thiede, Arnulf; Ulrichs, Karin

    2002-01-01

    Clinical islet allotransplantation has become an increasingly efficient "routine" therapy in recent years. Shortage of human donor organs leads to porcine pancreatic islets as a potential source for islet xenotransplantation. Yet it is still very difficult to isolate sufficient numbers of intact porcine islets, particularly from young market pigs. In the following study islets were successfully isolated from retired breeders [4806 +/- 720 islet equivalents per gram organ (IEQ/g); n = 25; 2-3 years old; RB] and also from young hybrid pigs [2868 +/- 260 IEQ/g; n = 65; 4-6 months old; HY] using LiberasePI and a modified version of Ricordi's digestion-filtration technique. As expected, isolations from RB showed significantly better results (p < 0.002). A retrospective histological analysis of almost all donor pancreases showed that the majority of organs from RB (80%) contained mainly large islets (diameter > 200 microm), in contrast to only 35% of all pancreases from HY. Remarkably, the islet size in situ, regardless whether detected in RB or HY, strongly determined the isolation result. A donor organ with predominantly large islets resulted in significantly higher numbers of IEQs compared with a donor organ with predominantly small islets [RB(Large Islets): 5680 +/- 3,318 IEQ/g (n= 20); RB(Small Islets): 1353 +/- 427 IEQ/g (n = 5); p < 0.02]. In addition, isolation results were strongly influenced by the quality of the LiberasePI batch, and therefore single batch testing is invariably required. Purification was performed using Ficoll or OptiPrep density gradient centrifugation manually or in the COBE cell processor. Although islet purity was highest when OptiPrep was used, final islet yields did not differ between the different purification methods. Our study demonstrates that islet size in situ is an extremely critical parameter for highly successful islet isolation; consequently, we are now performing a morphological screening of each donor organ prior to the

  2. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  3. Quality Interaction Between Mission Assurance and Project Team Members

    NASA Technical Reports Server (NTRS)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    This viewgraph presentation demonstrates the importance of value added Mission Assurance to flight operations in order to assure mission success and the Health and Safety of the mission, (i.e., the Spitzer space Telescope.)

  4. Addressing the Achilles' Heel in the HIV Care Continuum for the Success of a Test-and-Treat Strategy to Achieve an AIDS-Free Generation

    PubMed Central

    Nachega, Jean B.; Uthman, Olalekan A.; del Rio, Carlos; Mugavero, Michael J.; Rees, Helen; Mills, Edward J.

    2014-01-01

    Mathematical models and recent data from ecological, observational, and experimental studies show that antiretroviral therapy (ART) is effective for both treatment and prevention of HIV, validating the treatment as prevention (TasP) approach. Data from a variety of settings, including resource-rich and -limited sites, show that patient attrition occurs at each stage of the human immunodeficiency virus (HIV) treatment cascade, starting with the percent unaware of their HIV infection in a population and linkage to care after diagnosis, assessment of ART readiness, receipt of ART, and finally long-term virologic suppression. Therefore, in order to implement TasP, we must first define practical and effective linkage to care, acceptability of treatment, and adherence and retention monitoring strategies, as well as the cost-effectiveness of such strategies. Ending this pandemic will require the combination of political will, resources, and novel effective interventions that are not only feasible and cost effective but also likely to be used in combination across successive steps on the HIV treatment cascade. PMID:24926028

  5. Seven-Day Nonbismuth Containing Quadruple Therapy Could Achieve a Grade "A" Success Rate for First-Line Helicobacter pylori Eradication.

    PubMed

    Tai, Wei-Chen; Liang, Chih-Ming; Lee, Chen-Hsiang; Chiu, Chien-Hua; Hu, Ming-Luen; Lu, Lung-Sheng; Kuo, Yuan-Hung; Kuo, Chung-Mou; Yen, Yi-Hao; Kuo, Chung-Huang; Chiou, Shue-Shian; Wu, Keng-Liang; Chiu, Yi-Chun; Hu, Tsung-Hui; Chuah, Seng-Kee

    2015-01-01

    This prospective study was to assess the efficacy of nonbismuth containing quadruple therapy as first-line H. pylori treatment and to determine the clinical factors influencing patient outcome. We enrolled 200 H. pylori-infected naïve patients. They were prescribed either a 7-day nonbismuth containing quadruple therapy group (EACM, esomeprazole 40 mg twice daily, amoxicillin 1 g twice daily, metronidazole 500 mg twice daily, and clarithromycin 500 mg twice daily) or a 7-day standard triple therapy group (EAC, esomeprazole 40 mg twice daily, amoxicillin 1 g twice daily, and clarithromycin 500 mg twice daily). Follow-up studies to assess treatment responses were carried out 8 weeks later. The eradication rates attained by EACM and EAC groups were 95.6% (95% confidence interval [CI] = 89.4%-98.3%) and 79.3% (95% CI = 70%-86.4%) in the per-protocol analysis (P < 0.001) and 88% (95% CI = 80.2%-93.0%) and 73% (95% I = 63.6%-80.3%) in the intention-to-treat analysis (P = 0.007). Clarithromycin resistance, metronidazole resistance, and dual clarithromycin and metronidazole resistances were the clinical factors influencing H. pylori eradication in EACM group. Clarithromycin resistance and dual clarithromycin and metronidazole resistances were the influential factor for EAC treatment. In conclusion, the results suggest that 7-day nonbismuth containing quadruple therapy could achieve a grade "A" report card for first-line H. pylori treatment.

  6. Isolation of intact megakaryocytes from guinea pig femoral marrow. Successful harvest made possible with inhibitions of platelet aggregation; enrichment achieved with a two-step separation technique

    PubMed Central

    1976-01-01

    Methods have been devised to harvest megakaryocytes from guinea pig femoral marrow and to isolate them in high yield. When marrow tissue was disaggregated the megakaryocytes underwent degenerative changes characterized by the loss of cytoplasmic granules and alterations in membrane topography, similar to the changes seen in aggregating platelets. These morphologic changes were interpreted to mean that megakaryocytes possessed functional attributes of platelets. The use of agents which inhibit platelt aggregation (0.38% sodium citrate. 10(-3) M adenosine, and 2 x 10(-3) M theophylline) in a medium free of bivalent cations prevented these changes. This solution resulted in both an excellent morphologic preservation and a significantly increased recovery of megakaryocytes from marrow tissue. A two-step purification of the intact megakaryocytes was carried out on the basis of their low density and large size, with equilibrium density gradient centrifugation followed by velocity sedimentation. This sequence gave approximately a 100-fold enrichment of megakaryocytes, significantly better than that achieved with either method alone. These techniques for harvesting and concentrating megakaryocytes make it possible for the first time to study megakaryocytes in vitro. PMID:3509

  7. Tracking system options for future altimeter satellite missions

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Rim, H. J.; Ries, J. C.; Tapley, B. D.

    1994-01-01

    Follow-on missions to provide continuity in the observation of the sea surface topography once the successful TOPEX/POSEIDON (T/P) oceanographic satellite mission has ended are discussed. Candidates include orbits which follow the ground tracks of T/P GEOSAT or ERS-1. The T/P precision ephemerides, estimated to be near 3 cm root-mean-square, demonstrate the radial orbit accuracy that can be achieved at 1300 km altitude. However, the radial orbit accuracy which can be achieved for a mission at the 800 km altitudes of GEOSAT and ERS-1 has not been established, and achieving an accuracy commensurate with T/P will pose a great challenge. This investigation focuses on the radial orbit accuracy that can be achieved for a mission in the GEOSAT orbit. Emphasis is given to characterizing the effects of force model errors on the estimated radial orbit accuracy, particularly those due to gravity and drag. The importance of global, continuous tracking of the satellite for reduction in these sources of orbit error is demonstrated with simulated GPS tracking data. A gravity tuning experiment is carried out to show how the effects of gravity error may be reduced. Assuming a GPS flight receiver with a full-sky tracking capability, the simulation results indicate that a 5 cm radial orbit accuracy for an altimeter satellite in GEOSAT orbit should be achievable during low-drag atmospheric conditions and after an acceptable tuning of the gravity model.

  8. Successful achievement of sustained virological response to triple combination therapy containing simeprevir in two patients with chronic hepatitis C who had failed asunaprevir:Daclatasvir combination therapy.

    PubMed

    Ozeki, Itaru; Nakajima, Tomoaki; Yamaguchi, Masakatsu; Kimura, Mutsuumi; Arakawa, Tomohiro; Kuwata, Yasuaki; Ohmura, Takumi; Sato, Takahiro; Hige, Shuhei; Karino, Yoshiyasu; Toyota, Joji

    2016-10-01

    Patients 1 and 2 were treatment-naive women who had genotype 1b chronic hepatitis C. Both had IL-28B genotype TT, and amino acid substitutions of core 70 and 91 were both wild type. Search for the presence of resistance-associated variants (RAV) in non-structural (NS)3 and NS5A regions confirmed wild-type D168 and L31, along with Y93H, in both patients. These patients participated in a Japanese phase III clinical study of asunaprevir and daclatasvir at the age of 52 and 67 years, respectively, and were treated with the combination regimen for 24 weeks. However, both experienced post-treatment relapse, and then treated with triple combination therapy with simeprevir, pegylated interferon (IFN) and ribavirin at the age of 53 and 68 years, respectively, and achieved sustained virological response. A search for RAV prior to simeprevir treatment identified multiple resistance including D168E, Y93H and L31V in both patients. It has been demonstrated that, in many cases, a treatment failure with a combination of asunaprevir and daclatasvir results in acquisition of RAV in NS3 and NS5A regions and that drug-resistant mutants, particularly those in the NS5A region, survive for a long time. In these cases, direct-acting antivirals targeted towards the NS5A region may have a limited efficacy. The present case report is based on an idea that a regimen containing IFN with simeprevir could be a therapeutic option particularly for those who are likely to be highly sensitive and tolerable to IFN.

  9. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  10. Geospace Missions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Geospace Missions - Understanding and being able to predict the behavior of the Earth's near space environment, called Geospace, is important for several reasons. These include the fact that most of the space-based commercial, military, and space research assets are exposed to this environment and that investigating fundamental plasma processes at work through out the solar system can most readily be accomplished in Geospace, the only place we can access the processes. NASA missions that are directed toward understanding, characterizing, and predicting the Geospace environment are described in this presentation. Emphasis is placed on those missions that investigate those phenomena that most affect life and society. The significance of investigating ionospheric irregularities, the radiation belt dynamics with the LWS Geospace Mission will be discussed.

  11. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  12. The role of small missions in planetary and lunar exploration

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

  13. Acceptance of Safety and Mission Success Risks

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    NASA has developed an objectives based hierarchy for guiding Reliability and Maintainability (RM) activities. This presentation overviews the hierarchy and proposes to the international trilateral partners to formulate a task force to consider the elements of the NASA RM framework, as captured in the hierarchy of RM considerations, to identify commonalities and differences in the way RM is addressed by the flight projects among the partners.

  14. Was the MSSTA 2 mission successful?

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA) is a rocket borne solar observatory designed to address a wide range of scientific questions relating to two aspects of the structure and dynamics of the solar atmosphere: (1) The heating and dynamics of chromospheric and coronal structures including spicules, coronal loops, bright points, and planes; and the role of the fine scale structure of the chromospheric network in the transport of mass and energy between these structures, and (2) The large scale structures of the corona, including the interface of prominences and filaments with material at coronal temperatures, the transition region structure of coronal holes and plumes, and their relationship to the solar wind. In order to address these fundamental scientific problems, the observational objective of the MSSTA is to obtain a set of high resolution spectroheliograms with the following properties: (1) Sufficiently broad spectral coverage and accurate photometry to allow modeling of structures covering the full range of temperatures observed in non-flaring chromosphere/corona, 10(exp 4) K to 10(exp 7) K; (2) Sufficient spectral resolution (lambda / delta lambda approx. 30-100) in each spectroheliogram to allow isolation of the emission from lines excited over a narrow range of temperatures; (3) To address objective (a), spatial resolution sufficient to resolve structures on the sun on a scale of 100-200 km (0.1-0.3 arc seconds); to address objective (b), images of the full disk and inner corona with resolution at least 1.0 arc second, and high sensitivity images of the extended corona (to approx. 3-4 solar radii above the limb) with resolution of approx. 3 arc seconds; for both objectives (c), direct measurements of the coronal magnetic field. (4) To access the role of non-thermal phenomena in the heating and dynamics of the chromosphere/corona interface, high resolution (lambda / delta lambda greater than 1000) spectroheliograms with spatial resolution of 1-3 arc seconds.

  15. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  16. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The nation's efforts to expand human presence and activity beyond Earth orbit into the solar system was given renewed emphasis in January of 1988 when the Presidential Directive on National Space Policy was signed into effect. The expansion of human presence into the solar system has particular significance, in that it defines long-range goals for NASA's future missions. To embark and achieve such ambitious ventures is a significant undertaking, particularly compared to past space activities. Missions to Mars, the Moon, and Phobos, as well as an observatory based on the dark side of the Moon are discussed.

  17. EVAL mission requirements, phase 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The aspects of NASA's applications mission were enhanced by utilization of shuttle/spacelab, and payload groupings which optimize the cost of achieving the mission goals were defined. Preliminary Earth Viewing Application Laboratory (EVAL) missions, experiments, sensors, and sensor groupings were developed. The major technological EVAL themes and objectives which NASA will be addressing during the 1980 to 2,000 time period were investigated. Missions/experiments which addressed technique development, sensor development, application development, and/or operational data collection were considered as valid roles for EVAL flights.

  18. Ulysses, the end of an extraordinary mission

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Ulysses, a pioneering ESA/NASA mission, was launched in October 1990 to explore uncharted territories - the regions above and below the Sun’s poles - and study our star’s sphere of influence, or heliosphere, in the four dimensions of space and time. Originally designed for a lifetime of five years, the mission has surpassed all expectations. The reams of data Ulysses has returned have forever changed the way scientists view the Sun and its effect on the space surrounding it. Media representatives interested in attending the press conference are invited to register using the attached form. Those not able to attend will have the opportunity to follow the press conference using the following phone number: +33 1 56785733 (listening-mode only). The programme of the event is as follows: The Ulysses Legacy Press Conference 12 June 2008, 15:30, Room 137, ESA Headquarters, 8-10 rue Mario-Nikis, Paris Event programme 15:30 Welcome, by David Southwood, ESA Director of Science and Robotic Exploration (with a joint ESA/NASA statement) 15:40 Ulysses: a modern-day Odyssey, by Richard Marsden, ESA Ulysses Project Scientist and Mission Manager 15:50 The Ulysses scientific legacy: Inside the heliosphere, by Richard Marsden,ESA Ulysses Project Scientist and Mission Manager 16:00 The Ulysses scientific legacy: Outside the heliosphere, by Ed Smith, NASA Ulysses Project Scientist 16:10 Ulysses, the over-achiever: challenges and successes of a 17-year-old mission, by Nigel Angold, ESA Ulysses Mission Operations Manager 16:20 Questions and Answers, Panelists: David Southwood, Richard Marsden, Ed Smith, Nigel Angold and Ed Massey (NASA Ulysses Project Manager) 16:40 Interview opportunities 17:30 End of event

  19. Strategies for crew selection for long duration missions

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Holland, Albert W.; Santy, Patricia A.; Rose, Robert M.; Mcfadden, Terry J.

    1990-01-01

    Issues surrounding psychological reactions to long duration spaceflight are discussed with respect to the definition of criteria for selecting crewmembers for such expeditions. Two broad dimensions of personality and behavior are defined - Instrumentality including achievement orientation, leadership, and ability to perform under pressure and Expressivity encompassing interpersonal sensitivity and competence. A strategy for validating techniques to select in candidates with the optimum psychological profile to perform successfully on long duration missions is described.

  20. Mission reliability model programmers guide

    NASA Astrophysics Data System (ADS)

    Medina, Joseph M.; Simonson, Jonathan H.; Veatch, Michael H.

    1986-12-01

    The Mission Reliability Model (MIREM) has been developed to evaluate the reliability and sustained operating capability of advanced electronic circuits during the early stages of development. MIREM is applicable to integrated systems that achieve fault tolerance through dynamic fault detection, fault isolation, and reconfiguration. The model can also be valuable in evaluating designs that employ only dedicated or hard-wired redundancy. The most unique feature of MIREM is its ability to accurately reflect the impact of reconfigurable, competing functions on system reliability. The user defines the resources necessary to support a required function, e.g., Global Positioning System (GPS), and the model will compute the probability of losing that functional capability over a certain operating time. A critical failure occurs when there is not a sufficient number of working resources to support a specified function. As an analytic model, MIREM determines a value for Mean Time Between Critical Failure, Mission Completion Success Probability, and Failure Resiliency. The MIREM Programmers Guide addresses the model's program structure, function of routines, interdependence of subprograms and common blocks, and file usage. The information needed to port the model to other computer systems is also provided.

  1. Assessing the Benefits of NASA Category 3, Low Cost Class C/D Missions

    NASA Technical Reports Server (NTRS)

    Bitten, Robert E.; Shinn, Steven A.; Mahr, Eric M.

    2013-01-01

    Category 3, Class C/D missions have the benefit of delivering worthwhile science at minimal cost which is increasingly important in NASA's constrained budget environment. Although higher cost Category 1 and 2 missions are necessary to achieve NASA's science objectives, Category 3 missions are shown to be an effective way to provide significant science return at a low cost. Category 3 missions, however, are often reviewed the same as the more risk averse Category 1 and 2 missions. Acknowledging that reviews are not the only aspect of a total engineering effort, reviews are still a significant concern for NASA programs. This can unnecessarily increase the cost and schedule of Category 3 missions. This paper quantifies the benefit and performance of Category 3 missions by looking at the cost vs. capability relative to Category 1 and 2 missions. Lessons learned from successful organizations that develop low cost Category 3, Class C/D missions are also investigated to help provide the basis for suggestions to streamline the review of NASA Category 3 missions.

  2. The Trojans' Odyssey space mission

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Vernazza, P.; Groussin, O.; Poncy, J.; Martinot, V.; Hinglais, E.; Bell, J.; Cruikshank, D.; Helbert, J.; Marzari, F.; Morbidelli, A.; Rosenblatt, P.

    2011-10-01

    In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the "snow line", around respectively the L4 and L5 Lagrange points of Jupiter at 5.2 AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans' Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3 AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise to 7 years as well as the ?V needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ?V. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy

  3. Cassini Maneuver Experience for the Fourth Year of the Solstice Mission

    NASA Technical Reports Server (NTRS)

    Vaquero, Mar; Hahn, Yungsun; Stumpf, Paul; Valerino, Powtawche; Wagner, Sean; Wong, Mau

    2014-01-01

    After sixteen years of successful mission operations and invaluable scientific discoveries, the Cassini orbiter continues to tour Saturn on the most complex gravity-assist trajectory ever flown. To ensure that the end-of-mission target of September 2017 is achieved, propellant preservation is highly prioritized over maneuver cycle minimization. Thus, the maneuver decision process, which includes determining whether a maneuver is performed or canceled, designing a targeting strategy and selecting the engine for execution, is being continuously re-evaluated. This paper summarizes the maneuver experience throughout the fourth year of the Solstice Mission highlighting 27 maneuvers targeted to nine Titan flybys.

  4. Measuring Student Success

    ERIC Educational Resources Information Center

    Baldwin, Christopher; Bensimon, Estela Mara; Dowd, Alicia C.; Kleiman, Lisa

    2011-01-01

    Student success is at the heart of both institutional effectiveness and the community college mission, yet measuring such success at community colleges is problematic. This article highlights three efforts to grapple with this problem--a multistate work group of system- and state-level policymakers to create an improved set of student success…

  5. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul W.

    2013-01-01

    Laser Interferometer Space Antenna (LISA) Pathfinder (formerly known as SMART-2) is a European Space Agency mission designed to pave the way for the joint ESA/NASA LISA mission by testing in flight the critical technologies required for space borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of space-borne gravitational wave detectors by shrinking the million kilometer scale armlengths down to a few tens of centimeters, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LPF mission consists then of the first in-flight test of low frequency gravitational wave detection metrology.

  6. Mechanical design of the Mars Pathfinder mission

    NASA Technical Reports Server (NTRS)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  7. Kepler's Third Law and NASA's Kepler Mission

    NASA Astrophysics Data System (ADS)

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-04-01

    NASA's Kepler Mission (Fig. 1) has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the Kepler website.

  8. Kepler's Third Law and NASA's "Kepler Mission"

    ERIC Educational Resources Information Center

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-01-01

    NASA's "Kepler Mission" has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the "Kepler" website.

  9. Rover Technology Development and Infusion for the 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Volpe, R.; Peters, S.

    2003-01-01

    After the 2003 Mars Exploration Rovers (MER) Mission, NASA plans to send a larger, longer life Mobile Science Laboratory (MSL) in 2009. This rover is planned to last 500 days, travel ten kilometers, and demonstrate autonomous capabilities that reduce the number of communication cycles now needed to achieve successful completion of activities on the surface.

  10. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  11. Inspiration is "Mission Critical"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  12. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  13. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  14. MNSM - A Future Mars Network Science Mission

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.

    2012-04-01

    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  15. Beyond the boys' club: strategies for achieving career success as a woman working in a male-dominated field Suzanne Doyle-Morris Beyond the boys' club: strategies for achieving career success as a woman working in a male-dominated field Wit and Wisdom Press £13.99 298pp 9780956268808 0956268803 [Formula: see text].

    PubMed

    2010-02-03

    ALTHOUGH THIS book is not intended for any specific group of healthcare professionals, its subject matter, including mentorship, the need to master presentation skills such as public speaking, and why it is good to share workplace success, should all be of interest to nurses.

  16. Strategies for achieving orthopedic service line success.

    PubMed

    Lang, Stacey; Powers, Kristi

    2013-12-01

    Healthcare finance leaders can work with orthopedic surgeons to support better outcomes, clinically and financially, by: Establishing innovative partnerships among hospital leaders, orthopedic surgeons, and implant vendors. Developing and enforcing expectations around contracting and vendor behavior. Establishing a forum for open communication. Building a bundled payment structure. Finding ways to differentiate from the competition.

  17. Talking about Success: Implications for Achievement Motivation

    ERIC Educational Resources Information Center

    Heyman, Gail D.

    2008-01-01

    Three studies investigated the influence of verbal descriptions concerning the performance of others on children's ability conceptions among 177 elementary school children ranging in age from 8 to 12 years. Study 1 showed that when high-performing characters were described with labels such as "math whiz," children tended to view the character's…

  18. Spacelab life sciences 2 post mission report

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  19. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  20. Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James

    2012-01-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.

  1. Attitude changes during and after long submarine missions.

    PubMed

    Weybrew, B B; Molish, H B

    1979-01-01

    To assess the kind and degree of attitude changes occurring during a 2-month submerged mission, two enlisted crews of one fleet ballistic missile submarine (FBM) (n = 101 each) were administered the Submarine Attitude Questionnaire before and after two 55-day submerged missions interspersed with a rehabilitation period of the same duration. Results showed that time-in-service and pay grade bore a U-shaped relationship to positive attitudes toward the service. During submergence, most attitudes became negative and then reversed polarity during rehabilitation. However, there were no cumulative effects upon attitudes during successive missions. Attitudes pertaining to the realities of the mission (for example, boredom, hazardous aspects) became more negative but recovered faster. On the other hand, attitude changes related to long-range expectancies in terms of goal achievement of the crew members were less likely to recover. Several possible explanations for these attitude changes are discussed in the context of the mission of the FBM submarine. Suggestions for preventing or alleviating untoward attitude changes during long submarine missions are also presented.

  2. Scientific and Mission Requirements of Next-generation Space Infrared Space Telescope SPICA

    NASA Astrophysics Data System (ADS)

    Matsuhara, Hideo; Nakagawa, Takao; Ichikawa, Takashi; Takami, Michihiro; Sakon, Itsuki

    SPICA (Space Infrared Telescope for Cosmology Astrophysics) is a next-generation space tele-scope for mid-and far-infrared astronomy, based on the heritage of AKARI, Spitzer, and Her-schel, Here we introduce Mission Requirement Document (MRD), where scientific and mission requirement of SPICA are described. The MRD clarifies the objectives of the SPICA mission. These objectives are more concretely expressed by various scientific targets, and based on these targets, the mission requirements, such as required specifications of the mission instrumenta-tions, scientific operations etc. are defined. Also the success criteria, by which the evaluation of the mission achievement will be addressed, are clearly described. The mission requirements described here will give the baseline of the study of the system requirements. In the future, The MRD will also be used to confirm the development status, system performance, and operational results on orbit etc. are well in-line with the mission requirements. To summarize, the most important mission requirement of SPICA is to realize a large, mono-lithic (not segmented) 3-m class or larger mirror cooled down below 6K, in order to perform extremely deep imaging and spectroscopy at 5-210µm.

  3. SEQUOIA mission

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Carone, Timothy; Siegmund, Oswald H.; Jelinsky, Patrick N.; Polidan, Ronald S.

    1995-06-01

    We describe a mission concept for the SEQUOIA instrument, which would carry out the first wide-field, far ultraviolet, photometric all-sky survey. SEQUOIA will image the astronomical sky in the 912-1050 angstrom spectral region to a limiting magnitude of 19.5(superscript m) over a one degree field of view with a spatial resolution of less than 30 arc seconds. This mission was proposed to the USRA STEDI program in late 1994, and has been designed as a low cost, fast-track program for launch within 3 years. The spacecraft bus is being provided by Orbital Sciences Corporation (Dulles) and since the entire payload weighs less than 100kg, it can be launched using either a Minuteman or Pegasus rocket.

  4. Attitudes of Success.

    ERIC Educational Resources Information Center

    Pendarvis, Faye

    This document investigates the attitudes of successful individuals, citing the achievement of established goals as the criteria for success. After offering various definitions of success, the paper focuses on the importance of self-esteem to success and considers ways by which the self-esteem of students can be improved. Theories of human behavior…

  5. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  6. Student academic achievement in college chemistry

    NASA Astrophysics Data System (ADS)

    Tabibzadeh, Kiana S.

    General Chemistry is required for variety of baccalaureate degrees, including all medical related fields, engineering, and science majors. Depending on the institution, the prerequisite requirement for college level General Chemistry varies. The success rate for this course is low. The purpose of this study is to examine the factors influencing student academic achievement and retention in General Chemistry at the college level. In this study student achievement is defined by those students who earned grades of "C" or better. The dissertation contains in-depth studies on influence of Intermediate Algebra as a prerequisite compared to Fundamental Chemistry for student academic achievement and student retention in college General Chemistry. In addition the study examined the extent and manner in which student self-efficacy influences student academic achievement in college level General Chemistry. The sample for this part of the study is 144 students enrolled in first semester college level General Chemistry. Student surveys determined student self-efficacy level. The statistical analyses of study demonstrated that Fundamental Chemistry is a better prerequisite for student academic achievement and student retention. The study also found that student self-efficacy has no influence on student academic achievement. The significance of this study will be to provide data for the purpose of establishing a uniform and most suitable prerequisite for college level General Chemistry. Finally the variables identified to influence student academic achievement and enhance student retention will support educators' mission to maximize the students' ability to complete their educational goal at institutions of higher education.

  7. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  8. 2007 Western States Fire Mission

    NASA Technical Reports Server (NTRS)

    Howell, Kathleen

    2008-01-01

    A general overview of the Ikhana Uninhabited Air System (UAS) is presented. The contents include: 1) Ikhana UAS; 2) Ikhana UAS / Ground Control Station (GCS); 3) Ikhana UAS / Antennas; 4) Western States Fire Mission 2007 Partners; 5) FAA Certificate of Authorization (COA); 6) Western States Fire Missions (WSFM) 2007; 7) WSFM 1-4 2007; 8) California Wildfire Emergency Response 2007; 9) WSFM 5-8 Emergency Response 2007; 10) WSFM Achievements; and 11) WSFM Challenges.

  9. Simulation and debriefing in neonatology 2016: Mission incomplete.

    PubMed

    Halamek, Louis P

    2016-11-01

    Simulation can be an effective tool to facilitate the acquisition and maintenance of the cognitive, technical and behavioral skills necessary to carry out our mission in neonatology: the delivery of safe, effective and efficient care to our patients. Prominent examples of successful implementation of simulation within neonatology include the Neonatal Resuscitation Program, the International Pediatric Simulation Society, and the International Network for Simulation-Based Pediatric Innovation, Research and Education. Despite these successes much remains to be accomplished. Expanding simulation beyond technical skill acquisition, using simulated environments to conduct research into human and system performance, incorporating simulation into high-stakes skill assessments, embracing the expertise of the more extensive modeling and simulation community and, in general, applying simulation to healthcare with the same degree of gravitas with which it is deployed in other high-risk industries are all tasks that must be completed in order to achieve our mission.

  10. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, P.; Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Cavalleri, A.; Congedo, G.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixton, G.; Dolesi, R.; Dumbar, N.; Fauste, J.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Korsakova, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Mateos, I.; Mendes, J.; Mitchell, E.; Nicolodi, D.; Nofrarias, M.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Schleicher, A.; Shaul, D.; Sopuerta, C. F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Ziegler, T.; Zweifel, P.

    2013-01-01

    LISA Pathfinder (formerly known as SMART-2) is an European Space Agency mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for space-borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control, and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of spaceborne gravitational wave detectors by shrinking the million kilometre scale armlengths down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. In this paper I will give a brief overview of the mission, focusing on scientific and technical goals.

  11. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  12. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  13. ENVISAT - A Key Ariane 5 Mission

    NASA Astrophysics Data System (ADS)

    Jourdainne, Laurent; Louet, Jacques

    2002-01-01

    : For Arianespace, the success of a launch service has always been the top priority. In 2002, the predicted number of flights is very high and we are ready to serve properly the customers as usual. Major steps will be achieved: the consumption of most of the Ariane 4, the first "Ariane 5 10 tons" flight and last, but first of all, the ENVISAT mission on flight V145 have a specific importance. Like many other ESA missions, ENVISAT mission has really been a great challenge. In fact, for almost 10 years, ESA and Arianespace have acted the complete compatibility between the spacecraft and the launcher. As the biggest and heaviest payload ever carried by Ariane, it has been design to fit the new European rocket. Based on the former PPF plateform, it occupies itself the place inside the highest fairing of Ariane 5. With approximately 8.2 metric tons and 10m high, this bird concentrates advanced technologies and will deliver a huge amount of datas. His time has come with 10 onboard scientific experiments to participate in a better understanding of the earth systemic behaviour and future. As never before, computer models will be precisely tuned and will serve differenciate global scenarii which predict future tendencies. As part of the ambitious European GMES (Global Monitoring for Environment and Security) initiative, ENVISAT, ERS, Meteosat or SPOT will contribute to the maximum extent possible. It took nearly 2 months for the complete set of 420 tons of equipments to reach the "Centre Spatial Guyanais" (CSG) using "MN Toucan" Ariane boat, or planes like Antonov or B747-Cargo. Then the payload campaign itself begun on May, the 17th 2001. Unpredicted shorten Ariane 5 mission on july, the 12th 2001, delayed ENVISAT flight to 2002, and gave the campaign a longer and unusual duration. Launcher and customer's teams adapted perfectly and coordinated until the launch. The ENVISAT campaign can be devided in 3 major periods. First period is the customer installation where huge

  14. Current Development of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects, particularly those based on use of passive microwave radiometer measurements, have paved the way for a more advanced global precipitation mission. The new mission is motivated by a number of scientific questions that TRMM research has posed over a range of space-time scales and within a variety of scientific disciplines that are becoming more integrated into earth system science modeling. Added to this success is the realization that satellite rainfall datasets are now a foremost tool in understanding global climate variability out to decadal scales and beyond. This progress has motivated a comprehensive global measuring strategy -- leading to the "Global Precipitation Mission" (GPM). GPM is planning to expand the scope of rainfall measurement through use of a satellite constellation. The intent is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction & prediction of fresh water resources, the global carbon budget, and biogeochemical cycles. This talk overviews the status and scientific agenda of this mission currently planned for launch in the 2007-2008 time frame. The GPM notional design involves a 10-member satellite constellation, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band radar (DFPR) and a TMI-like radiometer. The other nine members of the constellation will be considered daughters of the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range -- likely to include a combination of lightweight satellites and co-existing operational/experimental satellites carrying passive microwave radiometers (i.e., 2 DMSP/SSMISs, GCOM-B1/AMSR-J, & Megha Tropiques/MADRAS). The goal behind the constellation is to achieve no worse than

  15. Follow-on mission description of HITEN

    NASA Astrophysics Data System (ADS)

    Uesugi, Kuninori; Kawaguchi, Jun'ichiro; Ishii, Nobuaki; Shuto, Miwako; Yamakawa, Hiroshi; Tanaka, Kimie

    This paper describes a design strategy and flight results of the HITEN follow-on mission. HITEN was launched on January 24, 1990, from Kagoshima Space Center, Japan. One of the primary purposes of the HITEN mission was to establish the technologies required for lunar and planetary missions in the near future. On March 30, 1991, HITEN passed into the upper atmospherere of 120 km in altitude, and the second aerobraking experiment was successfully accomplished. Although, at this moment, the main missions of HITEN scheduled before launch were completed, HITEN still had a residual fuel of 12 kg, which corresponded to the capability of about 130 m/s in velocity maneuver. Hence, taking a maximum used of the limited fuel, several trajectories for the HITEN follow-on mission had been discussed. One of the candidates of the follow-on mission was an exploration of Lagrangian points in the earth-moon gravity field, so as to detect micro-dust around these gravitationally equilibrated environment using a micro-dust counter installed in HITEN. Other candidate was an insertion of HITEN itself into an orbit around the Moon. Prior to the Lagrangian Points Excursion (LPE), the apogee distance of the HITEN orbit was enlarged from 462,000 km to 1,538,000 km by the 9th lunar gravity assist on April 27, 1991, because of reducing the deceleration velocity required to enter the orbit around the Moon. On October 2, 1991, HITEN entered into the LPE orbit, taking advantage of the 10th lunar gravity assist. After the exploration of the Lagrangian points, the approaching velocity to the Moon was retarded at the closest encounter moment of the 11th lunar swingby on February 15, 1992. Thereafter, HITEN was orbiting the Moon. The resultant velocity increment amounted to 116 m/s in total, which included 34 m/s for setting the encounter conditions of the above lunar swingby and 82 m/s for entering the orbit around the Moon. Although the Sun-Earth-Moon graity field was complicated to analyze, the

  16. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  17. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  18. Cognitive Processes and Achievement.

    ERIC Educational Resources Information Center

    Hunt, Dennis; Randhawa, Bikkar S.

    For a group of 165 fourth- and fifth-grade students, four achievement test scores were correlated with success on nine tests designed to measure three cognitive functions: sustained attention, successive processing, and simultaneous processing. This experiment was designed in accordance with Luria's model of the three functional units of the…

  19. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  20. Vicarious Achievement Orientation.

    ERIC Educational Resources Information Center

    Leavitt, Harold J.; And Others

    This study tests hypotheses about achievement orientation, particularly vicarious achievement. Undergraduate students (N=437) completed multiple-choice questionnaires, indicating likely responses of one person to the success of another. The sex of succeeder and observer, closeness of relationship, and setting (medical school or graduate school of…

  1. Achievement-Based Resourcing.

    ERIC Educational Resources Information Center

    Fletcher, Mike; And Others

    1992-01-01

    This collection of seven articles examines achievement-based resourcing (ABR), the concept that the funding of educational institutions should be linked to their success in promoting student achievement, with a focus on the application of ABR to postsecondary education in the United Kingdom. The articles include: (1) "Introduction" (Mick…

  2. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  3. Overview of the Progression of NASA's CLARREO Mission

    NASA Astrophysics Data System (ADS)

    Baize, R. R.; Wielicki, B. A.; Young, D. F.; Lukashin, C.

    2014-12-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission enables highly accurate decadal change observations that can be tested for systematic errors on-orbit and traced to international (SI) standards. The foundation of CLARREO is the ability to produce these highly accurate measurements that will be used to detect long-term climate change trends. The mission will provide the first orbiting radiometers with accuracy sufficient to serve as reference calibration standards for other space sensors, essentially serving as a "NIST in orbit". The CLARREO Project demonstrated readiness to begin Phase A at a fully successful Mission Concept Review in November 2010. Due to NASA budget considerations, CLARREO remains in an extended pre-Phase A with a launch readiness date of no earlier than 2023. NASA continues to fund efforts to refine the mission design and to examine alternative platforms, such as the International Space Station (ISS), focusing on lower cost implementation while achieving a majority of the CLARREO science objectives. The focus of this presentation will be on progress made since 2010, focusing on smaller, more compact instrument designs and mission architectures. In addition, the presentation will focus on the considerable progress made by the formal Science Definition Team (selected in 2010 and concluding in 2014) in advancing the rigor of climate Observing System Simulation Experiments (OSSEs), comparing CLARREO-like datasets with climate models, defining the complementary applications of CLARREO IR, RS, and GNSS-RO observations for climate signal benchmarking, and advancing the procedures for reference intercalibration.

  4. Strategic Map for Achieving Enceladus Ocean Exploration in Our Time

    NASA Astrophysics Data System (ADS)

    Sherwood, B.

    2015-12-01

    At AGU 2014, the author presented a decomposition and sequencing of science questions and technical capabilities that define viable programmatic pathways to enable sample return and advanced in situ exploration of the Enceladan ocean, consistent with NASA mission-opportunity constraints. Elaborated and refined in 2015 via JpGU, AbSciCon, IAC, and COSPAR Water, this plan is now specific: discrete and integrated analyses and coordination actions that, if acted on by the community over the next 45 months, could result in Enceladus ocean exploration appearing in the next Planetary Decadal Survey's mission priorities, issued in 2021. At AGU 2015, a product-based, outcome-measurable, stepwise milestone plan is presented to catalyze the next level of community discussion. Topics covered by the action plan include: hypothesis-driven science questions; mission cost as a function of mission capability; mission selectability as a function of programmatic constraints and evaluation process; exploration technologies as a function of funding and schedule; international consensus on forward and backward planetary protection requirements and solutions for exploring worlds with astrobiologically significant liquid water; and strategic balance among major NASA planetary science initiatives. Key Decadal-runup milestones are analyzed with respect to stakeholders, success criteria, and - critically - calendar and precedence. These results then inform a multi-year action plan to generate, vet, and socialize throughout the community a set of technically and fiscally viable mission concepts, respectively enabled by an achievable technology development roadmap also detailed in the presentation. This can begin to align advocate actions toward a broad community goal of exploring the Enceladan ocean. Without such coordination, which must reach fruition by Sep 2019, the probability that the next Decadal could explicitly prioritize mission objectives for Enceladus ocean exploration - as one of

  5. NASA's Standards Process Support for New Missions

    NASA Astrophysics Data System (ADS)

    Ullman, R.; Enloe, Y.

    2011-12-01

    NASA's Standards Process Group (SPG) facilitates the approval of proposed standards that have proven implementation and operational benefit for use in NASA's Earth science data systems. There are benefits to the NASA Earth science community for having a repository of endorsed Earth science data systems standards that have been successfully implemented and used within the NASA environment. NASA's Earth science data providers can rely on these endorsed standards to achieve interoperability. The SPG is working with NASA's Decadal Survey Missions (e.g. SMAP, ICESat-2, ..) to facilitate the use of NASA's endorsed standards in these future mission data systems. The Standards Process Group is designing a notional reference architecture that together with an as-built architecture documentation can assist missions in identifying where and what kinds of standards they need to develop their mission data systems. We will discuss an overview of the reference architecture and discuss how to use the reference architecture in evolving data systems and identifying standards that are needed. We will discuss real examples of the different types of candidate standards that have been proposed and endorsed (i.e. OPeNDAP's Data Access Protocol, Open Geospatial Consortium's Web Map Server, the Hierarchical Data Format, Global Change Master Directory's Directory Interchange Format, NetCDF Classic, CF Metadata). We will discuss real examples of the different types of best practices and implementation experiences that have been documented and endorsed as Technical Notes (i.e. Interoperability between OGC CS/W and WCS Protocols, Lessons Learned Regarding WCS Server Design and Implementation, Mapping HDF5 to DAP2, Creating File Format Guidelines - The Aura Experience, ECHO Metadata) But are there any benefits to communities who propose the RFCs for consideration as a NASA Earth science data systems standard? We have seen that the Standards Process encourages consensus within a community during

  6. Mars mission

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    To mark the 10th anniversary of the Apollo-Soyuz joint space mission, a recent conference examined the prospects for human exploration of Mars and for international cooperation in space. Most of the participants at the conference, which was jointly sponsored by the American Institute of Aeronautics and Astronautics and The Planetary Society, seemed to agree that some sort of collaboration like that between the United States and Soviet Union a decade ago would be desirable, and probably necessary, if humans are ever to reach Mars. Sen. Spark Matsunaga (D-Hawaii) extended the idea by saying that to gain the support of Congress, plans for future space exploration should be tied to international cooperation.

  7. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  8. Grand Challenge Problems in Real-Time Mission Control Systems for NASA's 21st Century Missions

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara B.; Donohue, John T.; Hughes, Peter M.

    1999-01-01

    Space missions of the 21st Century will be characterized by constellations of distributed spacecraft, miniaturized sensors and satellites, increased levels of automation, intelligent onboard processing, and mission autonomy. Programmatically, these missions will be noted for dramatically decreased budgets and mission development lifecycles. Current progress towards flexible, scaleable, low-cost, reusable mission control systems must accelerate given the current mission deployment schedule, and new technology will need to be infused to achieve desired levels of autonomy and processing capability. This paper will discuss current and future missions being managed at NASA's Goddard Space Flight Center in Greenbelt, MD. It will describe the current state of mission control systems and the problems they need to overcome to support the missions of the 21st Century.

  9. The MARS pathfinder end-to-end information system: A pathfinder for the development of future NASA planetary missions

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.; Kazz, Greg J.; Tai, Wallace S.

    1996-01-01

    The development of the Mars pathfinder is considered with emphasis on the End-to-End Information System (EEIS) development approach. The primary mission objective is to successfully develop and deliver a single flight system to the Martian surface, demonstrating entry, descent and landing. The EEIS is a set of functions distributed throughout the flight, ground and Mission Operation Systems (MOS) that inter-operate in order to control, collect, transport, process, store and analyze the uplink and downlink information flows of the mission. Coherence between the mission systems is achieved though the EEIS architecture. The key characteristics of the system are: a concurrent engineering approach for the development of flight, ground and mission operation systems; the fundamental EEIS architectural heuristics; a phased incremental EEIS development and test approach, and an EEIS design deploying flight, ground and MOS operability features, including integrated ground and flight based toolsets.

  10. OPALS: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In spring 2014, the Optical PAyload for Lasercomm Science (OPALS) will launch to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a 90-day baseline mission, OPALS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) in Wrightwood, California. To achieve mission success, interfaces to the ISS payload operations infrastructure are established. For OPALS, the interfaces facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes such as pointing prediction and data processing satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The tests have provided valuable insight into operational considerations on the ISS.

  11. Future NASA Missions and Technology Needs Results to Date

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1999-01-01

    An overview of future NASA missions, technologies needed for mission success, accomplishments in space mechanisms to date, a government/industry survey and survey responses, significant programmatic and technology issues, and technology implementation needs are presented.

  12. Deployer Performance Results for the TSS-1 Mission

    NASA Technical Reports Server (NTRS)

    Marshall, Leland S.; Geiger, Ronald V.

    1995-01-01

    Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the

  13. Progress on the Cluster Mission

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret; Khurana, Krishan; Acuna, Mario (Technical Monitor)

    2002-01-01

    Prof M. G. Kivelson and Dr. K. K. Khurana (UCLA (University of California, Los Angeles)) are co-investigators on the Cluster Magnetometer Consortium (CMC) that provided the fluxgate magnetometers and associated mission support for the Cluster Mission. The CMC designated UCLA as the site with primary responsibility for the inter-calibration of data from the four spacecraft and the production of fully corrected data critical to achieving the mission objectives. UCLA will also participate in the analysis and interpretation of the data. The UCLA group here reports its excellent progress in developing fully intra-calibrated data for large portions of the mission and an excellent start in developing inter-calibrated data for selected time intervals, especially extended intervals in August, 2001 on which a workshop held at ESTEC in March, 2002 focused. In addition, some scientific investigations were initiated and results were reported at meetings.

  14. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2007-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.

  15. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  16. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  17. Orbit Control Operations for the Cassini-Huygens Mission

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.; Gist, Emily M.; Goodson, Troy D.; Hahn, Yungsun; Stumpf, Paul W.; Wagner, Sean V.

    2008-01-01

    The Cassini-Huygens spacecraft was launched in 1997 as an international and collaborative mission to study Saturn and its many moons. After a seven-year cruise, Cassini began orbiting Saturn for a four- year tour. This tour consists of 157 planned maneuvers, and their back-up locations, designed to target 52 encounters, mostly of Saturn's largest moon Titan. One of the mission's first activities was to release the Huygens probe to Titan in December 2004. Currently in its last year of the prime mission, Cassini-Huygens continues to obtain valuable data on Saturn, Titan, and Saturn's other satellites. Return of this information is in large part due to a healthy spacecraft and successful navigation. A two-year extended mission, beginning July 2008, will offer the opportunity to continue science activities. With a demanding navigation schedule that compares with the prime tour, the Cassini Navigation team relies on operations procedures developed during the prime mission to carry-out the extended mission objectives. Current processes for orbit control operations evolved from the primary navigational requirement of staying close to predetermined targeting conditions according to Cassini science sequence planning. The reference trajectory is comprised of flyby conditions to be accomplished at minimal propellant cost. Control of the planned reference trajectory orbit, and any trajectory updates, is achieved with the execution of Orbit Trim Maneuvers (OTMs). The procedures for designing, processing, and analyzing OTMs during Cassini operations is presented. First, a brief overview of the Cassini-Huygens Mission is given, followed by a general description of navigation. Orbit control and maneuver execution methods are defined, along with an outline of the orbit control staffing and operations philosophy. Finally, an example schedule of orbit control operations is shown.

  18. Serving for Social Justice: Recent Completion Reforms Are Shifting the Conversation from Access to Success. Now Is the Time to Consider What Community Colleges' Mission Is Really All About

    ERIC Educational Resources Information Center

    Beebe, Anthony E.

    2015-01-01

    Community colleges were founded on the principles of social justice. This foundation still permeates the mission and core values of community colleges across the country. Certainly one of the most unique and compelling social-justice elements of community colleges has been the emphasis on open access to higher education. This open-door philosophy…

  19. The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Wenzel, K.-P.; Marsden, R. G.; Page, D. E.; Smith, E. J.

    1992-01-01

    The Ulysses mission is unique in the history of the exploration of solar system by spacecraft. The path followed by Ulysses will make it possible, for the first time, to explore the heliosphere within a few astronomical units of the sun over the full range of heliographic latitudes, thereby providing the first characterization of the uncharted third heliospheric dimension. Advanced scientific instrumentation carried on board the spacecraft is designed to measure the properties of the heliospheric magnetic field, the solar wind, the sun/wind interface, solar radio bursts and plasma waves, solar energetic particles and galactic cosmic rays, solar X-rays, and interplanetary/interstellar neutral gas and dust. Ulysses will also be used to detect cosmic gamma-ray bursts and search for gravitational waves. The mission, a collaboration between ESA and NASA, was launched in October 1990 and employs a Jupiter gravity-assist to achieve the trajectory extending to high solar latitudes. The paper describes the characteristics of the Ulysses mission in order to establish a framework within which to better understand the objectives and goals of the scientific investigations.

  20. The Gaia mission

    NASA Astrophysics Data System (ADS)

    Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gaia

  1. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  2. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  3. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  4. Crew Transportation System Design Reference Missions

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  5. Safety and Mission Assurance: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott Alan

    2011-01-01

    Safety and Mission Assurance (S&MA) consists of the safety, reliability, maintainability, software assurance and quality disciplines, which are applied to reduce the probability of mishaps and ensure mission success. NASA uses a risk management process which requires various organizations to identify, analyze and mitigate/control risks associated with operations and decision making processes.

  6. Accessing Information on the Mars Exploration Rovers Mission

    NASA Astrophysics Data System (ADS)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  7. NASA Antarctic Mission Operation ICE Bridge 2009

    NASA Video Gallery

    NASA's Operation ICE Bridge is the most recent success for the Airborne Science Program, NASA scientists and climate researchers. This six minute video summarizes NASA's research mission over west ...

  8. Mission Review: Foundation for Strategic Planning.

    ERIC Educational Resources Information Center

    Caruthers, J. Kent; Lott, Gary B.

    Developed as part of the Mission, Role, and Scope Procedures projects, conducted from 1977 through 1979 by the National Center for Higher Education Management Systems (NCHEMS), this book identifies topics to be covered in determining an institution's mission and how such a determination could be achieved through traditional, campus based, academic…

  9. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  10. Mission operations concepts for Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  11. Mission Applications of a HIAD for the Mars Southern Highlands

    NASA Technical Reports Server (NTRS)

    Winski, Richard; Bose, Dave; Komar, David R.; Samareh, Jamshid

    2013-01-01

    Recent discoveries of evidence of a flowing liquid in craters throughout the Mars Southern Highlands, like Terra Sirenum, have spurred interest in sending science missions to those locations; however, these locations are at elevations that are much higher (0 to +4 km MOLA) than any previous landing site (-1 to -4 km MOLA). New technologies may be needed to achieve a landing at these sites with significant payload mass to the surface. A promising technology is the hypersonic inflatable aerodynamic decelerator (HIAD); a number of designs have been advanced but the stacked torus has been recently successfully flight tested in the IRVE-2 and IRVE-3 projects through the NASA Langley Research Center. This paper will focus on a variety of mission applications of the stacked torus type attached HIAD to the Mars southern highlands.

  12. Mission assurance increased with regression testing

    NASA Astrophysics Data System (ADS)

    Lang, R.; Spezio, M.

    Knowing what to test is an important attribute in any testing campaign, especially when it has to be right or the mission could be in jeopardy. The New Horizons mission, developed and operated by the John Hopkins University Applied Physics Laboratory, received a planned major upgrade to their Mission Operations and Control (MOC) ground system architecture. Early in the mission planning it was recognized that the ground system platform would require an upgrade to assure continued support of technology used for spacecraft operations. With the planned update to the six year operational ground architecture from Solaris 8 to Solaris 10, it was critical that the new architecture maintain critical operations and control functions. The New Horizons spacecraft is heading to its historic rendezvous with Pluto in July 2015 and then proceeding into the Kuiper Belt. This paper discusses the Independent Software Acceptance Testing (ISAT) Regression test campaign that played a critical role to assure the continued success of the New Horizons mission. The New Horizons ISAT process was designed to assure all the requirements were being met for the ground software functions developed to support the mission objectives. The ISAT team developed a test plan with a series of test case designs. The test objectives were to verify that the software developed from the requirements functioned as expected in the operational environment. As the test cases were developed and executed, a regression test suite was identified at the functional level. This regression test suite would serve as a crucial resource in assuring the operational system continued to function as required with such a large scale change being introduced. Some of the New Horizons ground software changes required modifications to the most critical functions of the operational software. Of particular concern was the new MOC architecture (Solaris 10) is Intel based and little endian, and the legacy architecture (Solaris 8) was SPA

  13. KEPLER Mission: development and overview.

    PubMed

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  14. Gravity Recovery and Interior Laboratory (GRAIL) Primary Mission Overview

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Smith, D. E.; Asmar, S.; Konopliv, A. S.; Lemoine, F. G.; Melosh, H. J.; Neumann, G. A.; Phillips, R. J.; Solomon, S. C.; Watkins, M. M.; Wieczorek, M. A.; Williams, J. G.

    2012-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, a component of NASA's Discovery Program, launched successfully from Cape Canaveral Air Force Station on September 10, 2011. GRAIL is the lunar analog of the successful Gravity Recovery and Climate Experiment (GRACE) twin-spacecraft terrestrial gravity recovery mission that has continued to map Earth's gravity field since its launch in 2007. GRAIL was implemented with a science payload derived from GRACE and two spacecraft adapted from the Lockheed Martin Experimental Small Satellite-11 (XSS-11) mission, launched in 2005. After a 3.5-month cruise to the Moon on a low-energy trajectory, the dual spacecraft inserted to polar, elliptical orbits around the Moon on December 31, 2011 and January 1, 2012. The spacecraft, operating independently, underwent a series of maneuvers to reduce altitude and circularize the orbits to an average altitude of 55 km. The spacecraft were aligned into orbiter-point configuration and began mapping on March 1, 2012. GRAIL determines the lunar gravity field by measuring the rate of change in distance between the orbiters to fractions of a micrometer per second. Range-rates (velocity changes) are converted to gravity after correcting for non-gravitational accelerations. GRAIL completed its primary mapping mission on May 29, 2012, and returned >99.9% of the possible ranging data to Earth. The primary mission data have yielded a gravity field to spherical harmonic degree and order 420 (equivalent to a block size of 13 km) with formal errors at least three orders of magnitude smaller than previous lunar gravity investigations from Lunar Prospector and Kaguya. The quality and resolution of the GRAIL field allow analysis over an unprecedented range of length scales. GRAIL has achieved its measurement requirements related to spatial studies of lunar gravity, and the current focus is on the correction for non-conservative forces that will allow recovery of parameters relevant to deep

  15. Risk Balance: A Key Tool for Mission Operations Assurance

    NASA Technical Reports Server (NTRS)

    Bryant, Larry W.; Faris, Grant B.

    2011-01-01

    The Mission Operations Assurance (MOA) discipline actively participates as a project member to achieve their common objective of full mission success while also providing an independent risk assessment to the Project Manager and Office of Safety and Mission Success staff. The cornerstone element of MOA is the independent assessment of the risks the project faces in executing its mission. Especially as the project approaches critical mission events, it becomes imperative to clearly identify and assess the risks the project faces. Quite often there are competing options for the project to select from in deciding how to execute the event. An example includes choices between proven but aging hardware components and unused but unproven components. Timing of the event with respect to visual or telecommunications visibility can be a consideration in the case of Earth reentry or hazardous maneuver events. It is in such situations that MOA is called upon for a risk balance assessment or risk trade study to support their recommendation to the Project Manager for a specific option to select. In the following paragraphs we consider two such assessments, one for the Stardust capsule Earth return and the other for the choice of telecommunications system configuration for the EPOXI flyby of the comet Hartley 2. We discuss the development of the trade space for each project's scenario and characterize the risks of each possible option. The risk characterization we consider includes a determination of the severity or consequence of each risk if realized and the likelihood of its occurrence. We then examine the assessment process to arrive at a MOA recommendation. Finally we review each flight project's decision process and the outcome of their decisions.

  16. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  17. Developing the NASA food system for long-duration missions.

    PubMed

    Cooper, Maya; Douglas, Grace; Perchonok, Michele

    2011-03-01

    Even though significant development has transformed the space food system over the last 5 decades to attain more appealing dietary fare for low-orbit space crews, the advances do not meet the need for crews that might travel to Mars and beyond. It is estimated that a food system for a long-duration mission must maintain organoleptic acceptability, nutritional efficacy, and safety for a 3- to 5-y period to be viable. In addition, the current mass and subsequent waste of the food system must decrease significantly to accord with the allowable volume and payload limits of the proposed future space vehicles. Failure to provide the appropriate food or to optimize resource utilization introduces the risk that an inadequate food system will hamper mission success and/or threaten crew performance. Investigators for the National Aeronautics and Space Administration (NASA) Advanced Food Technology (AFT) consider identified concerns and work to mitigate the risks to ensure that any new food system is adequate for the mission. Yet, even with carefully planned research, some technological gaps remain. NASA needs research advances to develop food that is nutrient-dense and long-lasting at ambient conditions, partial gravity cooking processes, methods to deliver prescribed nutrients over time, and food packaging that meets the mass, barrier, and processing requirements of NASA. This article provides a brief review of research in each area, details the past AFT research efforts, and describes the remaining gaps that present barriers to achieving a food system for long exploration missions.

  18. Sensor assignment to mission in AI-TECD

    NASA Astrophysics Data System (ADS)

    Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan

    2016-05-01

    Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.

  19. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  20. The ISPM Mission - Science objectives and mission overview

    NASA Technical Reports Server (NTRS)

    Wenzel, K.-P.; Marsden, R. G.; Smith, E. J.

    1983-01-01

    The International Solar Polar Mission (ISPM) will, for the first time, allow exploration of the heliosphere within a few astronomical units of the sun over the full range of heliographic latitudes. The prime mission objective is to study, as a function of solar latitude, the properties of the interplanetary medium and solar corona. The scientific instrumentation is designed to explore, in the third heliospheric dimension, the properties of the solar wind, the sun/wind interface, the heliospheric magnetic field, solar radio bursts and plasma waves, solar X-rays, solar and galactic cosmic rays, and interplanetary/interstellar neutral gas and dust. ISPM will also detect cosmic gamma-ray bursts and search for gravitational waves. ISPM is a cooperative mission carried out jointly by ESA and NASA, to be launched in May 1986 and utilising a Jupiter gravity-assist to achieve a high-solar-latitude trajectory.

  1. The Kaguya Mission Overview

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-07-01

    The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.

  2. First Results of the SMOS mission

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Font, Jordi; Neira, Manuel Martin; Delwart, Steven; Hahne, Achim; Mecklenburg, Susanne; Bermudo, François

    2010-05-01

    It is now well understood that soil moisture and sea surface salinity are required to improve meteorological and climatic predictions. These two quantities were not available globally and with an adequate temporal sampling. So as to cover this data gap, it has been recognized that, provided it is possible to accommodate a suitable antenna on board a satellite, L Band radiometry was most probably the most promising way to fulfill this gap. It is within this framework that the European Space Agency (ESA)'s selected the second Earth Explorer Opportunity Mission, namely the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS, launched successfully in November 2009. The SMOS mission is ESA's second Earth Explorer Opportunity mission it is a joint program lead by the European Space Agency (ESA) with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent. Consequently, the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil over land, and, after some surface roughness and temperature corrections, spatio temporal aggregation, to the sea surface salinity over oceans. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) seeking to meet soil moisture science objectives. Such innovative concept has required a significant effort in the development of calibration techniques. It provides multiangular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days to retrieve soil moisture and ocean salinity, but with a somewhat reduced sensitivity when compared to conventional radiometers. SMOS as been now

  3. A Mission Management Application Suite for Airborne Science Operations

    NASA Astrophysics Data System (ADS)

    Goodman, H. M.; Meyer, P. J.; Blakeslee, R.; Regner, K.; Hall, J.; He, M.; Conover, H.; Garrett, M.; Harper, J.; Smith, T.; Grewe, A.; Real Time Mission Monitor Team

    2011-12-01

    Collection of data during airborne field campaigns is a critically important endeavor. It is imperative to observe the correct phenomena at the right time - at the right place to maximize the instrument observations. Researchers at NASA Marshall Space Flight Center have developed an application suite known as the Real Time Mission Monitor (RTMM). This suite is comprised of tools for mission design, flight planning, aircraft visualization and tracking. The mission design tool allows scientists to set mission parameters such as geographic boundaries and dates of the campaign. Based on these criteria, the tool intelligently selects potential data sets from a data resources catalog from which the scientist is able to choose the aircraft, instruments, and ancillary Earth science data sets to be provided for use in the remaining tool suite. The scientists can easily reconfigure and add data sets of their choosing for use during the campaign. The flight planning tool permits the scientist to assemble aircraft flight plans and to plan coincident observations with other aircraft, spacecraft or in situ observations. Satellite and ground-based remote sensing data and modeling data are used as background layers to aid the scientist in the flight planning process. Planning is crucial to successful collection of data and the ability to modify the plan and upload to aircraft navigators and pilots is essential for the agile collection of data. Most critical to successful and cost effective collection of data is the capability to visualize the Earth science data (airborne instruments, radiosondes, radar, dropsondes, etc.) and track the aircraft in real time. In some instances, aircraft instrument data is provided to ground support personnel in near-real time to visualize with the flight track. This visualization and tracking aspect of RTMM provides a decision support capability in conjunction with scientific collaboration portals to allow for scientists on the ground to communicate

  4. Precision Electric Propulsion For The ST7 And LISA Missions

    NASA Astrophysics Data System (ADS)

    Ziemer, John; Hruby, V.; Randolph, T.; Spence, D.; Demmons, N.; Roy, T.; Ehrbar, E.; Zwahlen, J.; Martin, R.; Connolly, W.; Franklin, G.

    2010-01-01

    The Jet Propulsion Laboratory (JPL) has delivered two flight-qualified Colloid Micro-Newton Thruster (CMNT) systems to the European Space Agency (ESA) for a flight demonstration on LISA Pathfinder. The CMNTs will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as LISA. The ST7 disturbance reduction system (DRS) will be part of the LISA Pathfinder mission using the European gravitational reference sensor (GRS), part of the LISA Technology Package (LTP). To achieve the nanometer-level precision control requirements, each of eight thruster systems is required to provide thrust between 5 and 30 μN with resolution ≤0.1 μN and thrust noise ≤0.1 μN/√Hz. Developed by Busek Company Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully. Delivery of the DRS to ESA for integration into the LISA Pathfinder spacecraft was completed in September of 2009 with a planned launch and flight demonstration in 2011.

  5. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  6. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  7. MIDN: a spacecraft microdosimeter mission.

    PubMed

    Pisacane, V L; Ziegler, J F; Nelson, M E; Caylor, M; Flake, D; Heyen, L; Youngborg, E; Rosenfeld, A B; Cucinotta, F; Zaider, M; Dicello, J F

    2006-01-01

    MIDN (MIcroDosimetry iNstrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure microdosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments.

  8. Manned Mars mission crew factors

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    Crew factors include a wide range of concerns relating to the human system and its role in a Mars mission. There are two important areas which will play a large part in determining the crew for a Mars mission. The first relates to the goals and priorities determined for such a vast endeavor. The second is the design of the vehicle for the journey. The human system cannot be separated from the other systems in that vehicle. In fact it will be the human system which drives the development of many of the technical breakthroughs necessary to make a Mars mission successful. As much as possible, the engineering systems must adapt to the needs of the human system and its individual components.

  9. Giotto Extended Mission (GEM)

    NASA Technical Reports Server (NTRS)

    Wilkins, D. E. B.; Grensemann, M.

    1991-01-01

    The primary objectives of the Giotto Extended Mission (GEM), are to determine the composition and physical state of the Grigg Skjellerup Comet's nucleus; to determine the processes that govern the composition and distribution of neutral and ionized species in the cometary atmosphere. Giotto consists of a single European Space Agency (ESA) spacecraft that was launched in 1985 from Center Spatial Guyanis in French Guiana on an Ariane launch vehicle. After a successful launch into geostationary orbit and a heliocentric transfer trajectory, the spacecraft successfully encountered Halley's Comet in 1986. One month after encountering Halley's Comet, Mar. 1986, the spacecraft was placed in hibernation in a heliocentric orbit slightly less than 1 AU. Between Feb. and Jul. 1990 the spacecraft was successfully reactivated, checked out, and placed on a trajectory course to intercept comet Grigg Skjellerup. The spacecraft has been in hibernation since Jul. 1990. Information is presented in tabular form in the following areas: coverage goals, Deep Space Network Support, frequency assignments, telemetry, command, and tracking support responsibility.

  10. JPL process for tailoring mission assurance to specific projects

    NASA Technical Reports Server (NTRS)

    Sinha, K. K.; Schlue, J. W.; Grammier, R.

    1999-01-01

    This document identifies a processs for tailoring Mission Assurance (MA) activities to JPL flight projects. These MA activities are to be accomplished during appropriate phases of projects involved in design, development, test, fabrication, launch and mission operations. MA is the responsibility of all participants on a project; it enhances their contribution to the success of the mission.

  11. The Planck mission.

    NASA Astrophysics Data System (ADS)

    Mandolesi, N.; Burigana, C.; Gruppuso, A.; Procopio, P.; Ricciardi, S.; Planck Collaboration

    This paper provides an overview of the ESA Planck mission and its scientific promises. Planck is equipped with a 1.5-m effective aperture telescope with two actively-cooled instruments observing the sky in nine frequency channels from 30 GHz to 857 GHz: the Low Frequency Instrument (LFI) operating at 20 K with pseudo-correlation radiometers, and the High Frequency Instrument (HFI) with bolometers operating at 100 mK. After the successful launch in May 2009, Planck has already mapped the sky twice (at the time of writing this review) with the expected behavior and it is planned to complete at least two further all-sky surveys. The first scientific results, consisting of an Early Release Compact Source Catalog (ERCSC) and in about twenty papers on instrument performance in flight, data analysis pipeline, and main astrophysical results, will be released on January 2011. The first publications of the main cosmological implications are expected in 2012.

  12. Biosatellite II mission.

    PubMed

    Reynolds, O E

    1969-01-01

    Biosatellite B was launched from Cape Kennedy, Florida, on a two-stage DELTA launch vehicle at 6:04 p.m. on 7 September, 1967. Approximately nine minutes later the 435 kg spacecraft biological laboratory was placed into a satisfactory 315 km near-circular earth orbit, successfully separated from the launch vehicle's second stage and was designated Biosatellite II. The scientific payload consisting of thirteen selected general biology and radiation experiments were subjected to planned, carefully controlled environmental conditions during 45 hours of earth-orbital flight. The decision was made to abbreviate the scheduled 3-day mission by approximately one day because of a threatening tropical storm in the recovery area, and a problem of communication with the spacecraft from the tracking stations. Highest priority was placed on recovery which was essential to obtain the scientific results on all the experiments. The operational phase of the mission came to a successful conclusion with the deorbit of the recovery capsule, deployment of the parachute system and air recovery by the United States Air Force. The 127 kg recovery capsule was returned to biology laboratories at Hickam Air Force Base, Hawaii, for disassembly and immediate inspection and analysis of the biological materials by the experimenters. It was evident immediately that the quality of the biology was excellent and this fact gave promise of a high return of scientific data. The environmental conditions provided to the experimental material in the spacecraft, provisions for experimental controls, and operational considerations are presented as they relate to interpretation of the experimental results.

  13. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  14. Climate Benchmark Missions: CLARREO

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  15. Success in Primary School. Success in Schools

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2010

    2010-01-01

    A quality education system is not measured solely by national test scores, but by whether all students are successful in primary school. This simply stated goal is surprisingly difficult to achieve where substantial numbers of children are at risk of failing to complete a primary education. This paper explores the challenges and the diverse…

  16. White Label Space GLXP Mission

    NASA Astrophysics Data System (ADS)

    Barton, A.

    2012-09-01

    This poster presents a lunar surface mission concept and corresponding financing approach developed by the White Label Space team, an official competitor in the Google Lunar X PRIZE. The White Label Space team's origins were in the European Space Agency's ESTEC facility in the Netherlands. Accordingly the team's technical headquarters are located just outside ESTEC in the Space Business Park. The team has active partners in Europe, Japan and Australia. The team's goal is to provide a unique publicity opportunity for global brands to land on the moon and win the prestigious Google Lunar X PRIZE. The poster presents the main steps to achieve this goal, the cost estimates for the mission, describes the benefits to the potential sponsors and supporters, and details the progress achieved to date.

  17. The 2π charged particles analyzer: All-sky camera concept and development for space missions

    NASA Astrophysics Data System (ADS)

    Vaisberg, O.; Berthellier, J.-J.; Moore, T.; Avanov, L.; Leblanc, F.; Leblanc, F.; Moiseev, P.; Moiseenko, D.; Becker, J.; Collier, M.; Laky, G.; Keller, J.; Koynash, G.; Lichtenneger, H.; Leibov, A.; Zhuravlev, R.; Shestakov, A.; Burch, J.; McComas, D.; Shuvalov, S.; Chornay, D.; Torkar, K.

    2016-12-01

    Increasing the temporal resolution and instant coverage of velocity space of space plasma measurements is one of the key issues for experimentalists. Today, the top-hat plasma analyzer appears to be the favorite solution due to its relative simplicity and the possibility to extend its application by adding a mass-analysis section and an electrostatic angular scanner. Similarly, great success has been achieved in MMS mission using such multiple top-hat analyzers to achieve unprecedented temporal resolution. An instantaneous angular coverage of charged particles measurements is an alternative approach to pursuing the goal of high time resolution. This was done with 4-D Fast Omnidirectional Nonscanning Energy Mass Analyzer and, to a lesser extent, by DYMIO instruments for Mars-96 and with the Fast Imaging Plasma Spectrometer instrument for MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission. In this paper we describe, along with precursors, a plasma analyzer with a 2π electrostatic mirror that was developed originally for the Phobos-Soil mission with a follow-up in the frame of the BepiColombo mission and is under development for future Russian missions. Different versions of instrument are discussed along with their advantages and drawbacks.

  18. Formation Control for the Maxim Mission.

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.

  19. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  20. Mission design options for human Mars missions

    NASA Astrophysics Data System (ADS)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  1. Class D management implementation approach of the first orbital mission of the Earth Venture series

    NASA Astrophysics Data System (ADS)

    Wells, James E.; Scherrer, John; Law, Richard; Bonniksen, Chris

    2013-09-01

    A key element of the National Research Council's Earth Science and Applications Decadal Survey called for the creation of the Venture Class line of low-cost research and application missions within NASA (National Aeronautics and Space Administration). One key component of the architecture chosen by NASA within the Earth Venture line is a series of self-contained stand-alone spaceflight science missions called "EV-Mission". The first mission chosen for this competitively selected, cost and schedule capped, Principal Investigator-led opportunity is the CYclone Global Navigation Satellite System (CYGNSS). As specified in the defining Announcement of Opportunity, the Principal Investigator is held responsible for successfully achieving the science objectives of the selected mission and the management approach that he/she chooses to obtain those results has a significant amount of freedom as long as it meets the intent of key NASA guidance like NPR 7120.5 and 7123. CYGNSS is classified under NPR 7120.5E guidance as a Category 3 (low priority, low cost) mission and carries a Class D risk classification (low priority, high risk) per NPR 8705.4. As defined in the NPR guidance, Class D risk classification allows for a relatively broad range of implementation strategies. The management approach that will be utilized on CYGNSS is a streamlined implementation that starts with a higher risk tolerance posture at NASA and that philosophy flows all the way down to the individual part level.

  2. Class D Management Implementation Approach of the First Orbital Mission of the Earth Venture Series

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Scherrer, John; Law, Richard; Bonniksen, Chris

    2013-01-01

    A key element of the National Research Council's Earth Science and Applications Decadal Survey called for the creation of the Venture Class line of low-cost research and application missions within NASA (National Aeronautics and Space Administration). One key component of the architecture chosen by NASA within the Earth Venture line is a series of self-contained stand-alone spaceflight science missions called "EV-Mission". The first mission chosen for this competitively selected, cost and schedule capped, Principal Investigator-led opportunity is the CYclone Global Navigation Satellite System (CYGNSS). As specified in the defining Announcement of Opportunity, the Principal Investigator is held responsible for successfully achieving the science objectives of the selected mission and the management approach that he/she chooses to obtain those results has a significant amount of freedom as long as it meets the intent of key NASA guidance like NPR 7120.5 and 7123. CYGNSS is classified under NPR 7120.5E guidance as a Category 3 (low priority, low cost) mission and carries a Class D risk classification (low priority, high risk) per NPR 8705.4. As defined in the NPR guidance, Class D risk classification allows for a relatively broad range of implementation strategies. The management approach that will be utilized on CYGNSS is a streamlined implementation that starts with a higher risk tolerance posture at NASA and that philosophy flows all the way down to the individual part level.

  3. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  4. The Jupiter Ganymede Orbiter mission and spacecraft architecture

    NASA Astrophysics Data System (ADS)

    Boulade, Sebastien; Maliet, Eric; Saks, Noah; Lang, Rainer; Kemble, Steve

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, featuring two planetary orbiters in Jovian environment. It will study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces, with a resolution and coverage far beyond what was achieved by Galileo. It will determine their internal structure and the existence of subsurface oceans. It will study the Laplace resonance and its role in maintaining tidal heating. Constraints for the habitability of Europa over geologic timescales will be inferred from monitoring Io and Europa in the visible and infrared combined with precise determination of the satellites' orbital positions. To meet these science objectives, the EJSM mission will optimize the role of each platform. NASA-supplied Jupiter Europa Orbiter (JEO) will focus on the two "rocky" inner Galilean satellites, Io and Europa. Following a similar approach, ESA-procured Jupiter Ganymede Orbiter (JGO) will focus on the two "icy" outer Galilean satellites, Ganymede and Callisto. With these two orbiters around Europa and Ganymede, it will be possible to perform an in-depth comparison, to understand the origin of their geophysical dichotomy and to better understand the unique characteristics of Europa which may make it habitable. Coordination of observations between JEO and JGO could also bring important synergistic science. As part of this EJSM mission, the JGO spacecraft is now one of the candidates for the "L1" launch slot in the ESA Cosmic Vision 2015/2025 plan, with a foreseen launch in 2020. All studies candidate for this L mission concepts currently undergo parallel assessment studies until end of 2010, when two mission concepts will be selected for definition studies, until 2012. Eventually, the first L mission will be selected for industrial implementation starting in 2013. The mission scenario for JGO is based on a launch in 2020 with Ariane 5

  5. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  6. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  7. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  8. The Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  9. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  10. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  11. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  12. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  13. Striving for the Best: New Mexico's Need to Strengthen Parent Involvement in Public Schools. NCLB and Recommendations Regarding the Vital Role of Parents and Guardians in Achieving Student and School Success

    ERIC Educational Resources Information Center

    Appleseed, 2008

    2008-01-01

    Parent involvement in New Mexico, and around the nation, is an essential element in the success of students and their schools. This simple point anchors the federal law known as the "No Child Left Behind Act of 2001" ("NCLB"). NCLB establishes state, district and school requirements designed to promote more effective parent…

  14. Reading Achievement: Characteristics Associated with Success and Failure: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through March 1978 (Vol. 38 Nos. 7 through 9). Part One.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 14 titles deal with the following topics: the cognitive and perceptual components of children's reading success; the relationship between learning style preference and reading utilization; oral reading strategies used by younger…

  15. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  16. EDL Pathfinder Missions

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2016-01-01

    NASA is developing a long-term strategy for achieving extended human missions to Mars in support of the policies outlined in the 2010 NASA Authorization Act and National Space Policy. The Authorization Act states that "A long term objective for human exploration of space should be the eventual international exploration of Mars." Echoing this is the National Space Policy, which directs that NASA should, "By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth." Further defining this goal, NASA's 2014 Strategic Plan identifies that "Our long-term goal is to send humans to Mars. Over the next two decades, we will develop and demonstrate the technologies and capabilities needed to send humans to explore the red planet and safely return them to Earth." Over the past several decades numerous assessments regarding human exploration of Mars have indicated that landing humans on the surface of Mars remains one of the key critical challenges. In 2015 NASA initiated an Agency-wide assessment of the challenges associated with Entry, Descent, and Landing (EDL) of large payloads necessary for supporting human exploration of Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. This paper provides an overview of NASA's 2015 EDL assessment on understanding the key EDL risks with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies, that is, benefits of flight demonstration at Mars relative to terrestrial test, modeling, and analysis. The goal of the activity was to determine if a subscale demonstrator is necessary, or if NASA should take a direct path to a human-scale lander. This assessment also provided insight into how EDL advancements align with other Agency

  17. Optical Payload for the STARE Mission

    SciTech Connect

    Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

    2011-03-13

    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

  18. Measuring Success: Using Assessments and Accountability To Raise Student Achievement. Hearing before the Subcommittee on Education Reform of the Committee on Education and the Workforce. House of Representatives, One Hundred Seventh Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Education and the Workforce.

    The Subcommittee on Education Reform of the House Committee on Education and the Workforce met to hear testimony on using assessments and accountability to raise student achievement. Statements were given by: (1) Major Owens, Congressman from New York; (2) Michael Castle, Congressman from Delaware, Committee Chairman; (3) Edward B. Rust, Jr.,…

  19. Applications Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J., Jr.

    1979-01-01

    The paper presents the plans of the Office of Space and Terrestrial Applications for the Shuttle/Spacelab missions. It is reported that the current program contains dedicated low-gravity mission (Spacelab 3 mission) and several minor missions planned for flight during 1980-1982. It is noted that these missions have either Materials Processing or Earth viewing emphasis. Finally, several representative experiments are used to illustrate the Applications Spacelab Program, such as the Materials Experiment Assembly (MEA), and the Atmospheric Trace Molecule Measured by Spectroscopy (ATMOS) experiment.

  20. The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Wenzel, K.-P.; Smith, E. J.

    1986-01-01

    The Ulysses mission to explore the heliosphere within a few astronomical units of the sun over the full range of heliographic latitudes, thereby providing the first characterization of the uncharted third heliospheric dimension, is discussed. The scientific objectives of the mission are reviewed, and the nine flight experiments which make up the spacecraft payload are summarized. The Ulysses trajectory and mission timeline are described, as are the spacecraft itself and the mission operations. The timing of the mission with the solar cycle is discussed.

  1. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  2. The Europa Jupiter system mission

    NASA Astrophysics Data System (ADS)

    Clark, K.; Stankov, A.; Pappalardo, R. T.; Greeley, R.; Blanc, M.; Lebreton, J.-P.; van Houten, T.

    2009-04-01

    Europa Jupiter System Mission (EJSM)— would be an international mission that would achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System be-fore settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupi-ter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and charac-terize water oceans beneath the ice shells of Europa and Ganymede. EJSM would fully addresses high priority science objectives identified by the National Research Coun-cil's (NRC's) Decadal Survey and ESA's Cosmic Vi-sion for exploration of the outer solar system. The De-cadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission tar-get. EJSM would uniquely addresse several of the cen-tral themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM would investigate the potential habitability of the active ocean-bearing moons Europa and Gany-mede, detailing the geophysical, compositional, geo-logical, and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupi-ter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant plan-ets and their satellites would be

  3. ASSESS program: Shuttle Spacelab simulation using a Lear jet aircraft (mission no. 2)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.; Pappas, C. C.

    1974-01-01

    The second shuttle Spacelab simulation mission of the ASSESS program was conducted at Ames Research Center by the Airborne Science Office (ASO) using a Lear jet aircraft based at a site remote from normal flight operations. Two experimenters and the copilot were confined to quarters on the site during the mission, departing only to do in-flight research in infrared astronomy. A total of seven flights were made in a period of 4 days. Results show that experimenters with relatively little flight experience can plan and carry out a successful research effort under isolated and physically rigorous conditions, much as would more experienced scientists. Perhaps the margin of success is not as great, but the primary goal of sustained acquisition of significant data over a 5-day period can be achieved.

  4. Autonomy enables new science missions

    NASA Astrophysics Data System (ADS)

    Doyle, Richard J.; Gor, Victoria; Man, Guy K.; Stolorz, Paul E.; Chapman, Clark; Merline, William J.; Stern, Alan

    1997-01-01

    The challenge of space flight in NASA's future is to enable smaller, more frequent and intensive space exploration at much lower total cost without substantially decreasing mission reliability, capability, or the scientific return on investment. The most effective way to achieve this goal is to build intelligent capabilities into the spacecraft themselves. Our technological vision for meeting the challenge of returning quality science through limited communication bandwidth will actually put scientists in a more direct link with the spacecraft than they have enjoyed to date. Technologies such as pattern recognition and machine learning can place a part of the scientist's awareness onboard the spacecraft to prioritize downlink or to autonomously trigger time-critical follow-up observations-particularly important in flyby missions-without ground interaction. Onboard knowledge discovery methods can be used to include candidate discoveries in each downlink for scientists' scrutiny. Such capabilities will allow scientists to quickly reprioritize missions in a much more intimate and efficient manner than is possible today. Ultimately, new classes of exploration missions will be enabled.

  5. Overcome barriers to career success

    SciTech Connect

    Raudsepp, E.

    1983-04-01

    A test is given to determine if an engineer suffers from one of the three barriers to technical success: fear of success, fear of failure, or perfectionism. As in most such tests, the middle way is best. Successful engineers know that perfection cannot be attained, that they don't have time to worry about failure or success, and that by aiming and perservering in doing things well, success can be achieved.

  6. Implementing Citizen Science in NASA Missions

    NASA Astrophysics Data System (ADS)

    Day, B. H.

    2014-12-01

    Citizen science marks the intersection of education, public outreach, and science. Certain technologies, mission constructs, and E/PO plans facilitate participation, directly involving students and the public in the science supporting a mission. The benefits from well-implemented citizen science programs extend significantly beyond enabling extensive data collection. Through such programs, students and the public increase their own understanding of the mission's science and technology, increase their appreciation for the mission's relevance, realize that becoming a scientist or engineer is attainable and interesting, and become advocates among their peers. However, implementing a citizen science program that provides real benefits to both the mission science team and participating citizen scientists presents notable challenges. In this talk, we will look at citizen science programs implemented by a number of past, current, and upcoming missions, including the Stardust, LCROSS, LADEE, and LRO missions. We will discuss the successes and challenges associated with these programs and how the lessons learned can be applied to future missions.

  7. The Europa Jupiter System Mission

    NASA Astrophysics Data System (ADS)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  8. Receta para el Exito. Una Guia Actualizada para Padres sobre el Mejoramiento de las Escuelas de Colorado y Logros Estudiantiles (Recipe for Success: An Updated Parents' Guide to Improving Colorado Schools and Student Achievement).

    ERIC Educational Resources Information Center

    Taher, Bonnie; Durr, Pamela

    This Spanish language guide describes ways that parents can help improve student achievement and school quality. It answers such questions as: how to choose the right early-education opportunity for a preschooler; how to make sure a 5-year-old is ready for school; how to help a daughter do well in school; how to work with a daughter's or son's…

  9. Success Strategies for College Students.

    ERIC Educational Resources Information Center

    de Silva, Deema; Freund, Clara

    This handbook for those involved in assisting and encouraging college students to persist and graduate covers the following topics: benefits of college; persistence factors; successful students; a mission that motivates; results in real time; self-management through self-mastery (time management, assertiveness, study skills, learning styles, and…

  10. Institutional Effectiveness and Student Success.

    ERIC Educational Resources Information Center

    Kreider, Paul E.; And Others

    Since the early 1980's, the primary institutional mission of Mount Hood Community College (MHCC) in Gresham, Oregon, has been identified as student success. Toward that end, the college has instituted an ongoing systematic review of instructional program improvement and implemented institutional strategic planning directly linked to budget…

  11. Strategic Planning and Budgeting to Achieve Core Missions

    ERIC Educational Resources Information Center

    Haberaecker, Heather J.

    2004-01-01

    A new strategic plan, an additional one hundred faculty members, a new financial model, an incentive compensation plan, a new $200 million research building, closing one professional school and repositioning assets to help another, redirecting net revenues from two parking garages, and a building renewal and replacement plan-all are outcomes of a…

  12. An Overview of the Mars Reconnaissance Orbiter (MRO) Science Mission

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Smrekar, Suzanne E.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (approximately 300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science

  13. JWST: Tinsley achievements on the largest beryllium polishing project

    NASA Astrophysics Data System (ADS)

    Daniel, Jay; Hull, Tony; Barentine, John B.

    2012-09-01

    Polished 1.5m bare beryllium, off-axis aspheric mirror segments, constituting the cryogenic primary mirror of NASA's ambitious Flagship Mission, James Webb Space Telescope (JWST), have been successfully completed at L-3 Communications -Tinsley. Tinsley has finished the secondary, tertiary, fine steering and spare mirrors as well. We will describe both the end results, where it was demonstrated that visible quality mirror results can be achieved on large extremely lightweighted compliant off-axis mirrors, and the steps taken at Tinsley to achieve these results. Over 26 square-meters of bare beryllium were optically processed twice, first for room temperature figure, then for the cryo-null figure for the cryogenic differences.

  14. Partnership Successes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA plots new courses to fulfill its bold, new mission to explore the Moon, Mars, and beyond, the Agency continues to hold steadfast in its commitment to explore and improve our very own home planet. In doing so, NASA fervidly goes to great lengths to draw correlations between the "know-how" of its many scientists, engineers, and other technology facilitators, and the "know-how" of Federal agency counterparts, academic institutions, and private organizations. By sharing knowledge and resources, these entities come together to find the common ground necessary to preserve the past, present, and future of Earth - in the best interests of all of its inhabitants.

  15. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  16. Phoenix - The First Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  17. Successful grant writing.

    PubMed

    Koppelman, Gerard H; Holloway, John W

    2012-03-01

    Obtaining research funding is central to the research process. However many (clinician-) scientists receive little, or no, training in the process of writing a successful grant application. In an era of reductions in research budgets and application success rates, the ability to construct a well presented, clear, articulate proposal is becoming more important than ever. Obtaining grants is a method to achieve your long term research goals. If you are able to formulate these long term goals, it is relevant to explore the market and investigate all potential grant opportunities. Finally, we will provide an outline of key elements of successful research grants.

  18. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  19. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  20. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  1. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  2. Cyber Network Mission Dependencies

    DTIC Science & Technology

    2015-09-18

    APPLICATIONS A useful model of mission mapping is presented in Figure 2. Users and defenders of a network typically have several disjoint types of... Mapping user processes to network capabilities reveals the broader impact of information in the logs, and improves risk analysis by identifying...The final stage of mission mapping connects the user processes with the missions they support. This mapping is critical both for prioritization of

  3. RAF and Mission Command

    DTIC Science & Technology

    2015-02-01

    of the art of command, i.e., the mission command philosophy , by examining six guiding principles. The third section analyzes RAF through the...describes mission command as a “ philosophy and a warfighting function;” it is also the framework for the Army’s execution of military operations in...support of Unified Land Operations (ULO).35 The mission command philosophy is described as “the exercise of authority and direction by the commander

  4. Missions to Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, A. F.; Science Team

    2002-10-01

    This presentation started with a historical perspective of the astronomical discovery of Mars and followed by an overview of previous missions to Mars by the United States and the Soviet Union. Recently launched missions, such as Nozomi, Mars Global Surveyor and Mars Odyssey were addressed in more detailed, as well as a few other missions soon to be launched. Among these, Mars Express is particularly relevant as the first European mission towards the red planet, and the talk concentrated on it, including both the Mars Express orbiter spacecraft and the Beagle-2 lander to be launched in 2003.

  5. LCROSS: A High Return, Small Satellite Mission

    NASA Technical Reports Server (NTRS)

    Andrews, Daniel R.

    2010-01-01

    Early in 2006, the NASA Exploration Systems Mission Directorate (ESMD) held a competition for NASA Centers to propose innovative ideas for a secondary payload mission to launch with the Lunar Reconnaissance Orbiter (LRO) to the Moon. The successful proposal could cost no more than $80 million dollars (less was preferred), would have to be ready to launch with the LRO in 31 months, could weigh no more than 1000 kg (fuelled), and would be designated a risk-tolerant "Class D" mission. In effect, NASA was offering a fixed-price contract to the winning NASA team to stay within a cost and schedule cap by accepting an unusually elevated risk position. To address this Announcement of Opportunity to develop a cost-and-schedule-capped secondary payload mission to fly with LRO, NASA Ames Research Center (ARC) in Moffett Field, CA, USA embarked on a brainstorming effort termed "Blue Ice" in which a small team was asked to explore a number of mission scenarios that might have a good chance for success and still fit within the stated programmatic constraints. From this work, ARC developed and submitted six of the nineteen mission proposals received by ESMD from throughout the Agency, one of which was LCROSS - a collaborative effort between ARC and its industrial partner, Northrop-Grumman (NG) in Redondo Beach, CA, USA.

  6. Characteristics of Successful Entrepreneurs.

    ERIC Educational Resources Information Center

    McClelland, David C.

    1987-01-01

    Comparison of characteristics of 12 average and 12 superior small business people in three developing nations (India, Malawi, and Ecuador) found proactive qualities such as initiative and assertiveness, achievement orientation, and commitment to others characteristic of successful entrepreneurs. Other expected qualities (self-confidence,…

  7. Measuring strategic success.

    PubMed

    Gish, Ryan

    2002-08-01

    Strategic triggers and metrics help healthcare providers achieve financial success. Metrics help assess progress toward long-term goals. Triggers signal market changes requiring a change in strategy. All metrics may not move in concert. Organizations need to identify indicators, monitor performance.

  8. Achieving National Security Strategy: An Effective Process?

    DTIC Science & Technology

    2008-01-01

    Smith , a career foreign service officer and former Deputy Chief ofMission, the strength ofDOS is its ability to operate with minimal guidance.28 The...DOS’s five-year strategic plan may offer the minimal guidance Mr. Smith suggests. This five- year plan, which is provided by the Secretary of State...outlines the departments overall strategy, which ~ves the latitude required to achieve its mission goals. Mr. Smith also recognizes that, "Most State

  9. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  10. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. Overall view of the MOCR in the Johnson Space Center's Mission Control Center. At far right is Eugene F. Kranz, Deputy Director of Flight Operations. At the flight director console in front of Kranz's FOD console are Flight Directors M.P. Frank, Neil B. Hutchinson and Donald R. Puddy as well as others (39506); Wide-angle view of flight controllers in the MOCR. Clifford E. Charlesworth, JSC Deputy Director, huddles with several flight directors for STS-2 at the flight director console. Kranz, is at far right of frame (39507); Dr. Christopher C. Kraft, Jr., JSC Director, center, celebrates successful flight and landing of STS-2 with a cigar in the MOCR. He is flanked by Dr. Maxime A Faget, left, Director of Engineering and Development, and Thomas L. Moser, of the Structures and Mechanics Division (39508); Flight Director Donald R. Puddy, near right, holds replica of the STS-2 insignia. Insignias on the opposite wall

  11. Reliability, Maintainability, and Availability: Consideration During the Design Phase in Ground Systems to Ensure Successful Launch Support

    NASA Technical Reports Server (NTRS)

    Gillespie, Amanda M.

    2012-01-01

    The future of Space Exploration includes missions to the moon, asteroids, Mars, and beyond. To get there, the mission concept is to launch multiple launch vehicles months, even years apart. In order to achieve this, launch vehicles, payloads (satellites and crew capsules), and ground systems must be highly reliable and/or available, to include maintenance concepts and procedures in the event of a launch scrub. In order to achieve this high probability of mission success, Ground Systems Development and Operations (GSDO) has allocated Reliability, Maintainability, and Availability (RMA) requirements to all hardware and software required for both launch operations and, in the event of a launch scrub, required to support a repair of the ground systems, launch vehicle, or payload. This is done concurrently with the design process (30/60/90 reviews).

  12. Definition and archiving of ground-based observations in support of space missions

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Europlanet Wg3&5

    This science case was developed by the WG3&5 to induce and optimize the follow- up of space missions or to monitor a probe entry, in order to provide support in the case of failure, and help achieve science objectives. The space mission data need to be complemented by ground-based and space-borne observations that can help interpret the space mission return. Such coordinated observations were performed at the time of the Huygens descent in Titan's atmosphere and led to a JGR special issue publication (2006, in press). We should gather and archive all such observations to support space missions already existing or to come. For this we would need to get the space mission data from Cassini-Huygens (both images and spectra), Venus Express, Mars Express and future missions (to Europa and Mercury for instance) and complete them with ground-based observations (spectra, images, radio data, radar,...) of Titan, Venus, Mars, Europa, Mercury with the HST, ISO, etc, as well as amateur observations, if possible, taken from 1990 on. This applies to cometary, moon and planet surfaces/subsurfaces composition- structure. This would help among other with the target selections (comets, moons) and landing sites for SMART-1 (on the Moon). There are specific needs for stereoscopic images of the Moon and other objects. Our study will assist in optimizing the Rosetta mission return. For Mercury we need to observe from the ground at the time of the Bepi-Colombo mission to cross-calibrate the mission data. There are many examples of success from this additional input, as for instance with Cassini-Huygens (DWE- Channel C), Galileo, etc. For Titan there is a requirement for RADAR measurements of the whole surface during the extended Cassini mission. Also, assist with the interpretation of high-resolution DISR images in terms of surface activity and surface-atmosphere interactions This involves in some cases techniques possible only from the Earth such as the VLBI 1 radio-tracking of a space

  13. A cost and risk analysis of human exploration missions to Mars

    NASA Astrophysics Data System (ADS)

    Merrihew, Steven Carl

    1997-11-01

    The Space Exploration Initiative (SEI) initiated a renewal of America's space exploration efforts which had come to an end following the Apollo 17 mission in 1972. SEI was a massive proposed program which was to culminate in a permanent human settlement on the Moon and a base for humans on Mars. Russian space agencies have also proposed human exploration missions, culminating in the 1991 signing of a joint exploration agreement between the former Soviet Union and the United States. However, these mission proposals soon floundered as total cost estimates approached $400 billion, exceeding the financial resources of any one nation. The loss of the space shuttle Challenger in 1986 illustrated another significant hurdle for any proposed mission--a risk averse public and government. The objective of this research has been the development of techniques to estimate cost and risk of preliminary designs for the human exploration of Mars in order to address the fundamental questions, "How much does it cost?" and, "What is its chance of success?" A systems engineering approach to the quantitative analysis of mission cost and risk is presented here. We demonstrate that a quantitative determination of cost and risk for a mission design, including the identification of cost and risk drivers: (1) enables accurate comparisons to be made between alternative mission designs; (2) provides the necessary insight to improve baseline mission designs; and (3) assists in selecting a best design. Our analysis incorporates probabilistic methods in order to model accurately uncertainty in modeling input parameters and in available data. The risk analysis builds on the techniques of the nuclear power industry (fault trees and event trees), modifying and extending available tools where required in order to incorporate mission design information more effectively. Aerospace parametric cost models are similarly modified to enable probabilistic cost modeling. Comparisons with historical values of

  14. A Nuclear Powered ISRU Mission to Mars

    NASA Astrophysics Data System (ADS)

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-01

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  15. A Nuclear Powered ISRU Mission to Mars

    SciTech Connect

    Finzi, Elvina; Davighi, Andrea; Finzi, Amalia

    2006-01-20

    Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.

  16. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  17. STS-70 Mission Commander Henricks inspects tire

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Commander Terence 'Tom' Henricks inspects the nose wheel landing gear tires of the Space Shuttle Orbiter Discovery along with Mission Specialist Mary Ellen Weber after the spaceplane touched down on KSC's Runway 33 to successfully conclude the nearly nine-day space flight. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995 on the second landing attempt after the first opportunity was waved off. The orbiter was originally scheduled to land on the 21st, but fog and low visibility at the Shuttle Landing Facility led to the one-day extension. This was the 24th landing at KSC and the 70th Space Shuttle mission. During the space flight, the five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS- G). The other crew members were Pilot Kevin R. Kregel and Mission Specialists Nancy Jane Currie and Donald A. Thomas.

  18. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  19. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  20. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument