Sample records for achieve rapid convergence

  1. Rapidly converging multigrid reconstruction of cone-beam tomographic data

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.

    2016-10-01

    In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.

  2. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.

    PubMed

    Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

    2015-07-29

    Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

  3. Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres

    PubMed Central

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  4. Rapid convergent evolution in wild crickets.

    PubMed

    Pascoal, Sonia; Cezard, Timothee; Eik-Nes, Aasta; Gharbi, Karim; Majewska, Jagoda; Payne, Elizabeth; Ritchie, Michael G; Zuk, Marlene; Bailey, Nathan W

    2014-06-16

    The earliest stages of convergent evolution are difficult to observe in the wild, limiting our understanding of the incipient genomic architecture underlying convergent phenotypes. To address this, we capitalized on a novel trait, flatwing, that arose and proliferated at the start of the 21st century in a population of field crickets (Teleogryllus oceanicus) on the Hawaiian island of Kauai. Flatwing erases sound-producing structures on male forewings. Mutant males cannot sing to attract females, but they are protected from fatal attack by an acoustically orienting parasitoid fly (Ormia ochracea). Two years later, the silent morph appeared on the neighboring island of Oahu. We tested two hypotheses for the evolutionary origin of flatwings in Hawaii: (1) that the silent morph originated on Kauai and subsequently introgressed into Oahu and (2) that flatwing originated independently on each island. Morphometric analysis of male wings revealed that Kauai flatwings almost completely lack typical derived structures, whereas Oahu flatwings retain noticeably more wild-type wing venation. Using standard genetic crosses, we confirmed that the mutation segregates as a single-locus, sex-linked Mendelian trait on both islands. However, genome-wide scans using RAD-seq recovered almost completely distinct markers linked with flatwing on each island. The patterns of allelic association with flatwing on either island reveal different genomic architectures consistent with the timing of two mutational events on the X chromosome. Divergent wing morphologies linked to different loci thus cause identical behavioral outcomes--silence--illustrating the power of selection to rapidly shape convergent adaptations from distinct genomic starting points. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Achievement Emotions and Achievement Goals in Support of the Convergent, Divergent and Criterion Validity of the Spanish-Cognitive Test Anxiety Scale

    ERIC Educational Resources Information Center

    Sánchez-Rosas, Javier; Furlan, Luis Alberto

    2017-01-01

    Based on the control-value theory of achievement emotions and theory of achievement goals, this research provides evidence of convergent, divergent, and criterion validity of the Spanish Cognitive Test Anxiety Scale (S-CTAS). A sample of Argentinean undergraduates responded to several scales administered at three points. At time 1 and 3, the…

  6. Examining the Level of Convergence among Self-Regulated Learning Microanalytic Processes, Achievement, and a Self-Report Questionnaire

    ERIC Educational Resources Information Center

    Cleary, Timothy J.; Callan, Gregory L.; Malatesta, Jaime; Adams, Tanya

    2015-01-01

    This study examined the convergent and predictive validity of self-regulated learning (SRL) microanalytic measures. Specifically, theoretically based relations among a set of self-reflection processes, self-efficacy, and achievement were examined as was the level of convergence between a microanalytic strategy measure and a SRL self-report…

  7. Quark matter in the perturbation QCD model with a rapidly convergent matching-invariant running coupling

    NASA Astrophysics Data System (ADS)

    Xu, Jian-Feng; Luo, Yan-An; Li, Lei; Peng, Guang-Xiong

    The properties of dense quark matter are investigated in the perturbation theory with a rapidly convergent matching-invariant running coupling. The fast convergence is mainly due to the resummation of an infinite number of known logarithmic terms in a compact form. The only parameter in this model, the ratio of the renormalization subtraction point to the chemical potential, is restricted to be about 2.64 according to the Witten-Bodmer conjecture, which gives the maximum mass and the biggest radius of quark stars to be, respectively, two times the solar mass and 11.7km.

  8. Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.

    PubMed

    Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R

    2016-09-01

    Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Science and technology convergence: with emphasis for nanotechnology-inspired convergence

    NASA Astrophysics Data System (ADS)

    Bainbridge, William S.; Roco, Mihail C.

    2016-07-01

    Convergence offers a new universe of discovery, innovation, and application opportunities through specific theories, principles, and methods to be implemented in research, education, production, and other societal activities. Using a holistic approach with shared goals, convergence seeks to transcend existing human limitations to achieve improved conditions for work, learning, aging, physical, and cognitive wellness. This paper outlines ten key theories that offer complementary perspectives on this complex dynamic. Principles and methods are proposed to facilitate and enhance science and technology convergence. Several convergence success stories in the first part of the 21st century—including nanotechnology and other emerging technologies—are discussed in parallel with case studies focused on the future. The formulation of relevant theories, principles, and methods aims at establishing the convergence science.

  10. Vadose zone flow convergence test suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, B. T.

    Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustratemore » these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.« less

  11. Does Rapid and Sustained Economic Growth Lead to Convergence in Health Resources: The Case of China From 1980 to 2010.

    PubMed

    Liang, Di; Zhang, Donglan; Huang, Jiayan; Schweitzer, Stuart

    2016-01-01

    China's rapid and sustained economic growth offers an opportunity to ask whether the advantages of growth diffuse throughout an economy, or remain localized in areas where the growth has been the greatest. A critical policy area in China has been the health system, and health inequality has become an issue that has led the government to broaden national health insurance programs. This study investigates whether health system resources and performance have converged over the past 30 years across China's 31 provinces. To examine geographic variation of health system resources and performance at the provincial level, we measure the degree of sigma convergence and beta convergence in indicators of health system resources (structure), health services utilization (process), and outcome. All data are from officially published sources: the China Health Statistics Year Book and the China Statistics Year Book. Sigma convergence is found for resource indicators, whereas it is not observed for either process or outcome indicators, indicating that disparities only narrowed in health system resources. Beta convergence is found in most indicators, except for 2 procedure indicators, reflecting that provinces with poorer resources were catching up. Convergence found in this study probably reflects the mixed outcome of government input, and market forces. Thus, left alone, the equitable distribution of health care resources may not occur naturally during a period of economic growth. Governmental and societal efforts are needed to reduce geographic health variation and promote health equity. © The Author(s) 2016.

  12. Rapid stepping test towards virtual visual objects: Feasibility and convergent validity in older adults.

    PubMed

    Hutzler, Yeshayahu; Korsensky, Olga; Laufer, Yocheved

    2017-01-01

    Rapid voluntary stepping has been recognized as an important measure of balance control. The purpose of this study was to assess the feasibility and convergent validity of a Rapid Stepping Test protocol utilizing a virtual reality SeeMeTM system (VR-RST) in elderly ambulatory and independent individuals living in a community residential home. Associations between step execution times determined by the system and the Activities-specific Balance Confidence (ABC) Questionnaire, and clinical measures of balance performance in the MiniBESTest and Timed Up and Go (TUG) test, were established in 60 participants (mean age 88.2 ± 5.0 years). All participants completed the study. The correlations of the ABC questionnaire and the clinical tests with VR-RST forward and backward stepping were moderate (ρ rage 0.42-0.52), and weak to moderate with sideward stepping (ρ rage 0.32-0.52). Moderate to strong correlations were found across stepping directions (ρ rage 0.45-0.87). Findings support the test's feasibility and validity and confirm the utility of the VR-RST as an assessment tool in an elderly population.

  13. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; de Lépinay, Bernard Mercier

    1997-11-01

    obliquity of 50°, rapid frontal accretion has occurred during the late Quaternary with the principal deformation front migrating seaward up to 50 km within the last 0.5 m.y. (i.e., at a rate of 100 km/m.y.). The structural response to this accretion rate has been a reduction in wedge taper and, consequently, internal deformation behind the present deformation front. Near the southwestern termination of the wedge, where there is an along-the-margin transition to continental transpressional tectonics, the convergence obliquity increases to >56°, and the orthogonal convergence rate decreases to 22 mm/yr, the wedge narrows to 13 km and is characterized simply by two frontal backthrusts and landward-verging folds. These structures have accommodated not more than 0.5 km of horizontal shortening at a rate of < 1 mm/yr, which represents < 5% of the predicted orthogonal shortening across the entire plate boundary in southern North Island. The landward-vergent structural domain may represent a transition zone from rapid frontal accretion associated with low basal friction and high pore pressure ratio in the central part of the margin, to the northern South Island region where the upper and lower plates are locked or at least very strongly coupled.

  14. Convergence from divergence

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Dunne, Gerald V.

    2018-01-01

    We show how to convert divergent series, which typically occur in many applications in physics, into rapidly convergent inverse factorial series. This can be interpreted physically as a novel resummation of perturbative series. Being convergent, these new series allow rigorous extrapolation from an asymptotic region with a large parameter, to the opposite region where the parameter is small. We illustrate the method with various physical examples, and discuss how these convergent series relate to standard methods such as Borel summation, and also how they incorporate the physical Stokes phenomenon. We comment on the relation of these results to Dyson’s physical argument for the divergence of perturbation theory. This approach also leads naturally to a wide class of relations between bosonic and fermionic partition functions, and Klein-Gordon and Dirac determinants.

  15. The Rapid Integration and Test Environment: A Process for Achieving Software Test Acceptance

    DTIC Science & Technology

    2010-05-01

    Test Environment : A Process for Achieving Software Test Acceptance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...mlif`v= 365= k^s^i=mlpqdo^ar^qb=p`elli= The Rapid Integration and Test Environment : A Process for Achieving Software Test Acceptance Patrick V...was awarded the Bronze Star. Introduction The Rapid Integration and Test Environment (RITE) initiative, implemented by the Program Executive Office

  16. Convergence acceleration of molecular dynamics methods for shocked materials using velocity scaling

    NASA Astrophysics Data System (ADS)

    Taylor, DeCarlos E.

    2017-03-01

    In this work, a convergence acceleration method applicable to extended system molecular dynamics techniques for shock simulations of materials is presented. The method uses velocity scaling to reduce the instantaneous value of the Rankine-Hugoniot conservation of energy constraint used in extended system molecular dynamics methods to more rapidly drive the system towards a converged Hugoniot state. When used in conjunction with the constant stress Hugoniostat method, the velocity scaled trajectories show faster convergence to the final Hugoniot state with little difference observed in the converged Hugoniot energy, pressure, volume and temperature. A derivation of the scale factor is presented and the performance of the technique is demonstrated using the boron carbide armour ceramic as a test material. It is shown that simulation of boron carbide Hugoniot states, from 5 to 20 GPa, using both a classical Tersoff potential and an ab initio density functional, are more rapidly convergent when the velocity scaling algorithm is applied. The accelerated convergence afforded by the current algorithm enables more rapid determination of Hugoniot states thus reducing the computational demand of such studies when using expensive ab initio or classical potentials.

  17. Achieving a "Grand Convergence" in Global Health: Modeling the Technical Inputs, Costs, and Impacts from 2016 to 2030.

    PubMed

    Boyle, Colin F; Levin, Carol; Hatefi, Arian; Madriz, Solange; Santos, Nicole

    2015-01-01

    The Commission on Investing in Health published its report, GlobalHealth2035, in 2013, estimating an investment case for a grand convergence in health outcomes globally. In support of the drafting of the Sustainable Development Goals (SDGs), we estimate what the grand convergence investment case might achieve-and what investment would be required-by 2030. Our projection focuses on a sub-set of low-income (LIC) or lower-middle-income countries (LMIC). We start with a country-based (bottom-up) analysis of the costs and impact of scaling up reproductive, maternal, and child health tools, and select HIV and malaria interventions. We then incorporate global (top-down) analyses of the costs and impacts of scaling up existing tools for tuberculosis, additional HIV interventions, the costs to strengthen health systems, and the costs and benefits from scaling up new health interventions over the time horizon of this forecast. These data are then allocated to individual countries to provide an aggregate projection of potential cost and impact at the country level. Finally, incremental costs of R&D for low-income economies and the costs of addressing NTDs are added to provide a global total cost estimate of the investment scenario. Compared with a constant coverage scenario, there would be more than 60 million deaths averted in LIC and 70 million deaths averted in LMIC between 2016 and 2030. For the years 2015, 2020, 2025, and 2030, the incremental costs of convergence in LIC would be (US billion) $24.3, $21.8, $24.7, and $27, respectively; in LMIC, the incremental costs would be (US billion) $34.75, $38.9, $48.7, and $56.3, respectively. Key health outcomes in low- and low-middle income countries can significantly converge with those of wealthier countries by 2030, and the notion of a "grand convergence" may serve as a unifying theme for health indicators in the SDGs.

  18. The emergence and policy implications of converging new technologies integrated from the nanoscale

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2005-06-01

    Science based on the unified concepts on matter at the nanoscale provides a new foundation for knowledge creation, innovation, and technology integration. Convergent new technologies refers to the synergistic combination of nanotechnology, biotechnology, information technology and cognitive sciences (NBIC), each of which is currently progressing at a rapid rate, experiencing qualitative advancements, and interacting with the more established fields such as mathematics and environmental technologies (Roco & Bainbridge, 2002). It is expected that converging technologies will bring about tremendous improvements in transforming tools, new products and services, enable human personal abilities and social achievements, and reshape societal relationships. After a brief overview of the general implications of converging new technologies, this paper focuses on its effects on R&D policies and business models as part of changing societal relationships. These R&D policies will have implications on investments in research and industry, with the main goal of taking advantage of the transformative development of NBIC. Introduction of converging technologies must be done with respect of immediate concerns (privacy, toxicity of new materials, etc.) and longer-term concerns including human integrity, dignity and welfare. The efficient introduction and development of converging new technologies will require new organizations and business models, as well as solutions for preparing the economy, such as multifunctional research facilities, integrative technology platforms, and global risk governance.

  19. OpenMC In Situ Source Convergence Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrich, Garrett Allen; Dutta, Soumya; Woodring, Jonathan Lee

    2016-05-07

    We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are ablemore » to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.« less

  20. Do convergent developmental mechanisms underlie convergent phenotypes?

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.

    2002-01-01

    Convergence is a pervasive evolutionary process, affecting many aspects of phenotype and even genotype. Relatively little is known about convergence in developmental processes, however, nor about the degree to which convergence in development underlies convergence in anatomy. A switch in the ecology of sea urchins from feeding to nonfeeding larvae illustrates how convergence in development can be associated with convergence in anatomy. Comparisons to more distantly related taxa, however, suggest that this association may be limited to relatively close phylogenetic comparisons. Similarities in gene expression during development provide another window into the association between convergence in developmental processes and convergence in anatomy. Several well-studied transcription factors exhibit likely cases of convergent gene expression in distantly related animal phyla. Convergence in regulatory gene expression domains is probably more common than generally acknowledged, and can arise for several different reasons. Copyright 2002 S. Karger AG, Basel.

  1. Zipf rank approach and cross-country convergence of incomes

    NASA Astrophysics Data System (ADS)

    Shao, Jia; Ivanov, Plamen Ch.; Urošević, Branko; Stanley, H. Eugene; Podobnik, Boris

    2011-05-01

    We employ a concept popular in physics —the Zipf rank approach— in order to estimate the number of years that EU members would need in order to achieve "convergence" of their per capita incomes. Assuming that trends in the past twenty years continue to hold in the future, we find that after t≈30 years both developing and developed EU countries indexed by i will have comparable values of their per capita gross domestic product {\\cal G}_{i,t} . Besides the traditional Zipf rank approach we also propose a weighted Zipf rank method. In contrast to the EU block, on the world level the Zipf rank approach shows that, between 1960 and 2009, cross-country income differences increased over time. For a brief period during the 2007-2008 global economic crisis, at world level the {\\cal G}_{i,t} of richer countries declined more rapidly than the {\\cal G}_{i,t} of poorer countries, in contrast to EU where the {\\cal G}_{i,t} of developing EU countries declined faster than the {\\cal G}_{i,t} of developed EU countries, indicating that the recession interrupted the convergence between EU members. We propose a simple model of GDP evolution that accounts for the scaling we observe in the data.

  2. By more ways than one: Rapid convergence at hydrothermal vents shown by 3D anatomical reconstruction of Gigantopelta (Mollusca: Neomphalina).

    PubMed

    Chen, Chong; Uematsu, Katsuyuki; Linse, Katrin; Sigwart, Julia D

    2017-03-01

    smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic. Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the holobiont's adaptations to an extreme environment, are driven by optimising bacteria's access to vent nutrients. By comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same end-product through parallel evolutionary trajectories.

  3. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  4. On the Convergence of an Implicitly Restarted Arnoldi Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.

    We show that Sorensen's [35] implicitly restarted Arnoldi method (including its block extension) is simultaneous iteration with an implicit projection step to accelerate convergence to the invariant subspace of interest. By using the geometric convergence theory for simultaneous iteration due to Watkins and Elsner [43], we prove that an implicitly restarted Arnoldi method can achieve a super-linear rate of convergence to the dominant invariant subspace of a matrix. Moreover, we show how an IRAM computes a nested sequence of approximations for the partial Schur decomposition associated with the dominant invariant subspace of a matrix.

  5. Convergent mechanisms underlying rapid antidepressant action

    PubMed Central

    Zanos, Panos; Thompson, Scott M.; Duman, Ronald S.; Zarate, Carlos A.; Gould, Todd D.

    2018-01-01

    Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal and anti-anhedonic actions following a single administration to depressed patients. Proposed mechanisms of ketamine’s antidepressant action include N-methyl-D-aspartate receptor (NMDAR) modulation, GABAergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergoing pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine - pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists (i.e. GLYX-13 (rapastinel)), metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment

  6. Photoacoustic-guided convergence of light through optically diffusive media.

    PubMed

    Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C

    2011-06-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber. © 2011 Optical Society of America

  7. Cosmic Reionization On Computers: Numerical and Physical Convergence

    DOE PAGES

    Gnedin, Nickolay Y.

    2016-04-01

    In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less

  8. Cosmic Reionization On Computers: Numerical and Physical Convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y.

    In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less

  9. COSMIC REIONIZATION ON COMPUTERS: NUMERICAL AND PHYSICAL CONVERGENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637

    In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce a weakmore » convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite-resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ∼20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, such as stellar masses and metallicities. Yet other properties of model galaxies, for example, their H i masses, are recovered in the weakly converged runs only within a factor of 2.« less

  10. Convergence accommodation to convergence CA/C ratio: convergence versus divergence.

    PubMed

    Simmons, Joshua M; Firth, Alison Y

    2014-09-01

    To determine whether the convergence accommodation to convergence (CA/C) ratio during divergence with base-in (BI) prisms is of a similar or different magnitude to that measured during convergence with base-out (BO) prisms. Eighteen participants with normal binocular single vision were recruited. The participants viewed a pseudo-Gaussian target, which consisted of a light emitting diode (LED) behind a diffusing screen at 40 cm. After 5 minutes of dark adaptation, the refractive status of the eye was measured without any prism using a Shin-Nippon SRW-5000 autorefractor. The participant held the selected prism (5Δ or 10Δ BO or BI, counterbalanced) in front of their right eye and obtained a single, fused image of the target while refractive measures were taken with each. A 30-second rest period was given between measurements. The mean age of the participants was 20.6±3.22 years. The mean CA/C ratios for the 5Δ BO, 10Δ BO, 5Δ BI, and 10Δ BI were 0.108 (±0.074) D/Δ, 0.110 (±0.056) D/Δ, 0.100 (±0.090) D/Δ, and 0.089 (±0.055) D/Δ, respectively. A 2-factor repeated measures ANOVA found that the CA/C ratio did not significantly change with differing levels of prism-induced convergence and divergence (p=0.649). Change in accommodation induced by manipulating vergence is similar whether convergence or divergence are induced. The CA/C ratio did not show any change with differing levels of prism-induced convergence and divergence.

  11. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants.

    PubMed

    Xu, Shaohua; He, Ziwen; Guo, Zixiao; Zhang, Zhang; Wyckoff, Gerald J; Greenberg, Anthony; Wu, Chung-I; Shi, Suhua

    2017-04-01

    When living organisms independently invade a new environment, the evolution of similar phenotypic traits is often observed. An interesting but contentious issue is whether the underlying molecular biology also converges in the new habitat. Independent invasions of tropical intertidal zones by woody plants, collectively referred to as mangrove trees, represent some dramatic examples. The high salinity, hypoxia, and other stressors in the new habitat might have affected both genomic features and protein structures. Here, we developed a new method for detecting convergence at conservative Sites (CCS) and applied it to the genomic sequences of mangroves. In simulations, the CCS method drastically reduces random convergence at rapidly evolving sites as well as falsely inferred convergence caused by the misinferences of the ancestral character. In mangrove genomes, we estimated ∼400 genes that have experienced convergence over the background level of convergence in the nonmangrove relatives. The convergent genes are enriched in pathways related to stress response and embryo development, which could be important for mangroves' adaptation to the new habitat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Convergent surface water distributions in U.S. cities

    Treesearch

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  13. Independent Molecular Basis of Convergent Highland Adaptation in Maize

    PubMed Central

    Takuno, Shohei; Ralph, Peter; Swarts, Kelly; Elshire, Rob J.; Glaubitz, Jeffrey C.; Buckler, Edward S.; Hufford, Matthew B.; Ross-Ibarra, Jeffrey

    2015-01-01

    Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize. PMID:26078279

  14. Whose interests and under whose control?: Interest convergence in science-focused school-community collaborations

    NASA Astrophysics Data System (ADS)

    Morrison, Deb

    2018-03-01

    In this dialogue with Monica Ridgeway and Randy Yerrick's Whose banner are we waving?: exploring STEM partnerships for marginalized urban youth, I engage the critical race theory (CRT) tenet of interest convergence. I first expand Derrick Bell's (1980) initial statement of interest convergence with subsequent scholarly work in this area. I then explore ways CRT in general and interest convergence specifically have been applied in the field of education. Using this framing, I examine how interest convergence may be shed new insights into Monica Ridgeway and Randy Yerrick's study. For example, the tenet of interest convergence is used to frame why it was beneficial for the White artist, Jacob, and the Achievement Scholars to collaborate in the service-learning mural. Then the idea of interest divergence is brought into explore the ways in which Jacob benefitted from his participation in the service learning project while the Achievement Scholars were left with an unfinished project which they had to problem solve. To conclude, I provide future directions for the application of interest convergence and divergence to issues facing science education.

  15. Convergence characteristics of nonlinear vortex-lattice methods for configuration aerodynamics

    NASA Technical Reports Server (NTRS)

    Seginer, A.; Rusak, Z.; Wasserstrom, E.

    1983-01-01

    Nonlinear panel methods have no proof for the existence and uniqueness of their solutions. The convergence characteristics of an iterative, nonlinear vortex-lattice method are, therefore, carefully investigated. The effects of several parameters, including (1) the surface-paneling method, (2) an integration method of the trajectories of the wake vortices, (3) vortex-grid refinement, and (4) the initial conditions for the first iteration on the computed aerodynamic coefficients and on the flow-field details are presented. The convergence of the iterative-solution procedure is usually rapid. The solution converges with grid refinement to a constant value, but the final value is not unique and varies with the wing surface-paneling and wake-discretization methods within some range in the vicinity of the experimental result.

  16. Professionalization in Universities and European Convergence

    ERIC Educational Resources Information Center

    Vivas, Amparo Jimenez; Hevia, David Menendez Alvarez

    2009-01-01

    The constant assessment of the quality of higher education within the framework of European convergence is a challenge for all those universities that wish their degrees and diplomas to reflect a unified Europe. As is the case in any assessment, change and review process, the quest to improve quality implies measuring achievement of the objectives…

  17. Achieving successful community engagement: a rapid realist review.

    PubMed

    De Weger, E; Van Vooren, N; Luijkx, K G; Baan, C A; Drewes, H W

    2018-04-13

    Community engagement is increasingly seen as crucial to achieving high quality, efficient and collaborative care. However, organisations are still searching for the best and most effective ways to engage citizens in the shaping of health and care services. This review highlights the barriers and enablers for engaging communities in the planning, designing, governing, and/or delivering of health and care services on the macro or meso level. It provides policymakers and professionals with evidence-based guiding principles to implement their own effective community engagement (CE) strategies. A Rapid Realist Review was conducted to investigate how interventions interact with contexts and mechanisms to influence the effectiveness of CE. A local reference panel, consisting of health and care professionals and experts, assisted in the development of the research questions and search strategy. The panel's input helped to refine the review's findings. A systematic search of the peer-reviewed literature was conducted. Eight action-oriented guiding principles were identified: Ensure staff provide supportive and facilitative leadership to citizens based on transparency; foster a safe and trusting environment enabling citizens to provide input; ensure citizens' early involvement; share decision-making and governance control with citizens; acknowledge and address citizens' experiences of power imbalances between citizens and professionals; invest in citizens who feel they lack the skills and confidence to engage; create quick and tangible wins; take into account both citizens' and organisations' motivations. An especially important thread throughout the CE literature is the influence of power imbalances and organisations' willingness, or not, to address such imbalances. The literature suggests that 'meaningful participation' of citizens can only be achieved if organisational processes are adapted to ensure that they are inclusive, accessible and supportive of citizens.

  18. The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach

    NASA Astrophysics Data System (ADS)

    Fink, Reinhold F.

    2009-02-01

    The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH2 , SiH2 , and NH2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster.

  19. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qirong; Li, Yuexing; Hernquist, Lars

    2015-02-10

    We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and N{sub nb} → ∞, where N is the total number of particles, h is the smoothing length, and N{sub nb} is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding N{sub nb} fixed.more » We demonstrate that if N{sub nb} is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if N{sub nb} is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for N{sub nb} by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find N{sub nb} ∝N {sup 0.5}. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N {sup 1} {sup +} {sup δ}), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.« less

  1. Simulations of Converging Shock Collisions for Shock Ignition

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  2. SU-F-BRCD-09: Total Variation (TV) Based Fast Convergent Iterative CBCT Reconstruction with GPU Acceleration.

    PubMed

    Xu, Q; Yang, D; Tan, J; Anastasio, M

    2012-06-01

    To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment

  3. Global convergence of inexact Newton methods for transonic flow

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1990-01-01

    In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.

  4. Noise can speed convergence in Markov chains.

    PubMed

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  5. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-09-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  6. Insights into Rapid Modulation of Neuroplasticity by Brain Estrogens

    PubMed Central

    Woolfrey, Kevin M.; Penzes, Peter

    2013-01-01

    Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits

  7. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  8. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer

    PubMed Central

    2012-01-01

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives. PMID:22545027

  9. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer.

    PubMed

    Paloncýová, Markéta; Berka, Karel; Otyepka, Michal

    2012-04-10

    Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.

  10. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-02-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and

  11. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-03-01

    Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and

  12. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-08-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  13. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-06-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  14. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-05-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  15. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-04-01

    Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and

  16. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2005-01-01

    Call for Papers: Convergence

    Guest Editors: Thomas E. Darcie, University of Victoria Robert Doverspike, AT&T Martin Zirngibl, Lucent Technologies

    Coordinating Associate Editor: Steven K. Korotky, Lucent Technologies

    The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly

  17. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be

  18. Possibilities for global governance of converging technologies

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.

    2008-01-01

    The convergence of nanotechnology, modern biology, the digital revolution and cognitive sciences will bring about tremendous improvements in transformative tools, generate new products and services, enable opportunities to meet and enhance human potential and social achievements, and in time reshape societal relationships. This paper focuses on the progress made in governance of such converging, emerging technologies and suggests possibilities for a global approach. Specifically, this paper suggests creating a multidisciplinary forum or a consultative coordinating group with members from various countries to address globally governance of converging, emerging technologies. The proposed framework for governance of converging technologies calls for four key functions: supporting the transformative impact of the new technologies; advancing responsible development that includes health, safety and ethical concerns; encouraging national and global partnerships; and establishing commitments to long-term planning and investments centered on human development. Principles of good governance guiding these functions include participation of all those who are forging or affected by the new technologies, transparency of governance strategies, responsibility of each participating stakeholder, and effective strategic planning. Introduction and management of converging technologies must be done with respect for immediate concerns, such as privacy, access to medical advancements, and potential human health effects. At the same time, introduction and management should also be done with respect for longer-term concerns, such as preserving human integrity, dignity and welfare. The suggested governance functions apply to four levels of governance: (a) adapting existing regulations and organizations; (b) establishing new programs, regulations and organizations specifically to handle converging technologies; (c) building capacity for addressing these issues into national policies and

  19. Convergence Insufficiency

    MedlinePlus

    ... followed for improvement in symptoms. What is the method of treatment for convergence insufficiency? Convergence insufficiency can ... be brought in to the office visit. Which method of treatment will be used for an individual ...

  20. Convergence Is Real

    ERIC Educational Resources Information Center

    Enyeart, Mike; Staman, E. Michael; Valdes, Jose J., Jr.

    2007-01-01

    The concept of convergence has evolved significantly during recent years. Today, "convergence" refers to the integration of the communications and computing resources and services that seamlessly traverse multiple infrastructures and deliver content to multiple platforms or appliances. Convergence is real. Those in higher education, and especially…

  1. Identifying Synergies in Multilevel Interventions: The Convergence Strategy

    ERIC Educational Resources Information Center

    Lewis, Megan A.; Fitzgerald, Tania M.; Zulkiewicz, Brittany; Peinado, Susana; Williams, Pamela A.

    2017-01-01

    Social ecological models of health often describe multiple levels of influence that interact to influence health. However, it is still common for interventions to target only one or two of these levels, perhaps owing in part to a lack of guidance on how to design multilevel interventions to achieve optimal impact. The convergence strategy…

  2. Similar traits, different genes? Examining convergent evolution in related weedy rice populations

    USDA-ARS?s Scientific Manuscript database

    Convergent phenotypic evolution may or may not be associated with parallel genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of parallel evolution. H...

  3. Convergence

    NASA Astrophysics Data System (ADS)

    Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.

    2004-12-01

    Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These

  4. On adaptive learning rate that guarantees convergence in feedforward networks.

    PubMed

    Behera, Laxmidhar; Kumar, Swagat; Patnaik, Awhan

    2006-09-01

    This paper investigates new learning algorithms (LF I and LF II) based on Lyapunov function for the training of feedforward neural networks. It is observed that such algorithms have interesting parallel with the popular backpropagation (BP) algorithm where the fixed learning rate is replaced by an adaptive learning rate computed using convergence theorem based on Lyapunov stability theory. LF II, a modified version of LF I, has been introduced with an aim to avoid local minima. This modification also helps in improving the convergence speed in some cases. Conditions for achieving global minimum for these kind of algorithms have been studied in detail. The performances of the proposed algorithms are compared with BP algorithm and extended Kalman filtering (EKF) on three bench-mark function approximation problems: XOR, 3-bit parity, and 8-3 encoder. The comparisons are made in terms of number of learning iterations and computational time required for convergence. It is found that the proposed algorithms (LF I and II) are much faster in convergence than other two algorithms to attain same accuracy. Finally, the comparison is made on a complex two-dimensional (2-D) Gabor function and effect of adaptive learning rate for faster convergence is verified. In a nutshell, the investigations made in this paper help us better understand the learning procedure of feedforward neural networks in terms of adaptive learning rate, convergence speed, and local minima.

  5. Emerging interdisciplinary fields in the coming intelligence/convergence era

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2012-09-01

    Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.

  6. Multiple-grid convergence acceleration of viscous and inviscid flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1983-01-01

    A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.

  7. Agency and Achievement: Self-management and Self-regard.

    ERIC Educational Resources Information Center

    Thomas, John W.

    1980-01-01

    Studies in self-management, attribution, and achievement motivation challenge the view that basic skills instruction requires strong teacher control, structure, convergence on learning activities, less pupil freedom, and less experimental teaching activities. Student-managed instruction yielded the greatest achievement gains and heightened…

  8. An experimental analysis on OSPF-TE convergence time

    NASA Astrophysics Data System (ADS)

    Huang, S.; Kitayama, K.; Cugini, F.; Paolucci, F.; Giorgetti, A.; Valcarenghi, L.; Castoldi, P.

    2008-11-01

    Open shortest path first (OSPF) protocol is commonly used as an interior gateway protocol (IGP) in MPLS and generalized MPLS (GMPLS) networks to determine the topology over which label-switched paths (LSPs) can be established. Traffic-engineering extensions (network states such as link bandwidth information, available wavelengths, signal quality, etc) have been recently enabled in OSPF (henceforth, called OSPF-TE) to support shortest path first (SPF) tree calculation upon different purposes, thus possibly achieving optimal path computation and helping improve resource utilization efficiency. Adding these features into routing phase can exploit the OSPF robustness, and no additional network component is required to manage the traffic-engineering information. However, this traffic-engineering enhancement also complicates OSPF behavior. Since network states change frequently upon the dynamic trafficengineered LSP setup and release, the network is easily driven from a stable state to unstable operating regimes. In this paper, we focus on studying the OSPF-TE stability in terms of convergence time. Convergence time is referred to the time spent by the network to go back to steady states upon any network state change. An external observation method (based on black-box method) is employed to estimate the convergence time. Several experimental test-beds are developed to emulate dynamic LSP setup/release, re-routing upon single-link failure. The experimental results show that with OSPF-TE the network requires more time to converge compared to the conventional OSPF protocol without TE extension. Especially, in case of wavelength-routed optical network (WRON), introducing per wavelength availability and wavelength continuity constraint to OSPF-TE suffers severe convergence time and a large number of advertised link state advertisements (LSAs). Our study implies that long convergence time and large number of LSAs flooded in the network might cause scalability problems in OSPF

  9. Convergence in Multispecies Interactions.

    PubMed

    Bittleston, Leonora S; Pierce, Naomi E; Ellison, Aaron M; Pringle, Anne

    2016-04-01

    The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent interactions in a comparative context is likely to facilitate prediction of the ecological roles of organisms (including microbes) in multispecies interactions and selective pressures acting in poorly understood or newly discovered multispecies systems. We illustrate the concept of convergent interactions with examples: vertebrates and their gut bacteria; ectomycorrhizae; insect-fungal-bacterial interactions; pitcher-plant food webs; and ants and ant-plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Powerful Convergence: Community Schools and Early Childhood Education

    ERIC Educational Resources Information Center

    Jacobson, David

    2018-01-01

    Communities around the country are converging on a new approach to raising achievement for low-income children. This approach draws on two reform movements: (1) full-service community schools that provide wraparound health and social services to children and families, and (2) Prenatal through Grade 3 initiatives to improve quality, alignment, and…

  11. Convergence analysis of directed signed networks via an M-matrix approach

    NASA Astrophysics Data System (ADS)

    Meng, Deyuan

    2018-04-01

    This paper aims at solving convergence problems on directed signed networks with multiple nodes, where interactions among nodes are described by signed digraphs. The convergence analysis is achieved by matrix-theoretic and graph-theoretic tools, in which M-matrices play a central role. The fundamental digon sign-symmetry assumption upon signed digraphs can be removed with the proposed analysis approach. Furthermore, necessary and sufficient conditions are established for semi-positive and positive stabilities of Laplacian matrices of signed digraphs, respectively. A benefit of this result is that given strong connectivity, a directed signed network can achieve bipartite consensus (or state stability) if and only if the signed digraph associated with it is structurally balanced (or unbalanced). If the interactions between nodes are described by a signed digraph only with spanning trees, a directed signed network can achieve interval bipartite consensus (or state stability) if and only if the signed digraph contains a structurally balanced (or unbalanced) rooted subgraph. Simulations are given to illustrate the developed results by considering signed networks associated with digon sign-unsymmetric signed digraphs.

  12. Modeling the convergence accommodation of stereo vision for binocular endoscopy.

    PubMed

    Gao, Yuanqian; Li, Jinhua; Li, Jianmin; Wang, Shuxin

    2018-02-01

    The stereo laparoscope is an important tool for achieving depth perception in robot-assisted minimally invasive surgery (MIS). A dynamic convergence accommodation algorithm is proposed to improve the viewing experience and achieve accurate depth perception. Based on the principle of the human vision system, a positional kinematic model of the binocular view system is established. The imaging plane pair is rectified to ensure that the two rectified virtual optical axes intersect at the fixation target to provide immersive depth perception. Stereo disparity was simulated with the roll and pitch movements of the binocular system. The chessboard test and the endoscopic peg transfer task were performed, and the results demonstrated the improved disparity distribution and robustness of the proposed convergence accommodation method with respect to the position of the fixation target. This method offers a new solution for effective depth perception with the stereo laparoscopes used in robot-assisted MIS. Copyright © 2017 John Wiley & Sons, Ltd.

  13. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.

    PubMed

    Grill, W M; McDonald, J W; Peckham, P H; Heetderks, W; Kocsis, J; Weinrich, M

    2001-01-01

    The rapid pace of recent advances in development and application of electrical stimulation of the nervous system and in neural regeneration has created opportunities to combine these two approaches to restoration of function. This paper relates the discussion on this topic from a workshop at the International Functional Electrical Stimulation Society. The goals of this workshop were to discuss the current state of interaction between the fields of neural regeneration and neural prostheses and to identify potential areas of future research that would have the greatest impact on achieving the common goal of restoring function after neurological damage. Identified areas include enhancement of axonal regeneration with applied electric fields, development of hybrid neural interfaces combining synthetic silicon and biologically derived elements, and investigation of the role of patterned neural activity in regulating various neuronal processes and neurorehabilitation. Increased communication and cooperation between the two communities and recognition by each field that the other has something to contribute to their efforts are needed to take advantage of these opportunities. In addition, creative grants combining the two approaches and more flexible funding mechanisms to support the convergence of their perspectives are necessary to achieve common objectives.

  14. Genetic architecture underlying convergent evolution of egg-laying behavior in a seed-feeding beetle.

    PubMed

    Fox, Charles W; Wagner, James D; Cline, Sara; Thomas, Frances Ann; Messina, Frank J

    2009-05-01

    Independent populations subjected to similar environments often exhibit convergent evolution. An unresolved question is the frequency with which such convergence reflects parallel genetic mechanisms. We examined the convergent evolution of egg-laying behavior in the seed-feeding beetle Callosobruchus maculatus. Females avoid ovipositing on seeds bearing conspecific eggs, but the degree of host discrimination varies among geographic populations. In a previous experiment, replicate lines switched from a small host to a large one evolved reduced discrimination after 40 generations. We used line crosses to determine the genetic architecture underlying this rapid response. The most parsimonious genetic models included dominance and/or epistasis for all crosses. The genetic architecture underlying reduced discrimination in two lines was not significantly different from the architecture underlying differences between geographic populations, but the architecture underlying the divergence of a third line differed from all others. We conclude that convergence of this complex trait may in some cases involve parallel genetic mechanisms.

  15. A globally convergent LCL method for nonlinear optimization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedlander, M. P.; Saunders, M. A.; Mathematics and Computer Science

    2005-01-01

    For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form 'minimize an augmented Lagrangian function subject to linearized constraints.' Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. Nevertheless, the well-known software package MINOS has proved effective on many large problems. Its success motivates us to derive a related LCL algorithm that possesses three important properties: it is globally convergent, the subproblem constraints are always feasible, and the subproblems may be solved inexactly. The new algorithm has been implemented in Matlab, with an optionmore » to use either MINOS or SNOPT (Fortran codes) to solve the linearly constrained subproblems. Only first derivatives are required. We present numerical results on a subset of the COPS, HS, and CUTE test problems, which include many large examples. The results demonstrate the robustness and efficiency of the stabilized LCL procedure.« less

  16. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  17. Spectral iterative method and convergence analysis for solving nonlinear fractional differential equation

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, M.; Javadi, S.; Babolian, E.

    2018-04-01

    In this study a new spectral iterative method (SIM) based on fractional interpolation is presented for solving nonlinear fractional differential equations (FDEs) involving Caputo derivative. This method is equipped with a pre-algorithm to find the singularity index of solution of the problem. This pre-algorithm gives us a real parameter as the index of the fractional interpolation basis, for which the SIM achieves the highest order of convergence. In comparison with some recent results about the error estimates for fractional approximations, a more accurate convergence rate has been attained. We have also proposed the order of convergence for fractional interpolation error under the L2-norm. Finally, general error analysis of SIM has been considered. The numerical results clearly demonstrate the capability of the proposed method.

  18. The ignition of carbon detonations via converging shock waves in white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.; Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu

    2014-04-10

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengthsmore » needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.« less

  19. Agriculture, health, and wealth convergence: bridging traditional food systems and modern agribusiness solutions.

    PubMed

    Dubé, Laurette; Webb, Patrick; Arora, Narendra K; Pingali, Prabhu

    2014-12-01

    The causes of many vexing challenges facing 21st-century society are at the nexus of systems involved in agriculture, health and wealth production, consumption, and distribution. Using food as a test bed, and on the basis of emerging roadmaps that set achievable objectives over a 1- to 3-year horizon, we introduce this special feature with convergence thinking and practice at its core. Specifically, we discuss academic papers structured around four themes: (1) evidence for a need for convergence and underlying mechanisms at the individual and societal levels; (2) strategy for mainstreaming convergence as a driver of business engagement and innovation; (3) convergence in policy and governance; (4) convergence in metrics and methods. Academic papers under each theme are accompanied by a roadmap paper reporting on the current status of concrete transformative convergence-building projects associated with that theme. We believe that the insights provided by these papers have the potential to enable all actors throughout society to singly and collectively work to build supply and demand for nutritious food, in both traditional and modern food systems, while placing the burdens of malnutrition and ill health on their core strategic agendas. © 2014 New York Academy of Sciences.

  20. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  1. Functional differentiation between convergence and non-convergence zones of the striatum in children.

    PubMed

    Darki, Fahimeh; Klingberg, Torkel

    2018-06-01

    Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Conformational Transitions and Convergence of Absolute Binding Free Energy Calculations

    PubMed Central

    Lapelosa, Mauro; Gallicchio, Emilio; Levy, Ronald M.

    2011-01-01

    The Binding Energy Distribution Analysis Method (BEDAM) is employed to compute the standard binding free energies of a series of ligands to a FK506 binding protein (FKBP12) with implicit solvation. Binding free energy estimates are in reasonably good agreement with experimental affinities. The conformations of the complexes identified by the simulations are in good agreement with crystallographic data, which was not used to restrain ligand orientations. The BEDAM method is based on λ -hopping Hamiltonian parallel Replica Exchange (HREM) molecular dynamics conformational sampling, the OPLS-AA/AGBNP2 effective potential, and multi-state free energy estimators (MBAR). Achieving converged and accurate results depends on all of these elements of the calculation. Convergence of the binding free energy is tied to the level of convergence of binding energy distributions at critical intermediate states where bound and unbound states are at equilibrium, and where the rate of binding/unbinding conformational transitions is maximal. This finding mirrors similar observations in the context of order/disorder transitions as for example in protein folding. Insights concerning the physical mechanism of ligand binding and unbinding are obtained. Convergence for the largest FK506 ligand is achieved only after imposing strict conformational restraints, which however require accurate prior structural knowledge of the structure of the complex. The analytical AGBNP2 model is found to underestimate the magnitude of the hydrophobic driving force towards binding in these systems characterized by loosely packed protein-ligand binding interfaces. Rescoring of the binding energies using a numerical surface area model corrects this deficiency. This study illustrates the complex interplay between energy models, exploration of conformational space, and free energy estimators needed to obtain robust estimates from binding free energy calculations. PMID:22368530

  3. Convergence acceleration in scattering series and seismic waveform inversion using nonlinear Shanks transformation

    NASA Astrophysics Data System (ADS)

    Eftekhar, Roya; Hu, Hao; Zheng, Yingcai

    2018-06-01

    Iterative solution process is fundamental in seismic inversions, such as in full-waveform inversions and some inverse scattering methods. However, the convergence could be slow or even divergent depending on the initial model used in the iteration. We propose to apply Shanks transformation (ST for short) to accelerate the convergence of the iterative solution. ST is a local nonlinear transformation, which transforms a series locally into another series with an improved convergence property. ST works by separating the series into a smooth background trend called the secular term versus an oscillatory transient term. ST then accelerates the convergence of the secular term. Since the transformation is local, we do not need to know all the terms in the original series which is very important in the numerical implementation. The ST performance was tested numerically for both the forward Born series and the inverse scattering series (ISS). The ST has been shown to accelerate the convergence in several examples, including three examples of forward modeling using the Born series and two examples of velocity inversion based on a particular type of the ISS. We observe that ST is effective in accelerating the convergence and it can also achieve convergence even for a weakly divergent scattering series. As such, it provides a useful technique to invert for a large-contrast medium perturbation in seismic inversion.

  4. A globally convergent MC algorithm with an adaptive learning rate.

    PubMed

    Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian

    2012-02-01

    This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.

  5. Maternal and child mortality indicators across 187 countries of the world: converging or diverging.

    PubMed

    Goli, Srinivas; Arokiasamy, Perianayagam

    2014-01-01

    This study reassessed the progress achieved since 1990 in maternal and child mortality indicators to test whether the progress is converging or diverging across countries worldwide. The convergence process is examined using standard parametric and non-parametric econometric models of convergence. The results of absolute convergence estimates reveal that progress in maternal and child mortality indicators is diverging for the entire period of 1990-2010 [maternal mortality ratio (MMR) - β = .00033, p < .574; neonatal mortality rate (NNMR) - β = .04367, p < .000; post-neonatal mortality rate (PNMR) - β = .02677, p < .000; under-five mortality rate (U5MR) - β = .00828, p < .000)]. In the recent period, such divergence is replaced with convergence for MMR but diverged for all the child mortality indicators. The results of Kernel density estimate reveal considerable reduction in divergence of MMR for the recent period; however, the Kernel density distribution plots show more than one 'peak' which indicates the emergence of convergence clubs based on their mortality levels. For child mortality indicators, the Kernel estimates suggest that divergence is in progress across the countries worldwide but tended to converge for countries with low mortality levels. A mere progress in global averages of maternal and child mortality indicators among a global cross-section of countries does not warranty convergence unless there is a considerable reduction in variance, skewness and range of change.

  6. Convergence of the Critical Cooling Rate for Protoplanetary Disk Fragmentation Achieved: The Key Role of Numerical Dissipation of Angular Momentum

    NASA Astrophysics Data System (ADS)

    Deng, Hongping; Mayer, Lucio; Meru, Farzana

    2017-09-01

    We carry out simulations of gravitationally unstable disks using smoothed particle hydrodynamics (SPH) and the novel Lagrangian meshless finite mass (MFM) scheme in the GIZMO code. Our aim is to understand the cause of the nonconvergence of the cooling boundary for fragmentation reported in the literature. We run SPH simulations with two different artificial viscosity implementations and compare them with MFM, which does not employ any artificial viscosity. With MFM we demonstrate convergence of the critical cooling timescale for fragmentation at {β }{crit}≈ 3. Nonconvergence persists in SPH codes. We show how the nonconvergence problem is caused by artificial fragmentation triggered by excessive dissipation of angular momentum in domains with large velocity derivatives. With increased resolution, such domains become more prominent. Vorticity lags behind density, due to numerical viscous dissipation in these regions, promoting collapse with longer cooling times. Such effect is shown to be dominant over the competing tendency of artificial viscosity to diminish with increasing resolution. When the initial conditions are first relaxed for several orbits, the flow is more regular, with lower shear and vorticity in nonaxisymmetric regions, aiding convergence. Yet MFM is the only method that converges exactly. Our findings are of general interest, as numerical dissipation via artificial viscosity or advection errors can also occur in grid-based codes. Indeed, for the FARGO code values of {β }{crit} significantly higher than our converged estimate have been reported in the literature. Finally, we discuss implications for giant planet formation via disk instability.

  7. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose

    NASA Astrophysics Data System (ADS)

    Su, Zikang; Wang, Honglun; Li, Na

    2018-05-01

    As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.

  8. Similar traits, different genes? Examining convergent evolution in related weedy rice populations.

    PubMed

    Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L

    2013-02-01

    Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. © 2012 Blackwell Publishing Ltd.

  9. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  10. The role of vaccines and vaccine decision-making to achieve the goals of the Grand Convergence in public health.

    PubMed

    Kaslow, David C; Kalil, Jorge; Bloom, David; Breghi, Gianluca; Colucci, Anna Maria; De Gregorio, Ennio; Madhavan, Guru; Meier, Genevieve; Seabrook, Richard; Xu, Xiaoning

    2017-01-20

    On 17 and 18 July 2015, a meeting in Siena jointly sponsored by ADITEC and GlaxoSmithKline (GSK) was held to review the goals of the Global Health 2035 Grand Convergence, to discuss current vaccine evaluation methods, and to determine the feasibility of reaching consensus on an assessment framework for comprehensively and accurately capturing the full benefits of vaccines. Through lectures and workshops, participants reached a consensus that Multi-Criteria-Decision-Analysis is a method suited to systematically account for the many variables needed to evaluate the broad benefits of vaccination, which include not only health system savings, but also societal benefits, including benefits to the family and increased productivity. Participants also agreed on a set of "core values" to be used in future assessments of vaccines for development and introduction. These values include measures of vaccine efficacy and safety, incident cases prevented per year, the results of cost-benefit analyses, preventable mortality, and the severity of the target disease. Agreement on this set of core assessment parameters has the potential to increase alignment between manufacturers, public health agencies, non-governmental organizations (NGOs), and policy makers (see Global Health 2035 Mission Grand Convergence [1]). The following sections capture the deliberations of a workshop (Working Group 4) chartered to: (1) review the list of 24 parameters selected from SMART vaccines (see the companion papers by Timmis et al. and Madhavan et al., respectively) to determine which represent factors (see Table 1) that should be taken into account when evaluating the role of vaccines in maximizing the success of the Global Health 2035 Grand Convergence; (2) develop 3-5 "core values" that should be taken into account when evaluating vaccines at various stages of development; and (3) determine how vaccines can best contribute to the Global Health 2035 Grand Convergence effort. Copyright © 2016.

  11. Magnetically-Driven Convergent Instability Growth platform on Z.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, Patrick; Mattsson, Thomas; Martin, Matthew

    Hydrodynamic instability growth is a fundamentally limiting process in many applications. In High Energy Density Physics (HEDP) systems such as inertial confinement fusion implosions and stellar explosions, hydro instabilities can dominate the evolution of the object and largely determine the final state achievable. Of particular interest is the process by which instabilities cause perturbations at a density or material interface to grow nonlinearly, introducing vorticity and eventually causing the two species to mix across the interface. Although quantifying instabilities has been the subject of many investigations in planar geometry, few have been done in converging geometry. During FY17, the teammore » executed six convergent geometry instability experiments. Based on earlier results, the platform was redesigned and improved with respect to load centering at installation making the installation reproducible and development of a new 7.2 keV, Co He-a backlighter system to better penetrate the liner. Together, the improvements yielded significantly improved experimental results. The results in FY17 demonstrate the viability of using experiments on Z to quantify instability growth in cylindrically convergent geometry. Going forward, we will continue the partnership with staff and management at LANL to analyze the past experiments, compare to hydrodynamics growth models, and design future experiments.« less

  12. Convergence in parameters and predictions using computational experimental design.

    PubMed

    Hagen, David R; White, Jacob K; Tidor, Bruce

    2013-08-06

    Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.

  13. Societal response to nanotechnology: converging technologies-converging societal response research?

    NASA Astrophysics Data System (ADS)

    Ronteltap, Amber; Fischer, Arnout R. H.; Tobi, Hilde

    2011-10-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.

  14. First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .

  15. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    DOE PAGES

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; ...

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less

  16. Adaptive convergence nonuniformity correction algorithm.

    PubMed

    Qian, Weixian; Chen, Qian; Bai, Junqi; Gu, Guohua

    2011-01-01

    Nowadays, convergence and ghosting artifacts are common problems in scene-based nonuniformity correction (NUC) algorithms. In this study, we introduce the idea of space frequency to the scene-based NUC. Then the convergence speed factor is presented, which can adaptively change the convergence speed by a change of the scene dynamic range. In fact, the convergence speed factor role is to decrease the statistical data standard deviation. The nonuniformity space relativity characteristic was summarized by plenty of experimental statistical data. The space relativity characteristic was used to correct the convergence speed factor, which can make it more stable. Finally, real and simulated infrared image sequences were applied to demonstrate the positive effect of our algorithm.

  17. Method of achieving the controlled release of thermonuclear energy

    DOEpatents

    Brueckner, Keith A.

    1986-01-01

    A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

  18. Converging social classes through humanized urban edges

    NASA Astrophysics Data System (ADS)

    Abuan, M. V.; Galingan, Z. D.

    2017-10-01

    Urban open spaces are created to be used by people. It is a place of convergence and social activity. However, these places have transformed into places of divergence. When spaces become dehumanized, it separates social classes. As a result, underused spaces contribute to urban decay. Particularly an urban edge, the JP Rizal Makati Waterfront Area is the center of this paper. The JP Rizal Makati Waterfront Area is a waterfront development situated along the banks of one of Metro Manila’s major water thoroughfare --- Pasig River. The park and its physical form, urban design and landscape tend to deteriorate over time --- creating a further division of social convergence. Social hostility, crime, negligent maintenance and poor urban design are contributing factors to this sprawling decay in what used to be spaces of bringing people together. Amidst attempts to beautify and renew this portion of Makati City’s edge, the urban area still remains misspent.This paper attempts to re-humanize the waterfront development. It uses the responsive environment design principles to be able to achieve this goal.

  19. Convergent radial dispersion: A note on evaluation of the Laplace transform solution

    USGS Publications Warehouse

    Moench, Allen F.

    1991-01-01

    A numerical inversion algorithm for Laplace transforms that is capable of handling rapid changes in the computed function is applied to the Laplace transform solution to the problem of convergent radial dispersion in a homogeneous aquifer. Prior attempts by the author to invert this solution were unsuccessful for highly advective systems where the Peclet number was relatively large. The algorithm used in this note allows for rapid and accurate inversion of the solution for all Peclet numbers of practical interest, and beyond. Dimensionless breakthrough curves are illustrated for tracer input in the form of a step function, a Dirac impulse, or a rectangular input.

  20. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  1. Rapid convergence of optimal control in NMR using numerically-constructed toggling frames

    NASA Astrophysics Data System (ADS)

    Coote, Paul; Anklin, Clemens; Massefski, Walter; Wagner, Gerhard; Arthanari, Haribabu

    2017-08-01

    We present a numerical method for rapidly solving the Bloch equation for an arbitrary time-varying spin-1/2 Hamiltonian. The method relies on fast, vectorized computations such as summation and quaternion multiplication, rather than slow computations such as matrix exponentiation. A toggling frame is constructed in which the Hamiltonian is time-invariant, and therefore has a simple analytical solution. The key insight is that constructing this frame is faster than solving the system dynamics in the original frame. Rapidly solving the Bloch equations for an arbitrary Hamiltonian is particularly useful in the context of NMR optimal control. Optimal control theory can be used to design pulse shapes for a range of tasks in NMR spectroscopy. However, it requires multiple simulations of the Bloch equations at each stage of the algorithm, and for each relevant set of parameters (e.g. chemical shift frequencies). This is typically time consuming. We demonstrate that by working in an appropriate toggling frame, optimal control pulses can be generated much faster. We present a new alternative to the well-known GRAPE algorithm to continuously update the toggling-frame as the optimal pulse is generated, and demonstrate that this approach is extremely fast. The use and benefit of rapid optimal pulse generation is demonstrated for 19F fragment screening experiments.

  2. The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Bainbridge, William S.

    2013-09-01

    Convergence of knowledge and technology for the benefit of society (CKTS) is the core opportunity for progress in the twenty-first century. CKTS is defined as the escalating and transformative interactions among seemingly different disciplines, technologies, communities, and domains of human activity to achieve mutual compatibility, synergism, and integration, and through this process to create added value and branch out to meet shared goals. Convergence has been progressing by stages over the past several decades, beginning with nanotechnology for the material world, followed by convergence of nanotechnology, biotechnology, information, and cognitive science (NBIC) for emerging technologies. CKTS is the third level of convergence. It suggests a general process to advance creativity, innovation, and societal progress based on five general purpose principles: (1) the interdependence of all components of nature and society, (2) decision analysis for research, development, and applications based on dynamic system-logic deduction, (3) enhancement of creativity and innovation through evolutionary processes of convergence that combines existing principles and divergence that generates new ones, (4) the utility of higher-level cross-domain languages to generate new solutions and support transfer of new knowledge, and (5) the value of vision-inspired basic research embodied in grand challenges. CKTS is a general purpose approach in knowledge society. It allows society to answer questions and resolve problems that isolated capabilities cannot, as well as to create new competencies, knowledge, and technologies on this basis. Possible solutions are outlined for key societal challenges in the next decade, including support for foundational emerging technologies NBIC to penetrate essential platforms of human activity and create new industries and jobs, improve lifelong wellness and human potential, achieve personalized and integrated healthcare and education, and secure a

  3. Chemoenzymatic convergent synthesis of 2'-O,4'-C-methyleneribonucleosides.

    PubMed

    Sharma, Vivek K; Kumar, Manish; Olsen, Carl E; Prasad, Ashok K

    2014-07-03

    Novozyme-435-catalyzed efficient regioselective acetylation of one of the two diastereotopic hydroxymethyl functions in 3-O-benzyl-4-C-hydroxymethyl-1,2-O-isopropylidene-α-d-ribofuranose has been achieved. The enzymatic methodology has been successfully utilized for convergent synthesis of bicyclic nucleosides (LNA monomers) T, U, A, and C. Further, it has been demonstrated that Novozyme-435 can be used for 10 cycles of the acylation reaction without losing selectivity and efficiency.

  4. Effective convergence of the two-particle irreducible 1/N expansion for nonequilibrium quantum fields

    NASA Astrophysics Data System (ADS)

    Aarts, Gert; Laurie, Nathan; Tranberg, Anders

    2008-12-01

    The 1/N expansion of the two-particle irreducible effective action offers a powerful approach to study quantum field dynamics far from equilibrium. We investigate the effective convergence of the 1/N expansion in the O(N) model by comparing results obtained numerically in 1+1 dimensions at leading, next-to-leading and next-to-next-to-leading order in 1/N as well as in the weak coupling limit. A comparison in classical statistical field theory, where exact numerical results are available, is made as well. We focus on early-time dynamics and quasiparticle properties far from equilibrium and observe rapid effective convergence already for moderate values of 1/N or the coupling.

  5. Teacher Unions, School Districts, Universities, Governments: Time to Tango and Promote Convergence?

    ERIC Educational Resources Information Center

    Naylor, Charlie

    2007-01-01

    This paper considers "convergence" as deliberate acts of will to achieve common goals within the context of the education service in general and school sector industrial relations in particular. Such language is unusual in the field of industrial relations, where assumptions are often based on notions of conflictual relationships.…

  6. Convergence of electronic bands for high performance bulk thermoelectrics.

    PubMed

    Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron; Wang, Heng; Chen, Lidong; Snyder, G Jeffrey

    2011-05-05

    Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe(1-x)Se(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity. ©2011 Macmillan Publishers Limited. All rights reserved

  7. Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop

    NASA Astrophysics Data System (ADS)

    Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud

    2013-09-01

    The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.

  8. Convergence Speed of a Dynamical System for Sparse Recovery

    NASA Astrophysics Data System (ADS)

    Balavoine, Aurele; Rozell, Christopher J.; Romberg, Justin

    2013-09-01

    This paper studies the convergence rate of a continuous-time dynamical system for L1-minimization, known as the Locally Competitive Algorithm (LCA). Solving L1-minimization} problems efficiently and rapidly is of great interest to the signal processing community, as these programs have been shown to recover sparse solutions to underdetermined systems of linear equations and come with strong performance guarantees. The LCA under study differs from the typical L1 solver in that it operates in continuous time: instead of being specified by discrete iterations, it evolves according to a system of nonlinear ordinary differential equations. The LCA is constructed from simple components, giving it the potential to be implemented as a large-scale analog circuit. The goal of this paper is to give guarantees on the convergence time of the LCA system. To do so, we analyze how the LCA evolves as it is recovering a sparse signal from underdetermined measurements. We show that under appropriate conditions on the measurement matrix and the problem parameters, the path the LCA follows can be described as a sequence of linear differential equations, each with a small number of active variables. This allows us to relate the convergence time of the system to the restricted isometry constant of the matrix. Interesting parallels to sparse-recovery digital solvers emerge from this study. Our analysis covers both the noisy and noiseless settings and is supported by simulation results.

  9. Dynamical role of Ekman pumping in rapidly rotating convection

    NASA Astrophysics Data System (ADS)

    Stellmach, Stephan; Julien, Keith; Cheng, Jonathan; Aurnou, Jonathan

    2015-04-01

    The exact nature of the mechanical boundary conditions (i.e. no-slip versus stress-free) is usually considered to be of secondary importance in the rapidly rotating parameter regime characterizing planetary cores. While they have considerable influence for the Ekman numbers achievable in today's global simulations, for planetary values both the viscous Ekman layers and the associated secondary flows are generally expected to become negligibly small. In fact, usually the main purpose of using stress-free boundary conditions in numerical dynamo simulations is to suppress unrealistically large friction and pumping effects. In this study, we investigate the influence of the mechanical boundary conditions on core convection systematically. By restricting ourselves to the idealized case of rapidly rotating Rayleigh-Bénard convection, we are able to combine results from direct numerical simulations (DNS), laboratory experiments and asymptotic theory into a coherent picture. Contrary to the general expectation, we show that the dynamical effects of Ekman pumping increase with decreasing Ekman number over the investigated parameter range. While stress-free DNS results converge to the asymptotic predictions, both no-slip simulations and laboratory experiments consistently reveal increasingly large deviations from the existing asymptotic theory based on dynamically passive Ekman layers. The implications of these results for core dynamics are discussed briefly.

  10. [Global health 2035: a world converging within a generation].

    PubMed

    Jamison, Dean T; Summers, Lawrence H; Alleyne, George; Arrow, Kenneth J; Berkley, Seth; Binagwaho, Agnes; Bustreo, Flavia; Evans, David; Feachem, Richard G A; Frenk, Julio; Ghosh, Gargee; Goldie, Sue J; Guo, Yan; Gupta, Sanjeev; Horton, Richard; Kruk, Margaret E; Mahmoud, Adel; Mohohlo, Linah K; Ncube, Mthuli; Pablos-Mendez, Ariel; Reddy, K Srinath; Saxenian, Helen; Soucat, Agnes; Ulltveit-Moe, Karen H; Yamey, Gavin

    2015-01-01

    Prompted by the 20th anniversary of the 1993 World Development Report, a Lancet Commission revisited the case for investment in health and developed a new investment framework to achieve dramatic health gains by 2035. The Commission's report has four key messages, each accompanied by opportunities for action by national governments of low-income and middle-income countries and by the international community. First, there is an enormous economic payoff from investing in health. The impressive returns make a strong case for both increased domestic financing of health and for allocating a higher proportion of official development assistance to development of health. Second, modeling by the Commission found that a "grand convergence" in health is achievable by 2035-that is, a reduction in infectious, maternal, and child mortality down to universally low levels. Convergence would require aggressive scale up of existing and new health tools, and it could mostly be financed from the expected economic growth of low- and middle-income countries. The international community can best support convergence by funding the development and delivery of new health technologies and by curbing antibiotic resistance. Third, fiscal policies -such as taxation of tobacco and alcohol- are a powerful and underused lever that governments can use to curb non-communicable diseases and injuries while also raising revenue for health. International action on NCDs and injuries should focus on providing technical assistance on fiscal policies, regional cooperation on tobacco, and funding policy and implementation research on scaling-up of interventions to tackle these conditions. Fourth, progressive universalism, a pathway to universal health coverage (UHC) that includes the poor from the outset, is an efficient way to achieve health and financial risk protection. For national governments, progressive universalism would yield high health gains per dollar spent and poor people would gain the most in

  11. Convergent chaos

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael

    2017-07-01

    Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.

  12. Testing Convergence Versus History: Convergence Dominates Phenotypic Evolution for over 150 Million Years in Frogs.

    PubMed

    Moen, Daniel S; Morlon, Hélène; Wiens, John J

    2016-01-01

    Striking evolutionary convergence can lead to similar sets of species in different locations, such as in cichlid fishes and Anolis lizards, and suggests that evolution can be repeatable and predictable across clades. Yet, most examples of convergence involve relatively small temporal and/or spatial scales. Some authors have speculated that at larger scales (e.g., across continents), differing evolutionary histories will prevent convergence. However, few studies have compared the contrasting roles of convergence and history, and none have done so at large scales. Here we develop a two-part approach to test the scale over which convergence can occur, comparing the relative importance of convergence and history in macroevolution using phylogenetic models of adaptive evolution. We apply this approach to data from morphology, ecology, and phylogeny from 167 species of anuran amphibians (frogs) from 10 local sites across the world, spanning ~160 myr of evolution. Mapping ecology on the phylogeny revealed that similar microhabitat specialists (e.g., aquatic, arboreal) have evolved repeatedly across clades and regions, producing many evolutionary replicates for testing for morphological convergence. By comparing morphological optima for clades and microhabitat types (our first test), we find that convergence associated with microhabitat use dominates frog morphological evolution, producing recurrent ecomorphs that together encompass all sampled species in each community in each region. However, our second test, which examines whether and how much species differ from their inferred optima, shows that convergence is incomplete: that is, phenotypes of most species are still somewhat distant from the estimated optimum for each microhabitat, seemingly because of insufficient time for more complete adaptation (an effect of history). Yet, these effects of history are related to past ecologies, and not clade membership. Overall, our study elucidates the dominant drivers of

  13. Entropy and gravity concepts as new methodological indexes to investigate technological convergence: patent network-based approach.

    PubMed

    Cho, Yongrae; Kim, Minsung

    2014-01-01

    The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary

  14. Entropy and Gravity Concepts as New Methodological Indexes to Investigate Technological Convergence: Patent Network-Based Approach

    PubMed Central

    Cho, Yongrae; Kim, Minsung

    2014-01-01

    The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings on the evolutionary

  15. What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution

    PubMed Central

    Stayton, C. Tristan

    2015-01-01

    Convergent evolution is central to the study of life's evolutionary history. Researchers have documented the ubiquity of convergence and have used this ubiquity to make inferences about the nature of limits on evolution. However, these inferences are compromised by unrecognized inconsistencies in the definitions, measures, significance tests and inferred causes of convergent evolution. I review these inconsistencies and provide recommendations for standardizing studies of convergence. A fundamental dichotomy exists between definitions that describe convergence as a pattern and those that describe it as a pattern caused by a particular process. When this distinction is not acknowledged it becomes easy to assume that a pattern of convergence indicates that a particular process has been active, leading researchers away from alternative explanations. Convergence is not necessarily caused by limits to evolution, either adaptation or constraint; even substantial amounts of convergent evolution can be generated by a purely stochastic process. In the absence of null models, long lists of examples of convergent events do not necessarily indicate that convergence or any evolutionary process is ubiquitous throughout the history of life. Pattern-based definitions of convergence, coupled with quantitative measures and null models, must be applied before drawing inferences regarding large-scale limits to evolution. PMID:26640646

  16. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  17. Beyond Brainstorming: Exploring Convergence in Teams.

    PubMed

    Seeber, Isabella; de Vreede, Gert-Jan; Maier, Ronald; Weber, Barbara

    2017-01-01

    Collaborative brainstorming is often followed by a convergence activity where teams extract the most promising ideas on a useful level of detail from the brainstorming results. Contrary to the wealth of research on electronic brainstorming, there is a dearth of research on convergence. We used experimental methods for an in-depth exploration of two facilitation-based interventions in a convergence activity: attention guidance (focusing participants on procedures to execute a convergence task) and discussion encouragement (engaging participants in conversations to combine knowledge on ideas). Our findings show that both attention guidance and discussion encouragement are correlated with higher convergence quality. We argue that attention guidance's contribution is in its support of coordination, information processing, and goal specification. Similar, we argue that discussion encouragement's contribution is in its stimulation of idea clarification and idea combination. Contrary to past research, our findings further show that satisfaction was higher after convergence than after brainstorming.

  18. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  19. Convergent Creativity: From Arthur Cropley (1935-) Onwards

    ERIC Educational Resources Information Center

    Tan, Ai-Girl

    2015-01-01

    Arthur Cropley's view on convergent thinking is reviewed, with reflections on the relations of divergent and convergent processes and the roles of knowledge and convergent creativity. While divergence is about considering and generating multiplicity, possibility, difference, originality, and so on; convergence is about relating, associating,…

  20. Why does continental convergence stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, A.

    1985-01-01

    Convergence between India and Asia slowed at 45 Ma when they collided, but continues today. This requires that substantial proportions of the Indian and/or Asian lithospheric mantle are still being subducted. The resulting slab-pull is probably comparable with that from complete lithospheric slabs and may promote continued continental convergence even after collision. Since descending lithospheric slabs are present at all collision zones at the time of collision such continued convergence may be general after continental collisions. It may cease only when there is a major (global) plate reorganization which results in new forces on the convergent continents that may counteractmore » the slab-pull. These inferences may be tested on the late Paleozoic collision between Gondwanaland and Laurasia. This is generally considered to have been complete by mid-Permian time (250 Ma). However, this may be only the time of docking of Gondwanaland with North America, not that of the cessation of convergence. Paleomagnetic polar-wander paths for the Gondwanide continents exhibit consistently greater latitudinal shifts from 250 Ma to 200 Ma than those of Laurasia when corrected for post-Triassic drift, suggesting that convergence continued through late Permian well into the Triassic. It may have been accommodated by crustal thickening under what is now the US Coastal Plain, or by strike-slip faulting. Convergence may have ceased only when Pangea began to fragment again, in which case the cause for its cessation may be related to the cause of continental fragmentation.« less

  1. Beyond Brainstorming: Exploring Convergence in Teams

    PubMed Central

    Seeber, Isabella; de Vreede, Gert-Jan; Maier, Ronald; Weber, Barbara

    2017-01-01

    Abstract Collaborative brainstorming is often followed by a convergence activity where teams extract the most promising ideas on a useful level of detail from the brainstorming results. Contrary to the wealth of research on electronic brainstorming, there is a dearth of research on convergence. We used experimental methods for an in-depth exploration of two facilitation-based interventions in a convergence activity: attention guidance (focusing participants on procedures to execute a convergence task) and discussion encouragement (engaging participants in conversations to combine knowledge on ideas). Our findings show that both attention guidance and discussion encouragement are correlated with higher convergence quality. We argue that attention guidance’s contribution is in its support of coordination, information processing, and goal specification. Similar, we argue that discussion encouragement’s contribution is in its stimulation of idea clarification and idea combination. Contrary to past research, our findings further show that satisfaction was higher after convergence than after brainstorming. PMID:29399005

  2. Balanced Reading Basals and the Impact on Third-Grade Reading Achievement

    ERIC Educational Resources Information Center

    Dorsey, Windy

    2015-01-01

    This convergent parallel mixed method sought to determine if the reading program increased third-grade student achievement. The research questions of the study examined the reading achievement scores of third-grade students and the effectiveness of McGraw-Hill Reading Wonders™. Significant differences were observed when a paired sample t test…

  3. Increased onset of vergence adaptation reduces excessive accommodation during the orthoptic treatment of convergence insufficiency.

    PubMed

    Sreenivasan, Vidhyapriya; Bobier, William R

    2015-06-01

    This research tested the hypothesis that the successful treatment of convergence insufficiency (CI) with vision-training (VT) procedures, leads to an increased capacity of vergence adaptation (VAdapt) allowing a more rapid downward adjustment of the convergence accommodation cross-link. Nine subjects with CI were recruited from a clinical population, based upon reduced fusional vergence amplitudes, receded near point of convergence or symptomology. VAdapt and the resulting changes to convergence accommodation (CA) were measured at specific intervals over 15 min (pre-training). Separate clinical measures of the accommodative convergence cross link, horizontal fusion limits and near point of convergence were taken and a symptomology questionnaire completed. Subjects then participated in a VT program composed of 2.5h at home and 1h in-office weekly for 12-14 weeks. Clinical testing was done weekly. VAdapt and CA measures were retaken once clinical measures normalized for 2 weeks (mid-training) and then again when symptoms had cleared (post-training). VAdapt and CA responses as well as the clinical measures were taken on a control group showing normal clinical findings. Six subjects provided complete data sets. CI clinical findings reached normal levels between 4 and 7 weeks of training but symptoms, VAdapt, and CA output remained significantly different from the controls until 12-14 weeks. The hypothesis was retained. The reduced VAdapt and excessive CA found in CI were normalized through orthoptic treatment. This time course was underestimated by clinical findings but matched symptom amelioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Semantic Convergence in the Bilingual Lexicon

    ERIC Educational Resources Information Center

    Ameel, Eef; Malt, Barbara C.; Storms, Gert; Van Assche, Fons

    2009-01-01

    Bilinguals' lexical mappings for their two languages have been found to converge toward a common naming pattern. The present paper investigates in more detail how semantic convergence is manifested in bilingual lexical knowledge. We examined how semantic convergence affects the centers and boundaries of lexical categories for common household…

  5. On the convergence of an iterative formulation of the electromagnetic scattering from an infinite grating of thin wires

    NASA Technical Reports Server (NTRS)

    Brand, J. C.

    1985-01-01

    Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.

  6. Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

    DOE PAGES

    Yang, Dejian; Kang, Moses; Muljadi, Eduard; ...

    2017-11-14

    This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less

  7. Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dejian; Kang, Moses; Muljadi, Eduard

    This paper proposes a short-term frequency-response scheme of a doubly-fed induction generator (DFIG)-based wind turbine generator (WTG) for improving rotor speed recovery and frequency nadir. In the energy-releasing period, to improve the frequency nadir and rotor speed convergence by releasing a large amount of kinetic energy stored in the rotating masses in a DFIG-based WTG, the power reference is increased up to the torque limit referred to the power and reduces along with it for a predefined period which is determined based on the occurrence time of the frequency nadir in a power grid. Then, the reference decreases so thatmore » the rotor speed is forced to be converged to the preset value in the stable operating region of the rotor speed. In the energy-absorbing period, to quickly recover the rotor speed, the reference smoothly decreases with the rotor speed and time during a predefined period until it intersects with the maximum power point tracking curve. The simulation results demonstrate that the proposed scheme successfully achieves rapid frequency stabilization with the improved frequency nadir under various wind conditions based on the IEEE 14-bus system.« less

  8. Globalization and Contemporary Fertility Convergence.

    PubMed

    Hendi, Arun S

    2017-09-01

    The rise of the global network of nation-states has precipitated social transformations throughout the world. This article examines the role of political and economic globalization in driving fertility convergence across countries between 1965 and 2009. While past research has typically conceptualized fertility change as a country-level process, this study instead employs a theoretical and methodological framework that examines differences in fertility between pairs of countries over time. Convergence in fertility between pairs of countries is hypothesized to result from increased cross-country connectedness and cross-national transmission of fertility-related schemas. I investigate the impact of various cross-country ties, including ties through bilateral trade, intergovernmental organizations, and regional trade blocs, on fertility convergence. I find that globalization acts as a form of social interaction to produce fertility convergence. There is significant heterogeneity in the effects of different cross-country ties. In particular, trade with rich model countries, joint participation in the UN and UNESCO, and joining a free trade agreement all contribute to fertility convergence between countries. Whereas the prevailing focus in fertility research has been on factors producing fertility declines, this analysis highlights specific mechanisms-trade and connectedness through organizations-leading to greater similarity in fertility across countries. Globalization is a process that propels the spread of culturally laden goods and schemas impinging on fertility, which in turn produces fertility convergence.

  9. Finite-time consensus for multi-agent systems with globally bounded convergence time under directed communication graphs

    NASA Astrophysics Data System (ADS)

    Fu, Junjie; Wang, Jin-zhi

    2017-09-01

    In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.

  10. On improving the iterative convergence properties of an implicit approximate-factorization finite difference algorithm. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Desideri, J. A.; Steger, J. L.; Tannehill, J. C.

    1978-01-01

    The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.

  11. Precise orbit determination and rapid orbit recovery supported by time synchronization

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhou, JianHua; Hu, XiaoGong; Liu, Li; Tang, Bo; Li, XiaoJie; Wu, Shan

    2015-06-01

    In order to maintain optimal signal coverage, GNSS satellites have to experience orbital maneuvers. For China's COMPASS system, precise orbit determination (POD) as well as rapid orbit recovery after maneuvers contribute to the overall Positioning, Navigation and Timing (PNT) service performance in terms of accuracy and availability. However, strong statistical correlations between clock offsets and the radial component of a satellite's positions require long data arcs for POD to converge. We propose here a new strategy which relies on time synchronization between ground tracking stations and in-orbit satellites. By fixing satellite clock offsets measured by the satellite station two-way synchronization (SSTS) systems and receiver clock offsets, POD and orbital recovery performance can be improved significantly. Using the Satellite Laser Ranging (SLR) as orbital accuracy evaluation, we find the 4-hr recovered orbit achieves about 0.71 m residual root mean square (RMS) error of fit SLR data, the recovery time is improved from 24-hr to 4-hr compared with the conventional POD without time synchronization support. In addition, SLR evaluation shows that for 1-hr prediction, about 1.47 m accuracy is achieved with the new proposed POD strategy.

  12. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate

    PubMed Central

    Jerjos, Michael; Hohman, Baily; Lauterbur, M. Elise; Kistler, Logan

    2017-01-01

    Abstract Several taxonomically distinct mammalian groups—certain microbats and cetaceans (e.g., dolphins)—share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat–dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. PMID:28810710

  13. Ray convergence in a flux-like propagation formulation.

    PubMed

    Harrison, Chris H

    2013-06-01

    The energy flux formulation of waveguide propagation is closely related to the incoherent mode sum, and its simplicity has led to development of efficient computational algorithms for reverberation and target echo strength, but it lacks the effects of convergence or modal interference. By starting with the coherent mode sum and rejecting the most rapid interference but retaining beats on a scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity cross terms using Taylor expansions. In the most efficient approach the double summation of the cross terms is reduced to a single numerical sum by solving the other summation analytically. The other two solutions are a local range average and a local depth average. Favorable comparisons are made between these three solutions and the wave model Orca with, and without, spatial averaging in an upward refracting duct. As a by-product, it is shown that the running range average is very close to the mode solution excluding its fringes, given a relation between averaging window size and effective number of modes which, in turn, is related to the waveguide invariant.

  14. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  15. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.

    PubMed

    Figueroa, R G; Valente, M

    2015-09-21

    The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact

  16. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed Central

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N. C.; Bell, David; Djimdé, Abdoulaye A.; Achee, Nicole; Qi, Gao

    2016-01-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication. PMID:26934361

  17. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?

    PubMed

    Hemingway, Janet; Shretta, Rima; Wells, Timothy N C; Bell, David; Djimdé, Abdoulaye A; Achee, Nicole; Qi, Gao

    2016-03-01

    Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.

  18. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged.

    PubMed

    Craft, Suzanne

    2009-03-01

    In recent years a rapidly increasing number of studies has focused on the relationship between dementia and metabolic disorders such as diabetes, obesity, hypertension, and dyslipidemia. Etiological heterogeneity and comorbidity pose challenges for determining relationships among metabolic disorders. The independent and interactive effects of brain vascular injury and classic pathological agents such as beta-amyloid have also proved difficult to distinguish in human patients, blurring the lines between Alzheimer disease and vascular dementia. This review highlights recent work aimed at identifying convergent mechanisms such as insulin resistance that may underlie comorbid metabolic disorders and thereby increase dementia risk. Identification of such convergent factors will not only provide important insight into the causes and interdependencies of late-life dementias but will also inspire novel strategies for treating and preventing these disorders.

  19. The Role of Metabolic Disorders in Alzheimer's Disease and Vascular Dementia: Two Roads Converged?

    PubMed Central

    Craft, Suzanne

    2009-01-01

    In recent years, there has been a rapidly increasing number of studies focused on the relationship between dementia and metabolic disorders such as diabetes, obesity, hypertension and dyslipidemia. Etiological heterogeneity and co-morbidity pose challenges for determining relationships among metabolic disorders. The independent and interactive effects of brain vascular injury and classic pathological agents such as Aβ have also proved difficult to untangle in human patients, blurring the lines between Alzheimer's disease and vascular dementia. This review highlights recent work aimed at identifying convergent mechanisms such as insulin resistance that may underlie co-morbid metabolic disorders and thereby increase dementia risk. Identification of such convergent factors will not only provide important insights into the causes and interdependencies of late-life dementias, but will also inspire novel strategies for treating and preventing these disorders. PMID:19273747

  20. Effects of high-frequency damping on iterative convergence of implicit viscous solver

    NASA Astrophysics Data System (ADS)

    Nishikawa, Hiroaki; Nakashima, Yoshitaka; Watanabe, Norihiko

    2017-11-01

    This paper discusses effects of high-frequency damping on iterative convergence of an implicit defect-correction solver for viscous problems. The study targets a finite-volume discretization with a one parameter family of damped viscous schemes. The parameter α controls high-frequency damping: zero damping with α = 0, and larger damping for larger α (> 0). Convergence rates are predicted for a model diffusion equation by a Fourier analysis over a practical range of α. It is shown that the convergence rate attains its minimum at α = 1 on regular quadrilateral grids, and deteriorates for larger values of α. A similar behavior is observed for regular triangular grids. In both quadrilateral and triangular grids, the solver is predicted to diverge for α smaller than approximately 0.5. Numerical results are shown for the diffusion equation and the Navier-Stokes equations on regular and irregular grids. The study suggests that α = 1 and 4/3 are suitable values for robust and efficient computations, and α = 4 / 3 is recommended for the diffusion equation, which achieves higher-order accuracy on regular quadrilateral grids. Finally, a Jacobian-Free Newton-Krylov solver with the implicit solver (a low-order Jacobian approximately inverted by a multi-color Gauss-Seidel relaxation scheme) used as a variable preconditioner is recommended for practical computations, which provides robust and efficient convergence for a wide range of α.

  1. Convergence acceleration of computer methods for grounding analysis in stratified soils

    NASA Astrophysics Data System (ADS)

    Colominas, I.; París, J.; Navarrina, F.; Casteleiro, M.

    2010-06-01

    The design of safe grounding systems in electrical installations is essential to assure the protection of the equipment, the power supply continuity and the security of the persons. In order to achieve these goals, it is necessary to compute the equivalent electrical resistance of the system and the potential distribution on the earth surface when a fault condition occurs. In the last years the authors have developed a numerical formulation based on the BEM for the analysis of grounding systems embedded in uniform and layered soils. As it is known, in practical cases the underlying series have a poor rate of convergence and the use of multilayer soils requires an out of range computational cost. In this paper we present an efficient technique based on the Aitken δ2-process in order to improve the rate of convergence of the involved series expansions.

  2. Fixing convergence of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Bickson, Danny; Dolev, Danny

    Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less

  3. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less

  4. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate.

    PubMed

    Bankoff, Richard J; Jerjos, Michael; Hohman, Baily; Lauterbur, M Elise; Kistler, Logan; Perry, George H

    2017-07-01

    Several taxonomically distinct mammalian groups-certain microbats and cetaceans (e.g., dolphins)-share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat-dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willert, Jeffrey; Taitano, William T.; Knoll, Dana

    In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computationalmore » results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.« less

  6. Rapid model-based inter-disciplinary design of a CubeSat mission

    NASA Astrophysics Data System (ADS)

    Lowe, C. J.; Macdonald, M.

    2014-12-01

    With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.

  7. Exponential convergence rate (the spectral convergence) of the fast Padé transform for exact quantification in magnetic resonance spectroscopy.

    PubMed

    Belkić, Dzevad

    2006-12-21

    This study deals with the most challenging numerical aspect for solving the quantification problem in magnetic resonance spectroscopy (MRS). The primary goal is to investigate whether it could be feasible to carry out a rigorous computation within finite arithmetics to reconstruct exactly all the machine accurate input spectral parameters of every resonance from a synthesized noiseless time signal. We also consider simulated time signals embedded in random Gaussian distributed noise of the level comparable to the weakest resonances in the corresponding spectrum. The present choice for this high-resolution task in MRS is the fast Padé transform (FPT). All the sought spectral parameters (complex frequencies and amplitudes) can unequivocally be reconstructed from a given input time signal by using the FPT. Moreover, the present computations demonstrate that the FPT can achieve the spectral convergence, which represents the exponential convergence rate as a function of the signal length for a fixed bandwidth. Such an extraordinary feature equips the FPT with the exemplary high-resolution capabilities that are, in fact, theoretically unlimited. This is illustrated in the present study by the exact reconstruction (within machine accuracy) of all the spectral parameters from an input time signal comprised of 25 harmonics, i.e. complex damped exponentials, including those for tightly overlapped and nearly degenerate resonances whose chemical shifts differ by an exceedingly small fraction of only 10(-11) ppm. Moreover, without exhausting even a quarter of the full signal length, the FPT is shown to retrieve exactly all the input spectral parameters defined with 12 digits of accuracy. Specifically, we demonstrate that when the FPT is close to the convergence region, an unprecedented phase transition occurs, since literally a few additional signal points are sufficient to reach the full 12 digit accuracy with the exponentially fast rate of convergence. This is the critical

  8. Fast-kick-off monotonically convergent algorithm for searching optimal control fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel

    2011-09-15

    This Rapid Communication presents a fast-kick-off search algorithm for quickly finding optimal control fields in the state-to-state transition probability control problems, especially those with poorly chosen initial control fields. The algorithm is based on a recently formulated monotonically convergent scheme [T.-S. Ho and H. Rabitz, Phys. Rev. E 82, 026703 (2010)]. Specifically, the local temporal refinement of the control field at each iteration is weighted by a fractional inverse power of the instantaneous overlap of the backward-propagating wave function, associated with the target state and the control field from the previous iteration, and the forward-propagating wave function, associated with themore » initial state and the concurrently refining control field. Extensive numerical simulations for controls of vibrational transitions and ultrafast electron tunneling show that the new algorithm not only greatly improves the search efficiency but also is able to attain good monotonic convergence quality when further frequency constraints are required. The algorithm is particularly effective when the corresponding control dynamics involves a large number of energy levels or ultrashort control pulses.« less

  9. Efficient Controls for Finitely Convergent Sequential Algorithms

    PubMed Central

    Chen, Wei; Herman, Gabor T.

    2010-01-01

    Finding a feasible point that satisfies a set of constraints is a common task in scientific computing: examples are the linear feasibility problem and the convex feasibility problem. Finitely convergent sequential algorithms can be used for solving such problems; an example of such an algorithm is ART3, which is defined in such a way that its control is cyclic in the sense that during its execution it repeatedly cycles through the given constraints. Previously we found a variant of ART3 whose control is no longer cyclic, but which is still finitely convergent and in practice it usually converges faster than ART3 does. In this paper we propose a general methodology for automatic transformation of finitely convergent sequential algorithms in such a way that (i) finite convergence is retained and (ii) the speed of convergence is improved. The first of these two properties is proven by mathematical theorems, the second is illustrated by applying the algorithms to a practical problem. PMID:20953327

  10. Δim-lacunary statistical convergence of order α

    NASA Astrophysics Data System (ADS)

    Altınok, Hıfsı; Et, Mikail; Işık, Mahmut

    2018-01-01

    The purpose of this work is to introduce the concepts of Δim-lacunary statistical convergence of order α and lacunary strongly (Δim,p )-convergence of order α. We establish some connections between lacunary strongly (Δim,p )-convergence of order α and Δim-lacunary statistical convergence of order α. It is shown that if a sequence is lacunary strongly (Δim,p )-summable of order α then it is Δim-lacunary statistically convergent of order α.

  11. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence.

    PubMed

    Stayton, C Tristan

    2015-08-01

    Convergent evolution is an important phenomenon in the history of life. Despite this, there is no common definition of convergence used by biologists. Instead, several conceptually different definitions are employed. The primary dichotomy is between pattern-based definitions, where independently evolved similarity is sufficient for convergence, and process-based definitions, where convergence requires a certain process to produce this similarity. The unacknowledged diversity of definitions can lead to problems in evolutionary research. Process-based definitions may bias researchers away from studying or recognizing other sources of independently evolved similarity, or lead researchers to interpret convergent patterns as necessarily caused by a given process. Thus, pattern-based definitions are recommended. Existing measures of convergence are reviewed, and two new measures are developed. Both are pattern based and conceptually minimal, quantifying nothing but independently evolved similarity. One quantifies the amount of phenotypic distance between two lineages that is closed by subsequent evolution; the other simply counts the number of lineages entering a region of phenotypic space. The behavior of these measures is explored in simulations; both show acceptable Type I and Type II error. The study of convergent evolution will be facilitated if researchers are explicit about working definitions of convergence and adopt a standard toolbox of convergence measures. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  12. Acceleration of convergence of vector sequences

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Ford, W. F.; Smith, D. A.

    1983-01-01

    A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.

  13. "Nanoselves": NBIC and the Culture of Convergence

    ERIC Educational Resources Information Center

    Venkatesan, Priya

    2010-01-01

    The subject of this essay is NBIC convergence (nanotechnology, biotechnology, information technology and cognitive science convergence). NBIC convergence is a recurring trope that is dominated by the paradigm of integration of the sciences. It is largely influenced by the considerations of social and economic impact, and it assumes positivism in…

  14. Grid Convergence for Turbulent Flows(Invited)

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel

    2015-01-01

    A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.

  15. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    NASA Astrophysics Data System (ADS)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  16. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies.

    PubMed

    Finkbeiner, Susan D; Briscoe, Adriana D; Mullen, Sean P

    2017-04-01

    Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. Convergent evolution of the genomes of marine mammals

    USGS Publications Warehouse

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

  18. Convergent evolution of the genomes of marine mammals

    PubMed Central

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460

  19. Is The Convergence Insufficiency Symptom Survey Specific for Convergence Insufficiency? A Prospective, Randomized Study.

    PubMed

    Horan, Lindsay A; Ticho, Benjamin H; Khammar, Alexander J; Allen, Megan S; Shah, Birva A

    2015-01-01

    The Convergence Insufficiency Symptom Survey (CISS) is a questionnaire used as an outcome measure in treatment of convergence insufficiency. The current prospective randomized trial evaluates the diagnostic specificity of the CISS. Surveys were completed by 118 adolescent patients who presented for routine eye examinations. Scores were compared between patients who could be classified as having convergence insufficiency (CI) or normal binocular vision (NBV). In addition, a comparison was done between self-and practitioner-administered CISS scores within these groups. The mean CISS score did not differ significantly between NBV patients (14.1±11.3, range of 0 to 43) and CI patients (12.3±6.7, range of 3 to 28); P=0.32. Mean CISS scores were lower when physician-administered (11.4±7.9) than when self-administered (16.3±11.4); P=0.007. CISS scores tend to be higher when self-vs. practitioner-administered. This study suggests that the CISS questionnaire is not specific for convergence insufficiency. © 2015 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 65, 2015, ISSN 0065-955X, E-ISSN 1553-4448.

  20. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.

    PubMed

    Das, Susanta; Nam, Kwangho; Major, Dan Thomas

    2018-03-13

    In recent years, a number of quantum mechanical-molecular mechanical (QM/MM) enzyme studies have investigated the dependence of reaction energetics on the size of the QM region using energy and free energy calculations. In this study, we revisit the question of QM region size dependence in QM/MM simulations within the context of energy and free energy calculations using a proton transfer in a DNA base pair as a test case. In the simulations, the QM region was treated with a dispersion-corrected AM1/d-PhoT Hamiltonian, which was developed to accurately describe phosphoryl and proton transfer reactions, in conjunction with an electrostatic embedding scheme using the particle-mesh Ewald summation method. With this rigorous QM/MM potential, we performed rather extensive QM/MM sampling, and found that the free energy reaction profiles converge rapidly with respect to the QM region size within ca. ±1 kcal/mol. This finding suggests that the strategy of QM/MM simulations with reasonably sized and selected QM regions, which has been employed for over four decades, is a valid approach for modeling complex biomolecular systems. We point to possible causes for the sensitivity of the energy and free energy calculations to the size of the QM region, and potential implications.

  1. Best Practices for Achieving High, Rapid Reading Gains

    ERIC Educational Resources Information Center

    Carbo, Marie

    2008-01-01

    The percentage of students who read at the proficient level on the National Assessment of Educational Progress (NAEP) has not improved, and is appallingly low. In order for students to achieve high reading gains and become life-long readers, reading comprehension and reading enjoyment must be the top two goals. This article presents several…

  2. Quantification provides a conceptual basis for convergent evolution.

    PubMed

    Speed, Michael P; Arbuckle, Kevin

    2017-05-01

    While much of evolutionary biology attempts to explain the processes of diversification, there is an important place for the study of phenotypic similarity across life forms. When similar phenotypes evolve independently in different lineages this is referred to as convergent evolution. Although long recognised, evolutionary convergence is receiving a resurgence of interest. This is in part because new genomic data sets allow detailed and tractable analysis of the genetic underpinnings of convergent phenotypes, and in part because of renewed recognition that convergence may reflect limitations in the diversification of life. In this review we propose that although convergent evolution itself does not require a new evolutionary framework, none the less there is room to generate a more systematic approach which will enable evaluation of the importance of convergent phenotypes in limiting the diversity of life's forms. We therefore propose that quantification of the frequency and strength of convergence, rather than simply identifying cases of convergence, should be considered central to its systematic comprehension. We provide a non-technical review of existing methods that could be used to measure evolutionary convergence, bringing together a wide range of methods. We then argue that quantification also requires clear specification of the level at which the phenotype is being considered, and argue that the most constrained examples of convergence show similarity both in function and in several layers of underlying form. Finally, we argue that the most important and impressive examples of convergence are those that pertain, in form and function, across a wide diversity of selective contexts as these persist in the likely presence of different selection pressures within the environment. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  3. Health Behaviour and Academic Achievement in Icelandic School Children

    ERIC Educational Resources Information Center

    Sigfusdottir, Inga Dora; Kristjansson, Alfgeir Logi; Allegrante, John P.

    2007-01-01

    Interest in the relationship between health behaviours and academic achievement has recently intensified in the face of an epidemic of childhood and adolescent obesity and converging school reforms in the United States and other nations with advanced economies. Epidemiologic research has demonstrated that poor diet and lack of adequate physical…

  4. On the Effect of Learning Style on Scholastic Achievement

    ERIC Educational Resources Information Center

    Bhatti, Rahmatullah; Bart, William M.

    2013-01-01

    The present study was designed to explore the influence of learning styles on scholastic achievement levels. The participants in this study were undergraduate students studying social sciences at a Division 1 research university. The frequencies of the participants in the four learning style categories are the following: Convergent ("n"…

  5. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less

  6. Convergence of Newton's method for a single real equation

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1985-01-01

    Newton's method for finding the zeroes of a single real function is investigated in some detail. Convergence is generally checked using the Contraction Mapping Theorem which yields sufficient but not necessary conditions for convergence of the general single point iteration method. The resulting convergence intervals are frequently considerably smaller than actual convergence zones. For a specific single point iteration method, such as Newton's method, better estimates of regions of convergence should be possible. A technique is described which, under certain conditions (frequently satisfied by well behaved functions) gives much larger zones where convergence is guaranteed.

  7. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always

  8. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  9. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  10. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    PubMed

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  11. No genome-wide protein sequence convergence for echolocation.

    PubMed

    Zou, Zhengting; Zhang, Jianzhi

    2015-05-01

    Toothed whales and two groups of bats independently acquired echolocation, the ability to locate and identify objects by reflected sound. Echolocation requires physiologically complex and coordinated vocal, auditory, and neural functions, but the molecular basis of the capacity for echolocation is not well understood. A recent study suggested that convergent amino acid substitutions widespread in the proteins of echolocators underlay the convergent origins of mammalian echolocation. Here, we show that genomic signatures of molecular convergence between echolocating lineages are generally no stronger than those between echolocating and comparable nonecholocating lineages. The same is true for the group of 29 hearing-related proteins claimed to be enriched with molecular convergence. Reexamining the previous selection test reveals several flaws and invalidates the asserted evidence for adaptive convergence. Together, these findings indicate that the reported genomic signatures of convergence largely reflect the background level of sequence convergence unrelated to the origins of echolocation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Integrative Convergence in Neuroscience: Trajectories, Problems, and the Need for a Progressive Neurobioethics

    NASA Astrophysics Data System (ADS)

    Giordano, J.

    The advanced integrative scientific convergence (AISC) model represents a viable approach to neuroscience. Beyond simple multi-disciplinarity, the AISC model unifies constituent scientific and technological fields to foster innovation, invention and new ways of addressing seemingly intractable questions. In this way, AISC can yield novel methods and foster new trajectories of knowledge and discovery, and yield new epistemologies. As stand-alone disciplines, each and all of the constituent fields generate practical and ethical issues, and their convergence may establish a unique set of both potential benefits and problems. To effectively attend to these contingencies requires pragmatic assessment of the actual capabilities and limits of neurofocal AISC, and an openness to what new knowledge and scientific/technological achievements may be produced, and how such outcomes can affect humanity, the human condition, society and the global environment. It is proposed that a progressive neurobioethics may be needed to establish both a meta-ethical framework upon which to structure ethical decisions, and a system and method of ethics that is inclusive, convergent and innovative, and in thus aligned with and meaningful to use of an AISC model in neuroscience.

  13. Synthesis of the C(18) -norditerpenoid alkaloid neofinaconitine: a lesson in convergent synthesis planning.

    PubMed

    Liu, Xiao-Yu; Chen, David Y-K

    2014-01-20

    Hexacyclic framework: The total synthesis of the complex C18 -norditerpenoid alkaloid neofinaconitine has been achieved by a convergent approach. This remarkable synthesis featured two Diels-Alder cycloadditions and subsequent Mannich-type N-acyliminium and radical cyclizations to establish the unique hexacyclic core structure of the target molecule. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of polarity convergences underlying shoot outgrowths

    PubMed Central

    Abley, Katie; Sauret-Güeto, Susanna; Marée, Athanasius FM; Coen, Enrico

    2016-01-01

    The development of outgrowths from plant shoots depends on formation of epidermal sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions of this and other models for the patterns of auxin biosynthesis and import. Live imaging of outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer expression. Both expression patterns are required for normal outgrowth emergence, and may form part of a common module underlying shoot outgrowths. These findings are more consistent with models that spontaneously generate tandem rather than convergent alignments. DOI: http://dx.doi.org/10.7554/eLife.18165.001 PMID:27478985

  15. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication

    PubMed Central

    Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y.

    2016-01-01

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony. PMID:27910902

  16. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    PubMed

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  17. A class of convergent neural network dynamics

    NASA Astrophysics Data System (ADS)

    Fiedler, Bernold; Gedeon, Tomáš

    1998-01-01

    We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.

  18. Convergence of generalized MUSCL schemes

    NASA Technical Reports Server (NTRS)

    Osher, S.

    1984-01-01

    Semi-discrete generalizations of the second order extension of Godunov's scheme, known as the MUSCL scheme, are constructed, starting with any three point E scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.

  19. Genes involved in convergent evolution of eusociality in bees

    PubMed Central

    Woodard, S. Hollis; Fischman, Brielle J.; Venkat, Aarti; Hudson, Matt E.; Varala, Kranthi; Cameron, Sydney A.; Clark, Andrew G.; Robinson, Gene E.

    2011-01-01

    Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality. PMID:21482769

  20. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  1. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    PubMed

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  2. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  3. Robust consensus control with guaranteed rate of convergence using second-order Hurwitz polynomials

    NASA Astrophysics Data System (ADS)

    Fruhnert, Michael; Corless, Martin

    2017-10-01

    This paper considers homogeneous networks of general, linear time-invariant, second-order systems. We consider linear feedback controllers and require that the directed graph associated with the network contains a spanning tree and systems are stabilisable. We show that consensus with a guaranteed rate of convergence can always be achieved using linear state feedback. To achieve this, we provide a new and simple derivation of the conditions for a second-order polynomial with complex coefficients to be Hurwitz. We apply this result to obtain necessary and sufficient conditions to achieve consensus with networks whose graph Laplacian matrix may have complex eigenvalues. Based on the conditions found, methods to compute feedback gains are proposed. We show that gains can be chosen such that consensus is achieved robustly over a variety of communication structures and system dynamics. We also consider the use of static output feedback.

  4. Proof of cipher text ownership based on convergence encryption

    NASA Astrophysics Data System (ADS)

    Zhong, Weiwei; Liu, Zhusong

    2017-08-01

    Cloud storage systems save disk space and bandwidth through deduplication technology, but with the use of this technology has been targeted security attacks: the attacker can get the original file just use hash value to deceive the server to obtain the file ownership. In order to solve the above security problems and the different security requirements of cloud storage system files, an efficient information theory security proof of ownership scheme is proposed. This scheme protects the data through the convergence encryption method, and uses the improved block-level proof of ownership scheme, and can carry out block-level client deduplication to achieve efficient and secure cloud storage deduplication scheme.

  5. Cognitive Load Reduces Perceived Linguistic Convergence Between Dyads.

    PubMed

    Abel, Jennifer; Babel, Molly

    2017-09-01

    Speech convergence is the tendency of talkers to become more similar to someone they are listening or talking to, whether that person is a conversational partner or merely a voice heard repeating words. To elucidate the nature of the mechanisms underlying convergence, this study uses different levels of task difficulty on speech convergence within dyads collaborating on a task. Dyad members had to build identical LEGO® constructions without being able to see each other's construction, and with each member having half of the instructions required to complete the construction. Three levels of task difficulty were created, with five dyads at each level (30 participants total). Task difficulty was also measured using completion time and error rate. Listeners who heard pairs of utterances from each dyad judged convergence to be occurring in the Easy condition and to a lesser extent in the Medium condition, but not in the Hard condition. Amplitude envelope acoustic similarity analyses of the same utterance pairs showed that convergence occurred in dyads with shorter completion times and lower error rates. Together, these results suggest that while speech convergence is a highly variable behavior, it may occur more in contexts of low cognitive load. The relevance of these results for the current automatic and socially-driven models of convergence is discussed.

  6. Algorithms for accelerated convergence of adaptive PCA.

    PubMed

    Chatterjee, C; Kang, Z; Roychowdhury, V P

    2000-01-01

    We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.

  7. Projection displays and MEMS: timely convergence for a bright future

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1995-09-01

    Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.

  8. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  9. Genome-wide signatures of convergent evolution in echolocating mammals

    PubMed Central

    Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.

    2013-01-01

    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325

  10. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  11. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  12. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.

    2017-07-01

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).

  13. Revisiting convergence: A research note.

    PubMed

    Clark, Rob

    2015-09-01

    A number of recent studies show that income inequality is declining between countries. In this research note, I question the significance of this trend by examining the role of initial conditions in producing convergence. An important (but neglected) property of inequality dynamics is the tendency for extreme distributions to become more moderate. When income disparities are large, the subsequent trend is biased toward convergence. Conversely, when initial conditions approach parity, divergence becomes the more likely long-term outcome. I apply this principle to trends in GDP PC across 127 countries during the 1980-2010 period. Using counterfactual analysis, I manipulate the initial level of inequality in GDP PC while holding constant each country's observed growth rate during the sample period. I find that the growth dynamics of GDP PC produce either convergence or divergence based simply on the initial distribution of income. The point of transition occurs at a moderate level of inequality, whether using population weights (Gini=.365) or not (Gini=.377). I conclude that the recent convergence observed in GDP PC is primarily a function of large income gaps between countries and would not have materialized at more moderate levels of initial inequality. By contrast, an examination of the pre-1950 period reveals divergent growth patterns that are not sensitive to initial conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Convergence Analysis of Triangular MAC Schemes for Two Dimensional Stokes Equations

    PubMed Central

    Wang, Ming; Zhong, Lin

    2015-01-01

    In this paper, we consider the use of H(div) elements in the velocity–pressure formulation to discretize Stokes equations in two dimensions. We address the error estimate of the element pair RT0–P0, which is known to be suboptimal, and render the error estimate optimal by the symmetry of the grids and by the superconvergence result of Lagrange inter-polant. By enlarging RT0 such that it becomes a modified BDM-type element, we develop a new discretization BDM1b–P0. We, therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local conservation of physical quantities. Further, we prove that the proposed discretization BDM1b–P0 achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform grids, and one and half order convergence rate for the vorticity and a recovered pressure. We demonstrate the validity of theories developed here by numerical experiments. PMID:26041948

  15. Reduced vergence adaptation is associated with a prolonged output of convergence accommodation in convergence insufficiency.

    PubMed

    Sreenivasan, Vidhyapriya; Bobier, William R

    2014-07-01

    Convergence insufficiency (CI) is a developmental visual anomaly defined clinically by a reduced near point of convergence, a reduced capacity to view through base-out prisms (fusional convergence); coupled with asthenopic symptoms typically blur and diplopia. Experimental studies show reduced vergence parameters and tonic adaptation. Based upon current models of accommodation and vergence, we hypothesize that the reduced vergence adaptation in CI leads to excessive amounts of convergence accommodation (CA). Eleven CI participants (mean age=17.4±2.3 years) were recruited with reduced capacity to view through increasing magnitudes of base out (BO) prisms (mean fusional convergence at 40 cm=12±0.9Δ). Testing followed our previous experimental design for (n=11) binocularly normal adults. Binocular fixation of a difference of Gaussian (DoG) target (0.2 cpd) elicited CA responses during vergence adaptation to a 12Δ BO. Vergence and CA responses were obtained at 3 min intervals over a 15 min period and time course were quantified using exponential decay functions. Results were compared to previously published data on eleven binocular normals. Eight participants completed the study. CI's showed significantly reduced magnitude of vergence adaptation (CI: 2.9Δ vs. normals: 6.6Δ; p=0.01) and CA reduction (CI=0.21 D, Normals=0.55 D; p=0.03). However, the decay time constants for adaptation and CA responses were not significantly different. CA changes were not confounded by changes in tonic accommodation (Change in TA=0.01±0.2D; p=0.8). The reduced magnitude of vergence adaptation found in CI patients resulting in higher levels of CA may potentially explain their clinical findings of reduced positive fusional vergence (PFV) and the common symptom of blur. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Software Defined Networking for Next Generation Converged Metro-Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, M.; Slyne, F.; Bluemm, C.; Kitsuwan, N.; McGettrick, S.

    2015-12-01

    While the concept of Software Defined Networking (SDN) has seen a rapid deployment within the data center community, its adoption in telecommunications network has progressed slowly, although the concept has been swiftly adopted by all major telecoms vendors. This paper presents a control plane architecture for SDN-driven converged metro-access networks, developed through the DISCUS European FP7 project. The SDN-based controller architecture was developed in a testbed implementation targeting two main scenarios: fast feeder fiber protection over dual-homed Passive Optical Networks (PONs) and dynamic service provisioning over a multi-wavelength PON. Implementation details and results of the experiment carried out over the second scenario are reported in the paper, showing the potential of SDN in providing assured on-demand services to end-users.

  17. Gender Differences in Attitudes toward Mathematics between Low-Achieving and High-Achieving Fifth Grade Elementary Students.

    ERIC Educational Resources Information Center

    Rathbone, A. Sue

    Possible gender differences in attitudes toward mathematics were studied between low-achieving and high-achieving fifth-grade students in selected elementary schools within a large, metropolitan area. The attitudes of pre-adolescent children at an intermediate grade level were assessed to determine the effects of rapidly emerging gender-related…

  18. Logic, passion and the problem of convergence

    PubMed Central

    2017-01-01

    Our estimate of the likelihood of convergence on human-style intelligence depends on how we understand our various mental capacities. Here I revive David Hume's theory of motivation and action to argue that the most common understanding of the two conventionally recognized components of intelligence—reason and emotion—is confused. We say things like, ‘Reason can overcome emotion’, but to make this statement meaningful, we are forced to treat reason as a compound notion, as a forced and unhappy mixture of concepts that are incommensurate. An alternative is to parse intelligence in a different way, into two sets of capacities: (i) non-affective capacities, including logic, calculation and problem-solving; (ii) affective capacities, including wants, preferences and cares, along with the emotions. Thus, the question of convergence becomes two questions, one having to do with affective and one with non-affective capacities. What is the likelihood of convergence of these in non-human lineages, in other ecologies, on other worlds? Given certain assumptions, convergence of the non-affective capacities in thinking species seems likely, I argue, while convergence of the affective capacities seems much less likely. PMID:28479982

  19. Experimental and numerical analysis of convergent nozzlex

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Rakham, Bhupal

    2017-05-01

    In this paper the main focus was given to convergent nozzle where both the experimental and numerical calculations were carried out with the support of standardized literature. In the recent years the field of air breathing and non-air breathing engine developments significantly increase its performance. To enhance the performance of both the type of engines the nozzle is the one of the component which will play a vital role, especially selecting the type of nozzle depends upon the vehicle speed requirement and aerodynamic behavior at most important in the field of propulsion. The convergent nozzle flow experimental analysis done using scaled apparatus and the similar setup was arranged artificially in the ANSYS software for doing the flow analysis across the convergent nozzle. The consistent calculation analysis are done based on the public literature survey to validate the experimental and numerical simulation results of convergent nozzle. Using these two experimental and numerical simulation approaches the best fit results will bring up to meet the design requirements. However the comparison also made to meet the reliability of the work on design criteria of convergent nozzle which can entrench in the field of propulsion applications.

  20. Topics in global convergence of density estimates

    NASA Technical Reports Server (NTRS)

    Devroye, L.

    1982-01-01

    The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.

  1. Well-tempered metadynamics converges asymptotically.

    PubMed

    Dama, James F; Parrinello, Michele; Voth, Gregory A

    2014-06-20

    Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.

  2. Well-Tempered Metadynamics Converges Asymptotically

    NASA Astrophysics Data System (ADS)

    Dama, James F.; Parrinello, Michele; Voth, Gregory A.

    2014-06-01

    Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.

  3. Experiments in DIII-D Toward Achieving Rapid Shutdown with Runaway Electron Suppression

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.

    2009-11-01

    For safe discharge shutdown in future large tokamaks in the event of an unavoidable disruption, it is important to develop rapid (˜ several ms)shutdown methods to avoid large runaway electron currents, which pose a serious threat to plasma facing components. Prevention of runaway current formation has been proposed by either increasing electron-electron collisionality with massive particle injection, or magnetically by using externally applied non-axisymmetric fields to increase radial diffusive losses of a runaway seed population. Experiments studying both approaches have been pursued in the DIII-D tokamak. For collisional suppression, three different rapid shutdown methods are being investigated: massive gas injection, massive shattered cryogenic pellet injection, and polystyrene shell pellet injection. First-of-kind demonstrations of fast shutdowns were produced by 3000 Torr-l (0.8-g) shattered D2 pellets and large, 10-mm diameter, 0.3-g polystyrene shell pellets filled with boron powder. The application of external magnetic perturbations shows promising preliminary results in suppressing seed runaway electrons, although lack of repeatability in the runaway seed term made these results challenging to interpret. Experiments have been performed to help understand how runaways form and are transported during rapid shutdown. These experiments confirm that the commonly used 0D loop voltage + Dreicer evaporation picture of runaway seed formation is not applicable here, with relativistic E > 0.5,MeV electrons forming before any external loop voltage appears. Present applications of 0D, 1D, and 2D models to the rapid shutdown and runaway confinement experiments, as well as preliminary extrapolations to ITER, will be discussed.

  4. Numerical algorithms for scatter-to-attenuation reconstruction in PET: empirical comparison of convergence, acceleration, and the effect of subsets.

    PubMed

    Berker, Yannick; Karp, Joel S; Schulz, Volkmar

    2017-09-01

    The use of scattered coincidences for attenuation correction of positron emission tomography (PET) data has recently been proposed. For practical applications, convergence speeds require further improvement, yet there exists a trade-off between convergence speed and the risk of non-convergence. In this respect, a maximum-likelihood gradient-ascent (MLGA) algorithm and a two-branch back-projection (2BP), which was previously proposed, were evaluated. MLGA was combined with the Armijo step size rule; and accelerated using conjugate gradients, Nesterov's momentum method, and data subsets of different sizes. In 2BP, we varied the subset size, an important determinant of convergence speed and computational burden. We used three sets of simulation data to evaluate the impact of a spatial scale factor. The Armijo step size allowed 10-fold increased step sizes compared to native MLGA. Conjugate gradients and Nesterov momentum lead to slightly faster, yet non-uniform convergence; improvements were mostly confined to later iterations, possibly due to the non-linearity of the problem. MLGA with data subsets achieved faster, uniform, and predictable convergence, with a speed-up factor equivalent to the number of subsets and no increase in computational burden. By contrast, 2BP computational burden increased linearly with the number of subsets due to repeated evaluation of the objective function, and convergence was limited to the case of many (and therefore small) subsets, which resulted in high computational burden. Possibilities of improving 2BP appear limited. While general-purpose acceleration methods appear insufficient for MLGA, results suggest that data subsets are a promising way of improving MLGA performance.

  5. Passive method of eliminating accommodation/convergence disparity in stereoscopic head-mounted displays

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    2005-03-01

    The difference in accommodation and convergence distance experienced when viewing stereoscopic displays has long been recognized as a source of visual discomfort. It is especially problematic in head mounted virtual reality and enhanced reality displays, where images must often be displayed across a large depth range or superimposed on real objects. DTI has demonstrated a novel method of creating stereoscopic images in which the focus and fixation distances are closely matched for all parts of the scene from close distances to infinity. The method is passive in the sense that it does not rely on eye tracking, moving parts, variable focus optics, vibrating optics, or feedback loops. The method uses a rapidly changing illumination pattern in combination with a high speed microdisplay to create cones of light that converge at different distances to form the voxels of a high resolution space filling image. A bench model display was built and a series of visual tests were performed in order to demonstrate the concept and investigate both its capabilities and limitations. Results proved conclusively that real optical images were being formed and that observers had to change their focus to read text or see objects at different distances

  6. Positive Cardiovascular Health: A Timely Convergence.

    PubMed

    Labarthe, Darwin R; Kubzansky, Laura D; Boehm, Julia K; Lloyd-Jones, Donald M; Berry, Jarett D; Seligman, Martin E P

    2016-08-23

    Two concepts, positive health and cardiovascular health, have emerged recently from the respective fields of positive psychology and preventive cardiology. These parallel constructs are converging to foster positive cardiovascular health and a growing collaboration between psychologists and cardiovascular scientists to achieve significant improvements in both individual and population cardiovascular health. We explore these 2 concepts and note close similarities in the measures that define them, the health states that they aim to produce, and their intended long-term clinical and public health outcomes. We especially examine subjective health assets, such as optimism, that are a core focus of positive psychology, but have largely been neglected in preventive cardiology. We identify research to date on positive cardiovascular health, discuss its strengths and limitations thus far, and outline directions for further engagement of cardiovascular scientists with colleagues in positive psychology to advance this new field. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Accuracy versus convergence rates for a three dimensional multistage Euler code

    NASA Technical Reports Server (NTRS)

    Turkel, Eli

    1988-01-01

    Using a central difference scheme, it is necessary to add an artificial viscosity in order to reach a steady state. This viscosity usually consists of a linear fourth difference to eliminate odd-even oscillations and a nonlinear second difference to suppress oscillations in the neighborhood of steep gradients. There are free constants in these differences. As one increases the artificial viscosity, the high modes are dissipated more and the scheme converges more rapidly. However, this higher level of viscosity smooths the shocks and eliminates other features of the flow. Thus, there is a conflict between the requirements of accuracy and efficiency. Examples are presented for a variety of three-dimensional inviscid solutions over isolated wings.

  8. Rapid Total Synthesis of DARPin pE59 and RNase B. a

    PubMed Central

    Mong, Surin K.; Vinogradov, Alexander A.; Simon, Mark D.

    2014-01-01

    Here we report the convergent total synthesis of two proteins: DARPin pE59 and RNase B. a. (Barnase). Leveraging our recently developed fast flow peptide synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides and were able to mitigate common side reactions including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system. High-quality protein fragments produced under optimal synthetic conditions were subjected to convergent native chemical ligation, which afforded native full-length proteins after a final desulfurization step. Both DARPin and Barnase were folded and found to be as active as their recombinant analogues. PMID:24616257

  9. Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2011-01-01

    Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.

  10. Rapid and highly resolving associative affective learning: convergent electro- and magnetoencephalographic evidence from vision and audition.

    PubMed

    Steinberg, Christian; Bröckelmann, Ann-Kathrin; Rehbein, Maimu; Dobel, Christian; Junghöfer, Markus

    2013-03-01

    Various pathway models for emotional processing suggest early prefrontal contributions to affective stimulus evaluation. Yet, electrophysiological evidence for such rapid modulations is still sparse. In a series of four MEG/EEG studies which investigated associative learning in vision and audition using a novel MultiCS Conditioning paradigm, many different neutral stimuli (faces, tones) were paired with aversive and appetitive events in only two to three learning instances. Electrophysiological correlates of neural activity revealed highly significant amplified processing for conditioned stimuli within distributed prefrontal and sensory cortical networks. In both, vision and audition, affect-specific responses occurred in two successive waves of rapid (vision: 50-80 ms, audition: 25-65 ms) and mid-latency (vision: >130 ms, audition: >100 ms) processing. Interestingly, behavioral measures indicated that MultiCS Conditioning successfully prevented contingency awareness. We conclude that affective processing rapidly recruits highly elaborate and widely distributed networks with substantial capacity for fast learning and excellent resolving power. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    NASA Astrophysics Data System (ADS)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  12. Convergence Science in a Nano World

    PubMed Central

    Cady, Nathaniel

    2013-01-01

    Convergence is a new paradigm that brings together critical advances in the life sciences, physical sciences and engineering. Going beyond traditional “interdisciplinary” studies, “convergence” describes the culmination of truly integrated research and development, yielding revolutionary advances in both scientific research and new technologies. At its core, nanotechnology embodies these elements of convergence science by bringing together multiple disciplines with the goal of creating innovative and groundbreaking technologies. In the biological and biomedical sciences, nanotechnology research has resulted in dramatic improvements in sensors, diagnostics, imaging, and even therapeutics. In particular, there is a current push to examine the interface between the biological world and micro/nano-scale systems. For example, my laboratory is developing novel strategies for spatial patterning of biomolecules, electrical and optical biosensing, nanomaterial delivery systems, cellular patterning techniques, and the study of cellular interactions with nano-structured surfaces. In this seminar, I will give examples of how convergent research is being applied to three major areas of biological research &endash; cancer diagnostics, microbiology, and DNA-based biosensing. These topics will be presented as case studies, showing the benefits (and challenges) of multi-disciplinary, convergent research and development.

  13. The Convergence Coefficient across Political Systems

    PubMed Central

    Schofield, Norman

    2013-01-01

    Formal work on the electoral model often suggests that parties or candidates should locate themselves at the electoral mean. Recent research has found no evidence of such convergence. In order to explain nonconvergence, the stochastic electoral model is extended by including estimates of electoral valence. We introduce the notion of a convergence coefficient, c. It has been shown that high values of c imply that there is a significant centrifugal tendency acting on parties. We used electoral surveys to construct a stochastic valence model of the the elections in various countries. We find that the convergence coefficient varies across elections in a country, across countries with similar regimes, and across political regimes. In some countries, the centripetal tendency leads parties to converge to the electoral mean. In others the centrifugal tendency dominates and some parties locate far from the electoral mean. In particular, for countries with proportional electoral systems, namely, Israel, Turkey, and Poland, the centrifugal tendency is very high. In the majoritarian polities of the United States and Great Britain, the centrifugal tendency is very low. In anocracies, the autocrat imposes limitations on how far from the origin the opposition parties can move. PMID:24385886

  14. The convergence coefficient across political systems.

    PubMed

    Gallego, Maria; Schofield, Norman

    2013-01-01

    Formal work on the electoral model often suggests that parties or candidates should locate themselves at the electoral mean. Recent research has found no evidence of such convergence. In order to explain nonconvergence, the stochastic electoral model is extended by including estimates of electoral valence. We introduce the notion of a convergence coefficient, c. It has been shown that high values of c imply that there is a significant centrifugal tendency acting on parties. We used electoral surveys to construct a stochastic valence model of the the elections in various countries. We find that the convergence coefficient varies across elections in a country, across countries with similar regimes, and across political regimes. In some countries, the centripetal tendency leads parties to converge to the electoral mean. In others the centrifugal tendency dominates and some parties locate far from the electoral mean. In particular, for countries with proportional electoral systems, namely, Israel, Turkey, and Poland, the centrifugal tendency is very high. In the majoritarian polities of the United States and Great Britain, the centrifugal tendency is very low. In anocracies, the autocrat imposes limitations on how far from the origin the opposition parties can move.

  15. Multi-sectorial convergence in greenhouse gas emissions.

    PubMed

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal.

    PubMed

    Neale, Chris; Madill, Chris; Rauscher, Sarah; Pomès, Régis

    2013-08-13

    All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the

  17. Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

    PubMed

    Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo

    2017-05-01

    In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.

  18. Disparity and convergence: Chinese provincial government health expenditures.

    PubMed

    Pan, Jay; Wang, Peng; Qin, Xuezheng; Zhang, Shufang

    2013-01-01

    The huge regional disparity in government health expenditures (GHE) is a major policy concern in China. This paper addresses whether provincial GHE converges in China from 1997 to 2009 using the economic convergence framework based on neoclassical economic growth theory. Our empirical investigation provides compelling evidence of long-term convergence in provincial GHE within China, but not in short-term. Policy implications of these empirical results are discussed.

  19. Disparity and Convergence: Chinese Provincial Government Health Expenditures

    PubMed Central

    Pan, Jay; Wang, Peng; Qin, Xuezheng; Zhang, Shufang

    2013-01-01

    The huge regional disparity in government health expenditures (GHE) is a major policy concern in China. This paper addresses whether provincial GHE converges in China from 1997 to 2009 using the economic convergence framework based on neoclassical economic growth theory. Our empirical investigation provides compelling evidence of long-term convergence in provincial GHE within China, but not in short-term. Policy implications of these empirical results are discussed. PMID:23977049

  20. Convergence Analysis of the Graph Allen-Cahn Scheme

    DTIC Science & Technology

    2016-02-01

    CONVERGENCE ANALYSIS OF THE GRAPH ALLEN-CAHN SCHEME ∗ XIYANG LUO† AND ANDREA L. BERTOZZI† Abstract. Graph partitioning problems have a wide range of...optimization, convergence and monotonicity are shown for a class of schemes under a graph-independent timestep restriction. We also analyze the effects of...spectral truncation, a common technique used to save computational cost. Convergence of the scheme with spectral truncation is also proved under a

  1. Convergence of Transition Probability Matrix in CLVMarkov Models

    NASA Astrophysics Data System (ADS)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  2. Numerical Optimization of converging diverging miniature cavitating nozzles

    NASA Astrophysics Data System (ADS)

    Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.

    2015-12-01

    The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.

  3. Convergence Results on Iteration Algorithms to Linear Systems

    PubMed Central

    Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo

    2014-01-01

    In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640

  4. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    DOE PAGES

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; ...

    2017-07-10

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. In this paper, we present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surfacemore » roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Finally and nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).« less

  5. On the Local Convergence of Pattern Search

    NASA Technical Reports Server (NTRS)

    Dolan, Elizabeth D.; Lewis, Robert Michael; Torczon, Virginia; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    We examine the local convergence properties of pattern search methods, complementing the previously established global convergence properties for this class of algorithms. We show that the step-length control parameter which appears in the definition of pattern search algorithms provides a reliable asymptotic measure of first-order stationarity. This gives an analytical justification for a traditional stopping criterion for pattern search methods. Using this measure of first-order stationarity, we analyze the behavior of pattern search in the neighborhood of an isolated local minimizer. We show that a recognizable subsequence converges r-linearly to the minimizer.

  6. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  7. Thrust characteristics of a series of convergent-divergent exhaust nozzles at subsonic and supersonic flight speeds

    NASA Technical Reports Server (NTRS)

    Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew

    1954-01-01

    An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.

  8. Convergent microRNA actions coordinate neocortical development.

    PubMed

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  9. [Conservative and surgical treatment of convergence excess].

    PubMed

    Ehrt, O

    2016-07-01

    Convergence excess is a common finding especially in pediatric strabismus. A detailed diagnostic approach has to start after full correction of any hyperopia measured in cycloplegia. It includes measurements of manifest and latent deviation at near and distance fixation, near deviation after relaxation of accommodation with addition of +3 dpt, assessment of binocular function with and without +3 dpt as well as the accommodation range. This diagnostic approach is important for the classification into three types of convergence excess, which require different therapeutic approaches: 1) hypo-accommodative convergence excess is treated with permanent bifocal glasses, 2) norm-accommodative patients should be treated with bifocals which can be weaned over years, especially in patients with good stereopsis and 3) non-accommodative convergence excess and patients with large distance deviations need a surgical approach. The most effective operations include those which reduce the muscle torque, e. g. bimedial Faden operations or Y‑splitting of the medial rectus muscles.

  10. Complete convergence of randomly weighted END sequences and its application.

    PubMed

    Li, Penghua; Li, Xiaoqin; Wu, Kehan

    2017-01-01

    We investigate the complete convergence of partial sums of randomly weighted extended negatively dependent (END) random variables. Some results of complete moment convergence, complete convergence and the strong law of large numbers for this dependent structure are obtained. As an application, we study the convergence of the state observers of linear-time-invariant systems. Our results extend the corresponding earlier ones.

  11. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m 3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referredmore » to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.« less

  12. Stabilization of the SIESTA MHD Equilibrium Code Using Rapid Cholesky Factorization

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; D'Azevedo, E. A.; Seal, S. K.

    2016-10-01

    The SIESTA MHD equilibrium code solves the discretized nonlinear MHD force F ≡ J X B - ∇p for a 3D plasma which may contain islands and stochastic regions. At each nonlinear evolution step, it solves a set of linearized MHD equations which can be written r ≡ Ax - b = 0, where A is the linearized MHD Hessian matrix. When the solution norm | x| is small enough, the nonlinear force norm will be close to the linearized force norm | r| 0 obtained using preconditioned GMRES. In many cases, this procedure works well and leads to a vanishing nonlinear residual (equilibrium) after several iterations in SIESTA. In some cases, however, | x|>1 results and the SIESTA code has to be restarted to obtain nonlinear convergence. In order to make SIESTA more robust and avoid such restarts, we have implemented a new rapid QR factorization of the Hessian which allows us to rapidly and accurately solve the least-squares problem AT r = 0, subject to the condition | x|<1. This avoids large contributions to the nonlinear force terms and in general makes the convergence sequence of SIESTA much more stable. The innovative rapid QR method is based on a pairwise row factorization of the tri-diagonal Hessian. It provides a complete Cholesky factorization while preserving the memory allocation of A. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  13. [Efficacy of surgery on congenital nystagmus with convergence damping].

    PubMed

    Wang, Yuan; Wu, Qian; Bai, Dayong; Cao, Wenhong; Cui, Yanhui; Fan, Yunwei; Hu, Shoulong; Yu, Gang

    2015-11-01

    To evaluate the efficacy of surgery in the treatment of congenital nystagmus with convergence damping. Retrospective and comparative case series. Eight patients diagnosed as congenital nystagmus with convergence damping at Beijing Children's Hospital between September 2010 and September 2012 were enrolled in this study. The ages were 9.5 (12, 6) years old, and follow-up was 9 (24, 6) months. All patients received prism induced convergence and the same surgery of bimedial rectus recession and bilateral rectus tenotomy. The best corrected visual acuity, the range of fusion and the nystagmus waveforms were analyzed before and after surgery. The range of fusion was -3.75±1.83° to +19.38±3.16° before surgery and -3.88±1.55° to +19.00±3.02° after surgery; there was no significant difference (t=0.24, P=0.82). The binocular visual acuity increased from 0.21±0.15 without convergence to 0.28±0.18 using convergence; there was significant difference (t=-4.43, P=0.00). The visual acuity was 0.32±0.20 after surgery, significantly different from that before surgery without convergence (t=-5.29, P=0.00), but not significantly different from that before surgery using convergence (t=-2.12, P=0.07). Patients had significant improvements in the frequency (t=3.28, 3.02, P<0.05) and intensity of the nystagmus waveforms when using convergence and postoperatively (t=3.27, 3.48; P<0.05), but there was no significant improvement in the amplitude of the waveforms (t=1.31, 1.57, 0.31, P>0.05). Surgery for congenital nystagmus with convergence damping can provide expectations for ocular motor and visual results. The range of fusion should be wide enough, and the effect of convergence on the frequency is greater than that on the amplitude.

  14. An application of belief-importance theory in the domain of academic achievement.

    PubMed

    Petrides, K V; Frederickson, Norah

    2011-03-01

    BACKGROUND. Belief-importance (belimp; Petrides, 2010a,b) theory posits that personality traits confer on the individual a propensity to perceive convergences and divergences between their belief that they can attain goals and the importance that they place on these goals. The theory suggests that these convergences and divergences have important implications for affect, motivation, and action. AIMS. To test belimp theory using performance-based criteria relating to academic achievement and constructs from the personality domain. SAMPLES. Two hundred and forty-two students, of whom 121 were male and 117 were female (4 unreported). They were approximately 18 years old at the time of testing. METHODS. Data were collected on the belief and importance of academic achievement, the Giant Three personality dimensions, and trait emotional intelligence (trait EI). Academic achievement was operationalized via Key Stage 3 and A-level assessment results. RESULTS. Four hypotheses concerning academic achievement were tested and confirmed, with the Motivation quadrant scoring higher than the other three belimp quadrants (Hubris, Depression, and Apathy). Four hypotheses concerning personality were tested, of which two were confirmed, with the Hubris quadrant scoring highest on psychoticism and the Depression quadrant scoring highest on neuroticism. Four hierarchical regressions demonstrated the incremental validity of the belief and importance belimp coordinates over the Giant Three personality dimensions in the prediction of academic achievement. CONCLUSIONS. The results are encouraging for belimp theory and complement similarly supportive findings in Petrides (2010b,c). ©2010 The British Psychological Society.

  15. Rapid-Learning System for Cancer Care

    PubMed Central

    Abernethy, Amy P.; Etheredge, Lynn M.; Ganz, Patricia A.; Wallace, Paul; German, Robert R.; Neti, Chalapathy; Bach, Peter B.; Murphy, Sharon B.

    2010-01-01

    Compelling public interest is propelling national efforts to advance the evidence base for cancer treatment and control measures and to transform the way in which evidence is aggregated and applied. Substantial investments in health information technology, comparative effectiveness research, health care quality and value, and personalized medicine support these efforts and have resulted in considerable progress to date. An emerging initiative, and one that integrates these converging approaches to improving health care, is “rapid-learning health care.” In this framework, routinely collected real-time clinical data drive the process of scientific discovery, which becomes a natural outgrowth of patient care. To better understand the state of the rapid-learning health care model and its potential implications for oncology, the National Cancer Policy Forum of the Institute of Medicine held a workshop entitled “A Foundation for Evidence-Driven Practice: A Rapid-Learning System for Cancer Care” in October 2009. Participants examined the elements of a rapid-learning system for cancer, including registries and databases, emerging information technology, patient-centered and -driven clinical decision support, patient engagement, culture change, clinical practice guidelines, point-of-care needs in clinical oncology, and federal policy issues and implications. This Special Article reviews the activities of the workshop and sets the stage to move from vision to action. PMID:20585094

  16. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  17. An improvement of convergence of a dispersion-relation preserving method for the classical Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2018-03-01

    A dispersion-relation preserving (DRP) method, as a semi-analytic iterative procedure, has been proposed by Jang (2017) for integrating the classical Boussinesq equation. It has been shown to be a powerful numerical procedure for simulating a nonlinear dispersive wave system because it preserves the dispersion-relation, however, there still exists a potential flaw, e.g., a restriction on nonlinear wave amplitude and a small region of convergence (ROC) and so on. To remedy the flaw, a new DRP method is proposed in this paper, aimed at improving convergence performance. The improved method is proved to have convergence properties and dispersion-relation preserving nature for small waves; of course, unique existence of the solutions is also proved. In addition, by a numerical experiment, the method is confirmed to be good at observing nonlinear wave phenomena such as moving solitary waves and their binary collision with different wave amplitudes. Especially, it presents a ROC (much) wider than that of the previous method by Jang (2017). Moreover, it gives the numerical simulation of a high (or large-amplitude) nonlinear dispersive wave. In fact, it is demonstrated to simulate a large-amplitude solitary wave and the collision of two solitary waves with large-amplitudes that we have failed to simulate with the previous method. Conclusively, it is worth noting that better convergence results are achieved compared to Jang (2017); i.e., they represent a major improvement in practice over the previous method.

  18. An Approach to Speed up Single-Frequency PPP Convergence with Quad-Constellation GNSS and GIM.

    PubMed

    Cai, Changsheng; Gong, Yangzhao; Gao, Yang; Kuang, Cuilin

    2017-06-06

    The single-frequency precise point positioning (PPP) technique has attracted increasing attention due to its high accuracy and low cost. However, a very long convergence time, normally a few hours, is required in order to achieve a positioning accuracy level of a few centimeters. In this study, an approach is proposed to accelerate the single-frequency PPP convergence by combining quad-constellation global navigation satellite system (GNSS) and global ionospheric map (GIM) data. In this proposed approach, the GPS, GLONASS, BeiDou, and Galileo observations are directly used in an uncombined observation model and as a result the ionospheric and hardware delay (IHD) can be estimated together as a single unknown parameter. The IHD values acquired from the GIM product and the multi-GNSS differential code bias (DCB) product are then utilized as pseudo-observables of the IHD parameter in the observation model. A time varying weight scheme has also been proposed for the pseudo-observables to gradually decrease its contribution to the position solutions during the convergence period. To evaluate the proposed approach, datasets from twelve Multi-GNSS Experiment (MGEX) stations on seven consecutive days are processed and analyzed. The numerical results indicate that the single-frequency PPP with quad-constellation GNSS and GIM data are able to reduce the convergence time by 56%, 47%, 41% in the east, north, and up directions compared to the GPS-only single-frequency PPP.

  19. An Approach to Speed up Single-Frequency PPP Convergence with Quad-Constellation GNSS and GIM

    PubMed Central

    Cai, Changsheng; Gong, Yangzhao; Gao, Yang; Kuang, Cuilin

    2017-01-01

    The single-frequency precise point positioning (PPP) technique has attracted increasing attention due to its high accuracy and low cost. However, a very long convergence time, normally a few hours, is required in order to achieve a positioning accuracy level of a few centimeters. In this study, an approach is proposed to accelerate the single-frequency PPP convergence by combining quad-constellation global navigation satellite system (GNSS) and global ionospheric map (GIM) data. In this proposed approach, the GPS, GLONASS, BeiDou, and Galileo observations are directly used in an uncombined observation model and as a result the ionospheric and hardware delay (IHD) can be estimated together as a single unknown parameter. The IHD values acquired from the GIM product and the multi-GNSS differential code bias (DCB) product are then utilized as pseudo-observables of the IHD parameter in the observation model. A time varying weight scheme has also been proposed for the pseudo-observables to gradually decrease its contribution to the position solutions during the convergence period. To evaluate the proposed approach, datasets from twelve Multi-GNSS Experiment (MGEX) stations on seven consecutive days are processed and analyzed. The numerical results indicate that the single-frequency PPP with quad-constellation GNSS and GIM data are able to reduce the convergence time by 56%, 47%, 41% in the east, north, and up directions compared to the GPS-only single-frequency PPP. PMID:28587305

  20. Convergence analysis of sliding mode trajectories in multi-objective neural networks learning.

    PubMed

    Costa, Marcelo Azevedo; Braga, Antonio Padua; de Menezes, Benjamin Rodrigues

    2012-09-01

    The Pareto-optimality concept is used in this paper in order to represent a constrained set of solutions that are able to trade-off the two main objective functions involved in neural networks supervised learning: data-set error and network complexity. The neural network is described as a dynamic system having error and complexity as its state variables and learning is presented as a process of controlling a learning trajectory in the resulting state space. In order to control the trajectories, sliding mode dynamics is imposed to the network. It is shown that arbitrary learning trajectories can be achieved by maintaining the sliding mode gains within their convergence intervals. Formal proofs of convergence conditions are therefore presented. The concept of trajectory learning presented in this paper goes further beyond the selection of a final state in the Pareto set, since it can be reached through different trajectories and states in the trajectory can be assessed individually against an additional objective function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Convergence Years

    ERIC Educational Resources Information Center

    Kolodzy, Janet; Grant, August E.; DeMars, Tony R.; Wilkinson, Jeffrey S.

    2014-01-01

    The emergence of the Internet, social media, and digital technologies in the twenty-first century accelerated an evolution in journalism and communication that fit under the broad term of convergence. That evolution changed the relationship between news producers and consumers. It broke down the geographical boundaries in defining our communities,…

  2. On the convergence and accuracy of the FDTD method for nanoplasmonics.

    PubMed

    Lesina, Antonino Calà; Vaccari, Alessandro; Berini, Pierre; Ramunno, Lora

    2015-04-20

    Use of the Finite-Difference Time-Domain (FDTD) method to model nanoplasmonic structures continues to rise - more than 2700 papers have been published in 2014 on FDTD simulations of surface plasmons. However, a comprehensive study on the convergence and accuracy of the method for nanoplasmonic structures has yet to be reported. Although the method may be well-established in other areas of electromagnetics, the peculiarities of nanoplasmonic problems are such that a targeted study on convergence and accuracy is required. The availability of a high-performance computing system (a massively parallel IBM Blue Gene/Q) allows us to do this for the first time. We consider gold and silver at optical wavelengths along with three "standard" nanoplasmonic structures: a metal sphere, a metal dipole antenna and a metal bowtie antenna - for the first structure comparisons with the analytical extinction, scattering, and absorption coefficients based on Mie theory are possible. We consider different ways to set-up the simulation domain, we vary the mesh size to very small dimensions, we compare the simple Drude model with the Drude model augmented with two critical points correction, we compare single-precision to double-precision arithmetic, and we compare two staircase meshing techniques, per-component and uniform. We find that the Drude model with two critical points correction (at least) must be used in general. Double-precision arithmetic is needed to avoid round-off errors if highly converged results are sought. Per-component meshing increases the accuracy when complex geometries are modeled, but the uniform mesh works better for structures completely fillable by the Yee cell (e.g., rectangular structures). Generally, a mesh size of 0.25 nm is required to achieve convergence of results to ∼ 1%. We determine how to optimally setup the simulation domain, and in so doing we find that performing scattering calculations within the near-field does not necessarily produces large

  3. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China

    NASA Astrophysics Data System (ADS)

    Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron

    2017-12-01

    The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.

  4. Low fuel convergence path to ignition on the NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  5. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoos, K., E-mail: kristel.ghoos@kuleuven.be; Dekeyser, W.; Samaey, G.

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracymore » by making use of averaging in the Random Noise coupling technique.« less

  6. Convergent evolution as natural experiment: the tape of life reconsidered.

    PubMed

    Powell, Russell; Mariscal, Carlos

    2015-12-06

    Stephen Jay Gould argued that replaying the 'tape of life' would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution-the independent origination of similar biological forms and functions-which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the 'critique from convergent evolution' fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life.

  7. Reliability enhancement of Navier-Stokes codes through convergence acceleration

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Dulikravich, George S.

    1995-01-01

    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.

  8. Convergent? Minds? Some questions about mental evolution.

    PubMed

    Cartmill, Matt

    2017-06-06

    In investigating convergent minds, we need to be sure that the things we are looking at are both minds and convergent. In determining whether a shared character state represents a convergence between two organisms, we must know the wider distribution and primitive state of that character so that we can map that character and its state transitions onto a phylogenetic tree. When we do this, some apparently primitive shared traits may prove to represent convergent losses of cognitive capacities. To avoid having to talk about the minds of plants and paramecia, we need to go beyond assessments of behaviourally defined cognition to ask questions about mind in the primary sense of the word, defined by the presence of mental events and consciousness. These phenomena depend upon the possession of brains of adequate size and centralized ontogeny and organization. They are probably limited to vertebrates. Recent discoveries suggest that consciousness is adaptively valuable as a late error-detection mechanism in the initiation of action, and point to experimental techniques for assessing its presence or absence in non-human mammals.

  9. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the watermore » column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.« less

  10. Deformation record of 4-d accommodation of strain in the transition from transform to oblique convergent plate margin, southern Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.

    2013-12-01

    Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to

  11. Effect of Potassium Chlorate on the Treatment of Domestic Sewage by Achieving Shortcut Nitrification in a Constructed Rapid Infiltration System.

    PubMed

    Fang, Qinglin; Xu, Wenlai; Yan, Zhijiao; Qian, Lei

    2018-04-04

    A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect. The addition of 5mM KClO₃ in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover

  12. Convergent evolution as natural experiment: the tape of life reconsidered

    PubMed Central

    Powell, Russell; Mariscal, Carlos

    2015-01-01

    Stephen Jay Gould argued that replaying the ‘tape of life’ would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution—the independent origination of similar biological forms and functions—which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the ‘critique from convergent evolution’ fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life. PMID:26640647

  13. Chiral EFT based nuclear forces: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Machleidt, R.; Sammarruca, F.

    2016-08-01

    During the past two decades, chiral effective field theory has become a popular tool to derive nuclear forces from first principles. Two-nucleon interactions have been worked out up to sixth order of chiral perturbation theory and three-nucleon forces up to fifth order. Applications of some of these forces have been conducted in nuclear few- and many-body systems—with a certain degree of success. But in spite of these achievements, we are still faced with great challenges. Among them is the issue of a proper uncertainty quantification of predictions obtained when applying these forces in ab initio calculations of nuclear structure and reactions. A related problem is the order by order convergence of the chiral expansion. We start this review with a pedagogical introduction and then present the current status of the field of chiral nuclear forces. This is followed by a discussion of representative examples for the application of chiral two- and three-body forces in the nuclear many-body system including convergence issues.

  14. Reliability and validity of Arabic Rapid Estimate of Adult Literacy in Dentistry (AREALD-30) in Saudi Arabia.

    PubMed

    Tadakamadla, Santosh Kumar; Quadri, Mir Faeq Ali; Pakpour, Amir H; Zailai, Abdulaziz M; Sayed, Mohammed E; Mashyakhy, Mohammed; Inamdar, Aadil S; Tadakamadla, Jyothi

    2014-09-29

    To evaluate the reliability and validity of Arabic Rapid Estimate of Adult Literacy in Dentistry (AREALD-30) in Saudi Arabia. A convenience sample of 200 subjects was approached, of which 177 agreed to participate giving a response rate of 88.5%. Rapid Estimate of Adult Literacy in Dentistry (REALD-99), was translated into Arabic to prepare the longer and shorter versions of Arabic Rapid Estimate of Adult Literacy in Dentistry (AREALD-99 and AREALD-30). Each participant was provided with AREALD-99 which also includes words from AREALD-30. A questionnaire containing socio-behavioral information and Arabic Oral Health Impact Profile (A-OHIP-14) was also administered. Reliability of the AREALD-30 was assessed by re-administering it to 20 subjects after two weeks. Convergent and predictive validity of AREALD-30 was evaluated by its correlations with AREALD-99 and self-perceived oral health status, dental visiting habits and A-OHIP-14 respectively. Discriminant validity was assessed in relation to the educational level while construct validity was evaluated by confirmatory factor analysis (CFA). Reliability of AREALD-30 was excellent with intraclass correlation coefficient of 0.99. It exhibited good convergent and discriminant validity but poor predictive validity. CFA showed presence of two factors and infit mean-square statistics for AREALD-30 were all within the desired range of 0.50 - 2.0 in Rasch analysis. AREALD-30 showed excellent reliability, good convergent and concurrent validity, but failed to predict the differences between the subjects categorized based on their oral health outcomes.

  15. Concepts of convergence for a quantum law of large numbers

    NASA Astrophysics Data System (ADS)

    Ochs, Wilhelm

    1980-02-01

    We introduce the notion of uniform convergence of an operator sequence relative to a state operator, and we compare it with the notion of almost everywhere convergence, introduced by Gudder. We show that a sequence ( M n) of mean-value operators M n= {1}/{n}limit∑ni=11⊗…⊗A i⊗1⊗…, defined on the infinite tensor product limit⊗iHi, converges relative uniformly to x 1 if and only if it converges almost everywhere to x 1.

  16. Convergence accommodation to convergence (CA/C) ratio in patients with intermittent exotropia and decompensated exophoria.

    PubMed

    Nonaka, Fumitaka; Hasebe, Satoshi; Ohtsuki, Hiroshi

    2004-01-01

    To evaluate the convergence accommodation to convergence (CA/C) ratio in strabismic patients and to clarify its clinical implications. Seventy-eight consecutive patients (mean age: 12.9 +/- 6.0 years) with intermittent exotropia and decompensated exophoria who showed binocular fusion at least at near viewing were recruited. The CA/C ratio was estimated by measuring accommodative responses induced by horizontal prisms with different magnitudes under accommodation feedback open-loop conditions. The CA/C ratios were compared with accommodative convergence to accommodation (AC/A) ratios and other clinical parameters. A linear regression analysis indicated that the mean (+/-SD) CA/C ratio was 0.080 +/- 0.043 D/prism diopter or 0.48 +/- 0.26 D/meter angle. There was no inverse or reciprocal relationship between CA/C and AC/A ratios. The patients with lower CA/C ratios tended to have smaller tonic accommodation under binocular viewing conditions and larger exodeviation at near viewing. The CA/C ratio, like the AC/A ratio, is an independent parameter that characterizes clinical features. A lower CA/C may be beneficial for the vergence control system to compensate for ocular misalignment with minimum degradation of accommodation accuracy.

  17. Convergence and rate analysis of neural networks for sparse approximation.

    PubMed

    Balavoine, Aurèle; Romberg, Justin; Rozell, Christopher J

    2012-09-01

    We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.

  18. Convergence studies in meshfree peridynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seleson, Pablo; Littlewood, David J.

    2016-04-15

    Meshfree methods are commonly applied to discretize peridynamic models, particularly in numerical simulations of engineering problems. Such methods discretize peridynamic bodies using a set of nodes with characteristic volume, leading to particle-based descriptions of systems. In this article, we perform convergence studies of static peridynamic problems. We show that commonly used meshfree methods in peridynamics suffer from accuracy and convergence issues, due to a rough approximation of the contribution to the internal force density of nodes near the boundary of the neighborhood of a given node. We propose two methods to improve meshfree peridynamic simulations. The first method uses accuratemore » computations of volumes of intersections between neighbor cells and the neighborhood of a given node, referred to as partial volumes. The second method employs smooth influence functions with a finite support within peridynamic kernels. Numerical results demonstrate great improvements in accuracy and convergence of peridynamic numerical solutions, when using the proposed methods.« less

  19. Convergence Estimates for Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal

    1997-01-01

    A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.

  20. On convergence and convergence rates for Ivanov and Morozov regularization and application to some parameter identification problems in elliptic PDEs

    NASA Astrophysics Data System (ADS)

    Kaltenbacher, Barbara; Klassen, Andrej

    2018-05-01

    In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.

  1. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  2. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  3. Review of high convergence implosion experiments with single and double shell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, N. D.; Watt, R. G.; Varnum, W. S.

    2002-01-01

    Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.

  4. World health inequality: convergence, divergence, and development.

    PubMed

    Clark, Rob

    2011-02-01

    Recent studies characterize the last half of the twentieth century as an era of cross-national health convergence, with some attributing welfare gains in the developing world to economic growth. In this study, I examine the extent to which welfare outcomes have actually converged and the extent to which economic development is responsible for the observed trends. Drawing from estimates covering 195 nations during the 1955-2005 period, I find that life expectancy averages converged during this time, but that infant mortality rates continuously diverged. I develop a narrative that implicates economic development in these contrasting trends, suggesting that health outcomes follow a "welfare Kuznets curve." Among poor countries, economic development improves life expectancy more than it reduces infant mortality, whereas the situation is reversed among wealthier nations. In this way, development has contributed to both convergence in life expectancy and divergence in infant mortality. Drawing from 674 observations across 163 countries during the 1980-2005 period, I find that the positive effect of GDP PC on life expectancy attenuates at higher levels of development, while the negative effect of GDP PC on infant mortality grows stronger. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. IS THERE CONVERGENCE ACROSS COUNTRIES? A SPATIAL APPROACH

    PubMed Central

    Berry, Heather; Guillen, Mauro F.; Hendi, Arun S.

    2014-01-01

    We analyze convergence across countries over the last half century as a result of globalizing forces. Drawing on theories of modernization, dependency, the world-system, political trade blocs, and the world-society, we consider economic, demographic, knowledge, financial, and political dimensions of convergence. Using a new methodology, we calculate the minimum volume ellipsoid encompassing different groupings of countries, finding that during the 1960–2009 period, countries have not evolved significantly closer or similar to one another, although groups of countries based on their core-periphery status or membership in trade blocs exhibit increasing internal convergence and divergence between one another. PMID:25580035

  6. Creating Concepts from Converging Features in Human Cortex

    PubMed Central

    Coutanche, Marc N.; Thompson-Schill, Sharon L.

    2015-01-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or “convergence zone”) binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

  7. Character convergence under competition for nutritionally essential resources.

    PubMed

    Fox, Jeremy W; Vasseur, David A

    2008-11-01

    Resource competition is thought to drive divergence in resource use traits (character displacement) by generating selection favoring individuals able to use resources unavailable to others. However, this picture assumes nutritionally substitutable resources (e.g., different prey species). When species compete for nutritionally essential resources (e.g., different nutrients), theory predicts that selection drives character convergence. We used models of two species competing for two essential resources to address several issues not considered by existing theory. The models incorporated either slow evolutionary change in resource use traits or fast physiological or behavioral change. We report four major results. First, competition always generates character convergence, but differences in resource requirements prevent competitors from evolving identical resource use traits. Second, character convergence promotes coexistence. Competing species always attain resource use traits that allow coexistence, and adaptive trait change stabilizes the ecological equilibrium. In contrast, adaptation in allopatry never preadapts species to coexist in sympatry. Third, feedbacks between ecological dynamics and trait dynamics lead to surprising dynamical trajectories such as transient divergence in resource use traits followed by subsequent convergence. Fourth, under sufficiently slow trait change, ecological dynamics often drive one of the competitors to near extinction, which would prevent realization of long-term character convergence in practice.

  8. Decline of vertical gaze and convergence with aging.

    PubMed

    Oguro, Hiroaki; Okada, Kazunori; Suyama, Nobuo; Yamashita, Kazuya; Yamaguchi, Shuhei; Kobayashi, Shotai

    2004-01-01

    Disturbance of vertical eye movement and ocular convergence is often observed in elderly people, but little is known about its frequency. The purpose of this study was to investigate age-associated changes in vertical eye movement and convergence in healthy elderly people, using a digital video camera system. We analyzed vertical eye movements and convergence in 113 neurologically normal elderly subjects (mean age 70 years) in comparison with 20 healthy young controls (mean age 32 years). The range of vertical eye movement was analyzed quantitatively and convergence was analyzed qualitatively. In the elderly subjects, the angle of vertical gaze decreased with advancing age and it was significantly smaller than that of the younger subjects. The mean angle of upward gaze was significantly smaller than that of downward gaze for both young and elderly subjects. Upward gaze impairment became apparent in subjects in their 70s, and downward gaze impairment in subjects in their 60s. Disturbance in convergence also increased with advancing age, and was found in 40.7% of the elderly subjects. These findings indicate that the mechanisms of age-related change are different for upward and downward vertical gaze. Digital video camera monitoring was useful for assessing and monitoring eye movements. Copyright 2004 S. Karger AG, Basel

  9. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  10. Multidimensional Convergence in Future 5G Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, Marco

    2017-02-01

    Future 5G services are characterised by unprecedented need for high rate, ubiquitous availability, ultra-low latency and high reliability. The fragmented network view that is widespread in current networks will not stand the challenge posed by next generations of users. A new vision is required, and this paper provides an insight on how network convergence and application-centric approaches will play a leading role towards enabling the 5G vision. The paper, after expressing the view on the need for an end-to-end approach to network design, brings the reader into a journey on the expected 5G network requirements and outlines some of the work currently carried out by main standardisation bodies. It then proposes the use of the concept of network convergence for providing the overall architectural framework to bring together all the different technologies within a unifying and coherent network ecosystem. The novel interpretation of multi-dimensional convergence we introduce leads us to the exploration of aspects of node consolidation and converged network architectures, delving into details of optical-wireless integration and future convergence of optical data centre and access-metro networks. We then discuss how ownership models enabling network sharing will be instrumental in realising the 5G vision. The paper concludes with final remarks on the role SDN will play in 5G and on the need for new business models that reflect the application-centric view of the network. Finally, we provide some insight on growing research areas in 5G networking.

  11. Evaluation of RAPID for a UNF cask benchmark problem

    NASA Astrophysics Data System (ADS)

    Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.

    2017-09-01

    This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.

  12. Convergent and Divergent Thinking in the Context of Narrative Mysteries

    ERIC Educational Resources Information Center

    Wenzel, William G.; Gerrig, Richard J.

    2015-01-01

    This project demonstrates how narrative mysteries provide a context in which readers engage in creative cognition. Drawing on the concepts of convergent and divergent thinking, we wrote stories that had either convergent or divergent outcomes. For example, one story had a character give his girlfriend a ring (a convergent outcome), whereas the…

  13. Print, Broadcast and Online Convergence in the Newsroom.

    ERIC Educational Resources Information Center

    Hammond, Scott C.; Petersen, Daniel; Thomsen, Steven

    2000-01-01

    Describes how, over five years, students and faculty at Brigham Young University created a converged newsroom that brought together student broadcast, print, and online journalism into one organization. Discusses the industry- and technology-driven rationale for converging newsrooms in educational institutions; describes generic changes and the…

  14. LRRTM1 underlies synaptic convergence in visual thalamus

    PubMed Central

    Monavarfeshani, Aboozar; Stanton, Gail; Van Name, Jonathan; Su, Kaiwen; Mills, William A; Swilling, Kenya; Kerr, Alicia; Huebschman, Natalie A; Su, Jianmin

    2018-01-01

    It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision. PMID:29424692

  15. Does healthcare financing converge? Evidence from eight OECD countries.

    PubMed

    Chen, Wen-Yi

    2013-12-01

    This study investigated the convergence of healthcare financing across eight OECD countries during 1960-2009 for the first time. The panel stationary test incorporating both shapes of multiple structural breaks (i.e., sharp drifts and smooth transition shifts) and cross-sectional dependence was used to provide reliable evidence of convergence in healthcare financing. Our results suggested that the public share of total healthcare financing in eight OECD countries has exhibited signs of convergence towards that of the US. The convergence of healthcare financing not only reflected a decline in the share of public healthcare financing in these eight OECD countries but also exhibited an upward trend in the share of public healthcare financing in the US over the period of 1960-2009.

  16. Convergence Zone over the Patagonian Shelf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The bright waters off the east coast of Argentina mark the convergence of the Malvinas and Brazil Currents. The interaction of the two currents brings nutrients from the dark ocean depths to the sunlit surface, resulting in dense blooms of phytoplankton, especially in the spring and early summer. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imaged the area on November 29, 2001. For more information, read Convergence Zones: Where the Action Is Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  17. Food-Pharma Convergence in Medical Nutrition– Best of Both Worlds?

    PubMed Central

    Weenen, Tamar C.; Ramezanpour, Bahar; Pronker, Esther S.; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry’s core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments

  18. Food-pharma convergence in medical nutrition- best of both worlds?

    PubMed

    Weenen, Tamar C; Ramezanpour, Bahar; Pronker, Esther S; Commandeur, Harry; Claassen, Eric

    2013-01-01

    At present, industries within the health and life science sector are moving towards one another resulting in new industries such as the medical nutrition industry. Medical nutrition products are specific nutritional compositions for intervention in disease progression and symptom alleviation. Industry convergence, described as the blurring of boundaries between industries, plays a crucial role in the shaping of new markets and industries. Assuming that the medical nutrition industry has emerged from the convergence between the food and pharma industries, it is crucial to research how and which distinct industry domains have contributed to establish this relatively new industry. The first two stages of industry convergence (knowledge diffusion and consolidation) are measured by means of patent analysis. First, the extent of knowledge diffusion within the medical nutrition industry is graphed in a patent citation interrelations network. Subsequently the consolidation based on technological convergence is determined by means of patent co-classification. Furthermore, the medical nutrition core domain and technology interrelations are measured by means of a cross impact analysis. This study proves that the medical nutrition industry is a result of food and pharma convergence. It is therefore crucial for medical nutrition companies to effectively monitor technological developments within as well as across industry boundaries. This study further reveals that although the medical nutrition industry's core technology domain is food, technological development is mainly driven by pharmaceutical/pharmacological technologies Additionally, the results indicate that the industry has surpassed the knowledge diffusion stage of convergence, and is currently in the consolidation phase of industry convergence. Nevertheless, while the medical nutrition can be classified as an industry in an advanced phase of convergence, one cannot predict that the pharma and food industry segments

  19. An Ensemble Approach in Converging Contents of LMS and KMS

    ERIC Educational Resources Information Center

    Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay

    2017-01-01

    Currently the challenges in e-Learning are converging the learning content from various sources and managing them within e-learning practices. Data mining learning algorithms can be used and the contents can be converged based on the Metadata of the objects. Ensemble methods use multiple learning algorithms and it can be used to converge the…

  20. Non-surgical interventions for convergence insufficiency

    PubMed Central

    Scheiman, Mitchell; Gwiazda, Jane; Li, Tianjing

    2014-01-01

    Background Convergence insufficiency is a common eye muscle co-ordination problem in which the eyes have a strong tendency to drift outward (exophoria) when reading or doing close work. Symptoms may include eye strain, headaches, double vision, print moving on the page, frequent loss of place when reading, inability to concentrate, and short attention span. Objectives To systematically assess and synthesize evidence from randomized controlled trials (RCTs) on the effectiveness of non-surgical interventions for convergence insufficiency. Search strategy We searched The Cochrane Library, MEDLINE, EMBASE, Science Citation Index, the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) and ClinicalTrials.gov (www.clinicaltrials.gov) on 7 October 2010. We manually searched reference lists and optometric journals. Selection criteria We included RCTs examining any form of non-surgical intervention against placebo, no treatment, sham treatment, or each other. Data collection and analysis Two authors independently assessed eligibility, risk of bias, and extracted data. We performed meta-analyses when appropriate. Main results We included six trials (three in children, three in adults) with a total of 475 participants. We graded four trials at low risk of bias. Evidence from one trial (graded at low risk of bias) suggests that base-in prism reading glasses was no more effective than placebo reading glasses in improving clinical signs or symptoms in children. Evidence from one trial (graded at high risk of bias) suggests that base-in prism glasses using a progressive addition lens design was more effective than progressive addition lens alone in decreasing symptoms in adults. At three weeks of therapy, the mean difference in Convergence Insufficiency Symptoms Survey (CISS) score was −10.24 points (95% confidence interval (CI) −15.45 to −5.03). Evidence from two trials (graded at low risk of bias) suggests that outpatient (or office-based as used in the

  1. Efficiency reduction and pseudo-convergence in replica exchange sampling of peptide folding unfolding equilibria

    NASA Astrophysics Data System (ADS)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul

    2008-06-01

    Replica exchange (RE) molecular dynamics (MD) simulations are frequently applied to sample the folding-unfolding equilibria of β-hairpin peptides in solution, because efficiency gains are expected from this technique. Using a three-state Markov model featuring key aspects of β-hairpin folding we show that RE simulations can be less efficient than conventional techniques. Furthermore we demonstrate that one is easily seduced to erroneously assign convergence to the RE sampling, because RE ensembles can rapidly reach long-lived stationary states. We conclude that typical REMD simulations covering a few tens of nanoseconds are by far too short for sufficient sampling of β-hairpin folding-unfolding equilibria.

  2. Density by moduli and Wijsman lacunary statistical convergence of sequences of sets.

    PubMed

    Bhardwaj, Vinod K; Dhawan, Shweta

    2017-01-01

    The main object of this paper is to introduce and study a new concept of f -Wijsman lacunary statistical convergence of sequences of sets, where f is an unbounded modulus. The definition of Wijsman lacunary strong convergence of sequences of sets is extended to a definition of Wijsman lacunary strong convergence with respect to a modulus for sequences of sets and it is shown that, under certain conditions on a modulus f , the concepts of Wijsman lacunary strong convergence with respect to a modulus f and f -Wijsman lacunary statistical convergence are equivalent on bounded sequences. We further characterize those θ for which [Formula: see text], where [Formula: see text] and [Formula: see text] denote the sets of all f -Wijsman lacunary statistically convergent sequences and f -Wijsman statistically convergent sequences, respectively.

  3. On the Structure of the Present-Day Convergence

    ERIC Educational Resources Information Center

    Korotayev, Andrey; Zinkina, Julia

    2014-01-01

    Purpose: A substantial number of researchers have investigated the global economic dynamics of this time to disprove unconditional convergence and refute its very idea, stating the phenomenon of conditional convergence instead. However, most respective papers limit their investigation period with the early or mid-2000s. In the authors' opinion,…

  4. Pattern and Process in the Comparative Study of Convergent Evolution.

    PubMed

    Mahler, D Luke; Weber, Marjorie G; Wagner, Catherine E; Ingram, Travis

    2017-08-01

    Understanding processes that have shaped broad-scale biodiversity patterns is a fundamental goal in evolutionary biology. The development of phylogenetic comparative methods has yielded a tool kit for analyzing contemporary patterns by explicitly modeling processes of change in the past, providing neontologists tools for asking questions previously accessible only for select taxa via the fossil record or laboratory experimentation. The comparative approach, however, differs operationally from alternative approaches to studying convergence in that, for studies of only extant species, convergence must be inferred using evolutionary process models rather than being directly measured. As a result, investigation of evolutionary pattern and process cannot be decoupled in comparative studies of convergence, even though such a decoupling could in theory guard against adaptationist bias. Assumptions about evolutionary process underlying comparative tools can shape the inference of convergent pattern in sometimes profound ways and can color interpretation of such patterns. We discuss these issues and other limitations common to most phylogenetic comparative approaches and suggest ways that they can be avoided in practice. We conclude by promoting a multipronged approach to studying convergence that integrates comparative methods with complementary tests of evolutionary mechanisms and includes ecological and biogeographical perspectives. Carefully employed, the comparative method remains a powerful tool for enriching our understanding of convergence in macroevolution, especially for investigation of why convergence occurs in some settings but not others.

  5. Spaces of ideal convergent sequences.

    PubMed

    Mursaleen, M; Sharma, Sunil K

    2014-01-01

    In the present paper, we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function ℳ = (M(k)). We also examine some topological properties of the resulting sequence spaces.

  6. The Changing Shape of Technology on Campus from Ermergence to Convergence.

    ERIC Educational Resources Information Center

    Cunningham, Kevin; Rainey, Sylvia

    2001-01-01

    Explores the basics in technology convergence in making today's college and university campuses more "intelligent." Two key components required for effective technology convergence are described as are the benefits of convergence on campus safety and security and utility cost management. (GR)

  7. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  8. Rapid determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction and ultraperformance convergence chromatography tandem mass spectrometry.

    PubMed

    Deng, Huimin; Yang, Fei; Li, Zhonghao; Bian, Zhaoyang; Fan, Ziyan; Wang, Ying; Liu, Shanshan; Tang, Gangling

    2017-07-21

    Aromatic amines in mainstream cigarette smoke have long been monitored due to their carcinogenic toxicity. In this work, a reliable and rapid method was developed for the simultaneous determination of 9 aromatic amines in mainstream cigarette smoke by modified dispersive liquid liquid microextraction (DLLME) and ultraperformance convergence chromatography tandem mass spectrometry (UPC 2 -MS/MS). Briefly, the particulate phase of the cigarette smoke was captured by a Cambridge filter pad, and diluted hydrogen chloride aqueous solution is employed to extract the aromatic amines under mechanical shaking. After alkalization with sodium hydroxide solution, small amount of toluene was introduced to further extract and enrich aromatic amines by modified DLLME under vortexing. After centrifugation, toluene phase was purified by a universal QuEChERS cleanup kit and was finally analyzed by UPC 2 -MS/MS. Attributing to the superior performance of UPC 2 -MS/MS, this novel approach allowed the separation and determination of 9 aromatic amines within 5.0min with satisfactory resolution and sensitivity. The proposed method was finally validated using Kentucky reference cigarette 3R4F, and emission levels of targeted aromatic amines determined were comparable to previously reported methods At three different spiked levels, the recoveries of most analytes were ranged from 74.01% to 120.50% with relative standard deviation (RSD) less than 12%, except that the recovery of p-toluidine at low spiked level and 3-aminobiphenyl at medium spiked level was 62.77% and 69.37% respectively. Thus, this work provides a novel alternative method for the simultaneous analysis of 9 aromatic amines in mainstream cigarette smoke. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Convolutional Dictionary Learning: Acceleration and Convergence

    NASA Astrophysics Data System (ADS)

    Chun, Il Yong; Fessler, Jeffrey A.

    2018-04-01

    Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.

  10. The convergence of spectral methods for nonlinear conservation laws

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1987-01-01

    The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows.

  11. Ultra-modified rapid sequence induction with transnasal humidified rapid insufflation ventilatory exchange: Challenging convention.

    PubMed

    Kulkarni, Ketan Sakharam; Dave, Nandini; Saran, Shriyam; Garasia, Madhu; Parelkar, Sandesh

    2018-04-01

    During positive pressure ventilation, gastric inflation and subsequent pulmonary aspiration can occur. Rapid sequence induction (RSI) technique is an age-old formula to prevent this. We adopted a novel approach of RSI for patients with high risk of aspiration and evaluated it further in patients undergoing laparoscopic surgeries. We believe that, in patients with risk of gastric insufflation and pulmonary aspiration, transnasal humidified rapid-insufflation ventilatory exchange can be useful in facilitating pre- and apnoeic oxygenation till tracheal isolation is achieved.

  12. Experience and convergence in spiritual direction.

    PubMed

    Evans, Jean

    2015-02-01

    The practice of spiritual direction concerns the human experience of God. As praxis, spiritual direction has a long tradition in Western Christianity. It is a process rooted in spirituality with theology as its foundation. This paper explores the convergences between aspects of philosophy (contemplative awareness), psychology (Rogerian client-centered approach) and phenomenology. There are significant points of convergence between phenomenology and spiritual direction: first, in Ignatius of Loyola's phenomenological approach to his religious experience; second, in the appropriation by spiritual directors of concepts of epochē and empathy; third, in the process of "unpacking" religious experience within a spiritual direction interview.

  13. A pheromone-rate-based analysis on the convergence time of ACO algorithm.

    PubMed

    Huang, Han; Wu, Chun-Guo; Hao, Zhi-Feng

    2009-08-01

    Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.

  14. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi

    1987-01-01

    The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

  15. On the Convergence Analysis of the Optimized Gradient Method.

    PubMed

    Kim, Donghwan; Fessler, Jeffrey A

    2017-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.

  16. On the Convergence Analysis of the Optimized Gradient Method

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2016-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707

  17. Lévy flights, autocorrelation, and slow convergence

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2004-06-01

    Previously we have put forward that the sluggish convergence of truncated Lévy flights to a Gaussian (Phys. Rev. Lett. 73 (1994) 2946) together with the scaling power laws in their probability of return to the origin (Nature 376 (1995) 46) can be explained by autocorrelation in data (Physica A 323 (2003) 601; Phys. Lett. A 315 (2003) 51). A purpose of this paper is to improve and enlarge the scope of such a result. The role of the autocorrelations in the convergence process as well as the problem of establishing the distance of a given distribution to the Gaussian are analyzed in greater detail. We show that whereas power laws in the second moment can still be explained by linear correlation of pairs, sluggish convergence can now emerge from nonlinear autocorrelations. Our approach is exemplified with data from the British pound-US dollar exchange rate.

  18. Convergent innovation for affordable nutrition, health, and health care: the global pulse roadmap.

    PubMed

    Jha, Srivardhini K; McDermott, John; Bacon, Gordon; Lannon, Chris; Joshi, P K; Dubé, Laurette

    2014-12-01

    The paper outlines how the principles of convergent innovation (CI) can be applied to bring about a transformation in the pulse value chain. The paper presents three pioneering CI initiatives--two in conception and one in operation--by various actors in the pulse ecosystem, which are delivering economic and human development impact in particular segments of the pulse value chain. It goes on to propose the way forward to scale up these efforts and connect them into a roadmap so as to achieve transformation throughout society, calling into action a number of actors in the ecosystem. © 2014 New York Academy of Sciences.

  19. A new look at the convergence of a famous sequence

    NASA Astrophysics Data System (ADS)

    Dobrescu, Mihaela

    2010-12-01

    A new proof for the monotonicity of the sequence ? is given as a special case of a large family of monotomic and bounded, hence convergent sequences. The new proof is based on basic calculus results rather than induction, which makes it accessible to a larger audience including business and life sciences students and faculty. The slow rate of convergence of the two sequences is also discussed, and convergence bounds are found.

  20. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    PubMed

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.

  1. μ-tempered metadynamics: Artifact independent convergence times for wide hills

    NASA Astrophysics Data System (ADS)

    Dickson, Bradley M.

    2015-12-01

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60∘ for μTmetaD.

  2. μ-tempered metadynamics: Artifact independent convergence times for wide hills.

    PubMed

    Dickson, Bradley M

    2015-12-21

    Recent analysis of well-tempered metadynamics (WTmetaD) showed that it converges without mollification artifacts in the bias potential. Here, we explore how metadynamics heals mollification artifacts, how healing impacts convergence time, and whether alternative temperings may be used to improve efficiency. We introduce "μ-tempered" metadynamics as a simple tempering scheme, inspired by a related mollified adaptive biasing potential, that results in artifact independent convergence of the free energy estimate. We use a toy model to examine the role of artifacts in WTmetaD and solvated alanine dipeptide to compare the well-tempered and μ-tempered frameworks demonstrating fast convergence for hill widths as large as 60(∘) for μTmetaD.

  3. On the convergence of nonconvex minimization methods for image recovery.

    PubMed

    Xiao, Jin; Ng, Michael Kwok-Po; Yang, Yu-Fei

    2015-05-01

    Nonconvex nonsmooth regularization method has been shown to be effective for restoring images with neat edges. Fast alternating minimization schemes have also been proposed and developed to solve the nonconvex nonsmooth minimization problem. The main contribution of this paper is to show the convergence of these alternating minimization schemes, based on the Kurdyka-Łojasiewicz property. In particular, we show that the iterates generated by the alternating minimization scheme, converges to a critical point of this nonconvex nonsmooth objective function. We also extend the analysis to nonconvex nonsmooth regularization model with box constraints, and obtain similar convergence results of the related minimization algorithm. Numerical examples are given to illustrate our convergence analysis.

  4. Convergence in Library and Museum Studies Education: Playing around with Curriculum?

    ERIC Educational Resources Information Center

    Martens, Marianne; Latham, K. F.

    2016-01-01

    In the case of libraries, archives, and museums (LAMs), the concept of convergence has become commonplace in recent time. Convergence addresses both physical spaces and the services provided. What is currently known as convergence within these institutions, should perhaps more accurately be described as reconvergence, as "in the late 1800s…

  5. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas

    PubMed Central

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-01

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet. PMID:28096377

  6. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas.

    PubMed

    Hu, Yibo; Wu, Qi; Ma, Shuai; Ma, Tianxiao; Shan, Lei; Wang, Xiao; Nie, Yonggang; Ning, Zemin; Yan, Li; Xiu, Yunfang; Wei, Fuwen

    2017-01-31

    Phenotypic convergence between distantly related taxa often mirrors adaptation to similar selective pressures and may be driven by genetic convergence. The giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to different families in the order Carnivora, but both have evolved a specialized bamboo diet and adaptive pseudothumb, representing a classic model of convergent evolution. However, the genetic bases of these morphological and physiological convergences remain unknown. Through de novo sequencing the red panda genome and improving the giant panda genome assembly with added data, we identified genomic signatures of convergent evolution. Limb development genes DYNC2H1 and PCNT have undergone adaptive convergence and may be important candidate genes for pseudothumb development. As evolutionary responses to a bamboo diet, adaptive convergence has occurred in genes involved in the digestion and utilization of bamboo nutrients such as essential amino acids, fatty acids, and vitamins. Similarly, the umami taste receptor gene TAS1R1 has been pseudogenized in both pandas. These findings offer insights into genetic convergence mechanisms underlying phenotypic convergence and adaptation to a specialized bamboo diet.

  7. Gain and movement time of convergence-accommodation in preschool children.

    PubMed

    Suryakumar, R; Bobier, W R

    2004-11-01

    Convergence-accommodation is the synkinetic change in accommodation driven by vergence. A few studies have investigated the static and dynamic properties of this cross-link in adults but little is known about convergence-accommodation in children. The purpose of this study was to develop a technique for measuring convergence-accommodation and to study its dynamics (gain and movement time) in a sample of pre-school children. Convergence-accommodation measures were examined on thiry-seven normal pre-school children (mean age = 4.0 +/- 1.31 yrs). Stimulus CA/C (sCA/C) ratios and movement time measures of convergence-accommodation were assessed using a photorefractor while subjects viewed a DOG target. Repeated measures were obtained on eight normal adults (mean age = 23 +/- 0.2 yrs). The mean sCA/C ratios and movement times were not significantly different between adults and children (0.10 D/Delta [0.61 D/M.A.], 743 +/- 70 ms and 0.11 D/Delta [0.50 D/M.A.], 787 +/- 216 ms). Repeated measures on adults showed a non-significant mean difference of 0.001 D/Delta. The results suggest that the possible differences in crystalline lens (plant) characteristics between children and adults do not appear to influence convergence-accommodation gain or duration.

  8. Convergent and divergent evolution in carnivorous pitcher plant traps.

    PubMed

    Thorogood, Chris J; Bauer, Ulrike; Hiscock, Simon J

    2018-02-01

    Contents Summary 1035 I. Introduction 1035 II. Evolution of the pitcher 1036 III. Convergent evolution 1036 IV. Divergent evolution 1038 V. Adaptive radiation and speciation 1040 VI. Conclusions and perspectives 1040 Acknowledgements 1040 References 1040 SUMMARY: The pitcher trap is a striking example of convergent evolution across unrelated carnivorous plant lineages. Convergent traits that have evolved across pitcher plant lineages are essential for trap function, suggesting that key selective pressures are in action. Recent studies have also revealed patterns of divergent evolution in functional pitcher morphology within genera. Adaptations to differences in local prey assemblages may drive such divergence and, ultimately, speciation. Here, we review recent research on convergent and divergent evolution in pitcher plant traps, with a focus on the genus Nepenthes, which we propose as a new model for research into adaptive radiation and speciation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Cosmological constraints from the convergence 1-point probability distribution

    NASA Astrophysics Data System (ADS)

    Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus; Huff, Eric; Melchior, Peter; Ross, Ashley J.; Suchyta, Eric

    2017-11-01

    We examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the Ωm-σ8 plane from the convergence PDF with 188 arcmin2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is less susceptible, and improves the total figure of merit by a factor of 2-3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.

  10. Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders—including Wood anomalies

    PubMed Central

    Fernandez-Lado, Agustin G.

    2017-01-01

    This paper presents a full-spectrum Green-function methodology (which is valid, in particular, at and around Wood-anomaly frequencies) for evaluation of scattering by periodic arrays of cylinders of arbitrary cross section—with application to wire gratings, particle arrays and reflectarrays and, indeed, general arrays of conducting or dielectric bounded obstacles under both transverse electric and transverse magnetic polarized illumination. The proposed method, which, for definiteness, is demonstrated here for arrays of perfectly conducting particles under transverse electric polarization, is based on the use of the shifted Green-function method introduced in a recent contribution (Bruno & Delourme 2014 J. Computat. Phys. 262, 262–290 (doi:10.1016/j.jcp.2013.12.047)). A certain infinite term arises at Wood anomalies for the cylinder-array problems considered here that is not present in the previous rough-surface case. As shown in this paper, these infinite terms can be treated via an application of ideas related to the Woodbury–Sherman–Morrison formulae. The resulting approach, which is applicable to general arrays of obstacles even at and around Wood-anomaly frequencies, exhibits fast convergence and high accuracies. For example, a few hundreds of milliseconds suffice for the proposed approach to evaluate solutions throughout the resonance region (wavelengths comparable to the period and cylinder sizes) with full single-precision accuracy. PMID:28413346

  11. Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders-including Wood anomalies.

    PubMed

    Bruno, Oscar P; Fernandez-Lado, Agustin G

    2017-03-01

    This paper presents a full-spectrum Green-function methodology (which is valid, in particular, at and around Wood-anomaly frequencies) for evaluation of scattering by periodic arrays of cylinders of arbitrary cross section-with application to wire gratings, particle arrays and reflectarrays and, indeed, general arrays of conducting or dielectric bounded obstacles under both transverse electric and transverse magnetic polarized illumination. The proposed method, which, for definiteness, is demonstrated here for arrays of perfectly conducting particles under transverse electric polarization, is based on the use of the shifted Green-function method introduced in a recent contribution (Bruno & Delourme 2014 J. Computat. Phys. 262 , 262-290 (doi:10.1016/j.jcp.2013.12.047)). A certain infinite term arises at Wood anomalies for the cylinder-array problems considered here that is not present in the previous rough-surface case. As shown in this paper, these infinite terms can be treated via an application of ideas related to the Woodbury-Sherman-Morrison formulae. The resulting approach, which is applicable to general arrays of obstacles even at and around Wood-anomaly frequencies, exhibits fast convergence and high accuracies. For example, a few hundreds of milliseconds suffice for the proposed approach to evaluate solutions throughout the resonance region (wavelengths comparable to the period and cylinder sizes) with full single-precision accuracy.

  12. The contribution of visual processing to academic achievement in adolescents born extremely preterm or extremely low birth weight.

    PubMed

    Molloy, Carly S; Di Battista, Ashley M; Anderson, Vicki A; Burnett, Alice; Lee, Katherine J; Roberts, Gehan; Cheong, Jeanie Ly; Anderson, Peter J; Doyle, Lex W

    2017-04-01

    Children born extremely preterm (EP, <28 weeks) and/or extremely low birth weight (ELBW, <1000 g) have more academic deficiencies than their term-born peers, which may be due to problems with visual processing. The aim of this study is to determine (1) if visual processing is related to poor academic outcomes in EP/ELBW adolescents, and (2) how much of the variance in academic achievement in EP/ELBW adolescents is explained by visual processing ability after controlling for perinatal risk factors and other known contributors to academic performance, particularly attention and working memory. A geographically determined cohort of 228 surviving EP/ELBW adolescents (mean age 17 years) was studied. The relationships between measures of visual processing (visual acuity, binocular stereopsis, eye convergence, and visual perception) and academic achievement were explored within the EP/ELBW group. Analyses were repeated controlling for perinatal and social risk, and measures of attention and working memory. It was found that visual acuity, convergence and visual perception are related to scores for academic achievement on univariable regression analyses. After controlling for potential confounds (perinatal and social risk, working memory and attention), visual acuity, convergence and visual perception remained associated with reading and math computation, but only convergence and visual perception are related to spelling. The additional variance explained by visual processing is up to 6.6% for reading, 2.7% for spelling, and 2.2% for math computation. None of the visual processing variables or visual motor integration are associated with handwriting on multivariable analysis. Working memory is generally a stronger predictor of reading, spelling, and math computation than visual processing. It was concluded that visual processing difficulties are significantly related to academic outcomes in EP/ELBW adolescents; therefore, specific attention should be paid to academic

  13. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  14. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  15. The convergence of health care financing structures: empirical evidence from OECD-countries.

    PubMed

    Leiter, Andrea M; Theurl, Engelbert

    2012-02-01

    The convergence/divergence of health care systems between countries is an interesting facet of the health care system research from a macroeconomic perspective. In this paper, we concentrate on an important dimension of every health care system, namely the convergence/divergence of health care financing (HCF). Based on data from 22 OECD countries in the time period 1970-2005, we use the public financing ratio (public financing in % of total HCF) and per capita public HCF as indicators for convergence. By applying different concepts of convergence, we find that HCF is converging. This conclusion also holds when we look at smaller subgroups of countries and shorter time periods. However, we find evidence that countries do not move towards a common mean and that the rate of convergence is decreasing over time.

  16. Evaluating bump control techniques through convergence monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoli, A.A.

    1987-07-01

    A coal mine bump is the violent failure of a pillar or pillars due to overstress. Retreat coal mining concentrates stresses on the pillars directly outby gob areas, and the situation becomes critical when mining a coalbed encased in rigid associated strata. Bump control techniques employed by the Olga Mine, McDowell County, WV, were evaluated through convergence monitoring in a Bureau of Mines study. Olga uses a novel pillar splitting mining method to extract 55-ft by 70-ft chain pillars, under 1,100 to 1,550 ft of overburden. Three rows of pillars are mined simultaneously to soften the pillar line and reducemore » strain energy storage capacity. Localized stress reduction (destressing) techniques, auger drilling and shot firing, induced approximately 0.1 in. of roof-to-floor convergence in ''high'' -stress pillars near the gob line. Auger drilling of a ''low''-stress pillar located between two barrier pillars produced no convergence effects.« less

  17. Fundamentals of converging mining technologies in integrated development of mineral resources of lithosphere

    NASA Astrophysics Data System (ADS)

    Trubetskoy, KN; Galchenko, YuP; Eremenko, VA

    2018-03-01

    The paper sets forth a theoretical framework for the strategy of the radically new stage in development of geotechnologies under conditions of rapidly aggravating environmental crisis of the contemporary technocratic civilization that utilizes the substance extracted from the lithosphere as the source of energy and materials. The authors of the paper see the opportunity to overcome the conflict between the techno- and bio-spheres in the area of mineral raw materials by means of changing the technological paradigm of integrated mineral development by implementing nature-like technologies oriented to the ideas and methods of converging resources of natural biota as the object of the environmental protection and geotechnologies as the major source of ecological hazards induced in the course of development of mineral resources of lithosphere.

  18. Rapid Copper Metallization of Textile Materials: a Controlled Two-Step Route to Achieve User-Defined Patterns under Ambient Conditions.

    PubMed

    Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong

    2015-09-30

    Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.

  19. Dental Students' Educational Achievement in Relation to Their Learning Styles: A Cross-Sectional Study in Iran.

    PubMed

    Hosseini, Seyed Masoud; Amery, Hamideh; Emadzadeh, Ali; Babazadeh, Saber

    2015-02-24

    In recent decades, many studies have been carried out on the importance of Kolb experiential learning theory (ELT) in teaching-learning processes and its effect on learning outcomes. However, some experts have criticized the Kolb theory and argue that there are some ambiguities on the validity of the theory as an important predictor of achievement. This study has been carried out on dental students' educational achievement in relation to their dominant learning styles based on Kolb theory in Mashhad University of Medical Sciences (Iran). In a cross sectional study, Kolb Learning Style Inventory (LSI Ver. 3.1) as well as a questionnaire containing students' demographic data, academic achievement marks including grade point average (GPA), theoretical and practical courses marks, and the comprehensive basic sciences exam (CBSE) scores were administered on a purposive sample of 162 dental students who had passed their comprehensive basic sciences exam. Educational achievement data were analyzed in relation to students' dominant learning styles, using descriptive and analytical statistics including χ2, Kruskal-Wallis and two-way ANOVA tests. The dominant learning styles of students were Assimilating (53.1%), Converging (24.1%), Diverging (14.2%) and Accommodating (8.6%). Although, the students with Assimilating and Converging learning styles had a better performance on their educational achievement, there was no significant relationship between educational achievement and dominant learning style (P≥0.05). Findings support that the dominant learning style is not exclusively an essential factor to predict educational achievement. Rather, it shows learning preferences of students that may be considered in designing learning opportunities by the teachers.

  20. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. "Anterior convergent" chest probing in rapid ultrasound transducer positioning versus formal chest ultrasonography to detect pneumothorax during the primary survey of hospital trauma patients: a diagnostic accuracy study.

    PubMed

    Ziapour, Behrad; Haji, Houman Seyedjavady

    2015-01-01

    Occult pneumothorax represents a diagnostic pitfall during the primary survey of trauma patients, particularly if these patients require early positive pressure ventilation. This study investigated the accuracy of our proposed rapid model of ultrasound transducer positioning during the primary survey of trauma patients after their arrival at the hospital. This diagnostic trial was conducted over 12 months and was based on the results of 84 ultrasound (US) exams performed on patients with severe multiple trauma. Our index test (US) was used to detect pneumothorax in four pre-defined locations on the anterior of each hemi-thorax using the "Anterior Convergent" approach, and its performance was limited to the primary survey. Consecutively, patients underwent chest-computed tomography (CT) with or without chest radiography. The diagnostic findings of both chest radiography and chest ultrasounds were compared to the gold-standard test (CT). The diagnostic sensitivity was 78 % for US and 36.4 % for chest radiography (p < 0.001); the specificity was 92 % for US and 98 % for chest radiography (not significant); the positive predictive values were 74 % for US and 80 % for chest radiography (not significant); the negative predictive values were 94 % for US and 87 % for chest radiography (not significant); the positive likelihood ratio was 10 for US and 18 for chest radiography (p = 0.007); and the negative likelihood ratio was 0.25 for US and 0.65 for chest radiography (p = 0.001). The mean required time for performing the new method was 64 ± 10 s. An absence of the expected diffused dynamic view among ultrasound images obtained from patients with pneumothorax was also observed. We designated this phenomenon "Gestalt Lung Recession." "Anterior convergent" chest US probing represents a brief but efficient model that provides clinicians a safe and accurate exam and adequate resuscitation during critical minutes of the primary survey without

  2. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  3. Convergence of quasiparticle self-consistent GW calculations of transition metal monoxides

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2015-03-01

    We have investigated the electronic structure of the transition metal monoxides MnO, CoO, and NiO in their undistorted rock-salt structure within a fully iterated quasiparticle self-consistent GW (QPscGW) scheme. We have studied the convergence of the QPscGW method, i.e., how the quasiparticle energy eigenvalues and wavefunctions converge as a function of the QPscGW iterations, and compared the converged outputs obtained from different starting wavefunctions. We found that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. In some cases the ``path'' to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When a fully iterated solution is reached, the converged density of states, band-gaps and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wavefunctions and in reasonable agreement with the experiment. National High Magnetic Field Laboratory.

  4. Trophic divergence despite morphological convergence in a continental radiation of snakes

    PubMed Central

    Grundler, Michael C.; Rabosky, Daniel L.

    2014-01-01

    Ecological and phenotypic convergence is a potential outcome of adaptive radiation in response to ecological opportunity. However, a number of factors may limit convergence during evolutionary radiations, including interregional differences in biogeographic history and clade-specific constraints on form and function. Here, we demonstrate that a single clade of terrestrial snakes from Australia—the oxyuranine elapids—exhibits widespread morphological convergence with a phylogenetically diverse and distantly related assemblage of snakes from North America. Australian elapids have evolved nearly the full spectrum of phenotypic modalities that occurs among North American snakes. Much of the convergence appears to involve the recurrent evolution of stereotyped morphologies associated with foraging mode, locomotion and habitat use. By contrast, analysis of snake diets indicates striking divergence in feeding ecology between these faunas, partially reflecting regional differences in ecological allometry between Australia and North America. Widespread phenotypic convergence with the North American snake fauna coupled with divergence in feeding ecology are clear examples of how independent continental radiations may converge along some ecological axes yet differ profoundly along others. PMID:24920479

  5. Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks.

    PubMed

    Tippett, William J; Lee, Jang-Han; Mraz, Richard; Zakzanis, Konstantine K; Snyder, Peter J; Black, Sandra E; Graham, Simon J

    2009-04-01

    This study assessed the convergent validity of a virtual environment (VE) navigation learning task, the Groton Maze Learning Test (GMLT), and selected traditional neuropsychological tests performed in a group of healthy elderly adults (n = 24). The cohort was divided equally between males and females to explore performance variability due to sex differences, which were subsequently characterized and reported as part of the analysis. To facilitate performance comparisons, specific "efficiency" scores were created for both the VE navigation task and the GMLT. Men reached peak performance more rapidly than women during VE navigation and on the GMLT and significantly outperformed women on the first learning trial in the VE. Results suggest reasonable convergent validity across the VE task, GMLT, and selected neuropsychological tests for assessment of spatial memory.

  6. Converging migration routes of Eurasian hobbies Falco subbuteo crossing the African equatorial rain forest.

    PubMed

    Strandberg, Roine; Klaassen, Raymond H G; Hake, Mikael; Olofsson, Patrik; Alerstam, Thomas

    2009-02-22

    Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1 degree S, 15 degrees E). The birds migrated south or southwest to approximately 10 degrees N, where they changed to south-easterly courses. The maximal spread between routes at 10 degrees N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15 degrees E, similar to the hobbies, or at 30-40 degrees E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems.

  7. Problematic Smartphone Use: Investigating Contemporary Experiences Using a Convergent Design

    PubMed Central

    Harkin, Lydia

    2018-01-01

    Internet-enabled smartphones are increasingly ubiquitous in the Western world. Research suggests a number of problems can result from mobile phone overuse, including dependence, dangerous and prohibited use. For over a decade, this has been measured by the Problematic Mobile Phone Use Questionnaire (PMPU-Q). Given the rapid developments in mobile technologies, changes of use patterns and possible problematic and addictive use, the aim of the present study was to investigate and validate an updated contemporary version of the PMPU-Q (PMPU-Q-R). A mixed methods convergent design was employed, including a psychometric survey (N = 512) alongside qualitative focus groups (N = 21), to elicit experiences and perceptions of problematic smartphone use. The results suggest the PMPU-Q-R factor structure can be updated to include smartphone dependence, dangerous driving, and antisocial smartphone use factors. Theories of problematic mobile phone use require consideration of the ubiquity and indispensability of smartphones in the present day and age, particularly regarding use whilst driving and in social interactions. PMID:29337883

  8. Problematic Smartphone Use: Investigating Contemporary Experiences Using a Convergent Design.

    PubMed

    Kuss, Daria J; Harkin, Lydia; Kanjo, Eiman; Billieux, Joel

    2018-01-16

    Internet-enabled smartphones are increasingly ubiquitous in the Western world. Research suggests a number of problems can result from mobile phone overuse, including dependence, dangerous and prohibited use. For over a decade, this has been measured by the Problematic Mobile Phone Use Questionnaire (PMPU-Q). Given the rapid developments in mobile technologies, changes of use patterns and possible problematic and addictive use, the aim of the present study was to investigate and validate an updated contemporary version of the PMPU-Q (PMPU-Q-R). A mixed methods convergent design was employed, including a psychometric survey ( N = 512) alongside qualitative focus groups ( N = 21), to elicit experiences and perceptions of problematic smartphone use. The results suggest the PMPU-Q-R factor structure can be updated to include smartphone dependence, dangerous driving, and antisocial smartphone use factors. Theories of problematic mobile phone use require consideration of the ubiquity and indispensability of smartphones in the present day and age, particularly regarding use whilst driving and in social interactions.

  9. Linear perturbations of a Schwarzschild blackhole by thin disc - convergence

    NASA Astrophysics Data System (ADS)

    Čížek, P.; Semerák, O.

    2012-07-01

    In order to find the perturbation of a Schwarzschild space-time due to a rotating thin disc, we try to adjust the method used by [4] in the case of perturbation by a one-dimensional ring. This involves solution of stationary axisymmetric Einstein's equations in terms of spherical-harmonic expansions whose convergence however turned out questionable in numerical examples. Here we show, analytically, that the series are almost everywhere convergent, but in some regions the convergence is not absolute.

  10. Short-term Time Step Convergence in a Climate Model

    DOE PAGES

    Wan, Hui; Rasch, Philip J.; Taylor, Mark; ...

    2015-02-11

    A testing procedure is designed to assess the convergence property of a global climate model with respect to time step size, based on evaluation of the root-mean-square temperature difference at the end of very short (1 h) simulations with time step sizes ranging from 1 s to 1800 s. A set of validation tests conducted without sub-grid scale parameterizations confirmed that the method was able to correctly assess the convergence rate of the dynamical core under various configurations. The testing procedure was then applied to the full model, and revealed a slow convergence of order 0.4 in contrast to themore » expected first-order convergence. Sensitivity experiments showed without ambiguity that the time stepping errors in the model were dominated by those from the stratiform cloud parameterizations, in particular the cloud microphysics. This provides a clear guidance for future work on the design of more accurate numerical methods for time stepping and process coupling in the model.« less

  11. Cosmological constraints from the convergence 1-point probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus

    2017-06-29

    Here, we examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast l-picola simulations and a Fisher analysis. We find competitive constraints in the Ωm–σ8 plane from the convergence PDF with 188 arcmin 2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is lessmore » susceptible, and improves the total figure of merit by a factor of 2–3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.« less

  12. Randomized clinical trial of treatments for symptomatic convergence insufficiency in children.

    PubMed

    2008-10-01

    To compare home-based pencil push-ups (HBPP), home-based computer vergence/accommodative therapy and pencil push-ups (HBCVAT+), office-based vergence/accommodative therapy with home reinforcement (OBVAT), and office-based placebo therapy with home reinforcement (OBPT) as treatments for symptomatic convergence insufficiency. In a randomized clinical trial, 221 children aged 9 to 17 years with symptomatic convergence insufficiency were assigned to 1 of 4 treatments. Convergence Insufficiency Symptom Survey score after 12 weeks of treatment. Secondary outcomes were near point of convergence and positive fusional vergence at near. After 12 weeks of treatment, the OBVAT group's mean Convergence Insufficiency Symptom Survey score (15.1) was statistically significantly lower than those of 21.3, 24.7, and 21.9 in the HBCVAT+, HBPP, and OBPT groups, respectively (P < .001). The OBVAT group also demonstrated a significantly improved near point of convergence and positive fusional vergence at near compared with the other groups (P convergence and positive fusional vergence and a greater percentage of patients reaching the predetermined criteria of success compared with HBPP, HBCVAT+, and OBPT. Application to Clinical Practice Office-based vergence accommodative therapy is an effective treatment for children with symptomatic convergence insufficiency. clinicaltrials.gov Identifier: NCT00338611.

  13. Rapid Evaporation in Fuel Injection

    NASA Astrophysics Data System (ADS)

    McCahan, S.; Kessler, C.

    1997-11-01

    Preheating fuel prior to injection through a nozzle can induce a superheated state during expansion. The resulting rapid evaporation improves atomization of the fluid and, therefore, may improve combustion efficiency. A sufficient degree of superheat im posed on a fuel with a high specific heat (retrograde fluid) can theoretically result in complete evaporation. In the work done by Sloss and McCahan (APS/DFD meeting 1996), dodecane, fuel oil, kerosene, and diesel oil were studied. In this continuation of the same study, decane and tetradecane are preheated to temperatures ranging from 20^oC to 330^oC at a p ressure of 10 bar and injected into a chamber at 1 bar. A simple converging nozzle is used. Photographs taken of the resulting sprays are used to determine cone angles and make qualitative observations of droplet size and spray structure.

  14. Convergent evolution of floral signals underlies the success of Neotropical orchids

    PubMed Central

    Papadopulos, Alexander S. T.; Powell, Martyn P.; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A.; Salamin, Nicolas; Chittka, Lars; Williams, Norris H.; Whitten, W. Mark; Loader, Deniz; Valente, Luis M.; Chase, Mark W.; Savolainen, Vincent

    2013-01-01

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry—a form of Batesian mimicry that involves multiple models and is more complex than a simple one model–one mimic system—operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant–animal interactions. PMID:23804617

  15. Generation of cylindrically convergent shockwaves in water on the MACH facility

    NASA Astrophysics Data System (ADS)

    Bland, Simon; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.

    2017-06-01

    We report on the first experiments utilizing MACH facility at Imperial College London to explode copper wire arrays in water, generating extremely symmetric, cylindrical convergent shockwaves. The experiments were carried out with 10mm diameter arrays consisting of 60 × 130 μm wires, and currents >500 kA were achieved despite the high inductance load. Laser backlit framing images and streak photography of the implosion showed a highly uniform, stable shockwave that travelled towards the axis at velocities up to 7.5 kms-1. For the first time, imaging of the shock front has been carried at radii < 0.5 mm, and there is strong evidence that even at radii < 0.1 mm the shock front remains stable, resulting in a convergence ratio of 50:1. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest pressures of >1 Mbar are produced within 10 μm of the axis, with water densities 3 gcm-3 and temperatures of many 1000 s of Kelvin. The results represent a significant step in the application of the technique to drive different material samples, and calculations of scaling the technique to larger pulsed power facilities are presented. This work was supported by the Institute of Shock Physics, funded by AWE Aldermaston, and the NNSA under DOE Cooperative Agreement Nos. DE-F03-02NA00057 and DE-SC-0001063.

  16. Convergent evolution of floral signals underlies the success of Neotropical orchids.

    PubMed

    Papadopulos, Alexander S T; Powell, Martyn P; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A; Salamin, Nicolas; Chittka, Lars; Williams, Norris H; Whitten, W Mark; Loader, Deniz; Valente, Luis M; Chase, Mark W; Savolainen, Vincent

    2013-08-22

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry--a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system--operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.

  17. λ (Δim) -statistical convergence of order α

    NASA Astrophysics Data System (ADS)

    Colak, Rifat; Et, Mikail; Altin, Yavuz

    2017-09-01

    In this study, using the generalized difference operator Δim and a sequence λ = (λn) which is a non-decreasing sequence of positive numbers tending to ∞ such that λn+1 ≤ λn+1, λ1 = 1, we introduce the concepts of λ (Δim) -statistical convergence of order α (α ∈ (0, 1]) and strong λ (Δim) -Cesàro summablility of order α (α > 0). We establish some connections between λ (Δim) -statistical convergence of order α and strong λ (Δim) -Cesàro summablility of order α. It is shown that if a sequence is strongly λ (Δim) -Cesàro summable of order α, then it is λ (Δim) -statistically convergent of order β in case 0 < α ≤ β ≤ 1.

  18. Development of the Scale for "Convergence Thinking" in Engineering

    ERIC Educational Resources Information Center

    Park, Sungmi

    2016-01-01

    Purpose: The purpose of this paper is to define the concept of "convergence thinking" as a trading zone for knowledge fusion in the engineering field, and develops its measuring scale. Design/ Methodology/Approach: Based on results from literature review, this study clarifies a theoretical ground for "convergence thinking."…

  19. Guaranteed convergence of the Hough transform

    NASA Astrophysics Data System (ADS)

    Soffer, Menashe; Kiryati, Nahum

    1995-01-01

    The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the colinearity detection problem to a problem of finding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using fixed scale M-estimation. Unlike standard M-estimation procedures the Hough Transform does not rely on a good initial estimate of the line parameters: The global optimization problem is approached by exhaustive search on a grid that is usually as fine as computationally feasible. The global maximum of a general function above a bounded domain cannot be found by a finite number of function evaluations. Only if sufficient a-priori knowledge about the smoothness of the objective function is available, convergence to the global maximum can be guaranteed. The extraction of a-priori information and its efficient use are the main challenges in real global optimization problems. The global optimization problem in the Hough Transform is essentially how fine should the parameter space quantization be in order not to miss the true maximum. More than thirty years after Hough patented the basic algorithm, the problem is still essentially open. In this paper an attempt is made to identify a-priori information on the smoothness of the objective (Hough) function and to introduce sufficient conditions for the convergence of the Hough Transform to the global maximum. An image model with several application dependent parameters is defined. Edge point location errors as well as background noise are accounted for. Minimal parameter space quantization intervals that guarantee convergence are obtained. Focusing policies for multi-resolution Hough algorithms are developed. Theoretical support for bottom- up processing is provided. Due to the randomness of errors and noise, convergence guarantees are probabilistic.

  20. On the Conservation and Convergence to Weak Solutions of Global Schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Shu, Chi-Wang

    2001-01-01

    In this paper we discuss the issue of conservation and convergence to weak solutions of several global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere, will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning conservative schemes.

  1. Influence of Role-Switching on Phonetic Convergence in Conversation

    ERIC Educational Resources Information Center

    Pardo, Jennifer S.; Jay, Isabel Cajori; Hoshino, Risa; Hasbun, Sara Maria; Sowemimo-Coker, Chantal; Krauss, Robert M.

    2013-01-01

    The current study examined phonetic convergence when talkers alternated roles during conversational interaction. The talkers completed a map navigation task in which they alternated instruction Giver and Receiver roles across multiple map pairs. Previous studies found robust effects of the role of a talker on phonetic convergence, and it was…

  2. Experimental assessment of oral hygiene achieved by children wearing rapid palatal expanders, comparing manual and electric toothbrushes.

    PubMed

    Mazzoleni, S; Bonaldo, G; Pontarolo, E; Zuccon, A; De Francesco, M; Stellini, E

    2014-08-01

    The aim was to compare the efficacy of the electric versus the manual toothbrush in terms of the oral hygiene achieved by patients wearing rapid palatal expanders (RPEs). Forty patients were randomly divided into two groups; one equipped with a manual toothbrush (Group A), the other with an electric toothbrush (Group B). Each child's plaque index (PI) and gingival index (GI) were calculated at banded molar level at times T0 (before banding), T1 (a month later), T2 (3 months later) and T3 (when the expander was removed). At each appointment, the PI and GI were recorded and the patient was remotivated. The level of oral hygiene achieved by the group using an electric toothbrush produced a greater improvement in the two indexes than in the group using the manual toothbrush that showed no statistically significant improvement (PI T0-T3: P = 0.309; GI T0-T3: P = 0.141). Both indexes dropped considerably in both groups from T0 to T2, but more so in the group B. From T2 to T3, although the electric toothbrush continued to be substantially more effective, Group B showed a statistically significant deterioration in the oral hygiene (PI +20%; GI +33%). Other assessments conducted on particular areas of the tooth showed improvements in the PI (-33%) for the vestibular region, and for the GI (-57%) in the palatal region among the patients in Group B, while there were no significant changes in these indexes in Group A. Our findings show that the electric toothbrush is statistically more efficient in performing an adequate level of oral hygiene in children wearing RPE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Drushka, K.; Thompson, L.

    2015-12-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  4. Particle Acceleration in Two Converging Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Wang, Na; Shan, Hao

    2017-06-20

    Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlomore » method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.« less

  5. Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.

  6. The convergence of Chinese county government health expenditures: capitation and contribution.

    PubMed

    Zhang, Guoying; Zhang, Luwen; Wu, Shaolong; Xia, Xiaoqiong; Lu, Liming

    2016-08-19

    The disparity between government health expenditures across regions is more severe in developing countries than it is in developed countries. The capitation subsidy method has been proven effective in developed countries in reducing this disparity, but it has not been tested in China, the world's largest developing country. The convergence method of neoclassical economics was adopted to test the convergence of China's regional government health expenditure. Data were obtained from Provinces, Prefectures and Counties Fiscal Statistical Yearbook (2003-2007) edited by the Chinese Ministry of Finance, and published by the Chinese Finance & Economics Publishing House. The existence of σ-convergence and long-term and short-term β-convergence indicated the effectiveness of the capitation subsidy method in the New Rural Cooperative Medical Scheme on narrowing county government health expenditure disparities. The supply-side variables contributed the most to the county government health expenditure convergence, and factors contributing to convergence of county government health expenditures per capita were different in three regions. The narrowing disparity between county government health expenditures across regions supports the effectiveness of the capitation subsidy method adopted by China's New Rural Cooperative Scheme. However, subsidy policy still requires further improvement.

  7. Trophic divergence despite morphological convergence in a continental radiation of snakes.

    PubMed

    Grundler, Michael C; Rabosky, Daniel L

    2014-07-22

    Ecological and phenotypic convergence is a potential outcome of adaptive radiation in response to ecological opportunity. However, a number of factors may limit convergence during evolutionary radiations, including interregional differences in biogeographic history and clade-specific constraints on form and function. Here, we demonstrate that a single clade of terrestrial snakes from Australia--the oxyuranine elapids--exhibits widespread morphological convergence with a phylogenetically diverse and distantly related assemblage of snakes from North America. Australian elapids have evolved nearly the full spectrum of phenotypic modalities that occurs among North American snakes. Much of the convergence appears to involve the recurrent evolution of stereotyped morphologies associated with foraging mode, locomotion and habitat use. By contrast, analysis of snake diets indicates striking divergence in feeding ecology between these faunas, partially reflecting regional differences in ecological allometry between Australia and North America. Widespread phenotypic convergence with the North American snake fauna coupled with divergence in feeding ecology are clear examples of how independent continental radiations may converge along some ecological axes yet differ profoundly along others. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. The convergence rate of approximate solutions for nonlinear scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Nessyahu, Haim; Tadmor, Eitan

    1991-01-01

    The convergence rate is discussed of approximate solutions for the nonlinear scalar conservation law. The linear convergence theory is extended into a weak regime. The extension is based on the usual two ingredients of stability and consistency. On the one hand, the counterexamples show that one must strengthen the linearized L(sup 2)-stability requirement. It is assumed that the approximate solutions are Lip(sup +)-stable in the sense that they satisfy a one-sided Lipschitz condition, in agreement with Oleinik's E-condition for the entropy solution. On the other hand, the lack of smoothness requires to weaken the consistency requirement, which is measured in the Lip'-(semi)norm. It is proved for Lip(sup +)-stable approximate solutions, that their Lip'convergence rate to the entropy solution is of the same order as their Lip'-consistency. The Lip'-convergence rate is then converted into stronger L(sup p) convergence rate estimates.

  9. Convergence of a Catalan Series

    ERIC Educational Resources Information Center

    Koshy, Thomas; Gao, Zhenguang

    2012-01-01

    This article studies the convergence of the infinite series of the reciprocals of the Catalan numbers. We extract the sum of the series as well as some related ones, illustrating the power of the calculus in the study of the Catalan numbers.

  10. Changes in stimulus and response AC/A ratio with vision therapy in Convergence Insufficiency.

    PubMed

    Singh, Neeraj Kumar; Mani, Revathy; Hussaindeen, Jameel Rizwana

    To evaluate the changes in the stimulus and response Accommodative Convergence to Accommodation (AC/A) ratio following vision therapy (VT) in Convergence Insufficiency (CI). Stimulus and response AC/A ratio were measured on twenty five CI participants, pre and post 10 sessions of VT. Stimulus AC/A ratio was measured using the gradient method and response AC/A ratio was calculated using modified Thorington technique with accommodative responses measured using WAM-5500 open-field autorefractor. The gradient stimulus and response AC/A cross-link ratios were compared with thirty age matched controls. Mean age of the CI and control participants were 23.3±5.2 years and 22.7±4.2 years, respectively. The mean stimulus and response AC/A ratio for CI pre therapy was 2.2±0.72 and 6.3±2.0 PD/D that changed to 4.2±0.9 and 8.28±3.31 PD/D respectively post vision therapy and these changes were statistically significant (paired t-test; p<0.001). The mean stimulus and response AC/A ratio for controls was 3.1±0.81 and 8.95±2.5 PD/D respectively. Stimulus and response AC/A ratio increased following VT, accompanied by clinically significant changes in vergence and accommodation parameters in subjects with convergence insufficiency. This represents the plasticity of the AC/A crosslink ratios that could be achieved with vision therapy in CI. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  11. Health status convergence at the local level: empirical evidence from Austria

    PubMed Central

    2011-01-01

    Introduction Health is an important dimension of welfare comparisons across individuals, regions and states. Particularly from a long-term perspective, within-country convergence of the health status has rarely been investigated by applying methods well established in other scientific fields. In the following paper we study the relation between initial levels of the health status and its improvement at the local community level in Austria in the time period 1969-2004. Methods We use age standardized mortality rates from 2381 Austrian communities as an indicator for the health status and analyze the convergence/divergence of overall mortality for (i) the whole population, (ii) females, (iii) males and (iv) the gender mortality gap. Convergence/Divergence is studied by applying different concepts of cross-regional inequality (weighted standard deviation, coefficient of variation, Theil-Coefficient of inequality). Various econometric techniques (weighted OLS, Quantile Regression, Kendall's Rank Concordance) are used to test for absolute and conditional beta-convergence in mortality. Results Regarding sigma-convergence, we find rather mixed results. While the weighted standard deviation indicates an increase in equality for all four variables, the picture appears less clear when correcting for the decreasing mean in the distribution. However, we find highly significant coefficients for absolute and conditional beta-convergence between the periods. While these results are confirmed by several robustness tests, we also find evidence for the existence of convergence clubs. Conclusions The highly significant beta-convergence across communities might be caused by (i) the efforts to harmonize and centralize the health policy at the federal level in Austria since the 1970s, (ii) the diminishing returns of the input factors in the health production function, which might lead to convergence, as the general conditions (e.g. income, education etc.) improve over time, and (iii

  12. Projected Response of Low-Level Convergence and Associated Precipitation to Greenhouse Warming

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Jakob, Christian; Reeder, Michael J.

    2017-10-01

    The parameterization of convection in climate models is a large source of uncertainty in projecting future precipitation changes. Here an objective method to identify organized low-level convergence lines has been used to better understand how atmospheric convection is organized and projected to change, as low-level convergence plays an important role in the processes leading to precipitation. The frequency and strength of convergence lines over both ocean and land in current climate simulations is too low compared to reanalysis data. Projections show a further reduction in the frequency and strength of convergence lines over the midlatitudes. In the tropics, the largest changes in frequency are generally associated with shifts in major low-latitude convergence zones, consistent with changes in the precipitation. Further, examining convergence lines when in the presence or absence of precipitation results in large spatial contrasts, providing a better understanding of regional changes in terms of thermodynamic and dynamic effects.

  13. Convergence behavior of the random phase approximation renormalized correlation energy

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn

    2017-05-01

    Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.

  14. Rapid Expectation Adaptation during Syntactic Comprehension

    PubMed Central

    Fine, Alex B.; Jaeger, T. Florian; Farmer, Thomas A.; Qian, Ting

    2013-01-01

    When we read or listen to language, we are faced with the challenge of inferring intended messages from noisy input. This challenge is exacerbated by considerable variability between and within speakers. Focusing on syntactic processing (parsing), we test the hypothesis that language comprehenders rapidly adapt to the syntactic statistics of novel linguistic environments (e.g., speakers or genres). Two self-paced reading experiments investigate changes in readers’ syntactic expectations based on repeated exposure to sentences with temporary syntactic ambiguities (so-called “garden path sentences”). These sentences typically lead to a clear expectation violation signature when the temporary ambiguity is resolved to an a priori less expected structure (e.g., based on the statistics of the lexical context). We find that comprehenders rapidly adapt their syntactic expectations to converge towards the local statistics of novel environments. Specifically, repeated exposure to a priori unexpected structures can reduce, and even completely undo, their processing disadvantage (Experiment 1). The opposite is also observed: a priori expected structures become less expected (even eliciting garden paths) in environments where they are hardly ever observed (Experiment 2). Our findings suggest that, when changes in syntactic statistics are to be expected (e.g., when entering a novel environment), comprehenders can rapidly adapt their expectations, thereby overcoming the processing disadvantage that mistaken expectations would otherwise cause. Our findings take a step towards unifying insights from research in expectation-based models of language processing, syntactic priming, and statistical learning. PMID:24204909

  15. Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis

    NASA Astrophysics Data System (ADS)

    Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.

    2014-04-01

    A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.

  16. Rapid and Controlled In Situ Growth of Noble Metal Nanostructures within Halloysite Clay Nanotubes.

    PubMed

    Rostamzadeh, Taha; Islam Khan, Md Shahidul; Riche', Kyle; Lvov, Yuri M; Stavitskaya, Anna V; Wiley, John B

    2017-11-14

    A rapid (≤2 min) and high-yield low-temperature synthesis has been developed for the in situ growth of gold nanoparticles (NPs) with controlled sizes in the interior of halloysite nanotubes (HNTs). A combination of HAuCl 4 in ethanol/toluene, oleic acid, and oleylamine surfactants and ascorbic acid reducing agent with mild heating (55 °C) readily lead to the growth of targeted nanostructures. The sizes of Au NPs are tuned mainly by adjusting nucleation and growth rates. Further modification of the process, through an increase in ascorbic acid, allows for the formation of nanorods (NRs)/nanowires within the HNTs. This approach is not limited to gold-a modified version of this synthetic strategy can also be applied to the formation of Ag NPs and NRs within the clay nanotubes. The ability to readily grow such core-shell nanosystems is important to their further development as nanoreactors and active catalysts. NPs within the tube interior can further be manipulated by the electron beam. Growth of Au and Ag could be achieved under a converged electron beam suggesting that both Au@HNT and Ag@HNT systems can be used for the fundamental studies of NP growth/attachment.

  17. Auto-converging stereo cameras for 3D robotic tele-operation

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  18. Convergence in Reports of Adolescents' Psychopathology: A Focus on Disorganized Attachment and Reflective Functioning.

    PubMed

    Borelli, Jessica L; Palmer, Alexandra; Vanwoerden, Salome; Sharp, Carla

    2017-12-13

    Although convergence in parent-youth reports of adolescent psychopathology is critical for treatment planning, research documents a pervasive lack of agreement in ratings of adolescents' symptoms. Attachment insecurity (particularly disorganized attachment) and impoverished reflective functioning (RF) are 2 theoretically implicated predictors of low convergence that have not been examined in the literature. In a cross-sectional investigation of adolescents receiving inpatient psychiatric treatment, we examined whether disorganized attachment and low (adolescent and parent) RF were associated with patterns of convergence in adolescent internalizing and externalizing symptoms. Compared with organized adolescents, disorganized adolescents had lower parent-youth convergence in reports of their internalizing symptoms and higher convergence in reports of their externalizing symptoms; low adolescent self-focused RF was associated with low convergence in parent-adolescent reports of internalizing symptoms, whereas low adolescent global RF was associated with high convergence in parent-adolescent reports of externalizing symptoms. Among adolescents receiving inpatient psychiatric treatment, disorganized attachment and lower RF were associated with weaker internalizing symptom convergence and greater externalizing symptom convergence, which if replicated, could inform assessment strategies and treatment planning in this setting.

  19. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  20. Probing dark energy using convergence power spectrum and bi-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  1. Isotropy analyses of the Planck convergence map

    NASA Astrophysics Data System (ADS)

    Marques, G. A.; Novaes, C. P.; Bernui, A.; Ferreira, I. S.

    2018-01-01

    The presence of matter in the path of relic photons causes distortions in the angular pattern of the cosmic microwave background (CMB) temperature fluctuations, modifying their properties in a slight but measurable way. Recently, the Planck Collaboration released the estimated convergence map, an integrated measure of the large-scale matter distribution that produced the weak gravitational lensing (WL) phenomenon observed in Planck CMB data. We perform exhaustive analyses of this convergence map calculating the variance in small and large regions of the sky, but excluding the area masked due to Galactic contaminations, and compare them with the features expected in the set of simulated convergence maps, also released by the Planck Collaboration. Our goal is to search for sky directions or regions where the WL imprints anomalous signatures to the variance estimator revealed through a χ2 analyses at a statistically significant level. In the local analysis of the Planck convergence map, we identified eight patches of the sky in disagreement, in more than 2σ, with what is observed in the average of the simulations. In contrast, in the large regions analysis we found no statistically significant discrepancies, but, interestingly, the regions with the highest χ2 values are surrounding the ecliptic poles. Thus, our results show a good agreement with the features expected by the Λ cold dark matter concordance model, as given by the simulations. Yet, the outliers regions found here could suggest that the data still contain residual contamination, like noise, due to over- or underestimation of systematic effects in the simulation data set.

  2. Ocean convergence and the dispersion of flotsam

    PubMed Central

    Shcherbina, Andrey Y.; Klymak, Jody M.; Molemaker, Jeroen; Guigand, Cédric M.; Haza, Angelique C.; Haus, Brian K.; Ryan, Edward H.; Jacobs, Gregg A.; Huntley, Helga S.; Chen, Shuyi; McWilliams, James C.; Barkan, Roy; Kirwan, A. D.; Poje, Andrew C.; Özgökmen, Tamay M.

    2018-01-01

    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material. PMID:29339497

  3. Dental Students’ Educational Achievement in Relation to Their Learning Styles: A Cross-sectional Study in Iran

    PubMed Central

    Hosseini, Seyed Masoud; Amery, Hamideh; Emadzadeh, Ali; Babazadeh, Saber

    2015-01-01

    Background and Objectives: In recent decades, many studies have been carried out on the importance of Kolb experiential learning theory (ELT) in teaching-learning processes and its effect on learning outcomes. However, some experts have criticized the Kolb theory and argue that there are some ambiguities on the validity of the theory as an important predictor of achievement. This study has been carried out on dental students’ educational achievement in relation to their dominant learning styles based on Kolb theory in Mashhad University of Medical Sciences (Iran). Methods: In a cross sectional study, Kolb Learning Style Inventory (LSI Ver. 3.1) as well as a questionnaire containing students’ demographic data, academic achievement marks including grade point average (GPA), theoretical and practical courses marks, and the comprehensive basic sciences exam (CBSE) scores were administered on a purposive sample of 162 dental students who had passed their comprehensive basic sciences exam. Educational achievement data were analyzed in relation to students’ dominant learning styles, using descriptive and analytical statistics including χ2, Kruskal-Wallis and two-way ANOVA tests. Results: The dominant learning styles of students were Assimilating (53.1%), Converging (24.1%), Diverging (14.2%) and Accommodating (8.6%). Although, the students with Assimilating and Converging learning styles had a better performance on their educational achievement, there was no significant relationship between educational achievement and dominant learning style (P≥0.05). Conclusion: Findings support that the dominant learning style is not exclusively an essential factor to predict educational achievement. Rather, it shows learning preferences of students that may be considered in designing learning opportunities by the teachers. PMID:26156915

  4. Emotional convergence between people over time.

    PubMed

    Anderson, Cameron; Keltner, Dacher; John, Oliver P

    2003-05-01

    The authors propose that people in relationships become emotionally similar over time--as this similarity would help coordinate the thoughts and behaviors of the relationship partners, increase their mutual understanding, and foster their social cohesion. Using laboratory procedures to induce and assess emotional response, the authors found that dating partners (Study 1) and college roommates (Studies 2 and 3) became more similar in their emotional responses over the course of a year. Further, relationship partners with less power made more of the change necessary for convergence to occur. Consistent with the proposed benefits of emotional similarity, relationships whose partners were more emotionally similar were more cohesive and less likely to dissolve. Discussion focuses on implications of emotional convergence and on potential mechanisms.

  5. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies

    PubMed Central

    Lee, Woo Jin; Lee, Won Kyung

    2016-01-01

    Because of the remarkable developments in robotics in recent years, technological convergence has been active in this area. We focused on finding patterns of convergence within robot technology using network analysis of patents in both the USPTO and KIPO. To identify the variables that affect convergence, we used quadratic assignment procedures (QAP). From our analysis, we observed the patent network ecology related to convergence and found technologies that have great potential to converge with other robotics technologies. The results of our study are expected to contribute to setting up convergence based R&D policies for robotics, which can lead new innovation. PMID:27764196

  6. Globally convergent techniques in nonlinear Newton-Krylov

    NASA Technical Reports Server (NTRS)

    Brown, Peter N.; Saad, Youcef

    1989-01-01

    Some convergence theory is presented for nonlinear Krylov subspace methods. The basic idea of these methods is to use variants of Newton's iteration in conjunction with a Krylov subspace method for solving the Jacobian linear systems. These methods are variants of inexact Newton methods where the approximate Newton direction is taken from a subspace of small dimensions. The main focus is to analyze these methods when they are combined with global strategies such as linesearch techniques and model trust region algorithms. Most of the convergence results are formulated for projection onto general subspaces rather than just Krylov subspaces.

  7. Short‐term time step convergence in a climate model

    PubMed Central

    Rasch, Philip J.; Taylor, Mark A.; Jablonowski, Christiane

    2015-01-01

    Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral‐element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process‐coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid‐scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full‐physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid‐scale physical parameterizations, the stratiform cloud schemes are associated with the largest time‐stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time‐stepping errors and identify the related model sensitivities. PMID:27660669

  8. Crustal motion studies in the southwest Pacific: Geodetic measurements of plate convergence in Tonga, Vanuatu and the Solomon Islands

    NASA Astrophysics Data System (ADS)

    Phillips, David A.

    The southwest Pacific is one of the most tectonically dynamic regions on Earth. This research focused on crustal motion studies in three regions of active Pacific-Australia plate convergence in the southwest Pacific: Tonga, the New Hebrides (Vanuatu) and the Solomons Islands. In Tonga, new and refined velocity estimates based on more than a decade of Global Positioning System (GPS) measurements and advanced analysis techniques are much more accurate than previously reported values. Convergence rates of 80 to 165 mm/yr at the Tonga trench represent the fastest plate motions observed on Earth. For the first time, rotation of the Fiji platform relative to the Australian plate is observed, and anomalous deformation of the Tonga ridge was also detected. In the New Hebrides, a combined GPS dataset with a total time series of more than ten years led to new and refined velocity estimates throughout the island arc. Impingement of large bathymetric features has led to arc fragmentation, and four distinct tectonic segments are identified. The central New Hebrides arc segment is being shoved eastward relative to the rest of the arc as convergence is partitioned between the forearc (Australian plate) and the backarc (North Fiji Basin) boundaries due to impingement of the d'Entrecasteaux Ridge and associated Bougainville seamount. The southern New Hebrides arc converges with the Australian plate more rapidly than predicted due to backarc extension. The first measurements of convergence in the northern and southernmost arc segments were also made. In the Solomon Islands, a four-year GPS time series was used to generate the first geodetic estimates of crustal velocity in the New Georgia Group, with 57--84 mm/yr of Australia-Solomon motion and 19--39 mm/yr of Pacific-Solomon motion being observed. These velocities are 20--40% lower than predicted Australia-Pacific velocities. Two-dimensional dislocation models suggest that most of this discrepancy can be attributed to locking of

  9. Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots

    PubMed Central

    Sánchez-Baracaldo, Patricia; Thomas, Gavin H.

    2014-01-01

    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot. PMID:25340770

  10. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum

    PubMed Central

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904

  11. Adaptation and convergent evolution within the Jamesonia-Eriosorus complex in high-elevation biodiverse Andean hotspots.

    PubMed

    Sánchez-Baracaldo, Patricia; Thomas, Gavin H

    2014-01-01

    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.

  12. Is Expenditure on Higher Education Per Student Converging across EU-15 Countries?

    ERIC Educational Resources Information Center

    Agasisti, Tommaso; Perez-Esparrells, Carmen; Catalano, Giuseppe; Morales, Susana

    2012-01-01

    This article examines the trend in expenditure per student at higher education institutions in the EU-15 countries, during the period 1998-2006. The results show that there was a tendency towards convergence (as measured by sigma and beta convergence analysis). The ratio of convergence is higher after 2001, suggesting that the implementation of…

  13. Paths of convergence for agriculture, health, and wealth.

    PubMed

    Dubé, Laurette; Pingali, Prabhu; Webb, Patrick

    2012-07-31

    This special feature calls for forward thinking around paths of convergence for agriculture, health, and wealth. Such convergence aims for a richer integration of smallholder farmers into national and global agricultural and food systems, health systems, value chains, and markets. The articles identify analytical innovation, where disciplines intersect, and cross-sectoral action where single, linear, and siloed approaches have traditionally dominated. The issues addressed are framed by three main themes: (i) lessons related to agricultural and food market growth since the 1960s; (ii) experiences related to the integration of smallholder agriculture into national and global business agendas; and (iii) insights into convergence-building institutional design and policy, including a review of complexity science methods that can inform such processes. In this introductory article, we first discuss the perspectives generated for more impactful policy and action when these three themes converge. We then push thematic boundaries to elaborate a roadmap for a broader, solution-oriented, and transdisciplinary approach to science, policies, and actions. As the global urban population crosses the 50% mark, both smallholder and nonsmallholder agriculture are keys in forging rural-urban links, where both farm and nonfarm activities contribute to sustainable nutrition security. The roadmaps would harness the power of business to reduce hunger and poverty for millions of families, contribute to a better alignment between human biology and modern lifestyles, and stem the spread of noncommunicable chronic diseases.

  14. Beyond assemblies: system convergence and multi-materiality.

    PubMed

    Wiscombe, Tom

    2012-03-01

    The architectural construction industry has become increasingly more specialized over the past 50 years, creating a culture of layer thinking over part-to-whole thinking. Building systems and technologies are often cobbled together in conflicting and uncorrelated ways, even when referred to as 'integrated', such as by way of building information modeling. True integration of building systems requires rethinking how systems and architectural morphologies can push and pull on one another, creating not only innovation in technology but in aesthetics. The revolution in composite materials, with unprecedented plasticity and performance features, opens up a huge range of possibilities for achieving this kind of convergence. Composites by nature fuse envelope and structure, but through various types of inflections, they can also be made to conduct air and fluids through cavities and de-laminations, as well as integrate lighting and energy systems. Assembly as we know it moves away from mineral materials and hardware and toward polymers and 'healing'. Further, when projected into the near-future realm of multi-materiality and 3D manufacturing, possibilities for embedding systems and creating gradients of rigidity and opacity open up, pointing to an entirely new realm of architectural thinking.

  15. Research on microbial microenvironments in soils: Convergence of approaches and a look ahead

    NASA Astrophysics Data System (ADS)

    Baveye, Philippe C.

    2017-04-01

    Over the last 10 years, a significant body of research has been devoted to the analysis, at the microscopic scale, of a variety of soil processes, and of the physical, chemical, and microbiological parameters that affect them. When this work was initiated, a decade ago, it was clear at least to some of us that different experimental and modeling approaches should be adopted, and that advances would be achieved through the convergence of these different approaches. As work progresses and as we meet further challenges with each line of research, it is easy to forget what we thought the points of convergence should be, and to lose track of the ultimate goals of the research. In this "philosophical" talk, I would like to put things back in context, describe the bigger picture of the microscale research on soil processes, propose an overview of the state-of-the-science, and discuss what perspectives are afforded by recent technological and computational developments in the field. I will argue that by having a clear set of questions to be answered, a well-thought-out program to address these questions, and a lucid perspective on where we are along the path, it will be easier to attract support for our efforts.

  16. Convergence and determinants of health expenditures in OECD countries.

    PubMed

    Nghiem, Son Hong; Connelly, Luke Brian

    2017-08-17

    This study examines the trend and determinants of health expenditures in OECD countries over the 1975-2004 period. Based on recent developments in the economic growth literature we propose and test the hypothesis that health care expenditures in countries of similar economic development level may converge. We hypothesise that the main drivers for growth in health care costs include: aging population, technological progress and health insurance. The results reveal no evidence that health expenditures among OECD countries converge. Nevertheless, there is evidence of convergence among three sub-groups of countries. We found that the main driver of health expenditure is technological progress. Our results also suggest that health care is a (national) necessity, not a luxury good as some other studies in this field have found.

  17. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  18. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    NASA Astrophysics Data System (ADS)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  19. Ecomorphological convergence in planktivorous surgeonfishes.

    PubMed

    Friedman, S T; Price, S A; Hoey, A S; Wainwright, P C

    2016-05-01

    Morphological convergence plays a central role in the study of evolution. Often induced by shared ecological specialization, homoplasy hints at underlying selective pressures and adaptive constraints that deterministically shape the diversification of life. Although midwater zooplanktivory has arisen in adult surgeonfishes (family Acanthuridae) at least four independent times, it represents a clearly specialized state, requiring the capacity to swiftly swim in midwater locating and sucking small prey items. Whereas this diet has commonly been associated with specific functional adaptations in fishes, acanthurids present an interesting case study as all nonplanktivorous species feed by grazing on benthic algae and detritus, requiring a vastly different functional morphology that emphasizes biting behaviours. We examined the feeding morphology in 30 acanthurid species and, combined with a pre-existing phylogenetic tree, compared the fit of evolutionary models across two diet regimes: zooplanktivores and nonzooplanktivorous grazers. Accounting for phylogenetic relationships, the best-fitting model indicates that zooplanktivorous species are converging on a separate adaptive peak from their grazing relatives. Driving this bimodal landscape, zooplanktivorous acanthurids tend to develop a slender body, reduced facial features, smaller teeth and weakened jaw adductor muscles. However, despite these phenotypic changes, model fitting suggests that lineages have not yet reached the adaptive peak associated with plankton feeding even though some transitions appear to be over 10 million years old. These findings demonstrate that the selective demands of pelagic feeding promote repeated - albeit very gradual - ecomorphological convergence within surgeonfishes, while allowing local divergences between closely related species, contributing to the overall diversity of the clade. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European

  20. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  1. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  2. Algorithms in nature: the convergence of systems biology and computational thinking

    PubMed Central

    Navlakha, Saket; Bar-Joseph, Ziv

    2011-01-01

    Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists rely on computational methods to analyze and integrate large data sets, while several computational methods were inspired by the high-level design principles of biological systems. Recently, these two directions have been converging. In this review, we argue that thinking computationally about biological processes may lead to more accurate models, which in turn can be used to improve the design of algorithms. We discuss the similar mechanisms and requirements shared by computational and biological processes and then present several recent studies that apply this joint analysis strategy to problems related to coordination, network analysis, and tracking and vision. We also discuss additional biological processes that can be studied in a similar manner and link them to potential computational problems. With the rapid accumulation of data detailing the inner workings of biological systems, we expect this direction of coupling biological and computational studies to greatly expand in the future. PMID:22068329

  3. Converging migration routes of Eurasian hobbies Falco subbuteo crossing the African equatorial rain forest

    PubMed Central

    Strandberg, Roine; Klaassen, Raymond H.G.; Hake, Mikael; Olofsson, Patrik; Alerstam, Thomas

    2008-01-01

    Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1° S, 15° E). The birds migrated south or southwest to approximately 10° N, where they changed to south-easterly courses. The maximal spread between routes at 10° N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15° E, similar to the hobbies, or at 30–40° E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems. PMID:18986977

  4. Ocean convergence and the dispersion of flotsam.

    PubMed

    D'Asaro, Eric A; Shcherbina, Andrey Y; Klymak, Jody M; Molemaker, Jeroen; Novelli, Guillaume; Guigand, Cédric M; Haza, Angelique C; Haus, Brian K; Ryan, Edward H; Jacobs, Gregg A; Huntley, Helga S; Laxague, Nathan J M; Chen, Shuyi; Judt, Falco; McWilliams, James C; Barkan, Roy; Kirwan, A D; Poje, Andrew C; Özgökmen, Tamay M

    2018-02-06

    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km 2 converged into a 60 × 60 m region within a week, a factor of more than 10 5 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s -1 and 0.01 ms -1 , respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material. Copyright © 2018 the Author(s). Published by PNAS.

  5. Energy-efficient virtual optical network mapping approaches over converged flexible bandwidth optical networks and data centers.

    PubMed

    Chen, Bowen; Zhao, Yongli; Zhang, Jie

    2015-09-21

    In this paper, we develop a virtual link priority mapping (LPM) approach and a virtual node priority mapping (NPM) approach to improve the energy efficiency and to reduce the spectrum usage over the converged flexible bandwidth optical networks and data centers. For comparison, the lower bound of the virtual optical network mapping is used for the benchmark solutions. Simulation results show that the LPM approach achieves the better performance in terms of power consumption, energy efficiency, spectrum usage, and the number of regenerators compared to the NPM approach.

  6. Accelerated convergence for synchronous approximate agreement

    NASA Technical Reports Server (NTRS)

    Kearns, J. P.; Park, S. K.; Sjogren, J. A.

    1988-01-01

    The protocol for synchronous approximate agreement presented by Dolev et. al. exhibits the undesirable property that a faulty processor, by the dissemination of a value arbitrarily far removed from the values held by good processors, may delay the termination of the protocol by an arbitrary amount of time. Such behavior is clearly undesirable in a fault tolerant dynamic system subject to hard real-time constraints. A mechanism is presented by which editing data suspected of being from Byzantine-failed processors can lead to quicker, predictable, convergence to an agreement value. Under specific assumptions about the nature of values transmitted by failed processors relative to those transmitted by good processors, a Monte Carlo simulation is presented whose qualitative results illustrate the trade-off between accelerated convergence and the accuracy of the value agreed upon.

  7. Converging Instructional Technology and Critical Intercultural Pedagogy in Teacher Education

    ERIC Educational Resources Information Center

    Pittman, Joyce

    2007-01-01

    Purpose: This paper aims to postulate an emerging unified cultural-convergence framework to converge the delivery of instructional technology and intercultural education (ICE) that extends beyond web-learning technologies to inculcate inclusive pedagogy in teacher education. Design/methodology/approach: The paper explores the literature and a…

  8. Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid

    PubMed Central

    Pankey, M. Sabrina; Minin, Vladimir N.; Imholte, Greg C.; Suchard, Marc A.; Oakley, Todd H.

    2014-01-01

    Despite contingency in life’s history, the similarity of evolutionarily convergent traits may represent predictable solutions to common conditions. However, the extent to which overall gene expression levels (transcriptomes) underlying convergent traits are themselves convergent remains largely unexplored. Here, we show strong statistical support for convergent evolutionary origins and massively parallel evolution of the entire transcriptomes in symbiotic bioluminescent organs (bacterial photophores) from two divergent squid species. The gene expression similarities are so strong that regression models of one species’ photophore can predict organ identity of a distantly related photophore from gene expression levels alone. Our results point to widespread parallel changes in gene expression evolution associated with convergent origins of complex organs. Therefore, predictable solutions may drive not only the evolution of novel, complex organs but also the evolution of overall gene expression levels that underlie them. PMID:25336755

  9. Methods for converging correlation energies within the dielectric matrix formalism

    NASA Astrophysics Data System (ADS)

    Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario

    2018-03-01

    Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.

  10. Effects of heterogeneous convergence rate on consensus in opinion dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Changwei; Dai, Qionglin; Han, Wenchen; Feng, Yuee; Cheng, Hongyan; Li, Haihong

    2018-06-01

    The Deffuant model has attracted much attention in the study of opinion dynamics. Here, we propose a modified version by introducing into the model a heterogeneous convergence rate which is dependent on the opinion difference between interacting agents and a tunable parameter κ. We study the effects of heterogeneous convergence rate on consensus by investigating the probability of complete consensus, the size of the largest opinion cluster, the number of opinion clusters, and the relaxation time. We find that the decrease of the convergence rate is favorable to decreasing the confidence threshold for the population to always reach complete consensus, and there exists optimal κ resulting in the minimal bounded confidence threshold. Moreover, we find that there exists a window before the threshold of confidence in which complete consensus may be reached with a nonzero probability when κ is not too large. We also find that, within a certain confidence range, decreasing the convergence rate will reduce the relaxation time, which is somewhat counterintuitive.

  11. Mobile eHealth interventions for obesity: a timely opportunity to leverage convergence trends.

    PubMed

    Tufano, James T; Karras, Bryant T

    2005-12-20

    Obesity is often cited as the most prevalent chronic health condition and highest priority public health problem in the United States. There is a limited but growing body of evidence suggesting that mobile eHealth behavioral interventions, if properly designed, may be effective in promoting and sustaining successful weight loss and weight maintenance behavior changes. This paper reviews the current literature on the successes and failures of public health, provider-administered, and self-managed behavioral health interventions for weight loss. The prevailing theories of health behavior change are discussed from the perspective of how this knowledge can serve as an evidence base to inform the design of mobile eHealth weight loss interventions. Tailored informational interventions, which, in recent years, have proven to be the most effective form of conventional health behavior intervention for weight loss, are discussed. Lessons learned from the success of conventional tailored informational interventions and the early successes of desktop computer-assisted self-help weight management interventions are presented, as are design principles suggested by Social Cognitive Theory and the Social Marketing Model. Relevant computing and communications technology convergence trends are also discussed. The recent trends in rapid advancement, convergence, and public adoption of Web-enabled cellular telephone and wireless personal digital assistant (PDA) devices provide timely opportunities to deliver the mass customization capabilities, reach, and interactivity required for the development, administration, and adoption of effective population-level eHealth tailored informational interventions for obesity.

  12. Stochastic model of cell rearrangements in convergent extension of ascidian notochord

    NASA Astrophysics Data System (ADS)

    Lubkin, Sharon; Backes, Tracy; Latterman, Russell; Small, Stephen

    2007-03-01

    We present a discrete stochastic cell based model of convergent extension of the ascidian notochord. Our work derives from research that clarifies the coupling of invagination and convergent extension in ascidian notochord morphogenesis (Odell and Munro, 2002). We have tested the roles of cell-cell adhesion, cell-extracellular matrix adhesion, random motion, and extension of individual cells, as well as the presence or absence of various tissue types, and determined which factors are necessary and/or sufficient for convergent extension.

  13. Evaluating Convergent and Discriminant Validity of Temperament Questionnaires for Preschoolers, Toddlers, and Infants.

    ERIC Educational Resources Information Center

    Goldsmith, H. H.; And Others

    1991-01-01

    Examined convergent and discriminant validity of eight widely used preschooler, toddler, and infant temperament questionnaires. There was surprisingly strong evidence for convergence among scales intended to measure similar concepts, with most convergent validity coefficients falling in the .50s, .60s, and .70s. (SH)

  14. Generation of anisotropy in turbulent flows subjected to rapid distortion

    NASA Astrophysics Data System (ADS)

    Clark, Timothy T.; Kurien, Susan; Rubinstein, Robert

    2018-01-01

    A computational tool for the anisotropic time-evolution of the spectral velocity correlation tensor is presented. We operate in the linear, rapid distortion limit of the mean-field-coupled equations. Each term of the equations is written in the form of an expansion to arbitrary order in the basis of irreducible representations of the SO(3) symmetry group. The computational algorithm for this calculation solves a system of coupled equations for the scalar weights of each generated anisotropic mode. The analysis demonstrates that rapid distortion rapidly but systematically generates higher-order anisotropic modes. To maintain a tractable computation, the maximum number of rotational modes to be used in a given calculation is specified a priori. The computed Reynolds stress converges to the theoretical result derived by Batchelor and Proudman [Quart. J. Mech. Appl. Math. 7, 83 (1954), 10.1093/qjmam/7.1.83] if a sufficiently large maximum number of rotational modes is utilized; more modes are required to recover the solution at later times. The emergence and evolution of the underlying multidimensional space of functions is presented here using a 64-mode calculation. Alternative implications for modeling strategies are discussed.

  15. How hot? Systematic convergence of the replica exchange method using multiple reservoirs.

    PubMed

    Ruscio, Jory Z; Fawzi, Nicolas L; Head-Gordon, Teresa

    2010-02-01

    We have devised a systematic approach to converge a replica exchange molecular dynamics simulation by dividing the full temperature range into a series of higher temperature reservoirs and a finite number of lower temperature subreplicas. A defined highest temperature reservoir of equilibrium conformations is used to help converge a lower but still hot temperature subreplica, which in turn serves as the high-temperature reservoir for the next set of lower temperature subreplicas. The process is continued until an optimal temperature reservoir is reached to converge the simulation at the target temperature. This gradual convergence of subreplicas allows for better and faster convergence at the temperature of interest and all intermediate temperatures for thermodynamic analysis, as well as optimizing the use of multiple processors. We illustrate the overall effectiveness of our multiple reservoir replica exchange strategy by comparing sampling and computational efficiency with respect to replica exchange, as well as comparing methods when converging the structural ensemble of the disordered Abeta(21-30) peptide simulated with explicit water by comparing calculated Rotating Overhauser Effect Spectroscopy intensities to experimentally measured values. Copyright 2009 Wiley Periodicals, Inc.

  16. Variable convergence liquid layer implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; Olson, R. E.; Leeper, R. J.; Braun, T.; Biener, J.; Kline, J. L.; Batha, S. H.; Berzak Hopkins, L.; Bhandarkar, S.; Bradley, P. A.; Crippen, J.; Farrell, M.; Fittinghoff, D.; Herrmann, H. W.; Huang, H.; Khan, S.; Kong, C.; Kozioziemski, B. J.; Kyrala, G. A.; Ma, T.; Meezan, N. B.; Merrill, F.; Nikroo, A.; Peterson, R. R.; Rice, N.; Sater, J. D.; Shah, R. C.; Stadermann, M.; Volegov, P.; Walters, C.; Wilson, D. C.

    2018-05-01

    Liquid layer implosions using the "wetted foam" technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. We report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ˜ 12, but we observe a significant discrepancy at CR ˜ 20. This may be due to suppressed hot-spot formation or an anomalous energy loss mechanism.

  17. Ground state energies from converging and diverging power series expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, C.; Norris, S.; Pelphrey, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less

  18. Extracurricular involvement among affluent youth: a scapegoat for "ubiquitous achievement pressures"?

    PubMed

    Luthar, Suniya S; Shoum, Karen A; Brown, Pamela J

    2006-05-01

    It has been suggested that over-scheduling of upper-class youth might underlie the high distress and substance use documented among them. This assumption was tested by considering suburban 8th graders' involvement in different activities along with their perceptions of parental attitudes toward achievement. Results indicated negligible evidence for deleterious effects of high extracurricular involvement per se. Far more strongly implicated was perceived parent criticism for both girls and boys as well as the absence of after-school supervision. Low parent expectations connoted significant vulnerability especially for boys. The findings indicate that at least among early adolescents, converging scientific and media reports may have scapegoated extracurricular involvements, to some degree, as an index of ubiquitous achievement pressures in affluent communities. ((c) 2006 APA, all rights reserved).

  19. Achieving High Reliability with People, Processes, and Technology.

    PubMed

    Saunders, Candice L; Brennan, John A

    2017-01-01

    High reliability as a corporate value in healthcare can be achieved by meeting the "Quadruple Aim" of improving population health, reducing per capita costs, enhancing the patient experience, and improving provider wellness. This drive starts with the board of trustees, CEO, and other senior leaders who ingrain high reliability throughout the organization. At WellStar Health System, the board developed an ambitious goal to become a top-decile health system in safety and quality metrics. To achieve this goal, WellStar has embarked on a journey toward high reliability and has committed to Lean management practices consistent with the Institute for Healthcare Improvement's definition of a high-reliability organization (HRO): one that is committed to the prevention of failure, early identification and mitigation of failure, and redesign of processes based on identifiable failures. In the end, a successful HRO can provide safe, effective, patient- and family-centered, timely, efficient, and equitable care through a convergence of people, processes, and technology.

  20. Paths of convergence for agriculture, health, and wealth

    PubMed Central

    Dubé, Laurette; Pingali, Prabhu; Webb, Patrick

    2012-01-01

    This special feature calls for forward thinking around paths of convergence for agriculture, health, and wealth. Such convergence aims for a richer integration of smallholder farmers into national and global agricultural and food systems, health systems, value chains, and markets. The articles identify analytical innovation, where disciplines intersect, and cross-sectoral action where single, linear, and siloed approaches have traditionally dominated. The issues addressed are framed by three main themes: (i) lessons related to agricultural and food market growth since the 1960s; (ii) experiences related to the integration of smallholder agriculture into national and global business agendas; and (iii) insights into convergence-building institutional design and policy, including a review of complexity science methods that can inform such processes. In this introductory article, we first discuss the perspectives generated for more impactful policy and action when these three themes converge. We then push thematic boundaries to elaborate a roadmap for a broader, solution-oriented, and transdisciplinary approach to science, policies, and actions. As the global urban population crosses the 50% mark, both smallholder and nonsmallholder agriculture are keys in forging rural–urban links, where both farm and nonfarm activities contribute to sustainable nutrition security. The roadmaps would harness the power of business to reduce hunger and poverty for millions of families, contribute to a better alignment between human biology and modern lifestyles, and stem the spread of noncommunicable chronic diseases. PMID:22826252

  1. Early convergence research and education supported by the National Science Foundation.

    PubMed

    Bainbridge, William Sims

    2004-05-01

    The following pages describe research grants awarded by the National Science Foundation that illustrate how different fields of science and technology can converge in order to increase human potential. Technological convergence involves the unification of the sciences of Nanotechnology, Biotechnology, Information Technology, and new technologies based on Cognitive Science (NBIC). Because it supports research across all major branches of science and technology, including the social and behavioral sciences, the NSF has been a focus of discussions about converging technologies to enhance human capabilities and serve human needs.

  2. Convergence analysis of a monotonic penalty method for American option pricing

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yang, Xiaoqi; Teo, Kok Lay

    2008-12-01

    This paper is devoted to study the convergence analysis of a monotonic penalty method for pricing American options. A monotonic penalty method is first proposed to solve the complementarity problem arising from the valuation of American options, which produces a nonlinear degenerated parabolic PDE with Black-Scholes operator. Based on the variational theory, the solvability and convergence properties of this penalty approach are established in a proper infinite dimensional space. Moreover, the convergence rate of the combination of two power penalty functions is obtained.

  3. A technique for accelerating the convergence of restarted GMRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Jessup, E R; Manteuffel, T

    2004-03-09

    We have observed that the residual vectors at the end of each restart cycle of restarted GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We present a new technique for accelerating the convergence of restarted GMRES by disrupting this alternating pattern. The new algorithm resembles a full conjugate gradient method with polynomial preconditioning, and its implementation requires minimal changes to the standard restarted GMRES algorithm.

  4. Concentration of floating biogenic material in convergence zones

    NASA Astrophysics Data System (ADS)

    Dandonneau, Yves; Menkes, Christophe; Duteil, Olaf; Gorgues, Thomas

    Some organisms that live just below the sea surface (the neuston) are known more as a matter of curiosity than as critical players in biogeochemical cycles. The hypothesis of this work is that their existence implies that they receive some food from an upward flux of organic matter. The behaviour of these organisms and of the associated organic matter, hereafter mentioned as floating biogenic material (FBM) is explored using a global physical-biogeochemical coupled model, in which its generation is fixed to 1% of primary production, and decay rate is of the order of 1 month. The model shows that the distribution of FBM should depart rapidly from that of primary production, and be more sensitive to circulation patterns than to the distribution of primary production. It is trapped in convergence areas, where it reaches concentrations larger by a factor 10 than in divergences, thus enhancing and inverting the contrast between high and low primary productivity areas. Attention is called on the need to better understand the biogeochemical processes in the first meter of the ocean, as they may impact the distribution of food for fishes, as well as the conditions for air-sea exchange and for the interpretation of sea color.

  5. Convergence Theory for Partial Images and Revision of the Definition of Total Images.

    ERIC Educational Resources Information Center

    Findeisen, Peter

    1979-01-01

    Guttman's assumption underlying his definition of "total images" is rejected. Partial images are not generally convergent everywhere. Even divergence everywhere is shown to be possible. The convergence type always found on partial images is convergence in quadratic mean; hence, total images are redefined as quadratic mean-limits.…

  6. Convergent strand array liquid pumping system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  7. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically

  8. Convergence at the faces of development workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisenko, A.A.

    1977-07-01

    Since 1963 we have been carrying out investigations in pits of the Pechora coalfield to establish the general laws of roof-floor convergence in the face areas of development workings and their role in gas bursts. We also considered how various methods of working on the seam influence the amount of type of convergence. The observations were made in 20 workings in five pits of Vorkutaugol Group, cut by cutter-loaders and by drilling and blasting at depths between 350 and 600 m; the cross-sectional areas of the workings ranged frm 3.7 to 12.0 m/sup 2/. The aggregated data on daily convergencemore » values was analyzed by the multiple correlation method with the aid of a computer. The aim of the analysis was to elucidate the influence of six factors on the daily convergence values: the depth below the surface, the corrected seam strength, the cross-sectional area of the working, the initial distance from the face to the measurement prop, the daily advance, and the thickness of the seam. The combined correlation coefficient was rather low - 0.49 with a reliability of 9.13. The greatest influence on the convergence values is exerted by the cross-sectional area and by the distance from the face (the partial correlation coefficients being 0.281 and 0.310, respectively), and lesser influences are exerted by the depth below the surface and by the corrected strength of the seam (partial correlationcoefficients 0.164 and 0.178); the influences of seam thickness and daily face advance are very slight. The multiple correlation results indicate that a very great influence is exerted by disregarded factors, among which the most important are undoubtedly the properties of the surrounding rocks.« less

  9. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, V.K.

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gathermore » momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.« less

  10. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  11. Convergence of broad-scale migration strategies in terrestrial birds.

    PubMed

    La Sorte, Frank A; Fink, Daniel; Hochachka, Wesley M; Kelling, Steve

    2016-01-27

    Migration is a common strategy used by birds that breed in seasonal environments. Selection for greater migration efficiency is likely to be stronger for terrestrial species whose migration strategies require non-stop transoceanic crossings. If multiple species use the same transoceanic flyway, then we expect the migration strategies of these species to converge geographically towards the most optimal solution. We test this by examining population-level migration trajectories within the Western Hemisphere for 118 migratory species using occurrence information from eBird. Geographical convergence of migration strategies was evident within specific terrestrial regions where geomorphological features such as mountains or isthmuses constrained overland migration. Convergence was also evident for transoceanic migrants that crossed the Gulf of Mexico or Atlantic Ocean. Here, annual population-level movements were characterized by clockwise looped trajectories, which resulted in faster but more circuitous journeys in the spring and more direct journeys in the autumn. These findings suggest that the unique constraints and requirements associated with transoceanic migration have promoted the spatial convergence of migration strategies. The combination of seasonal atmospheric and environmental conditions that has facilitated the use of similar broad-scale migration strategies may be especially prone to disruption under climate and land-use change. © 2016 The Author(s).

  12. Seismic behaviour of mountain belts controlled by plate convergence rate

    NASA Astrophysics Data System (ADS)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  13. [Formula: see text]-convergence, complete convergence, and weak laws of large numbers for asymptotically negatively associated random vectors with values in [Formula: see text].

    PubMed

    Ko, Mi-Hwa

    2018-01-01

    In this paper, based on the Rosenthal-type inequality for asymptotically negatively associated random vectors with values in [Formula: see text], we establish results on [Formula: see text]-convergence and complete convergence of the maximums of partial sums are established. We also obtain weak laws of large numbers for coordinatewise asymptotically negatively associated random vectors with values in [Formula: see text].

  14. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    NASA Astrophysics Data System (ADS)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  15. Convergence of Spectral Discretizations of the Vlasov--Poisson System

    DOE PAGES

    Manzini, G.; Funaro, D.; Delzanno, G. L.

    2017-09-26

    Here we prove the convergence of a spectral discretization of the Vlasov-Poisson system. The velocity term of the Vlasov equation is discretized using either Hermite functions on the infinite domain or Legendre polynomials on a bounded domain. The spatial term of the Vlasov and Poisson equations is discretized using periodic Fourier expansions. Boundary conditions are treated in weak form through a penalty type term that can be applied also in the Hermite case. As a matter of fact, stability properties of the approximated scheme descend from this added term. The convergence analysis is carried out in detail for the 1D-1Vmore » case, but results can be generalized to multidimensional domains, obtained as Cartesian product, in both space and velocity. The error estimates show the spectral convergence under suitable regularity assumptions on the exact solution.« less

  16. Toward a convergence of regenerative medicine, rehabilitation, and neuroprosthetics.

    PubMed

    Aravamudhan, Shyam; Bellamkonda, Ravi V

    2011-11-01

    No effective therapeutic interventions exist for severe neural pathologies, despite significant advances in regenerative medicine, rehabilitation, and neuroprosthetics. Our current hypothesis is that a specific combination of tissue engineering, pharmacology, cell replacement, drug delivery, and electrical stimulation, together with plasticity-promoting and locomotor training (neurorehabilitation) is necessary to interact synergistically in order to activate and enable all damaged circuits. We postulate that various convergent themes exist among the different therapeutic fields. Therefore, the objective of this review is to highlight the convergent themes, which we believe have a common goal of restoring function after neural damage. The convergent themes discussed in this review include modulation of inflammation and secondary damage, encouraging endogenous repair/regeneration (using scaffolds, cell transplantation, and drug delivery), application of electrical fields to modulate healing and/or activity, and finally modulation of plasticity.

  17. Variable convergence liquid layer implosions on the National Ignition Facility

    DOE PAGES

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.; ...

    2018-03-19

    Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due tomore » suppressed hot-spot formation or an anomalous energy loss mechanism.« less

  18. Variable convergence liquid layer implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Yi, S. A.; Haines, B. M.

    Liquid layer implosions using the “wetted foam” technique, where the liquid fuel is wicked into a supporting foam, have been recently conducted on the National Ignition Facility for the first time [Olson et al., Phys. Rev. Lett. 117, 245001 (2016)]. In this paper, we report on a series of wetted foam implosions where the convergence ratio was varied between 12 and 20. Reduced nuclear performance is observed as convergence ratio increases. 2-D radiation-hydrodynamics simulations accurately capture the performance at convergence ratios (CR) ~ 12, but we observe a significant discrepancy at CR ~ 20. Finally, this may be due tomore » suppressed hot-spot formation or an anomalous energy loss mechanism.« less

  19. The Influence of Achievement Goals and Social Goals on Help-Seeking from Peers in an Academic Context

    ERIC Educational Resources Information Center

    Roussel, Peggy; Elliot, Andrew J.; Feltman, Roger

    2011-01-01

    The influence of achievement goals and social goals on help-seeking from peers in an academic context was examined in two studies. A total of 551 high school students participated in the two studies. The results across the studies demonstrated strong convergence, revealing that mastery-approach, mastery-avoidance, and friendship-approach goals…

  20. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    PubMed Central

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  1. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    PubMed

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  2. Effect of Rapid Evaporation on Fuel Injection Processes

    NASA Astrophysics Data System (ADS)

    Sloss, Clayton A.; McCahan, Susan

    1996-11-01

    In the pursuit of developing more efficient fuel oil burners, ways of improving combustion efficiency through increased fuel atomization are being studied. By preheating the fuel prior to injection it may be possible to induce a superheated state in the l iquid during expansion through the nozzle. This increases the evaporation rate and improves atomization of the fluid. With enough superheat, and using fuels with sufficiently large specific heats, it is theoretically possible to achieve complete evaporati on. In this experiment dodecane, fuel oil, kerosene, and diesel fuel are injected from 10 bar to 1 bar while the upstream temperature is varied from 20^oC to 330^oC. A commercial oil burner nozzle is used to simulate a realistic injection environm ent and a plain converging nozzle is used under the same conditions to isolate and study the thermodynamic effects. Photographic observations of the commercial nozzle spray found smaller droplet sizes and decreased cone angles as the degree of superheat i ncreased. A coherent evaporation wave was observed in dodecane jets at high levels of superheat in the plain converging nozzle. * This work is supported by Imperial Oil/ESTAC

  3. Rapidly separating microneedles for transdermal drug delivery.

    PubMed

    Zhu, Dan Dan; Wang, Qi Lei; Liu, Xu Bo; Guo, Xin Dong

    2016-09-01

    The applications of polymer microneedles (MNs) into human skin emerged as an alternative of the conventional hypodermic needles. However, dissolving MNs require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin, which may lead to the low drug delivery efficiency. To address these issues, we introduce rapidly separating MNs that can rapidly deliver drugs into the skin in a minimally invasive way. For the rapidly separating MNs, drug loaded dissolving MNs are mounted on the top of solid MNs, which are made of biodegradable polylactic acid which eliminate the biohazardous waste. These MNs have sufficient mechanical strength to be inserted into the skin with the drug loaded tips fully embedded for subsequent dissolution. Compared with the traditional MNs, rapidly separating MNs achieve over 90% of drug delivery efficiency in 30s while the traditional MNs needs 2min to achieve the same efficiency. With the in vivo test in mice, the micro-holes caused by rapidly separating MNs can heal in 1h, indicating that the rapidly separating MNs are safe for future applications. These results indicate that the design of rapidly separating dissolvable MNs can offer a quick, high efficient, convenient, safe and potentially self-administered method of drug delivery. Polymer microneedles offer an attractive, painless and minimally invasive approach for transdermal drug delivery. However, dissolving microneedles require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin due to the skin deformation, which may lead to the low drug delivery efficiency. In this work we proposed rapidly separating microneedles which can deliver over 90% of drug into the skin in 30s. The in vitro and in vivo results indicate that the new design of these microneedles can offer a quick, high efficient, convenient and safe method for transdermal drug delivery. Copyright © 2016 Acta Materialia Inc

  4. Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul

    2015-12-01

    In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less

  5. The relationship between low-level convergence and precipitation in CMIP5 current and future climates

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Jakob, Christian; Reeder, Michael

    2017-04-01

    Precipitation is often organized along coherent lines of low-level convergence, which at longer time and space scales form well-known convergence zones over the tropical oceans. Here, an automated, objective method is used to identify instantaneous low-level convergence lines in the current climate of CMIP5 models and compared with reanalysis data results. Identified convergence lines are combined with precipitation to assess the extent to which precipitation around the globe is associated with convergence in the lower troposphere. Differences between the current climate of the models and observations are diagnosed in terms of the frequency and intensity of both precipitation associated with convergence lines and that which is not. Future changes in frequency and intensity of convergence lines, and associated precipitation, are also investigated for their contribution to the simulated future changes in total precipitation.

  6. Exploring the Image Types of Secondary School Students' Perception about the Talented Person in Convergence

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Ki; Chung, Duk Ho

    2014-05-01

    This study aims to identify the image types of secondary school students' perception about the talented person in convergence and to find the differences in drawing images of the talented person in convergence among the students who have taken STEAM class and the ones who haven't. One hundred and eighty seven students in middle and high schools located in the southern part of South Korea participated in this study and they were asked to draw a picture of the talented person in convergence with a brief explanation. Based on students' pictures, researchers categorized their perception about convergence and talented person in convergence by using an inductive method. The result indicated that secondary school students' perceptions were categorized into convergence as individual cognitive processing and collective cognitive processing and convergence as outcomes. The image of the convergence in a talented person leaning toward individual cognitive processing was divided into the following seven types: idea banker type, various talented celebrity type, multi-tasking master type, multi-talented career type, active problem-solver type, creative developer type, and unrealistic ideal man type. Another image of collective cognitive processing was split into expert group type and interactive-mates group type. The other image was transformer type which is the subcategory of convergence as outcomes. From this study, it can be suggested that secondary school students express the various images of the talented person in convergence depending on experiencing STEAM or not. Keywords: talented person in convergence, secondary school students, STEAM, image types

  7. Regional convergence platforms in Europe—Innovation for space through technology partnerships

    NASA Astrophysics Data System (ADS)

    Bütfering, Peter

    2010-05-01

    Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.

  8. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  9. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  10. Slip flow through a converging microchannel: experiments and 3D simulations

    NASA Astrophysics Data System (ADS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A. M.

    2015-02-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.

  11. Assessing the validity of discourse analysis: transdisciplinary convergence

    NASA Astrophysics Data System (ADS)

    Jaipal-Jamani, Kamini

    2014-12-01

    Research studies using discourse analysis approaches make claims about phenomena or issues based on interpretation of written or spoken text, which includes images and gestures. How are findings/interpretations from discourse analysis validated? This paper proposes transdisciplinary convergence as a way to validate discourse analysis approaches to research. The argument is made that discourse analysis explicitly grounded in semiotics, systemic functional linguistics, and critical theory, offers a credible research methodology. The underlying assumptions, constructs, and techniques of analysis of these three theoretical disciplines can be drawn on to show convergence of data at multiple levels, validating interpretations from text analysis.

  12. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2017-07-01

    We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.

  13. Super-convergence of Discontinuous Galerkin Method Applied to the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.

    2009-01-01

    The practical benefits of the hyper-accuracy properties of the discontinuous Galerkin method are examined. In particular, we demonstrate that some flow attributes exhibit super-convergence even in the absence of any post-processing technique. Theoretical analysis suggest that flow features that are dominated by global propagation speeds and decay or growth rates should be super-convergent. Several discrete forms of the discontinuous Galerkin method are applied to the simulation of unsteady viscous flow over a two-dimensional cylinder. Convergence of the period of the naturally occurring oscillation is examined and shown to converge at 2p+1, where p is the polynomial degree of the discontinuous Galerkin basis. Comparisons are made between the different discretizations and with theoretical analysis.

  14. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus

    PubMed Central

    Yeaman, Michael R.; Filler, Scott G.; Schmidt, Clint S.; Ibrahim, Ashraf S.; Edwards, John E.; Hennessey, John P.

    2014-01-01

    Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S

  15. A Rapid Method to Achieve Aero-Engine Blade Form Detection

    PubMed Central

    Sun, Bin; Li, Bing

    2015-01-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420

  16. A rapid method to achieve aero-engine blade form detection.

    PubMed

    Sun, Bin; Li, Bing

    2015-06-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

  17. Body shape convergence driven by small size optimum in marine angelfishes.

    PubMed

    Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E

    2017-06-01

    Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).

  18. Regulatory administrative databases in FDA's Center for Biologics Evaluation and Research: convergence toward a unified database.

    PubMed

    Smith, Jeffrey K

    2013-04-01

    Regulatory administrative database systems within the Food and Drug Administration's (FDA) Center for Biologics Evaluation and Research (CBER) are essential to supporting its core mission, as a regulatory agency. Such systems are used within FDA to manage information and processes surrounding the processing, review, and tracking of investigational and marketed product submissions. This is an area of increasing interest in the pharmaceutical industry and has been a topic at trade association conferences (Buckley 2012). Such databases in CBER are complex, not for the type or relevance of the data to any particular scientific discipline but because of the variety of regulatory submission types and processes the systems support using the data. Commonalities among different data domains of CBER's regulatory administrative databases are discussed. These commonalities have evolved enough to constitute real database convergence and provide a valuable asset for business process intelligence. Balancing review workload across staff, exploring areas of risk in review capacity, process improvement, and presenting a clear and comprehensive landscape of review obligations are just some of the opportunities of such intelligence. This convergence has been occurring in the presence of usual forces that tend to drive information technology (IT) systems development toward separate stovepipes and data silos. CBER has achieved a significant level of convergence through a gradual process, using a clear goal, agreed upon development practices, and transparency of database objects, rather than through a single, discrete project or IT vendor solution. This approach offers a path forward for FDA systems toward a unified database.

  19. Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco

    PubMed Central

    Gheerbrant, Emmanuel; Filippo, Andrea; Schmitt, Arnaud

    2016-01-01

    Molecular-based analyses showed that extant “ungulate” mammals are polyphyletic and belong to the two main clades Afrotheria (Paenungulata) and Laurasiatheria (Euungulata: Cetartiodactyla-Perissodactyla). However, paleontological and neontological studies hitherto failed to demonstrate the morphological convergence of African and Laurasian “ungulate” orders. They support an “Altungulata” group including the Laurasian order Perissodactyla and the African superorder Paenungulata and characterized especially by quadritubercular and bilophodont molars adapted for a folivorous diet. We report new critical fossils of one of the few known African condylarth-like mammal, the enigmatic Abdounodus from the middle Paleocene of Morocco. They show that Abdounodus and Ocepeia display key intermediate morphologies refuting the homology of the fourth main cusp of upper molars in Paenungulata and Perissodactyla: Paenungulates unexpectedly have a metaconule-derived pseudohypocone, instead of a cingular hypocone. Comparative and functional dental anatomy of Abdounodus demonstrates indeed the convergence of the quadritubercular and bilophodont pattern in “ungulates”. Consistently with our reconstruction of the structural evolution of paenungulate bilophodonty, the phylogenetic analysis relates Abdounodus and Ocepeia to Paenungulata as stem taxa of the more inclusive new clade Paenungulatomorpha which is distinct from the Perissodactyla and Anthracobunidae. Abdounodus and Ocepeia help to identify the first convincing synapomorphy within the Afrotheria–i.e., the pseudohypocone–that demonstrates the morphological convergence of African and Laurasian ungulate-like placentals, in agreement with molecular phylogeny. Abdounodus and Ocepeia are the only known representatives of the early African ungulate radiation predating the divergence of extant paenungulate orders. Paenungulatomorpha evolved in Africa since the early Tertiary independently from laurasiatherian

  20. CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M.; Warren, H. P.; Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil, E-mail: karin.muglach@nasa.gov

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimesmore » barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the ∼1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.« less

  1. New convergence results for the scaled gradient projection method

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2015-09-01

    The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak convergence theorem is provided establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the {O}(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view.

  2. Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"

    ERIC Educational Resources Information Center

    Braza, Peter A.

    2010-01-01

    The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.

  3. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  4. Extracurricular Involvement Among Affluent Youth: A Scapegoat for “Ubiquitous Achievement Pressures”?

    PubMed Central

    Luthar, Suniya S.; Shoum, Karen A.; Brown, Pamela J.

    2007-01-01

    It has been suggested that overscheduling of upper-class youth might underlie the high distress and substance use documented among them. This assumption was tested by considering suburban 8th graders’ involvement in different activities along with their perceptions of parental attitudes toward achievement. Results indicated negligible evidence for deleterious effects of high extracurricular involvement per se. Far more strongly implicated was perceived parent criticism for both girls and boys as well as the absence of after-school supervision. Low parent expectations connoted significant vulnerability especially for boys. The findings indicate that at least among early adolescents, converging scientific and media reports may have scapegoated extracurricular involvements, to some degree, as an index of ubiquitous achievement pressures in affluent communities. PMID:16756447

  5. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae.

    PubMed

    Brown, Caleb M; Henderson, Donald M

    2015-06-15

    Ceratopsid (horned) dinosaurs are an iconic group of large-bodied, quadrupedal, herbivorous dinosaurs that evolved in the Late Cretaceous and were largely restricted to western North America [1-5]. Ceratopsids are easily recognized by their cranial ornamentation in the form of nasal and postorbital horns and frill (capped by epiossifications); these structures show high morphological disparity and also represent the largest cranial display structures known to have evolved [2, 4]. Despite their restricted occurrence in time and space, this group has one of the best fossil records within Dinosauria, showing a rapid diversification in horn and frill morphology [1]. Here a new genus and species of chasmosaurine ceratopsid is described based on a nearly complete and three-dimensionally preserved cranium recovered from the uppermost St. Mary River Formation (Maastrichtian) of southwestern Alberta. Regaliceratops peterhewsi gen. et sp. nov. exhibits many unique characters of the frill and is characterized by a large nasal horncore, small postorbital horncores, and massive parietal epiossifications. Cranial morphology, particularly the epiossifications, suggests close affinity with the late Campanian/early Maastrichian taxon Anchiceratops, as well as with the late Maastrichtian taxon Triceratops. A median epiparietal necessitates a reassessment of epiossification homology and results in a more resolved phylogeny. Most surprisingly, Regaliceratops exhibits a suite of cranial ornamentations that are superficially similar to Campanian centrosaurines, indicating both exploration of novel display morphospace in Chasmosaurinae, especially Maastrichtian forms, and convergent evolution in horn morphology with the recently extinct Centrosaurinae. This marks the first time that evolutionary convergence in horn-like display structures has been demonstrated between dinosaur clades, similar to those seen in fossil and extant mammals [6]. Copyright © 2015 Elsevier Ltd. All rights

  6. Governance Challenges of Technological Systems Convergence

    ERIC Educational Resources Information Center

    Whitman, Jim

    2006-01-01

    The convergence of several technological systems (especially nanotechnology, biotechnology, information technology, and robotics) has now been adopted as a strategic goal by several countries, most notably the United States and those of the European Union. The anticipated benefits and related fears of competitive disadvantage have brought together…

  7. Forest Landscape Assessment Tool (FLAT): rapid assessment for land management

    Treesearch

    Lisa Ciecko; David Kimmett; Jesse Saunders; Rachael Katz; Kathleen L. Wolf; Oliver Bazinet; Jeffrey Richardson; Weston Brinkley; Dale J. Blahna

    2016-01-01

    The Forest Landscape Assessment Tool (FLAT) is a set of procedures and tools used to rapidly determine forest ecological conditions and potential threats. FLAT enables planners and managers to understand baseline conditions, determine and prioritize restoration needs across a landscape system, and conduct ongoing monitoring to achieve land management goals. The rapid...

  8. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    ERIC Educational Resources Information Center

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  9. Disciplinary Convergence and Interdisciplinary Curricula for Students in an Information Society

    ERIC Educational Resources Information Center

    Brooks, Catherine Francis

    2017-01-01

    In this essay, disciplinary "convergence" is offered as a construct that references the blurring of disciplinary walls, academic borders and institutional divisions, a construct that can frame conversations about the role of disciplines in addressing today's student needs in higher education. Convergence as a construct allows for a…

  10. Convergent functional genomics of psychiatric disorders.

    PubMed

    Niculescu, Alexander B

    2013-10-01

    Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes. © 2013 Wiley Periodicals, Inc.

  11. Multiple convergent supergene evolution events in mating-type chromosomes.

    PubMed

    Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana

    2018-05-21

    Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.

  12. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  13. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an

  14. Codeswitching, Convergence and Compliance: The Development of Micro-Community Speech Norms.

    ERIC Educational Resources Information Center

    Burt, Susan Meredith

    1992-01-01

    In conversations between bilinguals, each of whom is a learner of the other's language, two different local patterns of codeswitching may emerge: compliance and mutual convergence. It is argued that a pattern of compliance is ultimately more accommodating that convergence, contrary to the claims of Speech Accommodation Theory. (20 references)…

  15. Iterative methods used in overlap astrometric reduction techniques do not always converge

    NASA Astrophysics Data System (ADS)

    Rapaport, M.; Ducourant, C.; Colin, J.; Le Campion, J. F.

    1993-04-01

    In this paper we prove that the classical Gauss-Seidel type iterative methods used for the solution of the reduced normal equations occurring in overlapping reduction methods of astrometry do not always converge. We exhibit examples of divergence. We then analyze an alternative algorithm proposed by Wang (1985). We prove the consistency of this algorithm and verify that it can be convergent while the Gauss-Seidel method is divergent. We conjecture the convergence of Wang method for the solution of astrometric problems using overlap techniques.

  16. Best Intentions: Using Convergent Practices Divergently

    ERIC Educational Resources Information Center

    Whyte, Barbara; Deane, Penny

    2017-01-01

    Summative assessment and explicit teaching are on the increase in New Zealand primary and intermediate learning spaces; either, or both, frequently used by teachers to assist with requirements for National Standards. Combined use means learning destinations are set by teachers within convergent practice, allowing little room for student…

  17. A Numerical, Literal, and Converged Perturbation Algorithm

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.

    2017-09-01

    The KAM theorem and von Ziepel's method are applied to a perturbed harmonic oscillator, and it is noted that the KAM methodology does not allow for necessary frequency or angle corrections, while von Ziepel does. The KAM methodology can be carried out with purely numerical methods, since its generating function does not contain momentum dependence. The KAM iteration is extended to allow for frequency and angle changes, and in the process apparently can be successfully applied to degenerate systems normally ruled out by the classical KAM theorem. Convergence is observed to be geometric, not exponential, but it does proceed smoothly to machine precision. The algorithm produces a converged perturbation solution by numerical methods, while still retaining literal variable dependence, at least in the vicinity of a given trajectory.

  18. Exploring service delivery in occupational therapy: The use of convergent interviewing.

    PubMed

    van Biljon, Hester; du Toit, Sanetta H J; Masango, July; Casteleijn, Daleen

    2017-01-01

    Occupational therapy clinicians working in South Africa's public healthcare had views on what patients thought about their vocational rehabilitation services that were based on anecdotal evidence. However evidence-based practice requires more than that. Reliable information is important in patient-centred practice and in the assessment of service quality. Clinical occupational therapists used the convergent interviewing technique to explore patients' views of the vocational rehabilitation services on offer in public hospitals. An Action Learning Action Research (ALAR) approach was used to explore the vocational rehabilitation services occupational therapy clinicians provided over a two week period in three settings. The majority (96%) of patients interviewed were not aware that occupational therapists offered vocational rehabilitation services. The convergent interview technique allowed continued unrestricted discussion of their vocational rehabilitation concerns and provided evidence that patients had significant concerns about work. Critical reflection on the interview experience and technique indicated that therapists were in favour of using convergent interviewing to obtain their patients views about the services offered. Therapists found the convergent interview technique easy to apply in clinical practice. Establishing patients' views of a clinical service have multiple values. However it is meaningless unless clinicians use the knowledge to improve service delivery to the patients who provided the views. Convergent interviewing was a valuable technique for occupational therapy clinicians to incorporate patients' views of their services into service development.

  19. Rapid Vision Correction by Special Operations Forces.

    PubMed

    Reynolds, Mark E

    This report describes a rapid method of vision correction used by Special Operations Medics in multiple operational engagements. Between 2011 and 2015, Special Operations Medics used an algorithm- driven refraction technique. A standard block of instruction was provided to the medics, along with a packaged kit. The technique was used in multiple operational engagements with host nation military and civilians. Data collected for program evaluation were later analyzed to assess the utility of the technique. Glasses were distributed to 230 patients with complaints of either decreased distance or near (reading). Most patients (84%) with distance complaints achieved corrected binocular vision of 20/40 or better, and 97% of patients with near-vision complaints achieved corrected near-binocular vision of 20/40 or better. There was no statistically significant difference between the percentages of patients achieving 20/40 when medics used the technique under direct supervision versus independent use. A basic refraction technique using a designed kit allows for meaningful improvement in distance and/or near vision at austere locations. Special Operations Medics can leverage this approach after specific training with minimal time commitment. It can serve as a rapid, effective intervention with multiple applications in diverse operational environments. 2017.

  20. Strong and uniform convergence in the teleportation simulation of bosonic Gaussian channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2018-06-01

    In the literature on the continuous-variable bosonic teleportation protocol due to Braunstein and Kimble [Phys. Rev. Lett. 80, 869 (1998), 10.1103/PhysRevLett.80.869], it is often loosely stated that this protocol converges to a perfect teleportation of an input state in the limit of ideal squeezing and ideal detection, but the exact form of this convergence is typically not clarified. In this paper, I explicitly clarify that the convergence is in the strong sense, and not the uniform sense, and furthermore that the convergence occurs for any input state to the protocol, including the infinite-energy Basel states defined and discussed here. I also prove, in contrast to the above result, that the teleportation simulations of pure-loss, thermal, pure-amplifier, amplifier, and additive-noise channels converge both strongly and uniformly to the original channels, in the limit of ideal squeezing and detection for the simulations. For these channels, I give explicit uniform bounds on the accuracy of their teleportation simulations. I then extend these uniform convergence results to particular multimode bosonic Gaussian channels. These convergence statements have important implications for mathematical proofs that make use of the teleportation simulation of bosonic Gaussian channels, some of which have to do with bounding their nonasymptotic secret-key-agreement capacities. As a by-product of the discussion given here, I confirm the correctness of the proof of such bounds from my joint work with Berta and Tomamichel from [Wilde, Tomamichel, and Berta, IEEE Trans. Inf. Theory 63, 1792 (2017), 10.1109/TIT.2017.2648825]. Furthermore, I show that it is not necessary to invoke the energy-constrained diamond distance in order to confirm the correctness of this proof.

  1. Convergence of quasiparticle self-consistent G W calculations of transition-metal monoxides

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2015-03-01

    Finding an accurate ab initio approach for calculating the electronic properties of transition-metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition-metal monoxides MnO, CoO, and NiO in their undistorted rocksalt structure within a fully iterated quasiparticle self-consistent G W (QPsc G W ) scheme. We study the convergence of the QPsc G W method, i.e., how the quasiparticle energy eigenvalues and wave functions converge as a function of the QPsc G W iterations, and we compare the converged outputs obtained from different starting wave functions. We find that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. It is important to notice that in some cases the "path" to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When we reach a fully iterated solution, the converged density of states, band gaps, and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wave functions and in reasonably good agreement with the experiment. Finally, this approach provides a clear picture of the interplay between the various orbitals near the Fermi level of these simple transition-metal monoxides. The results of these accurate ab initio calculations can provide input for models aiming at describing the low-energy physics in these materials.

  2. Frequency of convergence and accommodative disorders in a clinical population of Mashhad, Iran.

    PubMed

    Hoseini-Yazdi, Seyed Hosein; Yekta, AbbasAli; Nouri, Hosein; Heravian, Javad; Ostadimoghaddam, Hadi; Khabazkhoob, Mehdi

    2015-01-01

    To investigate the frequency of convergence and accommodation anomalies in an optometric clinical setting in Mashhad, Iran, and to determine tests with highest accuracy in diagnosing these anomalies. From 261 patients who came to the optometric clinics of Mashhad University of Medical Sciences during a month, 83 of them were included in the study based on the inclusion criteria. Near point of convergence (NPC), near and distance heterophoria, monocular and binocular accommodative facility (MAF and BAF, respectively), lag of accommodation, positive and negative fusional vergences (PFV and NFV, respectively), AC/A ratio, relative accommodation, and amplitude of accommodation (AA) were measured to diagnose the convergence and accommodation anomalies. The results were also compared between symptomatic and asymptomatic patients. The accuracy of these tests was explored using sensitivity (S), specificity (Sp), and positive and negative likelihood ratios (LR+, LR-). Mean age of the patients was 21.3 ± 3.5 years and 14.5% of them had specific binocular and accommodative symptoms. Convergence and accommodative anomalies were found in 19.3% of the patients; accommodative excess (4.8%) and convergence insufficiency (3.6%) were the most common accommodative and convergence disorders, respectively. Symptomatic patients showed lower values for BAF (p = .003), MAF (p = .001), as well as AA (p = .001) compared with asymptomatic patients. Moreover, BAF (S = 75%, Sp = 62%) and MAF (S = 62%, Sp = 89%) were the most accurate tests for detecting accommodative and convergence disorders in terms of both sensitivity and specificity. Convergence and accommodative anomalies are the most common binocular disorders in optometric patients. Including tests of monocular and binocular accommodative facility in routine eye examinations as accurate tests to diagnose these anomalies requires further investigation.

  3. On the convergence of the coupled-wave approach for lamellar diffraction gratings

    NASA Technical Reports Server (NTRS)

    Li, Lifeng; Haggans, Charles W.

    1992-01-01

    Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves by diffraction gratings, the coupled-wave approach stands out because of its versatility and simplicity. It can be applied to volume gratings and surface relief gratings, and its numerical implementation is much simpler than others. In addition, its predictions were experimentally validated in several cases. These facts explain the popularity of the coupled-wave approach among many optical engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence of the model predictions has never been presented, although several authors have recently reported convergence difficulties with the model when it is used for metallic gratings in TM polarization. Herein, three points are made: (1) in the TM case, the coupled-wave approach converges much slower than the modal approach of Botten et al; (2) the slow convergence is caused by the use of Fourier expansions for the permittivity and the fields in the grating region; and (3) is manifested by the slow convergence of the eigenvalues and the associated modal fields. The reader is assumed to be familiar with the mathematical formulations of the coupled-wave approach and the modal approach.

  4. Phonetic convergence in spontaneous conversations as a function of interlocutor language distance

    PubMed Central

    Kim, Midam; Horton, William S.; Bradlow, Ann R.

    2013-01-01

    This study explores phonetic convergence during conversations between pairs of talkers with varying language distance. Specifically, we examined conversations within two native English talkers and within two native Korean talkers who had either the same or different regional dialects, and between native and nonnative talkers of English. To measure phonetic convergence, an independent group of listeners judged the similarity of utterance samples from each talker through an XAB perception test, in which X was a sample of one talker’s speech and A and B were samples from the other talker at either early or late portions of the conversation. The results showed greater convergence for same-dialect pairs than for either the different-dialect pairs or the different-L1 pairs. These results generally support the hypothesis that there is a relationship between phonetic convergence and interlocutor language distance. We interpret this pattern as suggesting that phonetic convergence between talker pairs that vary in the degree of their initial language alignment may be dynamically mediated by two parallel mechanisms: the need for intelligibility and the extra demands of nonnative speech production and perception. PMID:23637712

  5. Note: Rapid offset reduction of impedance bridges taking into account instrumental damping and phase shifting.

    PubMed

    van der Wel, C M; Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2013-03-01

    The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.

  6. On Convergent Probability of a Random Walk

    ERIC Educational Resources Information Center

    Lee, Y.-F.; Ching, W.-K.

    2006-01-01

    This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.

  7. Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-07-01

    We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.

  8. Vision therapy in adults with convergence insufficiency: clinical and functional magnetic resonance imaging measures.

    PubMed

    Alvarez, Tara L; Vicci, Vincent R; Alkan, Yelda; Kim, Eun H; Gohel, Suril; Barrett, Anna M; Chiaravalloti, Nancy; Biswal, Bharat B

    2010-12-01

    This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Convergence peak velocity was significantly slower in CI subjects compared with controls

  9. On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator

    NASA Astrophysics Data System (ADS)

    Korda, Milan; Mezić, Igor

    2018-04-01

    Extended dynamic mode decomposition (EDMD) (Williams et al. in J Nonlinear Sci 25(6):1307-1346, 2015) is an algorithm that approximates the action of the Koopman operator on an N-dimensional subspace of the space of observables by sampling at M points in the state space. Assuming that the samples are drawn either independently or ergodically from some measure μ , it was shown in Klus et al. (J Comput Dyn 3(1):51-79, 2016) that, in the limit as M→ ∞, the EDMD operator K_{N,M} converges to K_N, where K_N is the L_2(μ )-orthogonal projection of the action of the Koopman operator on the finite-dimensional subspace of observables. We show that, as N → ∞, the operator K_N converges in the strong operator topology to the Koopman operator. This in particular implies convergence of the predictions of future values of a given observable over any finite time horizon, a fact important for practical applications such as forecasting, estimation and control. In addition, we show that accumulation points of the spectra of K_N correspond to the eigenvalues of the Koopman operator with the associated eigenfunctions converging weakly to an eigenfunction of the Koopman operator, provided that the weak limit of the eigenfunctions is nonzero. As a by-product, we propose an analytic version of the EDMD algorithm which, under some assumptions, allows one to construct K_N directly, without the use of sampling. Finally, under additional assumptions, we analyze convergence of K_{N,N} (i.e., M=N), proving convergence, along a subsequence, to weak eigenfunctions (or eigendistributions) related to the eigenmeasures of the Perron-Frobenius operator. No assumptions on the observables belonging to a finite-dimensional invariant subspace of the Koopman operator are required throughout.

  10. Linkographic Evidence for Concurrent Divergent and Convergent Thinking in Creative Design

    ERIC Educational Resources Information Center

    Goldschmidt, Gabriela

    2016-01-01

    For a long time, the creativity literature has stressed the role of divergent thinking in creative endeavor. More recently, it has been recognized that convergent thinking also has a role in creativity, and the design literature, which sees design as a creative activity a priori, has largely adopted this view: Divergent and convergent thinking are…

  11. Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.

  12. Technology Convergence and National Security

    DTIC Science & Technology

    2010-08-25

    transdisciplinary nature of that convergence that was critical. Sandro Botticelli Michelangelo Buonarroti Lorenzo the Magnificent Andrea del Verrocchio Leonardo ...da  Vinci   UNCLASSIFIED BACKGROUND LOGIC • Many traditional R&D programs have been commodity or  capability driven, and based on a perceived threat

  13. On the convergence of local approximations to pseudodifferential operators with applications

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1994-01-01

    We consider the approximation of a class pseudodifferential operators by sequences of operators which can be expressed as compositions of differential operators and their inverses. We show that the error in such approximations can be bounded in terms of L(1) error in approximating a convolution kernel, and use this fact to develop convergence results. Our main result is a finite time convergence analysis of the Engquist-Majda Pade approximants to the square root of the d'Alembertian. We also show that no spatially local approximation to this operator can be convergent uniformly in time. We propose some temporally local but spatially nonlocal operators with better long time behavior. These are based on Laguerre and exponential series.

  14. Rapid sedimentation and overpressure in shallow sediments of the Bering Trough, offshore southern Alaska

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Worthington, Lindsay L.; Gulick, Sean P. S.; Van Avendonk, Harm J. A.

    2017-04-01

    Pore pressures in sediments at convergent margins play an important role in driving chemical fluxes and controlling deformation styles and localization. In the Bering Trough offshore Southern Alaska, extreme sedimentation rates over the last 140 kyr as a result of glacial advance/retreats on the continental shelf have resulted in elevated pore fluid pressures in slope sediments overlying the Pamplona Zone fold and thrust belt, the accretionary wedge resulting from subduction of the Yakutat microplate beneath the North American Plate. Based on laboratory experiments and downhole logs acquired at Integrated Ocean Drilling Program Site U1421, we predict that the overpressure in the slope sediments may be as high as 92% of the lithostatic stress. Results of one-dimensional numerical modeling accounting for changes in sedimentation rate over the last 130 kyr predicted overpressures that are consistent with our estimates, suggesting that the overpressure is a direct result of the rapid sedimentation experienced on the Bering shelf and slope. Comparisons with other convergent margins indicate that such rapid sedimentation and high overpressure are anomalous in sediments overlying accretionary wedges. We hypothesize that the shallow overpressure on the Bering shelf/slope has fundamentally altered the deformation style within the Pamplona Zone by suppressing development of faults and may inhibit seismicity by focusing faulting elsewhere or causing deformation on existing faults to be aseismic. These consequences are probably long-lived as it may take several million years for the excess pressure to dissipate.

  15. SETI in the light of cosmic convergent evolution

    NASA Astrophysics Data System (ADS)

    Flores Martinez, Claudio L.

    2014-11-01

    Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that ;nothing makes sense in biology except in the light of evolution;. Here it will be argued that nothing in astrobiology makes sense except in the light of ;Cosmic Convergent Evolution; (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this ;fine-tuning; in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the ;Selfish Biocosm Hypothesis; and the ;Evo Devo Universe; as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post

  16. The Convergence of European Business Cycles 1980--2004

    NASA Astrophysics Data System (ADS)

    Ormerod, P.

    2005-09-01

    The degree of convergence of the business cycles of the economies of the European Union is a key policy issue. In particular, a substantial degree of convergence is needed if the European Central Bank is to be capable of setting a monetary policy which is appropriate to the stage of the cycle of the Euro zone economies. I consider the annual rates of real GDP growth on a quarterly basis in the main economies of the EU (France, Germany, Italy, UK, Spain, Belgium and the Netherlands) over the period 1980Q1--2004Q4. An important empirical question is the degree to which the correlations between these growth rates contain true information rather than noise. The technique of random matrix theory is able to answer this question, and has been applied successfully in the physics journals to financial markets data. I find that the correlations between the growth rates of most of the core EU economies contain substantial amounts of true information, and exhibit considerable stability over time. Even in the late 1970s and early 1980s, these economies moved together closely over the course of the business cycle. There was a slight loosening at the time of German re-unification, but the economies have moved back into close synchronisation. The same result holds when Spain is added to the group of core EU countries. However, the problems of the German economy which arose from the early 1990s onwards has led to Germany becoming increasingly less synchronised with the rest of the core EU. Further, the results obtained with a data set of the converged EU core plus the UK show no real convergence between the UK and this group of economies.

  17. Grid convergence errors in hemodynamic solution of patient-specific cerebral aneurysms.

    PubMed

    Hodis, Simona; Uthamaraj, Susheil; Smith, Andrea L; Dennis, Kendall D; Kallmes, David F; Dragomir-Daescu, Dan

    2012-11-15

    Computational fluid dynamics (CFD) has become a cutting-edge tool for investigating hemodynamic dysfunctions in the body. It has the potential to help physicians quantify in more detail the phenomena difficult to capture with in vivo imaging techniques. CFD simulations in anatomically realistic geometries pose challenges in generating accurate solutions due to the grid distortion that may occur when the grid is aligned with complex geometries. In addition, results obtained with computational methods should be trusted only after the solution has been verified on multiple high-quality grids. The objective of this study was to present a comprehensive solution verification of the intra-aneurysmal flow results obtained on different morphologies of patient-specific cerebral aneurysms. We chose five patient-specific brain aneurysm models with different dome morphologies and estimated the grid convergence errors for each model. The grid convergence errors were estimated with respect to an extrapolated solution based on the Richardson extrapolation method, which accounts for the degree of grid refinement. For four of the five models, calculated velocity, pressure, and wall shear stress values at six different spatial locations converged monotonically, with maximum uncertainty magnitudes ranging from 12% to 16% on the finest grids. Due to the geometric complexity of the fifth model, the grid convergence errors showed oscillatory behavior; therefore, each patient-specific model required its own grid convergence study to establish the accuracy of the analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality.

    PubMed

    Forti, Mauro; Nistri, Paolo; Quincampoix, Marc

    2006-11-01

    This paper considers a class of neural networks (NNs) for solving linear programming (LP) problems, convex quadratic programming (QP) problems, and nonconvex QP problems where an indefinite quadratic objective function is subject to a set of affine constraints. The NNs are characterized by constraint neurons modeled by ideal diodes with vertical segments in their characteristic, which enable to implement an exact penalty method. A new method is exploited to address convergence of trajectories, which is based on a nonsmooth Lojasiewicz inequality for the generalized gradient vector field describing the NN dynamics. The method permits to prove that each forward trajectory of the NN has finite length, and as a consequence it converges toward a singleton. Furthermore, by means of a quantitative evaluation of the Lojasiewicz exponent at the equilibrium points, the following results on convergence rate of trajectories are established: (1) for nonconvex QP problems, each trajectory is either exponentially convergent, or convergent in finite time, toward a singleton belonging to the set of constrained critical points; (2) for convex QP problems, the same result as in (1) holds; moreover, the singleton belongs to the set of global minimizers; and (3) for LP problems, each trajectory converges in finite time to a singleton belonging to the set of global minimizers. These results, which improve previous results obtained via the Lyapunov approach, are true independently of the nature of the set of equilibrium points, and in particular they hold even when the NN possesses infinitely many nonisolated equilibrium points.

  19. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals

    PubMed Central

    Chikina, Maria; Robinson, Joseph D.; Clark, Nathan L.

    2016-01-01

    Abstract Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes. PMID:27329977

  20. Schematic memory components converge within angular gyrus during retrieval

    PubMed Central

    Wagner, Isabella C; van Buuren, Mariët; Kroes, Marijn CW; Gutteling, Tjerk P; van der Linden, Marieke; Morris, Richard G; Fernández, Guillén

    2015-01-01

    Mental schemas form associative knowledge structures that can promote the encoding and consolidation of new and related information. Schemas are facilitated by a distributed system that stores components separately, presumably in the form of inter-connected neocortical representations. During retrieval, these components need to be recombined into one representation, but where exactly such recombination takes place is unclear. Thus, we asked where different schema components are neuronally represented and converge during retrieval. Subjects acquired and retrieved two well-controlled, rule-based schema structures during fMRI on consecutive days. Schema retrieval was associated with midline, medial-temporal, and parietal processing. We identified the multi-voxel representations of different schema components, which converged within the angular gyrus during retrieval. Critically, convergence only happened after 24-hour-consolidation and during a transfer test where schema material was applied to novel but related trials. Therefore, the angular gyrus appears to recombine consolidated schema components into one memory representation. DOI: http://dx.doi.org/10.7554/eLife.09668.001 PMID:26575291

  1. Understanding the South Pacific Convergence Zone and Its Impacts

    NASA Astrophysics Data System (ADS)

    Power, Scott

    2011-02-01

    International Workshop on the South Pacific Convergence Zone; Apia, Samoa, 24-26 August 2010 ; During the Southern Hemisphere summer the South Pacific Convergence Zone (SPCZ) in the southwestern Pacific Ocean produces the largest rainfall band in the world. The SPCZ tends to move northeast during southern winter and El Niño and move southwest during southern summer and La Niña. These changes in position have a profound influence on climate (e.g., rainfall, winds, and tropical cyclone frequencies) and life in most of the nations in the southwestern Pacific. Despite the importance of the SPCZ to the region and its prominence in the general circulation of the Southern Hemisphere, the SPCZ has been studied relatively little compared with convergence zones in the Northern Hemisphere. An international workshop on the SPCZ was held in Samoa and brought together 30 experts from Australia, the Cook Islands, Fiji, France, India, New Caledonia, New Zealand, Samoa, the Solomon Islands, Tonga, Tuvalu, the United Kingdom, the United States, and Vanuatu.

  2. Widespread ecomorphological convergence in multiple fish families spanning the marine-freshwater interface.

    PubMed

    Davis, Aaron M; Betancur-R, Ricardo

    2017-05-17

    The theoretical definition and quantification of convergence is an increasingly topical focus in evolutionary research, with particular growing interest on study scales spanning deep phylogenetic divergences and broad geographical areas. While much progress has recently been made in understanding the role of convergence in driving terrestrial (e.g. anole lizards) and aquatic (e.g. cichlids) radiations, little is known about its macroevolutionary effects across environmental gradients. This study uses a suite of recently developed comparative approaches integrating diverse aspects of morphology, dietary data, habitat affiliation and phylogeny to assess convergence across several well-known tropical-temperate fish families in the percomorph suborder Terapontoidei, a clade with considerable phenotypic and ecological diversity radiating in both marine and freshwater environments. We demonstrate significant widespread convergence across many lineages occupying equivalent trophic niches, particularly feeding habits such as herbivory and biting of attached prey off hard substrates. These include several examples of convergent morphotypes evolving independently in marine and freshwater clades, separated by deep evolutionary divergences (tens of millions of years). The Terapontoidei present a new example of the macroevolutionary dynamics of morphological and ecological coevolution in relation to habitat and trophic preferences, at a greater phylogenetic and habitat scale than most well-studied adaptive radiations. © 2017 The Author(s).

  3. Surgically assisted rapid maxillary expansion in adults.

    PubMed

    Pogrel, M A; Kaban, L B; Vargervik, K; Baumrind, S

    1992-01-01

    Twelve adults with maxillary width discrepancy of greater than 5 mm were treated by surgically assisted rapid maxillary expansion. The procedure consisted of bilateral zygomatic buttress and midpalatal osteotomies combined with the use of a tooth-borne orthopedic device postoperatively. Mean palatal expansion of 7.5 mm (range of 6 to 13 mm), measured in the first molar region, was achieved within 3 weeks in all patients. Expansion remained stable during the 12-month study period, with a mean relapse for the entire group of 0.88 +/- 0.48 mm. Morbidity was limited to mild postoperative discomfort. The results of this preliminary study indicated that surgically assisted rapid maxillary expansion is a safe, simple, and reliable procedure for achieving a permanent increase in skeletal maxillary width in adults. Further study is necessary to document the three-dimensional movements of the maxillary segments and long-term stability of the skeletal and dental changes.

  4. Autism genetics: searching for specificity and convergence

    PubMed Central

    2012-01-01

    Advances in genetics and genomics have improved our understanding of autism spectrum disorders. As many genes have been implicated, we look to points of convergence among these genes across biological systems to better understand and treat these disorders. PMID:22849751

  5. New methods for accelerating the convergence of molecular electronic integrals over exponential type orbitals

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan; Hoggan, Philip

    2003-01-01

    This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.

  6. A near one-dimensional indirectly driven implosion at convergence ratio 30

    NASA Astrophysics Data System (ADS)

    MacLaren, S. A.; Masse, L. P.; Czajka, C. E.; Khan, S. F.; Kyrala, G. A.; Ma, T.; Ralph, J. E.; Salmonson, J. D.; Bachmann, B.; Benedetti, L. R.; Bhandarkar, S. D.; Bradley, P. A.; Hatarik, R.; Herrmann, H. W.; Mariscal, D. A.; Millot, M.; Patel, P. K.; Pino, J. E.; Ratledge, M.; Rice, N. G.; Tipton, R. E.; Tommasini, R.; Yeamans, C. B.

    2018-05-01

    Inertial confinement fusion cryogenic-layered implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional (1D) multi-physics implosion simulations. The current understanding, from experimental evidence as well as simulations, suggests that engineering features such as the capsule tent and fill tube, as well as time-dependent low-mode asymmetry, are to blame for the lack of agreement. A short series of experiments designed specifically to avoid these degradations to the implosion are described here in order to understand if, once they are removed, a high-convergence cryogenic-layered deuterium-tritium implosion can achieve the 1D simulated performance. The result is a cryogenic layered implosion, round at stagnation, that matches closely the performance predicted by 1D simulations. This agreement can then be exploited to examine the sensitivity of approximations in the model to the constraints imposed by the data.

  7. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  8. Sliding mode control method having terminal convergence in finite time

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Inventor); Gulati, Sandeep (Inventor)

    1994-01-01

    An object of this invention is to provide robust nonlinear controllers for robotic operations in unstructured environments based upon a new class of closed loop sliding control methods, sometimes denoted terminal sliders, where the new class will enforce closed-loop control convergence to equilibrium in finite time. Improved performance results from the elimination of high frequency control switching previously employed for robustness to parametric uncertainties. Improved performance also results from the dependence of terminal slider stability upon the rate of change of uncertainties over the sliding surface rather than the magnitude of the uncertainty itself for robust control. Terminal sliding mode control also yields improved convergence where convergence time is finite and is to be controlled. A further object is to apply terminal sliders to robot manipulator control and benchmark performance with the traditional computed torque control method and provide for design of control parameters.

  9. Working memory and executive functions: effects of training on academic achievement.

    PubMed

    Titz, Cora; Karbach, Julia

    2014-11-01

    The aim of this review is to illustrate the role of working memory and executive functions for scholastic achievement as an introduction to the question of whether and how working memory and executive control training may improve academic abilities. The review of current research showed limited but converging evidence for positive effects of process-based complex working-memory training on academic abilities, particularly in the domain of reading. These benefits occurred in children suffering from cognitive and academic deficits as well as in healthy students. Transfer of training to mathematical abilities seemed to be very limited and to depend on the training regime and the characteristics of the study sample. A core issue in training research is whether high- or low-achieving children benefit more from cognitive training. Individual differences in terms of training-related benefits suggested that process-based working memory and executive control training often induced compensation effects with larger benefits in low performing individuals. Finally, we discuss the effects of process-based training in relation to other types of interventions aimed at improving academic achievement.

  10. Converging Oceaniac Internal Waves, Somalia, Africa

    NASA Image and Video Library

    1988-10-03

    The arculate fronts of these apparently converging internal waves off the northeast coast of Somalia (11.5N, 51.5E) probably were produced by interaction with two parallel submarine canyons off the Horn of Africa. Internal waves are packets of tidally generated waves traveling within the ocean at varying depths and are not detectable by any surface disturbance.

  11. Culture and Social Psychology: Converging Perspectives

    ERIC Educational Resources Information Center

    Dimaggio, Paul; Markus, Hazel Rose

    2010-01-01

    Views of culture in psychology and sociology have converged markedly in the past two decades. Both have rejected what Adams and Markus (2004) refer to as the "entity" conception of culture--the view that culture is coherent, stable, and located in the heads of collectivities' members--in favor of more supple and dynamic constructs. Culture, in…

  12. Continuous quality improvement and medical informatics: the convergent synergy.

    PubMed

    Werth, G R; Connelly, D P

    1992-01-01

    Continuous quality improvement (CQI) and medical informatics specialists need to converge their efforts to create synergy for improving health care. Health care CQI needs medical informatics' expertise and technology to build the information systems needed to manage health care organizations according to quality improvement principles. Medical informatics needs CQI's philosophy and methods to build health care information systems that can evolve to meet the changing needs of clinicians and other stakeholders. This paper explores the philosophical basis for convergence of CQI and medical informatics efforts, and then examines a clinical computer workstation development project that is applying a combined approach.

  13. Converging prescription brand shares as evidence of physician learning.

    PubMed

    Walker, Doug

    2012-01-01

    Within a drug category, there is an optimal brand the physician could choose to prescribe based on the patient's particular condition and characteristics. Physicians desire to prescribe the best brand for each patient for professional, moral, and legal reasons. Ideally, detailing provides information that supports this effort. This study finds that, over time, the proportion of prescriptions written for each brand moves toward a stable distribution--a convergence in which each brand's share in the category appears to match the proportion of prescription writing opportunities where the brand is the best choice for the patient. Detailing supports this convergence.

  14. Medical sociology and epidemiology: convergences, divergences and legitimate boundaries.

    PubMed

    Spruit, I P; Kromhout, D

    1987-01-01

    For the purpose of exploring the existence of problem areas that may give rise to the question whether there is a tendency to (illegitimately) trespass across boundaries between medical sociology and epidemiology, important convergences and divergences between both disciplines are described. To assemble arguments for the legitimacy of fields of study we trace comparatively the history of both disciplines, definitions of their fields under study and aims of study, as well as characteristic concepts and constructs. Current research themes are taken from international journals; divergent interests are briefly described and potential 'trespassing' of boundaries is discussed, referring to themes showing convergences of interest.

  15. Vision Therapy in Adults with Convergence Insufficiency: Clinical and Functional Magnetic Resonance Imaging Measures

    PubMed Central

    Alvarez, Tara L.; Vicci, Vincent R.; Alkan, Yelda; Kim, Eun H.; Gohel, Suril; Barrett, Anna M.; Chiaravalloti, Nancy; Biswal, Bharat B.

    2011-01-01

    Purpose This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Methods Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Results Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Conclusions Convergence peak velocity was significantly slower in

  16. Progressive Sampling Technique for Efficient and Robust Uncertainty and Sensitivity Analysis of Environmental Systems Models: Stability and Convergence

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, R.; Hosseini, N.; Razavi, S.

    2016-12-01

    Modern earth and environmental models are usually characterized by a large parameter space and high computational cost. These two features prevent effective implementation of sampling-based analysis such as sensitivity and uncertainty analysis, which require running these computationally expensive models several times to adequately explore the parameter/problem space. Therefore, developing efficient sampling techniques that scale with the size of the problem, computational budget, and users' needs is essential. In this presentation, we propose an efficient sequential sampling strategy, called Progressive Latin Hypercube Sampling (PLHS), which provides an increasingly improved coverage of the parameter space, while satisfying pre-defined requirements. The original Latin hypercube sampling (LHS) approach generates the entire sample set in one stage; on the contrary, PLHS generates a series of smaller sub-sets (also called `slices') while: (1) each sub-set is Latin hypercube and achieves maximum stratification in any one dimensional projection; (2) the progressive addition of sub-sets remains Latin hypercube; and thus (3) the entire sample set is Latin hypercube. Therefore, it has the capability to preserve the intended sampling properties throughout the sampling procedure. PLHS is deemed advantageous over the existing methods, particularly because it nearly avoids over- or under-sampling. Through different case studies, we show that PHLS has multiple advantages over the one-stage sampling approaches, including improved convergence and stability of the analysis results with fewer model runs. In addition, PLHS can help to minimize the total simulation time by only running the simulations necessary to achieve the desired level of quality (e.g., accuracy, and convergence rate).

  17. Convergences and Hybridization of Educational Policies around "Post-Bureaucratic" Models of Regulation

    ERIC Educational Resources Information Center

    Maroy, Christian

    2009-01-01

    Our purpose is to document convergences and divergences in the mode of institutional regulation of the education systems in five European countries (Belgium, England, France, Hungary and Portugal). On the national level, partially convergent policies create, to varying degrees and with different temporal rhythms, variants of a post-bureaucratic…

  18. Converged Social Media: Identity Management and Engagement on Facebook Mobile and Blogs

    ERIC Educational Resources Information Center

    Rambe, Patient

    2013-01-01

    There is scant evidence to demonstrate that researchers grasp the social dimensions of convergence, and particularly, the academic and social implications of converged media on students' lives. Despite a surge in student appropriation of social media-enabled mobile phones for exchanging educational resources and social practices, little is known…

  19. Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti

    PubMed Central

    Cao-Lormeau, Van-Mai; Lambrechts, Louis

    2017-01-01

    Abstract Like other pathogens with high mutation and replication rates, within-host dengue virus (DENV) populations evolve during infection of their main mosquito vector, Aedes aegypti. Within-host DENV evolution during transmission provides opportunities for adaptation and emergence of novel virus variants. Recent studies of DENV genetic diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues such as midgut and salivary glands, suggesting that convergent positive selection is not a major driver of within-host DENV evolution in the vector. However, it is unknown whether this conclusion extends to the transmitted viral subpopulation because it is technically difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individual Ae. aegypti mosquitoes previously infected with one of two DENV-1 genotypes. We compared the transmitted viral subpopulations found in the pooled saliva samples collected in time series with the input viral population present in the infectious blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of the input viral population was unchanged. Although the pooling strategy prevents analysis of individual saliva samples, our results demonstrate the lack of strong convergent positive selection during a single round of DENV transmission by Ae. aegypti. This finding reinforces the idea that genetic drift and purifying selection are the dominant evolutionary forces shaping within-host DENV genetic diversity during transmission by mosquitoes. PMID:29497564

  20. Convergence of scaled delta expansion: Anharmonic oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, R.; Konishi, K.; Suzuki, H.

    1995-07-01

    We prove that the linear delta expansion for energy eigenvalues of the quantum mechanical anharmonic oscillator converges to the exact answer if the order dependent trial frequency {Omega} is chosen to scale with the order as {Omega}={ital CN}{sup {gamma}}; 1/3{lt}{gamma}{lt}1/2, {ital C}{gt}0 as {ital N} {r_arrow} {infinity}. It converges also for {gamma}=1/3, if {ital C}{ge}{alpha}{sub {ital c}} {ital g}{sup 1/3}, {alpha}{sub {ital c}}{congruent}0.570875, where {ital g} is the coupling constant in front of the operator {ital q}{sup 4}/4. The extreme case with {gamma}=1/3, {ital C}={alpha}{sub {ital c}} {ital g}{sup 1/3} corresponds to the choice discussed earlier by Seznec and Zinn-Justinmore » and, more recently, by Duncan and Jones. {copyright} 1995 Academic Press, Inc.« less