Science.gov

Sample records for achieve sustainable water

  1. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene

    PubMed Central

    Hutton, Guy; Chase, Claire

    2016-01-01

    Safe drinking water, sanitation, and hygiene (WASH) are fundamental to an improved standard of living. Globally, 91% of households used improved drinking water sources in 2015, while for improved sanitation it is 68%. Wealth disparities are stark, with rural populations, slum dwellers and marginalized groups lagging significantly behind. Service coverage is significantly lower when considering the new water and sanitation targets under the sustainable development goals (SDGs) which aspire to a higher standard of ‘safely managed’ water and sanitation. Lack of access to WASH can have an economic impact as much as 7% of Gross Domestic Product, not including the social and environmental consequences. Research points to significant health and socio-economic consequences of poor nutritional status, child growth and school performance caused by inadequate WASH. Groundwater over-extraction and pollution of surface water bodies have serious impacts on water resource availability and biodiversity, while climate change exacerbates the health risks of water insecurity. A significant literature documents the beneficial impacts of WASH interventions, and a growing number of impact evaluation studies assess how interventions are optimally financed, implemented and sustained. Many innovations in behavior change and service delivery offer potential for scaling up services to meet the SDGs. PMID:27240389

  2. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene.

    PubMed

    Hutton, Guy; Chase, Claire

    2016-05-27

    Safe drinking water, sanitation, and hygiene (WASH) are fundamental to an improved standard of living. Globally, 91% of households used improved drinking water sources in 2015, while for improved sanitation it is 68%. Wealth disparities are stark, with rural populations, slum dwellers and marginalized groups lagging significantly behind. Service coverage is significantly lower when considering the new water and sanitation targets under the sustainable development goals (SDGs) which aspire to a higher standard of 'safely managed' water and sanitation. Lack of access to WASH can have an economic impact as much as 7% of Gross Domestic Product, not including the social and environmental consequences. Research points to significant health and socio-economic consequences of poor nutritional status, child growth and school performance caused by inadequate WASH. Groundwater over-extraction and pollution of surface water bodies have serious impacts on water resource availability and biodiversity, while climate change exacerbates the health risks of water insecurity. A significant literature documents the beneficial impacts of WASH interventions, and a growing number of impact evaluation studies assess how interventions are optimally financed, implemented and sustained. Many innovations in behavior change and service delivery offer potential for scaling up services to meet the SDGs.

  3. Using Design To Achieve Sustainability

    EPA Science Inventory

    Sustainability is defined as meeting the needs of this generation without compromising the ability of future generations to meet their needs. This is a conditional statement that places the responsibility for achieving sustainability squarely in hands of designers and planners....

  4. Sustained availability of trimethoprim in drinking water to achieve higher plasma sulphonamide-trimethoprim antibacterial activity in broilers.

    PubMed

    Sumano, H; Hernandez, L; Gutierrez, L; Bernad-Bernad, M J

    2005-02-01

    (1) In order to make trimethoprim (TMP) available to broilers throughout the day, a sustained release formulation (SRF) of the drug in the form of granules was added to the water tank that supplies drinking water. (2) Broilers were initially dosed with sulphachloropiridazine-TMP (SCP-TMP 5:1) and then further medicated throughout the day, achieving in the end a dose of 30 mg/kg each of SCP and TMP (group A). Group B received a preparation with the same dose of SCP and TMP (1:1) as group A, but administered as a single dose without the SRF of TMP. Group C received the customary SCP-TMP 5:1 preparation (30 and 6 mg/kg, respectively). Water tanks were completely consumed in 3 to 4 h. (3) Broilers were bled at different times and concentration of antibacterial activity in serum determined by correlating the composite antibacterial activity of SCP and TMP with actual concentrations of these drugs by means of a microbiological agar diffusion assay. (4) Time vs serum concentrations of activity were higher in group B; the increments in the maximum serum concentration for group B over groups A and C being 39 and 67%, respectively. (5) However, the sustained concentration of activity over time, measured as the area under the cu)rve, was highest in group A. Group B had higher values for area under the curve than group C. (6) An additional dose of TMP to achieve 30 mg/kg of both SCP and TMP improves the serum concentration of this combination over the customary 5:1 proportion. The best values for sustaining antibacterial activity were obtained using a 1:1 ratio as in group A. The use of a SRF as in group A may translate into better clinical results.

  5. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  6. Valuing environmental water pulses into the Incomati estuary: Key to achieving equitable and sustainable utilisation of transboundary waters

    NASA Astrophysics Data System (ADS)

    Sengo, D. José; Kachapila, Albert; Zaag, Pieter van der; Mul, Marloes; Nkomo, Sakhiwe

    Upstream developments in the Incomati river basin, shared by South Africa, Swaziland and Mozambique, have altered downstream flows significantly. The frequency of small floods into the estuary has been reduced dramatically. This change in the flow regime has impacted on the state of the environment downstream, and the Incomati estuary in particular. The estuary requires fresh water pulses that naturally occur, and the resulting seasonal flooding of the plains. Resource-poor rural households depend on the goods and services that the estuary and flood plains provide such as wood, charcoal, building materials, fish and shrimp, wetland farming, and tourism. Alteration of the flow regime into the estuary has a negative impact on the state of the environment and hence on the goods and services the estuary yields; a phenomenon the people living near the estuary are keenly aware of. The article estimates the value of the goods and services that the estuary currently provides, that is under the conditions of a changed flow regime. A linear relationship is then assumed between fresh water pulses into the estuary and the goods and services it provides, so that the order of magnitude of the economic value of fresh water pulses into the estuary may be approximated. Various development scenarios in the Incomati basin are then considered, that have different upstream and downstream impacts on water availability, and the basin-wide benefits and costs are compared. The paper concludes that the principle of sharing the benefits derived from the water resources, rather than the water itself, as proposed by authors such as [Sadoff, C.W., Grey, D., 2002. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389-403], may be a feasible approach only if the less tangible benefits and functions, especially those of the environment, are assigned an appropriate value and corresponding priority.

  7. Achieving sustainable cultivation of potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every phase of the production cycle impacts the sustainability of potato. Potato physiology determines how genetically encoded developmental attributes interact with local environmental conditions as modified through agricultural practice to produce a perishable crop. In this chapter we highlight ho...

  8. Achieving a sustainable service advantage.

    PubMed

    Coyne, K P

    1993-01-01

    Many managers believe that superior service should play little or no role in competitive strategy; they maintain that service innovations are inherently copiable. However, the author states that this view is too narrow. For a company to achieve a lasting service advantage, it must base a new service on a capability gap that competitors cannot or will not copy.

  9. Achieving and sustaining full employment.

    PubMed

    Rosen, S M

    1995-01-01

    Human rights and public health considerations provide strong support for policies that maximize employment. Ample historical and conceptual evidence supports the feasibility of full employment policies. New factors affecting the labor force, the rate of technological change, and the globalization of economic activity require appropriate policies--international as well as national--but do not invalidate the ability of modern states to apply the measures needed. Among these the most important include: (I) systematic reduction in working time with no loss of income, (2) active labor market policies, (3) use of fiscal and monetary measures to sustain the needed level of aggregate demand, (4) restoration of equal bargaining power between labor and capital, (5) social investment in neglected and outmoded infrastructure, (6) accountability of corporations for decisions to shift or reduce capital investment, (7) major reductions in military spending, to be replaced by socially needed and economically productive expenditures, (8) direct public sector job creation, (9) reform of monetary policy to restore emphasis on minimizing unemployment and promoting full employment. None are without precedent in modern economies. The obstacles are ideological and political. To overcome them will require intellectual clarity and effective advocacy.

  10. Factors Contributing to Institutions Achieving Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew; Card, Karen

    2012-01-01

    Purpose: The purpose of this paper is to determine what factors contributed to three universities achieving environmental sustainability. Design/methodology/approach: A case study methodology was used to determine how each factor contributed to the institutions' sustainability. Site visits, fieldwork, document reviews, and interviews with…

  11. When wastewater has worth: Water reconditioning opportunities in the food industry to achieve sustainable food manufacturing (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major sustainability goal of food processing wastewater (FPWW) management is to not only decrease environmental pollution but also utilize valuable co-products present in the FPWW. Many processed food products, especially those from fruits and vegetables, result in FPWW streams that contain compou...

  12. Sustainability and Water

    NASA Astrophysics Data System (ADS)

    Sharma, Virender A.

    2009-07-01

    World's population numbered 6.1 billion in 2000 and is currently increasing at a rate of about 77 million per year. By 2025, the estimated total world population will be of the order of 7.9 billion. Water plays a central role in any systematic appraisal of life sustaining requirements. Water also strongly influences economic activity (both production and consumption) and social roles. Fresh water is distributed unevenly, with nearly 500 million people suffering water stress or serious water scarcity. Two-thirds of the world's population may be subjected to moderate to high water stress in 2025. It is estimated that by 2025, the total water use will increase by to 40%. The resources of water supply and recreation may also come under stress due to changes in climate such as water balance for Lake Balaton (Hungary). Conventional urban water systems such as water supply, wastewater, and storm water management are also currently going through stress and require major rethinking. To maintain urban water systems efficiently in the future, a flexibility approach will allow incorporation of new technologies and adaptation to external changes (for example society or climate change). Because water is an essential resource for sustaining health, both the quantity and quality of available water supplies must be improved. The impact of water quality on human health is severe, with millions of deaths each year from water-borne diseases, while water pollution and aquatic ecosystem destruction continue to rise. Additionally, emerging contaminants such as endocrine disruptor chemicals (EDCs), pharmaceuticals, and toxins in the water body are also of a great concern. An innovative ferrate(VI) technology is highly effective in removing these contaminants in water. This technology is green, which addresses problems associated with chlorination and ozonation for treating pollutants present in water and wastewater. Examples are presented to demonstrate the applications of ferrate

  13. ACHIEVING SUSTAINABILITY - FINAL STEPS IN A DYNAMIC DANCE

    EPA Science Inventory

    Achieving sustainability relies upon adequate metrics to evaluate the environment and guide decisions. Although adequate assessment is important to prescribing remedies, achieving a sustainable environment cannot be delayed. It must be achieved today as well as tomorrow so that t...

  14. Achieving true sustainability of zoo populations.

    PubMed

    Lacy, Robert C

    2013-01-01

    For the last 30 years, cooperative management of irreplaceable animal populations in zoos and aquariums has focused primarily on the goal of minimizing genetic decay within defined time frames, and large advances have been made in technologies to optimize genetic management of closed populations. However, recent analyses have shown that most zoo programs are not projected to meet their stated goals. This has been described as a lack of achieving "sustainability" of the populations, yet by definition a goal of managed decay is not a plan for sustainability. True sustainability requires management of the resource in manner that does not deplete its value for the future. Achieving such sustainability for many managed populations may require changing from managing isolated populations to managing populations that are part of a broader metapopulation, with carefully considered exchange between populations across a spectrum of ex situ to in situ. Managing zoo populations as components of comprehensive conservation strategies for the species will require research on determinants of various kinds of genetic, physiological, behavioral, and morphological variation and their roles in population viability, development of an array of management techniques and tools, training of population managers in metapopulation management and integrated conservation planning, and projections of impacts of management strategies on the viability of the captive populations and all populations that are interactively managed or affected. Such a shift in goals and methods would result in zoo population management being an ongoing part of species conservation rather than short-term or isolated from species conservation. Zoo Biol. 32:19-26, 2013. © 2012 Wiley Periodicals, Inc.

  15. Analyzing Hydrological Sustainability Through Water Balance

    NASA Astrophysics Data System (ADS)

    Menció, Anna; Folch, Albert; Mas-Pla, Josep

    2010-05-01

    The objective of the Water Framework Directive (2000/60/EC) is to assist in the development of management plans that will lead to the sustainable use of water resources in all EU member states. However, defining the degree of sustainability aimed at is not a straightforward task. It requires detailed knowledge of the hydrogeological characteristics of the basin in question, its environmental needs, the amount of human water demand, and the opportunity to construct a proper water balance that describes the behavior of the hydrological system and estimates available water resources. An analysis of the water balance in the Selva basin (Girona, NE Spain) points to the importance of regional groundwater fluxes in satisfying current exploitation rates, and shows that regional scale approaches are often necessary to evaluate water availability. In addition, we discuss the pressures on water resources, and analyze potential actions, based on the water balance results, directed towards achieving sustainable water management in the basin.

  16. Perspectives on achieving sustainable energy production and use

    EPA Science Inventory

    The traditional definition of sustainability calls for polices and strategies that meet society's present needs without compromising the ability of future generations to meet their own needs. Achieving operational sustainability requires three critical elements: advances in scien...

  17. Language Teacher Action Research: Achieving Sustainability

    ERIC Educational Resources Information Center

    Edwards, Emily; Burns, Anne

    2016-01-01

    Action research (AR) is becoming increasingly popular in ELT contexts as a means of continuous professional development. The positive impacts of AR on language teacher development are well documented, but the important question of how those impacts can be sustained over time is virtually unexplored. Drawing on findings from a study of teachers in…

  18. ACHIEVING SUSTAINABILITY THROUGH LIFE CYCLE STRATEGIES

    EPA Science Inventory

    Sustainability is, of course, not a recent concept. But our understanding of what it means and what we need to do to meet the challenge it presents continues to grow. Throughout the ages, nations have had to address the issue of harmony between the environment, society and the e...

  19. Towards sustainability in water recycling.

    PubMed

    Sala, L; Serra, M

    2004-01-01

    Those like us who believe in and spread the gospel of planned wastewater reclamation and reuse usually emphasize that this is a step towards sustainability in water resource management, but this is something that is very seldom analyzed. This paper discusses, from a critical point of view, issues such as goals in water reuse and influence on water demands, ecological analysis of the cycle of the main pollutants, health aspects and treatment requirements, energy consumption and measurable environmental benefits, in order to provide a set of criteria to assess sustainability in water recycling projects and to decrease the impact of the cultural water cycle on the environment.

  20. Sustainable Storm Water Management

    DTIC Science & Technology

    2010-06-16

    and gutter, culverts, pipes, canals , and ditches – Detention ponds to reduce peak flows 3 Acquisition, Technology and Logistics Sludge off-site...Environment, Energy and Sustainability Symposium & Exhibition Denver , CO Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Symposium & Exhibition held 14-17 June 2010 in Denver , CO. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  1. Sustaining School Achievement in California's Elementary Schools after State Monitoring

    ERIC Educational Resources Information Center

    McCabe, Molly

    2010-01-01

    This study examined the Academic Performance Index (API) and Adequate Yearly Progress (AYP) achievement trends between 2004 and 2006 of 58 California public elementary schools after exiting state monitoring and investigated practices for sustaining consistent achievement growth. Statistical methods were used to analyze statewide achievement trends…

  2. Sustaining dry surfaces under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  3. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-08-18

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  4. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  5. Urban water sustainability: an integrative framework for regional water management

    NASA Astrophysics Data System (ADS)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  6. Ideas towards sustainable water security

    NASA Astrophysics Data System (ADS)

    Dalin, Carole

    2016-04-01

    With growing global demands and a changing climate, ensuring water security - the access to sufficient, quality water resources for health and livelihoods and an acceptable level of water related risk - is increasingly challenging. While a billion people still lack access to water, over-exploitation of this resource increases in many developed and developing parts of the world. While some solutions to water stress have been known for a long time, financial, cultural and political barriers often prevent their implementations. This talk will highlight three crucial areas that need to be addressed to progress towards sustainable water security. The first point is on scale, the second on the agricultural sector and irrigation, and the third on food trade and policy.

  7. Leadership Effects on Student Achievement and Sustained School Success

    ERIC Educational Resources Information Center

    Jacobson, Stephen

    2011-01-01

    Purpose: The purpose of this paper is to examine the effects of leadership on student achievement and sustained school success, especially in challenging, high-poverty schools. Design/methodology/approach: The paper combines a review of the leadership literature with findings drawn from longitudinal studies of the International Successful School…

  8. Sustaining Waters: From Hydrology to Drinking Water

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  9. Following the Water Cycle to Sustainability

    NASA Astrophysics Data System (ADS)

    Lutz, T. M.

    2012-12-01

    For scientists, modeling the connections among the parts of complex, dynamic systems is crucial. Doing so lets us understand emergent phenomena such as ecosystem behavior and climate patterns that could not otherwise be predicted. Emergent phenomena can typically only be understood or appreciated when we stand "outside" the system. When scientists take such an outsiders view of earth's systems they can propose many ways that human activities modify the climate system (e.g., increasing or reducing GHG emissions). But what should we do to achieve a sustainable future? Sustainability is an emergent property that arises at the level of the planetary management system, of which the scientific establishment is just a part. We are "insiders" and it is impossible to completely envision the conditions for sustainability or to plan for it. The crises in our atmosphere, biosphere, oceans, and in the natural and energy resource sectors are based in science and do call for urgent changes in science education. But education that focuses solely on science to meet the challenges of sustainability may be as likely to harm humanity's long-term prospects as to improve them. I present activities and teaching strategies that I use in general education classes at West Chester University, a comprehensive institution of roughly 14,000 undergraduates. The overarching concept is to extend "modeling the connections" to the sustainability level and to train students to think outside the system. To make the ideas more accessible, I have the students become sensors at their particular point in the web of connections that constitute the planetary management system. I ask them to evaluate their connection in three domains proposed by John Ehrenfeld (Sustainability by Design, Yale University Press, 2008): sense of place in the natural world; sense of responsibility for our actions, and sense of what it is to be a human being. I have them analyze their sense of connection with reference to a

  10. Ecosystem Management to Achieve Ecological Sustainability: The Case of South Florida

    PubMed

    Harwell; Long; Bartuska; Gentile; Harwell; Myers; Ogden

    1996-07-01

    The ecosystems of South Florida are unique in the world. The defining features of the natural Everglades (large spatial scale, temporal patterns of water storage and sheetflow, and low nutrient levels) historically allowed a mosaic of habitats with characteristic animals. Massive hydrological alterations have halved the Everglades, and ecological sustainability requires fundamental changes in management.The US Man and the Biosphere Human-Dominated Systems Directorate is conducting a case study of South Florida using ecosystem management as a framework for exploring options for mutually dependent sustainability of society and the environment. A new methodology was developed to specify sustainability goals, characterize human factors affecting the ecosystem, and conduct scenario/consequence analyses to examine ecological and societal implications. South Florida has sufficient water for urban, agricultural, and ecological needs, but most water drains to the sea through the system of canals; thus, the issue is not competition for resources but storage and management of water. The goal is to reestablish the natural system for water quantity, timing, and distribution over a sufficient area to restore the essence of the Everglades.The societal sustainability in the Everglades Agricultural Area (EAA) is at risk because of soil degradation, vulnerability of sugar price supports, policies affecting Cuban sugar imports, and political/economic forces aligned against sugar production. One scenario suggested using the EAA for water storage while under private sugar production, thereby linking sustainability of the ecological system with societal sustainability. Further analyses are needed, but the US MAB project suggests achieving ecological sustainability consistent with societal sustainability may be feasible.

  11. Ecosystem management to achieve ecological sustainability: The case of South Florida

    NASA Astrophysics Data System (ADS)

    Harwell, Mark A.; Long, John F.; Bartuska, Ann M.; Gentile, John H.; Harwell, Christine C.; Myers, Victoria; Ogden, John C.

    1996-07-01

    The ecosystems of South Florida are unique in the world. The defining features of the natural Everglades (large spatial scale, temporal patterns of water storage and sheetflow, and low nutrient levels) historically allowed a mosaic of habitats with characteristic animals. Massive hydrological alterations have halved the Everglades, and ecological sustainability requires fundamental changes in management. The US Man and the Biosphere Human-Dominated Systems Directorate is conducting a case study of South Florida using ecosystem management as a framework for exploring options for mutually dependent sustainability of society and the environment. A new methodology was developed to specify sustainability goals, characterize human factors affecting the ecosystem, and conduct scenario/consequence analyses to examine ecological and societal implications. South Florida has sufficient water for urban, agricultural, and ecological needs, but most water drains to the sea through the system of canals; thus, the issue is not competition for resources but storage and management of water. The goal is to reestablish the natural system for water quantity, timing, and distribution over a sufficient area to restore the essence of the Everglades. The societal sustainability in the Everglades Agricultural Area (EAA) is at risk because of soil degradation, vulnerability of sugar price supports, policies affecting Cuban sugar imports, and political/economic forces aligned against sugar production. One scenario suggested using the EAA for water storage while under private sugar production, thereby linking sustainability of the ecological system with societal sustainability. Further analyses are needed, but the US MAB project suggests achieving ecological sustainability consistent with societal sustainability may be feasible.

  12. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  13. Challenges to achievement of metal sustainability in our high-tech society

    SciTech Connect

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.; Izatt, Neil; Moyer, Bruce A

    2014-01-01

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.

  14. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  15. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Mei, Ying; Wei, Li

    2016-10-01

    This review on Sustainability covers selected 2015 publications on the focus of Sustainability. It is divided into the following sections : Sustainable water and wastewater utilities Sustainable water resources management Stormwater and green infrastructure Sustainability in wastewater treatment Life cycle assessment (LCA) applications Sustainability and energy in wastewater industry, Sustainability and asset management.

  16. DEVELOPMENT AND APPLICATION OF PLANNING PROCESS TO ACHIEVE SUSTAINABILITY

    EPA Science Inventory

    Concepts of sustainability are numerous, widely discussed, and necessary, but sustainability needs to be applied to development projects to succeed. However, few applications are made and their measures are unclear. Sustainability indicators are typically used as measures, but ...

  17. Sustainable water management practices and remote sensing.

    EPA Science Inventory

    The United States Environmental Protection Agency’s charge to protect human health and the environment requires a long-term commitment to creating sustainable solutions to environmental problems. The most direct way to ensure that management practices are achieving sustainability...

  18. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  19. Seeking sustainability: Israel's evolving water management strategy.

    PubMed

    Tal, Alon

    2006-08-25

    The water management policies adopted to address Israel's chronic scarcity have not been without environmental consequences. Yet, through a trial-and-error process, a combined strategy of water transport, rainwater harvesting, and wastewater reuse and desalination, along with a variety of water conservation measures, have put the country on a more sustainable path for the future.

  20. Sustainability.

    PubMed

    Chang, Chein-Chi; DiGiovanni, Kimberly; Zhang, Gong; Yang, Xiahua; You, Shao-Hong

    2015-10-01

    This review on Sustainability covers selected 2014 publications on the focus of the following sections: • Sustainable water and wastewater utilities • Sustainable water resources management • Stormwater and green infrastructure • Sustainability in wastewater treatment • Life cycle assessment (LCA) applications • Sustainability and energy in wastewater industry, • Sustainability and asset management.

  1. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    EPA Science Inventory

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  2. Measuring environmental sustainability of water in watersheds.

    PubMed

    Hester, Erich T; Little, John C

    2013-08-06

    Environmental sustainability assessment is a rapidly growing field where measures of sustainability are used within an assessment framework to evaluate and compare alternative actions. Here we argue for the importance of evaluating environmental sustainability of water at the watershed scale. We review existing frameworks in brief before reviewing watershed-relevant measures in more detail. While existing measures are diverse, overlapping, and interdependent, certain attributes that are important for watersheds are poorly represented, including spatial explicitness and the effect of natural watershed components, such as rivers. Most studies focus on one or a few measures, but a complete assessment will require use of many existing measures, as well as, perhaps, new ones. Increased awareness of the broad dimensions of environmental sustainability as applied to water management should encourage integration of existing approaches into a unified assessment framework appropriate for watersheds.

  3. Achieving and Maintaining Existing Building Sustainability Certification at Georgetown University

    ERIC Educational Resources Information Center

    Payant, Richard P.

    2013-01-01

    Sustainability is the promotion of high performance, healthful, energy-efficient, and environmentally stable buildings. Buildings intended for sustainable certification must meet guidelines developed by the Leadership in Energy and Environmental Design (LEED) of the U.S. Green Building Council. The problem is that LEED certification often fails to…

  4. EPA's Safe and Sustainable Water Resources Research ...

    EPA Pesticide Factsheets

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an integrated, sustainable manner can jeopardize human and aquatic ecosystem health, which can impact our society and economy.Through innovative science and engineering, the SSWR Research Program is developing cost-effective, sustainable solutions to 21st century complex water issues and proactively developing solutions to emerging concerns. Our research is helping to ensure that clean, adequate, and equitable supplies of water are available to support human health and resilient aquatic ecosystems, now and into the future. To share information on EPA's water research program

  5. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design.

  6. Challenges to achievement of metal sustainability in our high-tech society.

    PubMed

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  7. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    PubMed

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future.

  8. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    SciTech Connect

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  9. Root water compensation sustains transpiration rates in an Australian woodland

    NASA Astrophysics Data System (ADS)

    Verma, Parikshit; Loheide, Steven P.; Eamus, Derek; Daly, Edoardo

    2014-12-01

    We apply a model of root-water uptake to a woodland in Australia to examine the regulation of transpiration by root water compensation (i.e., the ability of roots to regulate root water uptake from different parts of the soil profile depending on local moisture availability). We model soil water movement using the Richards equation and water flow in the xylem with Darcy's equation. These two equations are coupled by a term that governs the exchange of water between soil and root xylem as a function of the difference in water potential between the two. The model is able to reproduce measured diurnal patterns of sap flux and results in leaf water potentials that are consistent with field observations. The model shows that root water compensation is a key process to allow for sustained rates of transpiration across several months. Scenarios with different root depths showed the importance of having a root system deeper than about 2 m to achieve the measured transpiration rates without reducing the leaf water potential to levels inconsistent with field measurements. The model suggests that the presence of more than 5 % of the root system below 0.6 m allows trees to maintain sustained transpiration rates keeping leaf water potential levels within the range observed in the field. According to the model, a large contribution to transpiration in dry periods was provided by the roots below 0.3 m, even though the percentage of roots at these depths was less than 40 % in all scenarios.

  10. Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...

  11. An international waste convention: measures for achieving sustainable development.

    PubMed

    Meyers, Gary D; McLeod, Glen; Anbarci, Melanie A

    2006-12-01

    Waste is a by-product of economic growth. Consequently, economic growth presents challenges for sustainable resource management and development because continued economic growth implies continued growth in waste outputs. Poor management of waste results in the inappropriate depletion of natural resources and potentially adverse effects on the environment, health and the economy. It is unsustainable. This paper begins by outlining the magnitude of and the current response to the growth in the quantity of waste outputs. This is followed by a consideration of why the international response to date, including the Rio Declaration and Agenda 21, fails to address the issue adequately. The paper concludes with a discussion on why and how an international treaty or other measure could advance sustainable development by providing an appropriate framework within which to address the problem.

  12. Sustainable water future with global implications: everyone's responsibility.

    PubMed

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning.

  13. Addressing China's grand challenge of achieving food security while ensuring environmental sustainability.

    PubMed

    Lu, Yonglong; Jenkins, Alan; Ferrier, Robert C; Bailey, Mark; Gordon, Iain J; Song, Shuai; Huang, Jikun; Jia, Shaofeng; Zhang, Fusuo; Liu, Xuejun; Feng, Zhaozhong; Zhang, Zhibin

    2015-02-01

    China's increasingly urbanized and wealthy population is driving a growing and changing demand for food, which might not be met without significant increase in agricultural productivity and sustainable use of natural resources. Given the past relationship between lack of access to affordable food and political instability, food security has to be given a high priority on national political agendas in the context of globalization. The drive for increased food production has had a significant impact on the environment, and the deterioration in ecosystem quality due to historic and current levels of pollution will potentially compromise the food production system in China. We discuss the grand challenges of not only producing more food but also producing it sustainably and without environmental degradation. In addressing these challenges, food production should be considered as part of an environmental system (soil, air, water, and biodiversity) and not independent from it. It is imperative that new ways of meeting the demand for food are developed while safeguarding the natural resources upon which food production is based. We present a holistic approach to both science and policy to ensure future food security while embracing the ambition of achieving environmental sustainability in China. It is a unique opportunity for China to be a role model as a new global player, especially for other emerging economies.

  14. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability

    PubMed Central

    Lu, Yonglong; Jenkins, Alan; Ferrier, Robert C.; Bailey, Mark; Gordon, Iain J.; Song, Shuai; Huang, Jikun; Jia, Shaofeng; Zhang, Fusuo; Liu, Xuejun; Feng, Zhaozhong; Zhang, Zhibin

    2015-01-01

    China’s increasingly urbanized and wealthy population is driving a growing and changing demand for food, which might not be met without significant increase in agricultural productivity and sustainable use of natural resources. Given the past relationship between lack of access to affordable food and political instability, food security has to be given a high priority on national political agendas in the context of globalization. The drive for increased food production has had a significant impact on the environment, and the deterioration in ecosystem quality due to historic and current levels of pollution will potentially compromise the food production system in China. We discuss the grand challenges of not only producing more food but also producing it sustainably and without environmental degradation. In addressing these challenges, food production should be considered as part of an environmental system (soil, air, water, and biodiversity) and not independent from it. It is imperative that new ways of meeting the demand for food are developed while safeguarding the natural resources upon which food production is based. We present a holistic approach to both science and policy to ensure future food security while embracing the ambition of achieving environmental sustainability in China. It is a unique opportunity for China to be a role model as a new global player, especially for other emerging economies. PMID:26601127

  15. Measuring global water security towards sustainable development goals

    NASA Astrophysics Data System (ADS)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  16. Measuring Global Water Security Towards Sustainable Development Goals

    NASA Technical Reports Server (NTRS)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  17. Achieving high sustained performance in an unstructured mesh CFD application

    SciTech Connect

    Keyes, D E; Anderson, W K; Gropp, W D; Kaushik, D K; Smith, B F

    1999-12-10

    This paper highlights a three-year project by an interdisciplinary team on a legacy F77 computational fluid dynamics code, with the aim of demonstrating that implicit unstructured grid simulations can execute at rates not far from those of explicit structured grid codes, provided attention is paid to data motion complexity and the reuse of data positioned at the levels of the memory hierarchy closest to the processor, in addition to traditional operation count complexity. The demonstration code is from NASA and the enabling parallel hardware and (freely available) software toolkit are from DOE, but the resulting methodology should be broadly applicable, and the hardware limitations exposed should allow programmers and vendors of parallel platforms to focus with greater encouragement on sparse codes with indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red, corresponding to a sustained floating-point rate of 0.227 Tflop/s.

  18. A TWO CENTURY HISTORY OF PACIFIC NORTHWEST SALMON: LESSONS LEARNED FOR ACHIEVING A SUSTAINABLE FUTURE

    EPA Science Inventory

    Achieving ecological sustainability is a daunting challenge. In the Pacific Northwest one of the most highly visible public policy debates concerns the future of salmon populations. Throughout the Pacific Northwest, many wild salmon stocks have declined and some have disappeare...

  19. Indicator-based water sustainability assessment - a review.

    PubMed

    Juwana, I; Muttil, N; Perera, B J C

    2012-11-01

    In the past few decades, there have been extensive efforts on measuring sustainability. One example is the development of assessment tools based on sustainability indicators. Several individuals and organisations have suggested various indices for assessing sustainability. This paper focuses on the review of water sustainability assessment using the indicator-based approach. It discusses major definitions of sustainable development that have been proposed and more specific concepts of sustainability based on sustainability principles and criteria. It then proceeds with the review of existing definitions, principles and guidelines on sustainable water resource management. The paper then explores elements of indicator-based water sustainability assessment. These elements include the selection of components and indicators, obtaining sub-index values, weighting schemes for components and indicators, aggregation of components and indicators, robustness analysis of the index, and interpretation of the final index value. These six elements are explored considering four existing water sustainability indices and two other sustainability indices that are thought to be useful for the development and use of water sustainability indices. The review presented in this paper on indicator-based water sustainability assessment can provide significant inputs to water stakeholders worldwide for using existing indices, for customising existing indices for their applications, and for developing new water sustainability indices. These indices can provide information on current conditions of water resources, including identifying all factors contributing to the improvement of water resources. This information can be used to communicate the current status of existing water resources to the wider community. Also, the water sustainability indices can be used to assist decision makers to prioritise issues, challenges and programmes related to water resource management.

  20. Sustainable Water Use System of Artesian Water in Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  1. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  2. The role of partnership functioning and synergy in achieving sustainability of innovative programmes in community care.

    PubMed

    Cramm, Jane M; Phaff, Sanne; Nieboer, Anna P

    2013-03-01

    This cross-sectional study (conducted in April-May 2011) explored associations between partnership functioning synergy and sustainability of innovative programmes in community care. The study sample consisted of 106 professionals (of 244 individuals contacted) participating in 21 partnerships that implemented different innovative community care programmes in Rotterdam, The Netherlands. Partnership functioning was evaluated by assessing leadership, resources administration and efficiency. Synergy was considered the proximal outcome of partnership functioning, which, in turn, influenced the achievement of programme sustainability. On a 5-point scale of increasing sustainability, mean sustainability scores ranged from 1.9 to 4.9. The results of the regression analysis demonstrated that sustainability was positively influenced by leadership (standardised regression coefficient β = 0.32; P < 0.001) and non-financial resources (β = 0.25; P = 0.008). No significant relationship was found between administration or efficiency and programme sustainability. Partnership synergy acted as a mediator for partnership functioning and significantly affected sustainability (β = 0.39; P < 0.001). These findings suggest that the sustainability of innovative programmes in community care is achieved more readily when synergy is created between partners. Synergy was more likely to emerge with boundary-spanning leaders, who understood and appreciated partners' different perspectives, and could bridge their diverse cultures and were comfortable sharing ideas, resources and power. In addition, the acknowledgement of and ability to use members' resources were found to be valuable in engaging partners' involvement and achieving synergy in community care partnerships.

  3. Developing Sustainable Spacecraft Water Management Systems

    NASA Technical Reports Server (NTRS)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  4. Achievement Gap and Sustainability: A Case Study of an Elementary School Bridging the Achievement Gap

    ERIC Educational Resources Information Center

    Gray, Sandra Jean

    2010-01-01

    The achievement gap problem is a growing phenomenon in the United States of America. In many schools, minority student populations are failing at alarming rates and are looking at different outcomes than those of their White and Asian counterparts. However, a few schools are breaking through the barriers of poverty, poor school attendance, low…

  5. Sustainable Water Supplies in Uppsala, Sweden?

    NASA Astrophysics Data System (ADS)

    Eriksson, Bert

    2014-05-01

    This is a description of a transdisciplinary three-day project with upper secondary school students around ecosystem services and sustainability. Uppsala (200 000 inhabitants) gets its municipal water from wells in the esker that dominates the landscape in and around the town. This esker was formed by glacial melt water around 11 000 BP, at the end of the latest glaciation and was lifted above sea level by post-glacial land rise from 6000 BP. To keep up the water table in the esker, water from river Fyris is pumped up and infiltrated in the esker. The river is also the recipient of wastewater downstream of the town, and the river runs out into Lake Mälaren that in its turn spills out into the Baltic Sea through Stockholm. The esker and river can thus be a central topic to work around, in Biology and Geography in upper secondary school, concerning recent and future water supplies, quaternary geology, limnology and landscape history. The fieldwork is carried out during three days in a period of three subsequent weeks. 1. One day is used to examine the water quality in the river above the town, organisms, pH, levels of nitrogen and phosphorous, conductivity and turbidity. Then the direction of the water is followed, first up to the infiltration dams on the esker, and then along the esker to the wells in the town. The formation of the esker and other traces in the landscape from the latest glaciation is also studied, as well as the historical use of the esker as a road and as a source of gravel and sand. The tap water that comes from the wells is finally tested in school in the same way as in the river. 2. The second day is used to follow the wastewater from households to the sewage plant, where the staff presents the plant. The water quality is tested in the same way as above in the outlet from the plant to the river. 3. The third day consists of a limnological excursion on the lake outside the mouth of the river where plankton and other organisms are studied, as

  6. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    NASA Astrophysics Data System (ADS)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  7. Realising sustainable urban water management: can social theory help?

    PubMed

    Bos, J J; Brown, R R

    2013-01-01

    It has been acknowledged, in Australia and beyond, that existing urban water systems and management lead to unsustainable outcomes. Therefore, our current socio-technical systems, consisting of institutions, structures and rules, which guide traditional urban water practices, need to change. If a change towards sustainable urban water management (SUWM) practices is to occur, a transformation of our established social-technical configuration that shapes the behaviour and decision making of actors is needed. While some constructive innovations that support this transformation have occurred, most innovations remain of a technical nature. These innovative projects do not manage to achieve the widespread social and institutional change needed for further diffusion and uptake of SUWM practices. Social theory, and its research, is increasingly being recognised as important in responding to the challenges associated with evolving to a more sustainable form of urban water management. This paper integrates three areas of social theories around change in order to provide a conceptual framework that can assist with socio-technical system change. This framework can be utilised by urban water practitioners in the design of interventions to stimulate transitions towards SUWM.

  8. The Effects of Sustained Silent Reading on Reading Achievement and Reading Attitudes of Fourth Grade Students

    ERIC Educational Resources Information Center

    Gray, Holly Lynn

    2012-01-01

    This study tested the effects of a Sustained Silent Reading program on reading achievement and reading attitude. The study accessed scores from the DIBELS Oral Reading Fluency (Good, Kaminski, & Dill, 2007) to measure reading achievement. This measure was given before and after a twelve week period, during which the treatment group…

  9. [Achieving quality goals for bodies of water].

    PubMed

    Cencetti, Corrado; Guidi, Massimo; Martinelli, Angiolo; Patrizi, Giuseppe

    2005-01-01

    Target of this paper is to draw the relationship between environmental factors and some impacts due to human activity, in order to outline environmental quality restoring strategies for water bodies, which include among result indicators also biological parameters expected for Italian regulation and European directives. Morphologic equilibrium and correct knowledge of processes regulating fluvial dynamic, as basic factor of ecosystem functionality condition, are highlighted. Statistic evaluation processes of water quality data and implementation and validation of mathematical models are described.

  10. Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for the 21st Century

    DTIC Science & Technology

    2011-11-01

    Approved for Public Release ; Distribution Unlimited Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for...Data Sources Solution – Distributed Information System Logistics Sustainability Approved for Public Release ; Distribution Unlimited • Single point...currently valid OMB control number. 1. REPORT DATE NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE

  11. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    PubMed

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  12. Factors affecting sustainability of rural water schemes in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  13. Sustained Silent Reading in Middle School and Its Impact on Students' Attitudes and Achievement

    ERIC Educational Resources Information Center

    Morgan, Margaret Peggy S.

    2013-01-01

    Sustained Silent Reading (SSR) is a period of time given to students to read self-selected materials during their school day. This study examines the effect of participation in a SSR program on reading attitudes and reading achievement of students as measured by the Adolescent Motivation to Read Profile (AMRP) and the Northwest Evaluation…

  14. Influence of School Climate on Students' Achievement and Teachers' Productivity for Sustainable Development

    ERIC Educational Resources Information Center

    Adeogun, A. A.; Olisaemeka, Blessing U.

    2011-01-01

    The study covers ten secondary schools in Lagos State of Nigeria. The purpose is to ascertain the relationship between school climate and student achievements and teachers' productivity for sustainable development. A total sample of 150 respondents was taken. Ten principals, seven teachers and seven students were randomly picked per school. This…

  15. Program Proposal: Certificates of Competence, Certificate of Achievement, Associate in Applied Science Degree in Sustainable Technology.

    ERIC Educational Resources Information Center

    Pezzoli, Jean A.; Ainsworth, Don

    This document proposes a program in sustainable technology at Maui Community College (Hawaii). This new career program would be designed to provide four Certificates of Competence, a Certificate of Achievement, and an Associate in Applied Science degree. The primary objectives of the program are to meet student, county, and state needs for…

  16. Achieving Our Environmental Sustainability Goals: The Opportunities and Pitfalls of Applying Life Cycle Thinking

    EPA Science Inventory

    An increasing number of people around the world are beginning to realize that a systems approach, such as life cycle thinking, is necessary to truly achieve environmental sustainability. Without the holistic perspective that life cycle thinking provides, our actions risk leading ...

  17. Virtual water trade and time scales for loss of water sustainability: A comparative regional analysis

    PubMed Central

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-01-01

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective. PMID:25790964

  18. Virtual water trade and time scales for loss of water sustainability: A comparative regional analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-01

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  19. Sustainability assessment of regional water resources under the DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as "Jevons paradox" At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  20. Towards sustainable urban water management: a critical reassessment.

    PubMed

    Marlow, David R; Moglia, Magnus; Cook, Stephen; Beale, David J

    2013-12-15

    Within the literature, concerns have been raised that centralised urban water systems are maladapted to challenges associated with climate change, population growth and other socio-economic and environmental strains. This paper provides a critical assessment of the discourse that surrounds emerging approaches to urban water management and infrastructure provision. As such, 'sustainable urban water management' (SUWM) concepts are scrutinized to highlight the limitations and strengths in the current lines of argument and point towards unaddressed complexities in the transformational agendas advocated by SUWM proponents. Taking an explicit infrastructure view, it is shown that the specific context of the urban water sector means that changes to infrastructure systems occur as an incremental hybridisation process. This process is driven by a range of factors including lock-in effects of legacy solutions, normative values and vested interests of agents, cost and performance certainty and perceptions of risk. Different views of these factors help explain why transformational agendas have not achieved the change SUWM proponents call for and point to the need for a critical reassessment of the system effects and economics of alternative service provision models.

  1. Environmental Sustainability - Including Land and Water Use

    EPA Science Inventory

    Assessments of environmental sustainability can be conducted in many ways with one of the most quantitative methods including Life Cycle Impact Assessment (LCIA). While historically LCIA has included a comprehensive list of impact categories including: ozone depletion, global c...

  2. Planning for Sustainable Water Supplies for US Army Installations

    DTIC Science & Technology

    2011-10-01

    Risks in Operations October 31, 2011 Planning for Sustainable Water Supplies for US Army Installations Elisabeth Jenicek Mechanical Engineer/Regional...Planner Engineer Research and Development Center Planning for Sustainable  Water   Supplies  for US Army Installations Report Documentation Page Form...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Planning for Sustainable Water Supplies for US Army Installations 5a. CONTRACT NUMBER 5b

  3. Indicators and indices for sustainable water use in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kim, Y.; Kong, I.; Kim, I. J.; Chae, Y.

    2015-12-01

    After the Rio de Janeiro Earth Summit in 1992 established a mandate for the UN to establish a set of indicators of sustainable development, the indicators to gauge sustainability have been widely used. In the water sector, the concept of sustainable water use has been used in many different ways. In this study, we aimed to develop sustainability indicators and indices for sustainable water use in South Korea. We identified major indicators for sustainable water use with considering multiple aspects of water use: not only physical, biological and chemical aspects but also social and environmental aspects. Furthermore, stressors for sustainable water use were of major interests because they were straightforward and easy to measure in comparison to indicators representing the state- and impact-related indictors. As a result, sets of indicators were identified with a theme-based hierarchical approach, including 1) human water requirements, 2) renewability of water resources, 3) water quality requirements, 4) health of aquatic ecosystems and 5) equitable water use. Then for each sub-component, multiple indicators, i.e., proxy variables were identified. We have evaluated our indicators and indices for drainage basins as well as grid boxes with multiple sizes of 0.5 km and 0.25 km in South Korea. Indicator data were collected for concurrent time, 2010 per se, with number of datasets from earlier or later times and integrated. At last, we evaluated sustainability index with focusing on the spatial variability of index and indicators and the sensitivity of index to individual indicators. Also the sensitivities of indices to different spatial scales were examined.

  4. Rainwater and reclaimed wastewater for sustainable urban water use

    NASA Astrophysics Data System (ADS)

    Furumai, Hiroaki

    Concern about the sustainability of urban water use is the strong motivation to understand the potential of rainwater use and water recycling in urbanized cities. The history of water supply in Tokyo and its experience may provide useful information to develop sustainable urban water use and find future possible tasks in rapidly growing cities. Besides, various innovative strategies to meet the current and future water demand in Tokyo may help us to consider new approaches adjusting to the developing mega cities in Asia. In this paper, the past and current practices on utilization of latent water resources such as rainwater and reclaimed wastewater in Tokyo are summarized from the viewpoint of sustainable water use. The storage of rainwater is a useful measure for water demand in emergency cases. In addition, the rainwater use can work as a kind of environmental education to make citizens aware of sustainable urban water use. There are 850 facilities for rainwater use in Tokyo. Since reclaimed wastewater use has several benefits, a huge water volume has been utilized for various purposes such as washing, water-cooling, toilet flushing, waterway restoration and creation of recreational waterfront. From the viewpoint of human health risk, new micropollutants such as estrogens, endocrine disrupters and surfactants should be considered as quality guideline parameter besides the conventional ones. Importance of infiltration facilities should be also highlighted to secure the sound water cycle. Groundwater recharge through the infiltration facilities provide a potential storage of water resource which can be withdrawn in the future if necessary.

  5. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala

    PubMed Central

    Scarborough, Vernon L.; Dunning, Nicholas P.; Tankersley, Kenneth B.; Carr, Christopher; Weaver, Eric; Grazioso, Liwy; Lane, Brian; Jones, John G.; Buttles, Palma; Valdez, Fred; Lentz, David L.

    2012-01-01

    The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide. PMID:22802627

  6. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala.

    PubMed

    Scarborough, Vernon L; Dunning, Nicholas P; Tankersley, Kenneth B; Carr, Christopher; Weaver, Eric; Grazioso, Liwy; Lane, Brian; Jones, John G; Buttles, Palma; Valdez, Fred; Lentz, David L

    2012-07-31

    The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide.

  7. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  8. Achieving and Sustaining Universal Health Coverage: Fiscal Reform of the National Health Insurance in Taiwan.

    PubMed

    Lan, Jesse Yu-Chen

    2016-10-25

    The paper discusses the expansion of the universal health coverage (UHC) in Taiwan through the establishment of National Health Insurance (NHI), and the fiscal crisis it caused. Two key questions are addressed: How did the NHI gradually achieve universal coverage, and yet cause Taiwanese health spending to escalate to fiscal crisis? What measures have been taken to reform the NHI finance and achieve moderate success to date? The main argument of this paper is that the Taiwanese Government did try to implement various reforms to save costs and had moderate success, but the path-dependent process of reform does not allow increasing contribution rates significantly and thereby makes sustainability challenging.

  9. The Role of Ecological Research in Great Lakes Water Sustainability

    EPA Science Inventory

    This talk will present some current ecological research in the Great Lakes. It will focus on how research examines aspects of water quality that relate to Basin-Lake and Human-Water interactions in the context of water sustainability issues for the Great Lakes.

  10. Advanced Decentralized Water/Energy Network Design for Sustainable Infrastructure

    EPA Science Inventory

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availabil...

  11. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world.

    PubMed

    Sobsey, Mark D; Stauber, Christine E; Casanova, Lisa M; Brown, Joseph M; Elliott, Mark A

    2008-06-15

    The lack of safe water creates a tremendous burden of diarrheal disease and other debilitating, life-threatening illnesses for people in the developing world. Point-of-use (POU) water treatment technology has emerged as an approach that empowers people and communities without access to safe water to improve water quality by treating it in the home. Several POU technologies are available, but, except for boiling, none have achieved sustained, large-scale use. Sustained use is essential if household water treatment technology (HWT) is to provide continued protection, but it is difficult to achieve. The most effective, widely promoted and used POU HWTs are critically examined according to specified criteria for performance and sustainability. Ceramic and biosand household water filters are identified as most effective according to the evaluation criteria applied and as having the greatest potential to become widely used and sustainable for improving household water quality to reduce waterborne disease and death.

  12. Sustainable Water Management & Satellite Remote Sensing

    EPA Science Inventory

    Eutrophication assessment frameworks such as the Australian National Water Quality Management Strategy, Oslo Paris (OSPAR) Commission Common Procedure, Water Framework Directive (WFD) of the European Union, Marine Strategy Framework Directive (MSFD) from the European Commission, ...

  13. A pathway to a more sustainable water sector: sustainability-based asset management.

    PubMed

    Marlow, D R; Beale, D J; Burn, S

    2010-01-01

    The water sectors of many countries are faced with the need to address simultaneously two overarching challenges; the need to undertake effective asset management coupled with the broader need to evolve business processes so as to embrace sustainability principles. Research has thus been undertaken into the role sustainability principles play in asset management. As part of this research, a series of 25 in-depth interviews were undertaken with water sector professionals from around Australia. Drawing on the results of these interviews, this paper outlines the conceptual relationship between asset management and sustainability along with a synthesis of the relevant opinions voiced in the interviews. The interviews indicated that the participating water authorities have made a strong commitment to sustainability, but there is a need to facilitate change processes to embed sustainability principles into business as usual practices. Interviewees also noted that asset management and sustainability are interlinked from a number of perspectives, especially in the way decision making is undertaken with respect to assets and service provision. The interviews also provided insights into the research needed to develop a holistic sustainability-based asset management framework.

  14. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  15. An analysis of the allocation of Yakima River water in terms of sustainability and economic efficiency.

    PubMed

    Hillman, Brett; Douglas, Ellen M; Terkla, David

    2012-07-30

    Decades of agricultural growth has led to the over appropriation of Yakima water and the ecological integrity of the Basin has been compromised. We evaluate the impact of current water allocation on the natural flow regime of the Yakima River using the Indicators of Hydrologic Alteration/Range of Variability Analysis and by quantifying indicators of ecosurplus and ecodeficit. We analyze the sustainability of the current water allocation scheme based on a range of sustainability criteria, from weak to strong to environmentally sustainable. Economic efficiency is assessed by describing the current allocation framework and suggesting ways to make it more efficient. Our IHA/RVA analysis suggests that the allocation of water in the Yakima River has resulted in a highly altered flow regime. Ecodeficit is far in excess of ecosurplus. We conclude that this allocation scheme is weakly sustainable, if sustainable at all, in its current framework. The allocation of water is also not economically efficient and we suggest that a reallocation of water rights may be necessary in order to achieve this objective. The creation of water markets to stimulate voluntary water rights transactions is the best way to approach economic efficiency. The first step would be to extend beneficial use requirements to include instream flows, which would essentially allow individuals to convert offstream rights into instream rights. The Washington trust water rights program was implemented as a means of creating a water market, which has contributed to the protection of instream flows, however more needs to be done to create an ideal water rights market so that rights migrate to higher valued uses, many of which are met instream. However, water markets will likely not solve the Yakima's water allocation problems alone; some degree of regulation may still be necessary.

  16. On the matter of sustainable water resources management

    EPA Science Inventory

    This chapter attempts to develop the concept of sustainability and make it operational in the realm of water resources management. Water is unique in its primacy among natural resources as an essential component of life itself. Due to its equally unique chemical and physical prop...

  17. Water and energy as inseparable twins for sustainable solutions.

    PubMed

    Hofman, Jan; Hofman-Caris, Roberta; Nederlof, Maarten; Frijns, Jos; van Loosdrecht, Mark

    2011-01-01

    Although the water cycle is only a minor contributor to the energy demand in society, it is a matter of good housekeeping to minimize the energy need within a sustainable water cycle. Wastewater treatment should not only be applied to purify the water, but also recover the energy present in this water, as well as to recover essential elements like nitrogen and phosphorus. From an energy analysis of the Dutch water cycle it is concluded that creating an energy neutral water cycle by using the heat content or by making use of the organic load of wastewater is within hands.

  18. Cost Implications in Achieving Alternative Water Quality Targets

    NASA Astrophysics Data System (ADS)

    Schleich, Joachim; White, David; Stephenson, Kurt

    1996-04-01

    Excessive nutrient loading poses significant water quality problems in many water bodies across the country. An important question that must be addressed when nutrient reduction policies are devised is where nutrient reduction targets will be applied within the watershed. This paper examines the cost implications of establishing three possible nutrient reduction targets in different locations along the Fox-Wolf River basin in northeast Wisconsin. A linear programming model calculates the total cost of achieving a 50% phosphorus load reduction target established in various locations throughout the basin. Two strategies establish phosphorus reduction targets for each of the 41 subwatersheds, and the third approach establishes a single 50% target reduction at Green Bay for the entire watershed. The results indicate that achieving target phosphorus reductions at the subwatershed level is over 4 times more expensive than achieving the same percentage phosphorus reduction for the watershed as a whole.

  19. Impact of Water Intensity and Efficiency on Water Resources Sustainability in China

    NASA Astrophysics Data System (ADS)

    BIN, Lingling; XU, Xinyi; YANG, Zhongwen; XU, Kui

    2015-04-01

    Water problems in China have characters of less per capita, highly developed and low efficiency; it is essential to pay close attention to the sustainable utilization of water resources. This paper aims to explore the impact of human activities on the sustainability of water resources in China. Three important factors affecting sustainability significantly were involved: Water Resources (WR), Water Intensity (WI) and Water Efficiency (WE). Assessment of the three factors were conducted in 356 cities in mainland China, and each indicator is graded from "very low" to "very high" according to the eigenvalue magnitude. China is then classified into four zones to differentiate regional variations of the impact of human activities on water sustainability. Results show that 34% of the areas have high WI values and 58% have low WE values. It is recommended that water resource polices be turned to a more sustainable management strategy in areas with high intensity and low efficiency and sustainability significantly low. Zone I regions should be focused on particular attention for its exploitation of water resources reached an extreme state, water efficiency should be highly improved and water-saving management policy implemented to maintain the sustainable development of water resources and ecosystems.

  20. Water footprints of cities - indicators for sustainable consumption and production

    NASA Astrophysics Data System (ADS)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  1. Sustainability Assessment of indicators for integrated water resources management.

    PubMed

    Pires, A; Morato, J; Peixoto, H; Botero, V; Zuluaga, L; Figueroa, A

    2017-02-01

    The scientific community strongly recommends the adoption of indicators for the evaluation and monitoring of progress towards sustainable development. Furthermore, international organizations consider that indicators are powerful decision-making tools. Nevertheless, the quality and reliability of the indicators depends on the application of adequate and appropriate criteria to assess them. The general objective of this study was to evaluate how indicators related to water use and management perform against a set of sustainability criteria. Our research identified 170 indicators related to water use and management. These indicators were assessed by an international panel of experts that evaluated whether they fulfil the four sustainability criteria: social, economic, environmental, and institutional. We employed an evaluation matrix that classified all indicators according to the DPSIR (Driving Forces, Pressures, States, Impacts and Responses) framework. A pilot study served to test and approve the research methodology before carrying out the full implementation. The findings of the study show that 24 indicators comply with the majority of the sustainability criteria; 59 indicators are bi-dimensional (meaning that they comply with two sustainability criteria); 86 are one-dimensional indicators (fulfilling just one of the four sustainability criteria) and one indicator do not fulfil any of the sustainability criteria.

  2. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    NASA Astrophysics Data System (ADS)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  3. Modeling the sustainability of a ceramic water filter intervention.

    PubMed

    Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James

    2014-02-01

    Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF

  4. Water footprints of cities - indicators for sustainable consumption and production

    NASA Astrophysics Data System (ADS)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2013-02-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We have further developed the existing water footprint methodology by globally resolving virtual water flows and import and source regions at 5 arc minutes spatial resolution, and by assessing local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2% and 0.5%, respectively, roughly equal to local drinking water abstractions of these cities. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  5. Manganese exposure from drinking water and children's academic achievement.

    PubMed

    Khan, Khalid; Wasserman, Gail A; Liu, Xinhua; Ahmed, Ershad; Parvez, Faruque; Slavkovich, Vesna; Levy, Diane; Mey, Jacob; van Geen, Alexander; Graziano, Joseph H; Factor-Litvak, Pam

    2012-01-01

    Drinking water manganese (WMn) is a potential threat to children's health due to its associations with a wide range of outcomes including cognitive, behavioral and neuropsychological effects. Although adverse effects of Mn on cognitive function of the children indicate possible impact on their academic achievement little evidence on this issue is available. Moreover, little is known regarding potential interactions between exposure to Mn and other metals, especially water arsenic (WAs). In Araihazar, a rural area of Bangladesh, we conducted a cross-sectional study of 840 children to investigate associations between WMn and WAs and academic achievement in mathematics and languages among elementary school-children, aged 8-11 years. Data on As and Mn exposure were collected from the participants at the baseline of an ongoing longitudinal study of school-based educational intervention. Annual scores of the study children in languages (Bangla and English) and mathematics were obtained from the academic achievement records of the elementary schools. WMn above the WHO standard of 400μg/L was associated with 6.4% score loss (95% CI=-12.3 to -0.5) in mathematics achievement test scores, adjusted for WAs and other sociodemographic variables. We did not find any statistically significant associations between WMn and academic achievement in either language. Neither WAs nor urinary As was significantly related to any of the three academic achievement scores. Our finding suggests that a large number of children in rural Bangladesh may experience deficits in mathematics due to high concentrations of Mn exposure in drinking water.

  6. What Is an Education for Sustainable Development Supposed to Achieve--A Question of What, How and Why

    ERIC Educational Resources Information Center

    Hofman, Maria

    2015-01-01

    This is a theoretical article to open the discussion of what an education for sustainable development is supposed to achieve and how teachers can help students to develop skills that might be needed in order to support a sustainable future. The focus in the article will be on education. As it is an article aiming to open this kind of discussion…

  7. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  8. Self-Sustaining Thorium Boiling Water Reactors

    SciTech Connect

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  9. Pathways to sustainable intensification through crop water management

    NASA Astrophysics Data System (ADS)

    MacDonald, Graham K.; D'Odorico, Paolo; Seekell, David A.

    2016-09-01

    How much could farm water management interventions increase global crop production? This is the central question posed in a global modelling study by Jägermeyr et al (2016 Environ. Res. Lett. 11 025002). They define the biophysical realm of possibility for future gains in crop production related to agricultural water practices—enhancing water availability to crops and expanding irrigation by reducing non-productive water consumption. The findings of Jägermeyr et al offer crucial insight on the potential for crop water management to sustainably intensify agriculture, but they also provide a benchmark to consider the broader role of sustainable intensification targets in the global food system. Here, we reflect on how the global crop water management simulations of Jägermeyr et al could interact with: (1) farm size at more local scales, (2) downstream water users at the river basin scale, as well as (3) food trade and (4) demand-side food system strategies at the global scale. Incorporating such cross-scale linkages in future research could highlight the diverse pathways needed to harness the potential of farm-level crop water management for a more productive and sustainable global food system.

  10. Water Sustainability Assessment for Ten Army Installations

    DTIC Science & Technology

    2011-03-26

    Rainier . Although Mount Rainier has not erupted since 1895, it is considered one of the nation’s most dangerous volcanoes. Surrounding areas...that do not retain water and are very well drained (Dinicola 2005). The Cascade Mountain range to the east includes the 14,410 ft-tall volcano Mount ...and W. E. Scott. 2008. Mt. Rainier : Living safely with a volcano in your backyard. Prepared by the US Geological Survey. Fact Sheet 2008-3062, http

  11. A framework for sustainability analysis in water resources management and application to the Syr Darya Basin

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; McKinney, Daene C.; Lasdon, Leon S.

    2002-06-01

    Sustainable water management in irrigation-dominated river basins attempts to ensure a long-term, stable, and flexible water supply to meet crop water demands, as well as growing municipal and industrial water demands, while mitigating negative environmental consequences. To achieve this delicate balance, new models are needed which can use indicators of sustainability to guide the decision-making process. This paper presents a new long-term modeling framework which uses quantified sustainability criteria in a long-term optimization model of a basin, ensuring risk minimization in water supply, environmental conservation, equity in water allocation, and economic efficiency in water infrastructure development. ``Current'' and ``future'' water supply and demand are combined into a coherent system which takes account of the cumulative effects of short-term water use decisions and deals with the tradeoffs between the benefits of current and future generations. The modeling framework is demonstrated with an application to the Syr Darya River Basin of central Asia. Model results show the effectiveness of this tool for policy analysis in the context of the river basin.

  12. Water Sustainability Assessments for Four Net Zero Water Installations

    DTIC Science & Technology

    2013-12-01

    411 US installations (23%) are located in watersheds that are highly vulnerable to water crisis situations (Jenicek et al. 2009). Army installations...Accessed 24 May 2013, http://sms.cecer.army.mil/SitePages/BUILDER™.aspx EPA WaterSense. 2009. Water efficiency in the commercial and institutional sector...Environmental Protection Agency (USEPA). 2002. The clean water and drinking water infrastructure gap analysis. EPA -816-R-02-020. Washington DC: USEPA. ERDC

  13. Sustainability of rainwater harvesting system in terms of water quality.

    PubMed

    Rahman, Sadia; Khan, M T R; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S K; Shirazi, S M

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3-N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  14. Sustainability of Rainwater Harvesting System in terms of Water Quality

    PubMed Central

    Khan, M. T. R.; Akib, Shatirah; Din, Nazli Bin Che; Biswas, S. K.; Shirazi, S. M.

    2014-01-01

    Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH) is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical. PMID:24701186

  15. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.

    PubMed

    Wang, Wangyin; Chen, Jun; Li, Can; Tian, Wenming

    2014-08-13

    Solar overall water splitting is a promising sustainable approach for solar-to-chemical energy conversion, which harnesses solar irradiation to oxidize water to oxygen and reduce the protons to hydrogen. The water oxidation step is vital but difficult to achieve through inorganic photocatalysis. However, nature offers an efficient light-driven water-oxidizing enzyme, photosystem II (PSII). Here we report an overall water splitting natural-artificial hybrid system, in which the plant PSII and inorganic photocatalysts (for example, Ru/SrTiO3:Rh), coupled with an inorganic electron shuttle [Fe(CN)6(3-)/Fe(CN)6(4-)], are integrated and dispersed in aqueous solutions. The activity of this hybrid photosystem reaches to around 2,489 mol H2 (mol PSII)(-1) h(-1) under visible light irradiation, and solar overall water splitting is also achieved under solar irradiation outdoors. The optical imaging shows that the hybrid photosystems are constructed through the self-assembly of PSII adhered onto the inorganic photocatalyst surface. Our work may provide a prototype of natural-artificial hybrids for developing autonomous solar water splitting system.

  16. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts

    NASA Astrophysics Data System (ADS)

    Wang, Wangyin; Chen, Jun; Li, Can; Tian, Wenming

    2014-08-01

    Solar overall water splitting is a promising sustainable approach for solar-to-chemical energy conversion, which harnesses solar irradiation to oxidize water to oxygen and reduce the protons to hydrogen. The water oxidation step is vital but difficult to achieve through inorganic photocatalysis. However, nature offers an efficient light-driven water-oxidizing enzyme, photosystem II (PSII). Here we report an overall water splitting natural-artificial hybrid system, in which the plant PSII and inorganic photocatalysts (for example, Ru/SrTiO3:Rh), coupled with an inorganic electron shuttle [Fe(CN)63-/Fe(CN)64-], are integrated and dispersed in aqueous solutions. The activity of this hybrid photosystem reaches to around 2,489 mol H2 (mol PSII)-1 h-1 under visible light irradiation, and solar overall water splitting is also achieved under solar irradiation outdoors. The optical imaging shows that the hybrid photosystems are constructed through the self-assembly of PSII adhered onto the inorganic photocatalyst surface. Our work may provide a prototype of natural-artificial hybrids for developing autonomous solar water splitting system.

  17. Automated monitoring: a potential solution for achieving sustainable improvement in hand hygiene practices.

    PubMed

    Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R

    2014-08-01

    Adequate hand hygiene is often considered as the most effective method of reducing the rates of hospital-acquired infections, which are one of the major causes of increased cost, morbidity, and mortality in healthcare. Electronic monitoring technologies provide a promising direction for achieving sustainable hand hygiene improvement by introducing the elements of automated feedback and creating the possibility to automatically collect individual hand hygiene performance data. The results of the multiphase testing of an automated hand hygiene reminding and monitoring system installed in a complex continuing care setting are presented. The study included a baseline Phase 1, with the system performing automated data collection only, a preintervention Phase 2 with hand hygiene status indicator enabled, two intervention Phases 3 and 4 with the system generating hand hygiene reminding signals and periodic performance feedback sessions provided, and a postintervention Phase 5 with only hand hygiene status indicator enabled and no feedback sessions provided. A significant increase in hand hygiene performance observed during the first intervention Phase 3 was sustained over the second intervention Phase 4, with the postintervention phase also indicating higher hand hygiene activity rates compared with the preintervention and baseline phases. The overall trends observed during the multiphase testing, the factors affecting acceptability of the automated hand hygiene monitoring system, and various strategies of technology deployment are discussed.

  18. Roadmap for sustainable water resources in southwestern North America

    PubMed Central

    Gleick, Peter H.

    2010-01-01

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  19. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  20. Petit receives Robert C. Cowen Award for Sustained Achievement in Science Journalism: Response

    NASA Astrophysics Data System (ADS)

    Petit, Charles W.

    2012-01-01

    Charles W. Petit, a veteran science writer, received the 2011 Robert C. Cowan Award for Sustained Achievement in Science Journalism at the AGU Fall Meeting Honors Ceremony, held on 7 December 2011 in San Francisco, Calif. Petit covered earthquakes for the San Francisco Chronicle during the 1980s and 1990s and has recently served as "head tracker" for the Knight Science Journalism Tracker, a Massachusetts Institute of Technology-based daily blog that compiles and critiques science reporting worldwide. Petit was previously honored by AGU in 2003 when he received the David Perlman Award for an article about a new finding in oceanography. The Cowan Award, named for a former science editor of the Christian Science Monitor, is given no more than every 2 years and recognizes a journalist who has made "significant, lasting, and consistent contributions to accurate reporting or writing" on the Earth and space sciences for the general public.

  1. Petit receives Robert C. Cowen Award for Sustained Achievement in Science Journalism: Citation

    NASA Astrophysics Data System (ADS)

    Rademacher, Horst

    2012-01-01

    Charles W. Petit, a veteran science writer, received the 2011 Robert C. Cowan Award for Sustained Achievement in Science Journalism at the AGU Fall Meeting Honors Ceremony, held on 7 December 2011 in San Francisco, Calif. Petit covered earthquakes for the San Francisco Chronicle during the 1980s and 1990s and has recently served as "head tracker" for the Knight Science Journalism Tracker, a Massachusetts Institute of Technology-based daily blog that compiles and critiques science reporting worldwide. Petit was previously honored by AGU in 2003 when he received the David Perlman Award for an article about a new finding in oceanography. The Cowan Award, named for a former science editor of the Christian Science Monitor, is given no more than every 2 years and recognizes a journalist who has made "significant, lasting, and consistent contributions to accurate reporting or writing" on the Earth and space sciences for the general public.

  2. Charting the course for home health care quality: action steps for achieving sustainable improvement: conference proceedings.

    PubMed

    Feldman, Penny Hollander; Peterson, Laura E; Reische, Laurie; Bruno, Lori; Clark, Amy

    2004-12-01

    On June 30 and July 1, 2003, the first national meeting Charting the Course for Home Health Care Quality: Action Steps for Achieving Sustainable Improvement convened in New York City. The Center for Home Care Policy & Research of the Visiting Nurse Service of New York (VNSNY) hosted the meeting with support from the Robert Wood Johnson Foundation. Fifty-seven attendees from throughout the United States participated. The participants included senior leaders and managers and nurses working directly in home care today. The meeting's objectives were to: 1. foster dialogue among key constituents influencing patient safety and home care, 2. promote information-sharing across sectors and identify areas where more information is needed, and, 3. develop an agenda and strategy for moving forward. This article reports the meeting's proceedings.

  3. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  4. Environmental impacts and sustainability of degraded water reuse

    SciTech Connect

    Corwin, D.L.; Bradford, S.A.

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  5. Environmental impacts and sustainability of degraded water reuse.

    PubMed

    Corwin, Dennis L; Bradford, Scott A

    2008-01-01

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  6. Indirect Potable Reuse: A Sustainable Water Supply Alternative

    PubMed Central

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-01-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed. PMID:19440440

  7. Indirect potable reuse: a sustainable water supply alternative.

    PubMed

    Rodriguez, Clemencia; Van Buynder, Paul; Lugg, Richard; Blair, Palenque; Devine, Brian; Cook, Angus; Weinstein, Philip

    2009-03-01

    The growing scarcity of potable water supplies is among the most important issues facing many cities, in particular those using single sources of water that are climate dependent. Consequently, urban centers are looking to alternative sources of water supply that can supplement variable rainfall and meet the demands of population growth. A diversified portfolio of water sources is required to ensure public health, as well as social, economical and environmental sustainability. One of the options considered is the augmentation of drinking water supplies with advanced treated recycled water. This paper aims to provide a state of the art review of water recycling for drinking purposes with emphasis on membrane treatment processes. An overview of significant indirect potable reuse projects is presented followed by a description of the epidemiological and toxicological studies evaluating any potential human health impacts. Finally, a summary of key operational measures to protect human health and the areas that require further research are discussed.

  8. Secondary Students' Reading Attitudes and Achievement in a Scaffolded Silent Reading Program versus Traditional Sustained Silent Reading

    ERIC Educational Resources Information Center

    West, Chandra Lorene

    2010-01-01

    This study explored the reading attitudes and achievement, as well as genre knowledge, of tenth, eleventh, and twelfth-grade students who participated in Scaffolded Silent Reading, Sustained Silent Reading, or a control group. The Reading and You attitude survey, Degrees of Reading Power achievement measure, and Genre Assessment were administered…

  9. Practices and perceptions on water resource sustainability in ecovillages

    NASA Astrophysics Data System (ADS)

    de Moura Leite, Flavia Brunale Vilela; Bertolo, Lídia Sanches; Santos, Rozely Ferreira

    2016-08-01

    In many areas of the world, groups of people have attempted to create urban landscapes that follow the principles of environmental sustainability. To this end, groups have devised alternative models, such as ecovillages, where low-impact handling is used and a way of life different from that of large population centers is adopted. Although these villages exist, their efficiency in the conservation of natural resources has not been effectively evaluated. This study evaluated the practices used by two Brazilian ecovillages to conserve water resources to assess whether this new concept of living is indeed successful in meeting sustainability goals. We selected 25 indicators of water sustainability, and using the compromise programming method, we quantified the distance between those landscapes self-referenced as sustainable and an ideal hypothetical scenario. We also interpreted the communities perceptions using the distance between the current situations and the envisioned scenario. We concluded that both ecovillage are far from technically ideal scenario, but the communities have a strong sense of their limitations in implementing water resources conservation. The communities attributed this fact primarily to deficiencies in the shared management.

  10. Sustainable Rural Energy: Traditional Water Wheels in Padang (PWW) Indonesia

    NASA Astrophysics Data System (ADS)

    Ibrahim, Gusri Akhyar; Haron, Che Hassan Che; Azhari, Che Husna

    2010-06-01

    Renewable and sustainable energy is increasingly gaining interest in current research circles due to the debates on renewable energy resources. It is essential for scientists and researchers to search for solutions in renewable energy resources, with effective technologies, and low cost in operation and maintenance. Hydro resources can be considered a potential renewable energy resource. The traditional water wheel with simple construction coupled with a basic concept of technology can be utilised as a renewable and sustainable rural energy system. This paper discusses the case of the water wheel as a renewable energy system employed in Padang, Indonesia. The Padang water wheel is constructed from hardwood material with a diameter of 300 cm and width of 40 cm. It is built on a river using water flow to generate the movement of the wheel. The water wheel application in the area showed that it is suitable to be utilised to elevate and distribute water to rice fields located at a higher level than the water level of the river. The water wheel capacity is about 100-120 liters/min. It could continuously irrigate ±5 ha. of the rice fields. One of the advantages of this water wheel type is to function as a green technology concept promising no negative effect on the environment. The traditional water wheel has also a big economic impact on the rural economy, increasing the productivity of the rice fields. The people of Padang live in a water landscape encompassing the water wheel as an ubiquitous part of their lives, hence they relate to it and the technology of fabrication as well as the utilisation, making it an amenable and effective technology, finding relevance in the modern world.

  11. Increasing Awareness of Sustainable Water Management for Future Civil Engineers

    NASA Astrophysics Data System (ADS)

    Ilic, Suzana; Karleusa, Barbara; Deluka-Tibljas, Aleksandra

    2010-05-01

    There are more than 1.2 billion people around the world that do not have access to drinking water. While there are plans under the United Nations Millennium Development Goals to halve this number by 2015, there are a number of regions that will be exposed to water scarcity in the coming future. Providing sufficient water for future development is a great challenge for planners and designers of water supply systems. In order to design sustainable water supplies for the future, it is important to learn how people consume water and how water consumption can be reduced. The education of future civil engineers should take into account not only technical aspects of the water supply but also the accompanying social and economical issues, and appreciated the strengths and weaknesses of traditional solutions. The Faculty of Civil Engineering, at the University of Rijeka, has begun incorporating a series of activities that engage undergraduate students and the local community to develop a mutual understanding of the future needs for sustainable management. We present one of the activities, collaboration with the Lancaster Environment Centre at Lancaster University in the UK through the field course Water and environmental management in Mediterranean context. The course, which is designed for the Lancaster University geography students, features a combination of field trips and visits to provide an understanding of the socio-economic and environmental context of water management in two counties (Istra and Primorsko-Goranska). Students from Lancaster visit the Croatian water authority and a regional water company, where they learn about current management practices and problems in managing water supplies and demand through the year. They make their own observations of current management practices in the field and learn about water consumption from the end users. One day field visit to a village in the area that is still not connected to the main water supply system is

  12. Mashhad Wise Water Forum: a path to sustainable water resources management in a semi-arid region of Iran

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Seyyed Alireza; Neyshaboori, Shahnaz; Basirat, Ali; Tavakoli Aminiyan, Samaneh; Mirbehrooziyan, Ahmad; Sakhdari, Hossein; Shafiei, Mojtaba; Davary, Kamran

    2016-04-01

    Water is key to sustainable development especially in semi-arid regions in which the main source of water provision is groundwater. Water has value from a social, economic and environmental perspective and is required to be managed within a sound, integrated socio-economic and environmental framework. Mashhad, the second big city in Iran, has been faced with rapid growth rates of population and economic activities. The groundwater in Mashhad basin has been overexploited to meet the increasing trend of water demand during the past 20 years. Consequently, the region has faced with water scarcity and water quality problems which originates from inefficient use and poor management. To tackle the water issue on a durable basis, within the economic, ecological, and political constraints (i.e. the integrated water resources management, IWRM concept), a Non-Governmental Organization (NGO), named as Mashhad Wise Water Forum (MWWF), has been established in 2013 that encompasses contribution of experts from academia, industry, and governmental policy-makers. The MWWF considers the UN-Water IWRM spiral conceptual model (which contains four stages: Recognizing and identifying; Conceptualizing; Coordinating and planning; Implementing, Monitoring and Evaluating) by implicating participatory water management (water users' involvement) methods in Mashhad basin. Furthermore, the MWWF has planned to look at all dimensions of water crisis (i.e. physical, economic, policy and institutional) particularly institutional dimension by gathering all stockholders, beneficiaries and experts in different parts of water policy making in Mashhad basin. The MWWF vision for Mashhad basin is achieving to sustainable equilibrium of water resources and consumptions in the basin by the prospect to 2040 year. So far, the MWWF has tried to understand and deal with regional diversity in legal systems as well as conflicts between private interests and public welfare in water allocation and management. At

  13. Knowledge Assessment on Sustainable Water Resources Management for Irrigation - KASWARMI

    NASA Astrophysics Data System (ADS)

    Bardowicks, K.; Billib, M.; Holzapfel, E.; Lorite, I.; Farkas, I.; Fernández Cirelli, A.; Del Callejo, I.; Paz, V.; Montaña, E.; Gheyi, H.

    2009-04-01

    The EU funded KASWARMI project was performed from March 2007 until August 2008 by focusing on society key issues to contribute to a better use and management of the water resources in arid and semi-arid ecosystems. In that way, the project has aimed to deliver fundamentals for future research activities to improve the sustainability of irrigated agriculture in Latin America. The world's food production depends on the availability of water, a precious but limited resource. Irrigated agriculture is responsible for approximately 70 percent of all the freshwater withdrawn in the world and more water will be used for irrigation in the future, as world food production continuously increases in order to meet rising demand. The challenge for irrigated agriculture today is to contribute to the world's food production and improvement of food security through a more efficient, cleaner and integrated use of water (FAO). The main objective of KASWARMI was to build up a comprehensive knowledge base, including the evaluation of current state of the art, assembling international experience in an interdisciplinary scientific network on sustainable water resources management for irrigation. In six selected irrigated areas in Latin America a basic analysis of the major socio-economical, environmental, institutional and agrotechnical aspects was carried out. The approach of KASWARMI was to learn from the past and ongoing research activities to identify gaps and the scope for the collaboration of potential stakeholders (farmers, researchers, other water users, policy makers). The direct communication between the researchers and the stakeholders in the field study areas was used to identify their main needs, finding strategies for future activities to solve open questions of sustainable water resources management for irrigation in Latin America. More information is available at site www.kaswarmi.eu.

  14. Application of system dynamics for developing financially self-sustaining management policies for water and wastewater systems.

    PubMed

    Rehan, R; Knight, M A; Haas, C T; Unger, A J A

    2011-10-15

    Recently enacted regulations in Canada and elsewhere require water utilities to be financially self-sustaining over the long-term. This implies full cost recovery for providing water and wastewater services to users. This study proposes a new approach to help water utilities plan to meet the requirements of the new regulations. A causal loop diagram is developed for a financially self-sustaining water utility which frames water and wastewater network management as a complex system with multiple interconnections and feedback loops. The novel System Dynamics approach is used to develop a demonstration model for water and wastewater network management. This is the first known application of System Dynamics to water and wastewater network management. The network simulated is that of a typical Canadian water utility that has under invested in maintenance. Model results show that with no proactive rehabilitation strategy the utility will need to substantially increase its user fees to achieve financial sustainability. This increase is further exacerbated when price elasticity of water demand is considered. When the utility pursues proactive rehabilitation, financial sustainability is achieved with lower user fees. Having demonstrated the significance of feedback loops for financial management of water and wastewater networks, the paper makes the case for a more complete utility model that considers the complexity of the system by incorporating all feedback loops.

  15. Review of Multi-Criteria Decision Aid for Integrated Sustainability Assessment of Urban Water Systems - MCEARD

    EPA Science Inventory

    Integrated sustainability assessment is part of a new paradigm for urban water decision making. Multi-criteria decision aid (MCDA) is an integrative framework used in urban water sustainability assessment, which has a particular focus on utilising stakeholder participation. Here ...

  16. Current perspectives in contaminant hydrology and water resources sustainability

    USGS Publications Warehouse

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  17. Sustainability issues in rural water supply in Asia.

    PubMed

    1998-03-01

    This article identifies some sustainability issues in management of water supplies in rural Asia. The International Drinking Water Supply and Sanitation Decade was 1981-90. At present, less than 50% of the rural population in several Asian countries have access to safe water, and even less have access to adequate sanitation. Access does not ensure quality of services or supplies. Data on coverage is inadequate and does not take into account water quality, hours of service, reliability of supplies, distance to the source, and community use patterns. It is difficult to improve access to the poor. There is no single uniform strategy that works for all parts of a country. Countries need to promote community management that has strategic vision and appropriate priorities. Local management is constrained by centralized authority, the orientation of sector agencies, and staff with weak managerial, financial, technical, and communications skills. Many countries lack resources to maintain water delivery infrastructures and to prevent deterioration of services. There is a need to develop low cost appropriate technologies, management requirements, health education, community participation, mobilization of women, and synergistic, nonsequential development. Demand for water and sanitation is driven by survival and privacy issues. Rural water supply programs should view water as an economic and social good. Water management is effective when decisions are made locally. Local governments need to be strengthened in order to be able to perform demand management, select institutional options, and to take care of the unserviced.

  18. A critical review on sustainability assessment of recycled water schemes.

    PubMed

    Chen, Zhuo; Ngo, Huu Hao; Guo, Wenshan

    2012-06-01

    Recycled water provides a viable opportunity to supplement water supplies as well as alleviate environmental loads. To further expand current schemes and explore new recycled water end uses, this study reviews several environmental assessment tools, including Life Cycle Assessment (LCA), Material Flow Analysis (MFA) and Environmental Risk Assessment (ERA) in terms of their types, characteristics and weaknesses in evaluating the sustainability of recycled water schemes. Due to the limitations in individual models, the integrated approaches are recommended in most cases, of which the outputs could be further combined with additional economic and social assessments in multi-criteria decision making framework. The study also proposes several management strategies in improving the environmental scores. The discussion and suggestions could help decision makers in making a sound judgement as well as recognising the challenges and tasks in the future.

  19. Designing a new cropping system for high productivity and sustainable water usage under climate change

    PubMed Central

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-01-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr−1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions. PMID:28155860

  20. Designing a new cropping system for high productivity and sustainable water usage under climate change.

    PubMed

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-03

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr(-1)). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  1. Designing a new cropping system for high productivity and sustainable water usage under climate change

    NASA Astrophysics Data System (ADS)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) –summer maize system. The M-M system improved yield by 14–31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr‑1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  2. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  3. Concepts for Life Cycle Cost Control Required to Achieve Space Transportation Affordability and Sustainability

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel E.; Zapata, Edgar; Levack, Daniel J. H.; Robinson, John W.; Donahue, Benjamin B.

    2009-01-01

    Cost control must be implemented through the establishment of requirements and controlled continually by managing to these requirements. Cost control of the non-recurring side of life cycle cost has traditionally been implemented in both commercial and government programs. The government uses the budget process to implement this control. The commercial approach is to use a similar process of allocating the non-recurring cost to major elements of the program. This type of control generally manages through a work breakdown structure (WBS) by defining the major elements of the program. If the cost control is to be applied across the entire program life cycle cost (LCC), the approach must be addressed very differently. A functional breakdown structure (FBS) is defined and recommended. Use of a FBS provides the visibifity to allow the choice of an integrated solution reducing the cost of providing many different elements of like function. The different functional solutions that drive the hardware logistics, quantity of documentation, operational labor, reliability and maintainability balance, and total integration of the entire system from DDT&E through the life of the program must be fully defined, compared, and final decisions made among these competing solutions. The major drivers of recurring cost have been identified and are presented and discussed. The LCC requirements must be established and flowed down to provide control of LCC. This LCC control will require a structured rigid process similar to the one traditionally used to control weight/performance for space transportation systems throughout the entire program. It has been demonstrated over the last 30 years that without a firm requirement and methodically structured cost control, it is unlikely that affordable and sustainable space transportation system LCC will be achieved.

  4. Current guidelines for nut consumption are achievable and sustainable: a hazelnut intervention.

    PubMed

    Tey, S L; Brown, R; Chisholm, A; Gray, A; Williams, S; Delahunty, C

    2011-05-01

    Nuts are known for their hypocholesterolaemic properties; however, to achieve optimal health benefits, nuts must be consumed regularly and in sufficient quantity. It is therefore important to assess the acceptability of regular consumption of nuts. The present study examined the long-term effects of hazelnut consumption in three different forms on 'desire to consume' and 'overall liking'. A total of forty-eight participants took part in this randomised cross-over study with three dietary phases of 4 weeks: 30 g/d of whole, sliced and ground hazelnuts. 'Overall liking' was measured in a three-stage design: a pre- and post-exposure tasting session and daily evaluation over the exposure period. 'Desire to consume' hazelnuts was measured during the exposure period only. Ratings were measured on a 150 mm visual analogue scale. Mean ratings of 'desire to consume' were 92 (SD 35) mm for ground, 108 (SD 33) mm for sliced and 116 (SD 30) mm for whole hazelnuts. For 'overall liking', the mean ratings were 101 (SD 29) mm for ground, 110 (SD 32) mm for sliced and 118 (SD 30) mm for whole hazelnuts. Ground hazelnuts had significantly lower ratings than both sliced (P ≤ 0·034) and whole hazelnuts (P < 0·001), with no difference in ratings between sliced and whole hazelnuts (P ≥ 0·125). For each form of nut, ratings of 'overall liking' and 'desire to consume' were stable over the exposure period, indicating that not only did the participants like the nuts, but also they wished to continue eating them. Therefore, the guideline to consume nuts on a regular basis appears to be a sustainable behaviour to reduce CVD.

  5. A comprehensive sustainability appraisal of water governance in Phoenix, AZ.

    PubMed

    Larson, Kelli L; Wiek, Arnim; Withycombe Keeler, Lauren

    2013-02-15

    In Phoenix, Arizona and other metropolitan areas, water governance challenges include variable climate conditions, growing demands, and continued groundwater overdraft. Based on an actor-oriented examination of who does what with water and why, along with how people interact with hydro-ecological systems and man-made infrastructure, we present a sustainability appraisal of water governance for the Phoenix region. Broadly applicable to other areas, our systems approach to sustainable water governance overcomes prevailing limitations to research and management by: employing a comprehensive and integrative perspective on water systems; highlighting the activities, intentions, and rules that govern various actors, along with the values and goals driving decisions; and, establishing a holistic set of principles for social-ecological system integrity and interconnectivity, resource efficiency and maintenance, livelihood sufficiency and opportunity, civility and democratic governance, intra- and inter-generational equity, and finally, precaution and adaptive capacity. This study also contributes to reforming and innovating governance regimes by illuminating how these principles are being met, or not, in the study area. What is most needed in metropolitan Phoenix is enhanced attention to ecosystem functions and resource maintenance as well as social equity and public engagement in water governance. Overall, key recommendations entail: addressing interconnections across hydrologic units and sub-systems (e.g., land and water), increasing decentralized initiatives for multiple purposes (e.g., ecological and societal benefits of green infrastructure), incorporating justice goals into decisions (e.g., fair allocations and involvement), and building capacity through collaborations and social learning with diverse interests (e.g., scientists, policymakers, and the broader public).

  6. Achieving Campus Sustainability: Top-Down, Bottom-Up, or Neither?

    ERIC Educational Resources Information Center

    Brinkhurst, Marena; Rose, Peter; Maurice, Gillian; Ackerman, Josef Daniel

    2011-01-01

    Purpose: The dynamics of organizational change related to environmental sustainability on university campuses are examined in this article. Whereas case studies of campus sustainability efforts tend to classify leadership as either "top-down" or "bottom-up", this classification neglects consideration of the leadership roles of…

  7. The Sustainability of Reading Recovery Intervention on Reading Achievement of Students Identified as At-Risk for Early Reading Failure

    ERIC Educational Resources Information Center

    Harley, Anne J.

    2012-01-01

    The purpose of this study was to determine the impact and sustainability of successfully discontinued first grade Reading Recovery students as compared to non-Reading Recovery students in reading achievement measures as third graders. Schools are facing the unprecedented challenge to ensure reading success for all students by the end of second…

  8. A Study of the Effect of Sustained, Whole-school Professional Development on Student Achievement in Science

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.

    2007-01-01

    This longitudinal study of middle school science teachers explored the relationship, if any, between teacher participation in whole-school, sustained, collaborative professional development and student achievement in science. Eleven teachers from Glendale Middle School participated in the Discovery Model Schools Initiative 2-week summer institute,…

  9. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  10. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  11. Partnership for Sustainable Communities: Three Years of Helping Communities Achieve Their Visions for Growth and Prosperity

    EPA Pesticide Factsheets

    This report from the Partnership for Sustainable Communities reports on the three years of progress since the Partnership started in 2009. It includes case studies of Partnership projects in communities around the country.

  12. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    DTIC Science & Technology

    2016-08-01

    incorporated into the follow-on PBL contracts and the fleet’s SPY-1 radar sustainment needs are met without a formal agreement binding ATAC to deliver...Phased Array Radar (SPY-1 radar) performance-based logistics contracts appropriately incentivized the support contractors. This audit is the second in...metrics into the performance-based logistics contracts used to sustain SPY-1 radars. Specifically, the metrics did not effectively incentivize

  13. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  14. Early stage design decisions: the way to achieve sustainable buildings at lower costs.

    PubMed

    Bragança, Luís; Vieira, Susana M; Andrade, Joana B

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle.

  15. Early Stage Design Decisions: The Way to Achieve Sustainable Buildings at Lower Costs

    PubMed Central

    Bragança, Luís; Vieira, Susana M.; Andrade, Joana B.

    2014-01-01

    The construction industry attempts to produce buildings with as lower environmental impact as possible. However, construction activities still greatly affect environment; therefore, it is necessary to consider a sustainable project approach based on its performance. Sustainability is an important issue to consider in design, not only due to environmental concerns but also due to economic and social matters, promoting architectural quality and economic advantages. This paper aims to identify the phases through which a design project should be developed, emphasising the importance and ability of earlier stages to influence sustainability, performance, and life cycle cost. Then, a selection of sustainability key indicators, able to be used at the design conceptual phase and able to start predicting environmental sustainability performance of buildings is presented. The output of this paper aimed to enable designers to compare and evaluate the consequences of different design solutions, based on preliminary data, and facilitate the collaboration between stakeholders and clients and eventually yield a sustainable and high performance building throughout its life cycle. PMID:24578630

  16. Sustainability Considerations in Spent Light-water Nuclear Fuel Retrievability

    SciTech Connect

    Wood, Thomas W.; Rothwell, Geoffrey

    2012-01-10

    This paper examines long-term cost differences between two competing Light Water Reactor (LWR) fuels: Uranium Oxide (UOX) and Mixed Uranium Oxide-Plutonium Oxide (MOX). Since these costs are calculated on a life-cycle basis, expected savings from lower future MOX fuel prices can be used to value the option of substituting MOX for UOX, including the value of maintaining access to the used UOX fuel that could be reprocessed to make MOX. The two most influential cost drivers are the price of natural uranium and the cost of reprocessing. Significant and sustained reductions in reprocessing costs and/or sustained increases in uranium prices are required to give positive value to the retrievability of Spent Nuclear Fuel. While this option has positive economic value, it might not be exercised for 50 to 200 years. Therefore, there are many years for a program during which reprocessing technology can be researched, developed, demonstrated, and deployed. Further research is required to determine whether the cost of such a program would yield positive net present value and/or increases the sustainability of LWR energy systems.

  17. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests

    PubMed Central

    Wei, Xiaohua; Blanco, Juan A.

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber

  18. Significant increase in ecosystem C can be achieved with sustainable forest management in subtropical plantation forests.

    PubMed

    Wei, Xiaohua; Blanco, Juan A

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500-2500 trees ha⁻¹. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir--Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr⁻¹, offsetting 1.9% of China's annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products

  19. Towards Sustainable Water Quality In Estuarine Impoundments: The Current State.

    NASA Astrophysics Data System (ADS)

    Wright, J.; Worrall, F.

    Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. Detailed water quality surveys have been carried out on a total of 79 dates on the Tees, Tawe, Wansbeck and Blyth estuaries. Water quality parameters which have been determined are pH, Eh, dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, transparency, suspended solids, alkalinity, temperature, nutri- ents (nitrate+nitrite, ammonium and orthophosphate), and a large range of dissolved metals. Statistical analyses are used to demonstrate the major controls on water qual- ity in impoundments. A distinction is made between total tidal exclusion (freshwater) systems, in which water quality is primarily influenced by external/catchment factors, and partial tidal exclusion systems, in which water quality is processed internally. This internal processing is due to density stratification creating compartments of saline wa- ter in contact with oxygen demanding sediments and isolated from the atmosphere, which leads to conditions of low DO and changes in redox conditions which may lead to release of metals and phosphate from the sediment.

  20. Sustainable Phosphorus Management in Land Applied Reclaimed Water Scenarios

    NASA Astrophysics Data System (ADS)

    Weinkam, G.

    2015-12-01

    Florida leads the nation in wastewater effluent/reclaimed water use, at over 700 million gallons per day, of which 75% is land applied. While these effluent waters are treated to reduce pathogen loads, phosphorus (P) concentrations can still be substantial in long term application scenarios. Currently an estimated 1.5 million kg of P are reintroduced to the landscape yearly (at effluent = 2 mg P/L), compared to only 23,000 kg that would be applied if landscapes were irrigated with ground water (at ground water = 0.03 mg P/L). Research suggests that under long term applications of P systems can reach a state at which they are no longer able to assimilate further loading, potentially resulting in landscapes that are actively leaching and eroding P rich particulate matter to receiving hydrologic systems. This can be especially relevant in Florida given the large proportion of sandy soils that contain, relatively, low physical and chemical ion exchange capacity and high hydraulic conductivity, thus increasing the potential for water quality impairment. Due to increasingly stringent surface water P concentrations allowances, and the many uncertainties regarding the long term fate and transport of P, this research seeks to determine how different soil conditions and reclaimed water loading amounts can alter P leaching profiles in Florida. Field sampling at reclaimed water sprayfield sites are used to determine the relative change in P sequestration potential using soil-phosphorus saturation capacity (SPSC) analyses and potential leaching risk is determined by soil core experimentation. The resulting information improves fundamental understanding of soil-phosphorus transport dynamics and provides insights into alternative techniques for long term environmental sustainability of reclaimed wastewater usage.

  1. In place of fear: aligning health care planning with system objectives to achieve financial sustainability.

    PubMed

    Birch, Stephen; Murphy, Gail Tomblin; MacKenzie, Adrian; Cumming, Jackie

    2015-04-01

    The financial sustainability of publicly funded health care systems is a challenge to policymakers in many countries as health care absorbs an ever increasing share of both national wealth and government spending. New technology, aging populations and increasing public expectations of the health care system are often cited as reasons why health care systems need ever increasing funding as well as reasons why universal and comprehensive public systems are unsustainable. However, increases in health care spending are not usually linked to corresponding increases in need for care within populations. Attempts to promote financial sustainability of systems such as limiting the range of services is covered or the groups of population covered may compromise their political sustainability as some groups are left to seek private cover for some or all services. In this paper, an alternative view of financial sustainability is presented which identifies the failure of planning and management of health care to reflect needs for care in populations and to integrate planning and management functions for health care expenditure, health care services and the health care workforce. We present a Health Care Sustainability Framework based on disaggregating the health care expenditure into separate planning components. Unlike other approaches to planning health care expenditure, this framework explicitly incorporates population health needs as a determinant of health care requirements, and provides a diagnostic tool for understanding the sources of expenditure increase.

  2. Water, climate change, and sustainability in the southwest

    PubMed Central

    2010-01-01

    The current Southwest drought is exceptional for its high temperatures and arguably the most severe in history. Coincidentally, there has been an increase in forest and woodland mortality due to fires and pathogenic outbreaks. Although the high temperatures and aridity are consistent with projected impacts of greenhouse warming, it is unclear whether the drought can be attributed to increased greenhouse gasses or is a product of natural climatic variability. Climate models indicate that the 21st century will be increasingly arid and droughts more severe and prolonged. Forest and woodland mortality due to fires and pathogens will increase. Demography and food security dictate that water demand in the Southwest will remain appreciable. If projected population growth is twinned with suburb-centered development, domestic demands will intensify. Meeting domestic demands through transference from agriculture presents concerns for rural sustainability and food security. Environmental concerns will limit additional transference from rivers. It is unlikely that traditional supply-side solutions such as more dams will securely meet demands at current per-capita levels. Significant savings in domestic usage can be realized through decreased applications of potable water to landscaping, but this is a small fraction of total regional water use, which is dominated by agriculture. Technical innovations, policy measures, and market-based solutions that increase supply and decrease water demand are all needed. Meeting 21st-century sustainability challenges in the Southwest will also require planning, cooperation, and integration that surpass 20th-century efforts in terms of geographic scope, jurisdictional breadth, multisectoral engagement, and the length of planning timelines. PMID:21149704

  3. Cost and financial sustainability of a household-based water treatment and storage intervention in Zambia.

    PubMed

    Banerjee, Anyana; McFarland, Deborah A; Singh, Ritu; Quick, Robert

    2007-09-01

    Providing safe water to >1 billion people in need is a major challenge. To address this need, the Safe Water System (SWS) - household water treatment with dilute bleach, safe water storage, and behavior change - has been implemented in >20 countries. To assess the potential sustainability of the SWS, we analyzed costs in Zambia of "Clorin" brand product sold in bottles sufficient for a month of water treatment at a price of $0.09. We analyzed production, marketing, distribution, and overhead costs of Clorin before and after sales reached nationwide scale, and analyzed Clorin sales revenue. The average cost per bottle of Clorin production, marketing and distribution at start-up in 1999 was $1.88 but decreased by 82% to $0.33 in 2003, when >1.7 million bottles were sold. The financial loss per bottle decreased from $1.72 in 1999 to $0.24 in 2003. Net program costs in 2003 were $428,984, or only $0.04 per person-month of protection. A sensitivity analysis showed that if the bottle price increased to $0.18, the project would be self-sustaining at maximum capacity. This analysis demonstrated that efficiencies in the SWS supply chain can be achieved through social marketing. Even with a subsidy, overall program costs per beneficiary are low.

  4. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  5. Future Tactical Truck System Maximization: A Achieving Objective Force Sustainment and Distribution Requirements

    DTIC Science & Technology

    2007-11-02

    automatically execute a convoy standing operating procedure that creates the convoy chain of command and S/V team roles in the convoy for execution of...responsibility for their assigned vehicle. Soldiers are culturally indoctrinated to understand their individual S/V team role in the greater sustainment

  6. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  7. A review of potable water accessibility and sustainability issues in developing countries - case study of Uganda.

    PubMed

    Nayebare, Shedrack R; Wilson, Lloyd R; Carpenter, David O; Dziewulski, David M; Kannan, Kurunthachalam

    2014-01-01

    Providing sources of sustainable and quality potable water in Uganda is a significant public health issue. This project aimed at identifying and prioritizing possible actions on how sustainable high quality potable water in Uganda's water supply systems could be achieved. In that respect, a review of both the current water supply systems and government programs on drinking water in Uganda was completed. Aspects of quantity, quality, treatment methods, infrastructure, storage and distribution of water for different water systems were evaluated and compared with the existing water supply systems in the U.S., Latin America and the Caribbean, for purposes of generating feasible recommendations and opportunities for improvement. Uganda utilizes surface water, groundwater, and rainwater sources for consumption. Surface water covers 15.4% of the land area and serves both urban and rural populations. Lake Victoria contributes about 85% of the total fresh surface water. Potable water quality is negatively affected by the following factors: disposal of sewage and industrial effluents, agricultural pesticides and fertilizers, and surface run-offs during heavy rains. The total renewable groundwater resources in Uganda are estimated to be 29 million m3/year with about 20,000 boreholes, 3000 shallow-wells and 200,000 springs, serving more than 80% of the rural and slum communities. Mean annual rainfall in Uganda ranges from 500 mm to 2500 mm. Groundwater and rainwater quality is mainly affected by poor sanitation and unhygienic practices. There are significant regional variations in the accessibility of potable water, with the Northeastern region having the least amount of potable water from all sources. Uganda still lags behind in potable water resource development. Priorities should be placed mainly on measures available for improvement of groundwater and rainwater resource utilization, protection of watersheds, health education, improved water treatment methods and

  8. Quaternary Aquifer of the North China Plain-assessing and achieving groundwater resource sustainability

    NASA Astrophysics Data System (ADS)

    Foster, Stephen; Garduno, Hector; Evans, Richard; Olson, Doug; Tian, Yuan; Zhang, Weizhen; Han, Zaisheng

    The Quaternary Aquifer of the North China Plain is one of the world's largest aquifer systems and supports an enormous exploitation of groundwater, which has reaped large socio-economic benefits in terms of grain production, farming employment and rural poverty alleviation, together with urban and industrial water-supply provision. Both population and economic activity have grown markedly in the past 25 years. Much of this has been heavily dependent upon groundwater resource development, which has encountered increasing difficulties in recent years primarily as a result of aquifer depletion and related phenomena. This paper focuses upon the hydrogeologic and socio-economic diagnosis of these groundwater resource issues, and identifies strategies to improve groundwater resource sustainability. L'aquifère Quaternaire de la Plaine du Nord de la Chine est l'un des plus grands systèmes aquifères du monde; il permet une exploitation énorme d'eau souterraine, qui a permis des très importants bénéfices socio-économiques en terme de production de céréales, d'emplois ruraux et de réduction de la pauvreté rurale, en même temps que l'approvisionnement en eau potable et pour l'industrie. La population comme l'activité économique ont remarquablement augmenté au cours de ces 25 dernières années. Elles ont été sous la forte dépendance du développement de la ressource en eau souterraine, qui a rencontré des difficultés croissantes ces dernières années, du fait du rabattement de l'aquifère et des phénomènes associés. Cet article est consacré aux diagnostiques hydrogéologique et socio-économique des retombées de cette ressource en eau souterraine; il identifie les stratégies pour améliorer la pérennité des ressources en eau souterraine. El acuífero cuaternario de la Llanura Septentrional de China es uno de los mayores sistemas acuíferos del mundo y soporta una enorme explotación de su agua subterránea, las cuales han originado grandes

  9. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  10. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  11. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  12. The Sustainable Development Goals cannot be achieved without improving maternal and child nutrition.

    PubMed

    Baye, Kaleab

    2017-02-01

    Poor nutrition is a global pandemic with social, economic, and environmental causes and consequences. Of the 17 Sustainable Development Goals (SDGs), only SDG2 explicitly mentions nutrition. Turning the aspirations of the SDGs into reality will require recognition that good nutrition ensured through sustainable agriculture, is simultaneously an absolutely fundamental input and output. Because all of the other SDGs are directly or indirectly linked to improving nutrition, funding to improve nutrition is essential to success for many SDGs. Greater focus on cooperation across disciplines to advance the science of program delivery and to understand the full contribution of nutrition to many desirable outcomes as part of development are surely the ways forward. Missing today's opportunities to advance thinking and program implementation for more effectively improving nutrition for all, especially for women and children, will lead to a wider failure to meet the SDGs.

  13. Out of the wilderness? Achieving sustainable development within Scottish national parks.

    PubMed

    Barker, Adam; Stockdale, Aileen

    2008-07-01

    The introduction of national parks to Scotland represents a significant shift in the evolution of protected area management within the UK. Although the National Parks (Scotland) Act 2000 adopts the established national park aims of conservation and recreation, provisions are also made for advancing notions of sustainable development. This paper provides an assessment of the degree to which the Scottish national park model is likely to enable the realisation of multiple national park objectives. Five key areas are considered for analysis. These relate to management aims, institutional arrangements, implementation, democratic accountability and funding. The evaluation reveals that whilst management provisions have been established in accordance with international sustainable development guidelines, a number of concerns relating to operational processes remain.

  14. The Dynamic Integrated Evaluation Model (DIEM): Achieving Sustainability in Organizational Intervention through a Participatory Evaluation Approach.

    PubMed

    von Thiele Schwarz, Ulrica; Lundmark, Robert; Hasson, Henna

    2016-10-01

    Recently, there have been calls to develop ways of using a participatory approach when conducting interventions, including evaluating the process and context to improve and adapt the intervention as it evolves over time. The need to integrate interventions into daily organizational practices, thereby increasing the likelihood of successful implementation and sustainable changes, has also been highlighted. We propose an evaluation model-the Dynamic Integrated Evaluation Model (DIEM)-that takes this into consideration. In the model, evaluation is fitted into a co-created iterative intervention process, in which the intervention activities can be continuously adapted based on collected data. By explicitly integrating process and context factors, DIEM also considers the dynamic sustainability of the intervention over time. It emphasizes the practical value of these evaluations for organizations, as well as the importance of their rigorousness for research purposes. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    PubMed

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  16. Before Sustainable Development Goals (SDG): why Nigeria failed to achieve the Millennium Development Goals (MDGs).

    PubMed

    Oleribe, Obinna Ositadimma; Taylor-Robinson, Simon David

    2016-01-01

    World leaders adopted the UN Millennium Declaration in 2000, which committed the nations of the world to a new global partnership, aimed at reducing extreme poverty and other time-bound targets, with a stated deadline of 2015. Fifteen years later, although significant progress has been made worldwide, Nigeria is lagging behind for a variety of reasons, including bureaucracy, poor resource management in the healthcare system, sequential healthcare worker industrial action, Boko Haram insurgency in the north of Nigeria and kidnappings in the south of Nigeria. The country needs to tackle these problems to be able to significantly advance with the new sustainable development goals (SDGs) by the 2030 target date.

  17. Visual sustained attention and numerosity sensitivity correlate with math achievement in children.

    PubMed

    Anobile, Giovanni; Stievano, Paolo; Burr, David C

    2013-10-01

    In this study, we investigated in school-age children the relationship among mathematical performance, the perception of numerosity (discrimination and mapping to number line), and sustained visual attention. The results (on 68 children between 8 and 11 years of age) show that attention and numerosity perception predict math scores but not reading performance. Even after controlling for several variables, including age, gender, nonverbal IQ, and reading accuracy, attention remained correlated with math skills and numerosity discrimination. These findings support previous reports showing the interrelationship between visual attention and both numerosity perception and math performance. It also suggests that attentional deficits may be implicated in disturbances such as developmental dyscalculia.

  18. Before Sustainable Development Goals (SDG): why Nigeria failed to achieve the Millennium Development Goals (MDGs)

    PubMed Central

    Oleribe, Obinna Ositadimma; Taylor-Robinson, Simon David

    2016-01-01

    World leaders adopted the UN Millennium Declaration in 2000, which committed the nations of the world to a new global partnership, aimed at reducing extreme poverty and other time-bound targets, with a stated deadline of 2015. Fifteen years later, although significant progress has been made worldwide, Nigeria is lagging behind for a variety of reasons, including bureaucracy, poor resource management in the healthcare system, sequential healthcare worker industrial action, Boko Haram insurgency in the north of Nigeria and kidnappings in the south of Nigeria. The country needs to tackle these problems to be able to significantly advance with the new sustainable development goals (SDGs) by the 2030 target date. PMID:27795754

  19. Achieving Sustainability Goals for Urban Coasts in the US Northeast: Research Needs and Challenges

    NASA Technical Reports Server (NTRS)

    Close, Sarah L.; Montalto, Franco; Orton, Philip; Antoine, Adrienne; Peters, Danielle; Jones, Hunter; Parris, Adam; Blumberg, Alan

    2016-01-01

    In the wake of Hurricane Sandy and other recent extreme events, urban coastal communities in the northeast region of the United States are beginning or stepping up efforts to integrate climate adaptation and resilience into long-term coastal planning. Natural and nature-based shoreline strategies have emerged as essential components of coastal resilience and are frequently cited by practitioners, scientists, and the public for the wide range of ecosystem services they can provide. However, there is limited quantitative information associating particular urban shoreline design strategies with specific levels of ecosystem service provision, and research on this issue is not always aligned with decision context and decision-maker needs. Engagement between the research community, local government officials and sustainability practitioners, and the non-profit and private sectors can help bridge these gaps. A workshop to bring together these groups discussed research gaps and challenges in integrating ecosystem services into urban sustainability planning in the urban northeast corridor. Many themes surfaced repeatedly throughout workshop deliberations, including the challenges associated with ecosystem service valuation, the transferability of research and case studies within and outside the region, and the opportunity for urban coastal areas to be a focal point for education and outreach efforts related to ecosystem services.

  20. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    EPA Science Inventory

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  1. Nutrients, Water Temperature, and Dissolved Oxygen: Are Water Quality Standards Achievable for Forest Streams?

    NASA Astrophysics Data System (ADS)

    Ice, G. G.

    2002-12-01

    Water quality standards provide a performance measure for watershed managers. Three of the most important standards for rivers and streams are the key nutrients, nitrogen and phosphorus; water temperature; and dissolved oxygen. The concentration of nitrogen and phosphorus in waterbodies affects primary production and productivity. Too little nutrients and streams are sterile and unproductive. Too much and they are eutrophic. Water temperature is important because it influences chemical reaction rates in streams and metabolic rates in fish. Dissolved oxygen is necessary for respiration. Salmon, the focus of much of the conservation efforts in the Northwest, are known as organisms that require cool, highly oxygenated water to thrive. Still, it is important when setting a performance standard to determine if those standards are achievable. A survey of nutrient data for small forested streams has found that the ecoregion guidelines proposed by EPA are often unachievable, sometimes even for small, unmanaged reference watersheds. A pilot survey of water temperatures in Oregon wilderness areas and least impaired watersheds has found temperatures frequently exceed the state standards. While natural temperature exceedances are addressed in the water quality standards for Oregon for unmanaged watersheds, these temperatures for managed watersheds might be presumed to result from management activities, precipitating an expensive Total Maximum Daily Load (TMDL) assessment. Less is known about dissolved oxygen for small forest streams because work 20 years ago showed little risk of significant dissolved oxygen concentrations where shade was maintained near the stream and fine slash was kept out of the stream. However, work from the 1970's on intergravel dissolved oxygen also shows that stream with greater large woody debris (LWD) can have lower intergravel dissolved oxygen concentrations, presumably due to trapping of fine organic and inorganic materials. Efforts to add LWD to

  2. Sustaining Success toward Closing the Achievement Gap: A Case Study of One Urban High School

    ERIC Educational Resources Information Center

    Cabrera, Kimberly Elizabeth

    2010-01-01

    Since the introduction of the Coleman Report (1966), the focus on closing the achievement gap has been a critical component of educational policy for political leaders and field research by educators. The economic crisis which California and the nation at large currently face creates a challenging situation in attempting to narrow the gap.…

  3. Challenges to Achieving Sustainable Sanitation in Informal Settlements of Kigali, Rwanda

    PubMed Central

    Tsinda, Aime; Abbott, Pamela; Pedley, Steve; Charles, Katrina; Adogo, Jane; Okurut, Kenan; Chenoweth, Jonathan

    2013-01-01

    Like most cities in developing countries, Kigali is experiencing rapid urbanisation leading to an increase in the urban population and rapid growth in the size and number of informal settlements. More than 60% of the city’s population resides in these settlements, where they experience inadequate and poor quality urban services including sanitation. This article discusses the issues and constraints related to the provision of sustainable sanitation in the informal settlements in Kigali. Two informal settlements (Gatsata and Kimisagara) were selected for the study, which used a mixed method approach for data collection. The research found that residents experienced multiple problems because of poor sanitation and that the main barrier to improved sanitation was cost. Findings from this study can be used by the city authorities in the planning of effective sanitation intervention strategies for communities in informal settlements. PMID:24336021

  4. Rock on Cafe: achieving sustainable systems changes in school lunch programs.

    PubMed

    Johnston, Yvonne; Denniston, Ray; Morgan, Molly; Bordeau, Mark

    2009-04-01

    The rising rate of overweight poses a significant threat to the health of children. Because roughly one third of a child's dietary intake occurs during school hours and because both health and academic outcomes have been linked to children's nutrition, school nutrition policies and programs have been identified as a key area for intervention. This article describes the components, processes, and initial successes of a grassroots effort and innovative project to improve the nutritional quality of the School Lunch Program through a sustainable systems intervention and policy change across a regional area of upstate New York. The Rock on Cafe intervention was partially funded by the Steps to a Healthier New York program and promises to be a model for creating a school environment that supports healthy dietary behaviors among children.

  5. The role of Ethiopia's public universities in achieving the United Nations Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Paul

    2016-12-01

    In recent years, the Ethiopian government has embarked on an ambitious agriculture development strategy aimed at raising Ethiopia to the status of a middle-income-level country by 2025. Encouraged by the international development push behind the United Nations Sustainable Development Goals (SDGs), the rapid expansion of public universities has taken centre stage in facilitating the country's aim of equipping a new generation with the expertise needed to fuel the country's economic development. While impressive strides have been made over the last two decades, various development challenges threaten to derail this promising progress. This article examines three of the main challenges - urbanisation, climate change and food security - and the potential for universities to address them. Based on a study using key informant analysis research with 50 experts in Ethiopian education and development, the author concludes that the developing public university system offers promising capabilities to assist the country on its developmental path despite many inherent problems.

  6. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  7. Sustainable Water Supplies:Reducing The Organic Matter Content of Potable Water

    NASA Astrophysics Data System (ADS)

    Sohn, Mary

    2009-07-01

    As freshwater becomes a limiting factor in sustainable development, water treatment processes which can efficiently oxidize both anthropogenic and natural sources of organic matter are becoming crucial. While many anthropogenic organic compounds found in freshwater pose a direct risk to human health, natural organic matter such as humic acids, pose an indirect risk through the production of disinfection byproducts resulting from chlorination. Removal of dissolved natural organic matter before disinfection of potable water is recommended for the production of potable water in water treatment facilities. Several promising developments in dissolved organic matter oxidation are described including hydroxyl radical, advanced oxidation processes and ferrate (VI). The feasibility of applying these processes to water treatment on a large scale is largely dependent on cost.

  8. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  9. E3 Success Story - Path Toward Sustainability Leads to Significant Water Savings: Southwire

    EPA Pesticide Factsheets

    Southwire—a manufacturer of wire and cable products— searched for opportunities to reduce its water use and launched a sustainability campaign that established goals to reduce water use by 15 percent and overall carbon footprint by 10 percent.

  10. LAND-USE, ECONOMICS AND HYDROLOGIC IMPACT ASSESSMENT: A SECOND STEP TOWARDS ACHIEVING SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Past and present development and land-use patterns have drastically altered the hydrologic function of our nation's watersheds. What is only now widely recognized is that the increased storm water volume and peak flows resulting from development in watersheds, not just the pollu...

  11. Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations

    DTIC Science & Technology

    2011-05-01

    Thermoelectric power • Geothermal • Biofuels • Solar-hot water • Hydropower • Carbon Capture • “ Fracking ” Regional Water Balance?  Supply  Rivers...Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations Marc Kodack Senior Fellow, Army Environmental Policy...00-00-2011 4. TITLE AND SUBTITLE Sipping at the Straw: Planning for Sustainable Water Supplies for U.S. Army Installations 5a. CONTRACT NUMBER 5b

  12. Development of Pre-Service Science Teachers' Awareness of Sustainable Water Use

    ERIC Educational Resources Information Center

    Cankaya, Cemile; Filik Iscen, Cansu

    2015-01-01

    Water is a vital resource for sustainable development. The aim of this research was to develop and evaluate pre-service science teachers' awareness of sustainable water usage. This research was based on a mixed method. The qualitative part of the research was based on a single group pretest-posttest experimental design, and the qualitative data…

  13. Adaptive exchange of capitals in urban water resources management : an approach to sustainability?

    EPA Science Inventory

    With water availability increasingly restricted by deficiencies in quality and quantity, water resources management is a central issue in planning for sustainability in the Anthropocene. We first offer a definition of sustainability based on the ease with which capitals (e.g., na...

  14. Subtask 5.3 - Water and Energy Sustainability and Technology

    SciTech Connect

    Bruce Folkedahl; Christopher Martin; David Dunham

    2010-09-30

    The overall goal of this Energy & Environmental Research Center project was to evaluate water capture technologies in a carbon capture and sequestration system and perform a complete systems analysis of the process to determine potential water minimization opportunities within the entire system. To achieve that goal, a pilot-scale liquid desiccant dehumidification system (LDDS) was fabricated and tested in conjunction with a coal-fired combustion test furnace outfitted with CO{sub 2} mitigation technologies, including the options of oxy-fired operation and postcombustion CO{sub 2} capture using an amine scrubber. The process gas stream for these tests was a coal-derived flue gas that had undergone conventional pollutant control (particulates, SO{sub 2}) and CO{sub 2} capture with an amine-based scrubber. The water balance data from the pilot-scale tests show that the packed-bed absorber design was very effective at capturing moisture down to levels that approach equilibrium conditions.

  15. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  16. A framework for planning sustainable seawater desalination water supply.

    PubMed

    Shahabi, Maedeh P; McHugh, Adam; Anda, Martin; Ho, Goen

    2017-01-01

    A quantitative framework for sustainable desalination planning in metropolitan areas, which integrates the tools of mixed integer linear programming and life cycle assessment, is presented. The life cycle optimisation framework allows for optimal desalination planning by considering choices over intake type, staging and location of the infrastructure under different land-use, environmental and economic policies. Optimality is defined by the decision maker's selected objective function, being either an environmental impact or a levelised cost indicator. The framework was tested for future desalination planning scenarios in the northern metropolitan area of Perth, Western Australia. Results indicate that multi-staged construction and decentralised planning solutions may produce lower life cycle environmental impacts (58%) and at a lower levelised cost (24%) than a centralised desalination solution currently being considered by Western Australian water planners. Sensitivity analysis results suggest that the better environmental and economic performance of decentralised planning over centralised planning is highly sensitive to the proportion of land that can be made available for the siting of decentralised plants near the demand zone. Insight into land use policies is a critical factor to the initiation and success of decentralised solution in developed metropolitan areas.

  17. Life cycle assessment for sustainable metropolitan water systems planning.

    PubMed

    Lundie, Sven; Peters, Gregory M; Beavis, Paul C

    2004-07-01

    Life Cycle Assessment (LCA) is useful as an information tool for the examination of alternative future scenarios for strategic planning. Developing a life cycle assessment for a large water and wastewater system involves making methodological decisions about the level of detail which is retained through different stages of the process. In this article we discuss a methodology tailored to strategic planning needs which retains a high degree of model segmentation in order to enhance modeling of a large, complex system. This is illustrated by a case study of Sydney Water, which is Australia's largest water service provider. A prospective LCA was carried out to examine the potential environmental impacts of Sydney Water's total operations in the year 2021. To our knowledge this is the first study to create an LCA model of an integrated water and wastewater system with this degree of complexity. A "base case" system model was constructed to represent current operating assets as augmented and upgraded to 2021. The base case results provided a basis for the comparison of alternative future scenarios and for conclusions to be drawn regarding potential environmental improvements. The scenarios can be roughly classified in two categories: (1) options which improve the environmental performance across all impact categories and (2) options which improve one indicator and worsen others. Overall environmental improvements are achieved in all categories by the scenarios examining increased demand management, energy efficiency, energy generation, and additional energy recovery from biosolids. The scenarios which examined desalination of seawater and the upgrades of major coastal sewage treatment plants to secondary and tertiary treatment produced an improvement in one environmental indicator but deteriorations in all the other impact categories, indicating the environmental tradeoffs within the system. The desalination scenario produced a significant increase in greenhouse gas

  18. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term.

  19. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).

    PubMed

    Zhang, Sui; Wang, Peng; Fu, Xiuzhu; Chung, Tai-Shung

    2014-04-01

    This study proposed and investigated a hybrid forward osmosis - membrane distillation (FO-MD) system for sustainable water recovery from oily wastewater by employing lab-fabricated FO and MD hollow fiber membranes. Stable oil-in-water emulsions of different concentrations with small droplet sizes (<1 μm) were firstly prepared and applied as the feed solution in the FO process. Fouling was immediately observed in the FO mode and was low on the cellulose triacetate (CTA) - based thin film composite (TFC) membranes. Moreover, slight increment of fouling was observed in the first few hours and the water flux was then stabilized over 24 h. The characterizations of water flux and solute rejection in separate FO and MD processes revealed that a high water flux, good NaCl rejection, impressively high retention of oil droplets and partial permeation of acetic acid could be achieved. Finally, an integrated FO-MD system was developed to treat the oily wastewater containing petroleum, surfactant, NaCl and acetic acid at 60 °C in the batch mode. The water flux in FO undergoes three-stage decline due to fouling and reduction in osmotic driving force, but is quite stable in MD regardless of salt concentration. Oily wastewater with relatively high salinity could be effectively recovered by the FO-MD hybrid system while maintaining large water flux, at least 90% feed water recovery could be readily attained with only trace amounts of oil and salts, and the draw solution was re-generated for the next rounds of FO-MD run. Interestingly, significant amount of acetic acid was also retained in the permeate for further reuse as a chemical additive during the production of crude oil. The work has demonstrated that not only water but also organic additives in the wastewater could be effectively recovered by FO-MD systems for reuse or other utilizations.

  20. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.7 Water used to achieve energy efficiency. ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 435.7 Section...

  1. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  2. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  3. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  4. Achieving and sustaining advanced scenarios in ITER modelled by CRONOS and DINA-CH

    NASA Astrophysics Data System (ADS)

    Besseghir, K.; Garcia, J.; Artaud, J.-F.; Imbeaux, F.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.; Maget, P.

    2013-12-01

    The heating and current drive characteristics for accessing advanced scenarios in ITER, close to those obtained in present-day experiments, are analysed together with the plasma performance using the prescribed-boundary CRONOS suites of codes. For the hybrid scenario, a sensitivity analysis shows the sensitivity to the parameter range which leads to an appropriate control of the safety factor and pressure profiles. A steady-state regime with no internal transport barrier is obtained as a natural extension of the hybrid regime. These prescribed-boundary scenario developments are used as an initial step for a complete free-boundary simulation carried out with the DINA-CH code coupled to CRONOS, which once again underlines how sensitive the ITER advanced scenarios are to small plasma geometry changes. Both scenarios were achieved within the technical limits of ITER, specifically the poloidal field coil currents, voltages, forces and fields.

  5. Getting to Green: An Examination of the Relationship between Institutional Characteristics and Sustainability Achievement at Four-Year U.S. Based Colleges and Universities

    ERIC Educational Resources Information Center

    Miller, Justin

    2014-01-01

    This study presents an examination of how institutional characteristics might influence a four-year institution of higher education's achievement in sustainability, as measured by the Sustainability Tracking, Assessment, and Rating System (STARS). Specifically, it examined the potential role Carnegie classification, sector, location, number of…

  6. China's water sustainability in the 21st century: a climate informed water risk assessment covering multi-sector water demands

    NASA Astrophysics Data System (ADS)

    Chen, X.; Devineni, N.; Lall, U.; Hao, Z.; Dong, L.; Ju, Q.; Wang, J.; Wang, S.

    2013-08-01

    China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within year and across year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. The risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress are typically the regions with high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.

  7. Wastewater as a resource: a unique approach to achieving energy sustainability.

    PubMed

    Sutton, P M; Rittmann, B E; Schraa, O J; Banaszak, J E; Togna, A P

    2011-01-01

    A wastewater-treatment flowsheet was developed to integrate uniquely designed biological processes with physical-chemical unit processes, allowing conversion of the organic carbon in the wastewater to methane, the removal and recovery of phosphorus and nitrogen from the wastewater, and the production of water suitable for reuse. In the flowsheet, energy is derived from the wastewater by first shunting a large fraction of the organic carbon in the wastewater to a solids slurry which is treated via anaerobic digestion. The anaerobic digestion system consists of focused pulsed (FP) pretreatment coupled to anaerobic membrane bioreactors (MBRs). Computer modelling and simulation results are used to optimize design of the system. Energy generation from the system is maximized and costs are reduced by using modest levels of recycle flow from the anaerobic MBRS to the FP pretreatment step.

  8. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    PubMed

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    promising route both to retrofit aging infrastructure and to develop high performance, low maintenance decentralized treatment systems including point-of-use devices. Broad implementation of nanotechnology in water treatment will require overcoming the relatively high costs of nanomaterials by enabling their reuse and mitigating risks to public and environmental health by minimizing potential exposure to nanoparticles and promoting their safer design. The development of nanotechnology must go hand in hand with environmental health and safety research to alleviate unintended consequences and contribute toward sustainable water management.

  9. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  10. Water and Energy Sustainability: A Balance of Government Action and Industry Innovation

    SciTech Connect

    Ben Grunewald

    2009-12-31

    By completing the tasks and subtasks of the project, the Ground Water Protection Council (GWPC) through its state regulatory agency members and oil and gas industry partners, will bring attention to water quality and quantity issues and make progress toward water and energy sustainability though enhanced water protection and conservation thus enhancing the viability of the domestic fossil fuel industry. The project contains 4 major independent Tasks. Task 1 - Work Plan: Water-Energy Sustainability: A Symposium on Resource Viability. Task 2 - Work Plan: A Regional Assessment of Water and Energy Sustainability. Task 3 - Work Plan: Risk Based Data Management System-Water Water and Energy Module. Task 4 - Work Plan: Identification and Assessment of States Regulatory Programs Regarding Geothermal Heating and Cooling Systems. Each task has a specific scope (details given).

  11. From safe yield to sustainable development of water resources - The Kansas experience

    USGS Publications Warehouse

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  12. The persistence of the water budget myth and its relationship to sustainability

    USGS Publications Warehouse

    Devlin, J.F.; Sophocleous, M.

    2005-01-01

    Sustainability and sustainable pumping are two different concepts that are often used interchangeably. The latter term refers to a pumping rate that can be maintained indefinitely without mining an aquifer, whereas the former term is broader and concerns such issues as ecology and water quality, among others, in addition to sustainable pumping. Another important difference between the two concepts is that recharge can be very important to consider when assessing sustainability, but is not necessary to estimate sustainable pumping rates. Confusion over this distinction is made worse by the Water Budget Myth, which comprises the mistaken yet persistent ideas that (1) sustainable pumping rates cannot exceed virgin recharge rates in aquifers, and (2) that virgin recharge rates must therefore be known to estimate sustainable pumping rates. Analysis of the water balance equation shows the special circumstances that must apply for the Water Budget Myth to be true. However, due to the effects recharge is likely to have on water quality, ecology, socioeconomic factors, and, under certain circumstances, its requirement for numerical modeling, it remains important in assessments of sustainability. ?? Springer-Verlag 2004.

  13. 77 FR 1687 - EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... AGENCY EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater Plans Under the Clean Water Act (CWA) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... water quality objectives of the CWA. The workshops are intended to assist EPA in developing...

  14. Organic Broccoli Production can be Optimized to Achieve High Yield and More Efficient Water Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic farming is a viable agronomic option in central and north coastal California. Organic agriculture is dependent upon the application of organic amendments for providing nutrients and water management for sustaining successful organic production on a multitude of crops. Our multi-year field ...

  15. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    PubMed

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions.

  16. The critical role of water in sustainable growth.

    PubMed

    Tebo, P V

    2001-01-01

    Business can play an important role in protecting and improving water quality by: raising public awareness; reducing and recycling water within manufacturing operations; reducing the use of/impact on water in the use of products; forming partnerships with private sector organizations focused on pilot programs to improve water quality; and by integrating water as a critical and strategic issue in all business strategies.

  17. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  18. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance.

    PubMed

    Pruden, Amy

    2014-01-01

    Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences.

  19. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.; Linkov, Igor

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  20. Method selection for sustainability assessments: The case of recovery of resources from waste water.

    PubMed

    Zijp, M C; Waaijers-van der Loop, S L; Heijungs, R; Broeren, M L M; Peeters, R; Van Nieuwenhuijzen, A; Shen, L; Heugens, E H W; Posthuma, L

    2017-04-05

    Sustainability assessments provide scientific support in decision procedures towards sustainable solutions. However, in order to contribute in identifying and choosing sustainable solutions, the sustainability assessment has to fit the decision context. Two complicating factors exist. First, different stakeholders tend to have different views on what a sustainability assessment should encompass. Second, a plethora of sustainability assessment methods exist, due to the multi-dimensional characteristic of the concept. Different methods provide other representations of sustainability. Based on a literature review, we present a protocol to facilitate method selection together with stakeholders. The protocol guides the exploration of i) the decision context, ii) the different views of stakeholders and iii) the selection of pertinent assessment methods. In addition, we present an online tool for method selection. This tool identifies assessment methods that meet the specifications obtained with the protocol, and currently contains characteristics of 30 sustainability assessment methods. The utility of the protocol and the tool are tested in a case study on the recovery of resources from domestic waste water. In several iterations, a combination of methods was selected, followed by execution of the selected sustainability assessment methods. The assessment results can be used in the first phase of the decision procedure that leads to a strategic choice for sustainable resource recovery from waste water in the Netherlands.

  1. Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure

    EPA Science Inventory

    Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...

  2. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  3. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    SciTech Connect

    Thomas, Kenneth; Oxstrand, Johanna

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  4. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  5. An Assessment of Global Net Irrigation Water Requirements from Various Water Supply Sources to Sustain Irrigation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Sayaka; Cho, Jail; Yamada, Hannah; Khajuria, Anupam; Hanasaki, Naota; Kanae, Shinjiro

    2014-05-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during the period 1960-2050 using the global water resources model, H08. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0° . The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 km3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 km3 to 3.0 M m3, and non-local non-renewable blue water (NNBW). We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as the difference between NNBW in the 1990s and NNBW in the 2040s, because it was difficult to distinguish the types of future water supply sources except for RIV. The simulated results showed that RIV, MSR, and NNBW increased significantly through the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, RIV approached a critical limit due to the continued expansion of the irrigation area. Furthermore, MSR and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. After the 2020s, MSR could be expected to approach the critical limit without the construction of medium-size reservoirs. ADD would account for 11-23% of the total requirements in the 2040s. We found that an expansion of

  6. Strengthening the partnership between routine immunization and the global polio eradication initiative to achieve eradication and assure sustainability.

    PubMed

    Abdelwahab, Jalaa; Dietz, Vance; Eggers, Rudolf; Maher, Christopher; Olaniran, Marianne; Sandhu, Hardeep; Vandelaer, Jos

    2014-11-01

    Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988, the number of polio endemic countries has declined from 125 to 3 in 2013. Despite this remarkable achievement, ongoing circulation of wild poliovirus in polio-endemic countries and the increase in the number of circulating vaccine-derived poliovirus cases, especially those caused by type 2, is a cause for concern. The Polio Eradication and Endgame Strategic Plan 2013-2018 (PEESP) was developed and includes 4 objectives: detection and interruption of poliovirus transmission, containment and certification, legacy planning, and a renewed emphasis on strengthening routine immunization (RI) programs. This is critical for the phased withdrawal of oral poliovirus vaccine, beginning with the type 2 component, and the introduction of a single dose of inactivated polio vaccine into RI programs. This objective has inspired renewed consideration of how the GPEI and RI programs can mutually benefit one another, how the infrastructure from the GPEI can be used to strengthen RI, and how a strengthened RI can facilitate polio eradication. The PEESP is the first GPEI strategic plan that places strong and clear emphasis on the necessity of improving RI to achieve and sustain global polio eradication.

  7. A Systems Approach to Develop Sustainable Water Supply Infrastructure and Management

    EPA Science Inventory

    In a visit to Zhejiang University, China, Dr. Y. Jeffrey Yang will discuss in this presentation the system approach for urban water infrastructure sustainability. Through a system analysis, it becomes clear at an urban scale that the energy and water efficiencies of a water supp...

  8. Safe and Sustainable Water Resources Strategic Research Action Plan 2012-2016

    EPA Pesticide Factsheets

    This document represents a strategic guide to EPA’s research actions, alone and in part-nership with the broader federal, industry and scientific research community, to provide the science and engineering necessary for safe and sustainable water resources.

  9. Safe and Sustainable Water Resources Strategic Research Action Plan 2016-2019

    EPA Pesticide Factsheets

    EPA's Safe and Sustainable Water Resources (SSWR) research program is using an integrated systems approach to develop scientific and technological solutions to protect human health, and to protect and restore watersheds and aquatic ecosystems.

  10. Sustainable Urban Infrastructure Development and the Role of Water Technologies in the U.S.

    EPA Science Inventory

    Increased climate variability and rapid urbanization are fundamentally changing the urban watershed hydrology and consequently sustainability of water systems. However, our urban planning and engineering practices are based on decades-old hydrological theory and guidance based o...

  11. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  12. Sustainability, hydrologic science and the balance between water supply and demand in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Bales, R.; Brookshire, D.; Brown, C.; Gupta, H.; Hogan, J.; Phillips, F.; Sorooshian, S.; Villinski, J.; Washburne, J.; Woodard, G.

    2003-04-01

    Water resources managers in the rapidly growing southwestern U.S. are increasingly addressing over-stressed rivers and aquifers as population and water demands grow. A current regional drought (1999-2002) has raised new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. Sustainability implies that supply and demand balance through a basin, not just for the basin as a whole. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers, and for accurate hydrologic information to sustain transfers. Key within-basin fluxes of water are poorly known, including: i) the amount and variability in time and space of precipitation and evapotranspiration/sublimation across the basin, ii) groundwater-surface water exchange, and iii) the partitioning of snowmelt and rain between runoff, infiltration, evapotranspiration and recharge. Given the strong physical linkages between these processes, and the physical-social and ecophysiological interactions that influence basin-scale water cycles, a research agenda with a high degree of integration was needed to address the critical knowledge gaps in these areas. Beginning in 1999, natural and social science researchers at several universities in the region began collaborative research to address these supply and demand issues in an integrated framework, under the Science and Technology Center for the Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA). Recent scientific advances are narrowing critical knowledge gaps, and providing a better quantitative understanding of water supply, water-demand and water-quality characteristics. Examples include: i) more accurate snowpack, rainfall and evapotranspiration estimates through improved and targeted remote-sensing and ground-based measurements, ii) the role of vegetation type

  13. Nassriya Water Treatment Plant Nassriya, Iraq. Sustainment Assessment

    DTIC Science & Technology

    2008-04-28

    power supply, and lack of maintenance. Specifically, bomb damage to the water network resulted in severe shortages of water leading to the local...the already stretched pressure in the water network . In addition, the illegal tapping exposed the water distribution system to contamination from...Shoyokh. Nassriya, the capital city, lies along the Euphrates River approximately 400 kilometers (km) south of Baghdad. The water network for the Thi

  14. Ecology and equity: key determinants of sustainable water security.

    PubMed

    Swaminathan, M S

    2001-01-01

    Trends in water consumption indicate that demand for water for household and industrial uses in developing countries could double as a proportion of total water demand in the next 25 years. Scope for expansion of water supply will, at the same time, be limited because development of irrigation and urban water supplies is becoming increasingly expensive, and often involves high costs in terms of environmental degradation and human resettlement. Without fundamental reform of water management, the rapid growth in urban water demand will require large transfers of water from irrigated agriculture, thereby threatening food security. Hence, water supply and demand should be managed in an integrated fashion, simultaneously considering all uses and sources. This will call for the establishment of community centred food and water security systems and national water trusts. Once such systems and Trusts are established there could be a legally binding Global Water Convention on the model of the Global Convention on Climate and Biodiversity. The details of such a Global Water Conventions can be finalized at one of the future Stockholm Water Symposia. There are uncommon opportunities today for a water-secure world through synergy between technology, public policy and peoples' participation.

  15. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment.

    PubMed

    Chen, Xiaochen; Chen, Yuqing; Shimizu, Toshiyuki; Niu, Jia; Nakagami, Ken'ichi; Qian, Xuepeng; Jia, Baoju; Nakajima, Jun; Han, Ji; Li, Jianhua

    2017-05-15

    An innovative ecosystem services-based sustainability assessment was conducted in the important urban agglomeration of the Lake Biwa region, Japan, covering the time period from 1950 to 2014. A 22-indicator system was established that was based on the major ecosystem services of Lake Biwa and its water courses, i.e., provisioning services regarding aquatic products and water; regulating services regarding floods and water quality; cultural services regarding recreation and tourism, scientific research, and environmental education; and supporting services regarding biodiversity. First, changes in the eight ecosystem services were discussed together with the considerable experience and difficult lessons that can be drawn from the development trajectory. Next, with the indicators rearranged according to sustainability principles, the regional sustainability over the past six-plus decades was assessed. In general, this urban agglomeration has been progressing in terms of its sustainability, although economic and social development was achieved at the cost of environmental degradation in the past, and the current economic downturn is hurting the balanced development and integrated benefits. The results lead directly to recommendations for regional development, especially in terms of economic rejuvenation, from the perspective of improving management of Lake Biwa's water resources. Moreover, the relevant knowledge is educational and inspirational for other places in the world that are facing similar development issues. For example, the effective and even pioneering countermeasures that have been taken against environmental degradation, as well as the participation and collaboration of multiple stakeholders, could be useful as a model. Moreover, the study invites increased understanding of ecosystem vulnerability to anthropogenic devastation and emphasizes the priority of precautionary measures over countermeasures in the context of holistic urban planning and sustainable

  16. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  17. Army Water Sustainment: An Analysis of Capabilities and Capacities

    DTIC Science & Technology

    2012-03-22

    will seek local sources, which are usually contaminated by petroleum oils and lubricants (POL) runoff, sewage, bacteria , or unburied corpses.1 —FM...that are subject to interdiction, requiring sustainment forces to use internal assets for self defense, often coined in the field as self-securing

  18. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence

    NASA Astrophysics Data System (ADS)

    DeFries, Ruth S.; Fanzo, Jessica; Mondal, Pinki; Remans, Roseline; Wood, Stephen A.

    2017-03-01

    Over the last several decades, voluntary certification programs have become a key approach to promote sustainable supply chains for agricultural commodities. These programs provide premiums and other benefits to producers for adhering to environmental and labor practices established by the certifying entities. Following the principles of Cochrane Reviews used in health sciences, we assess evidence to evaluate whether voluntary certification of tropical agricultural commodities (bananas, cocoa, coffee, oil palm, and tea) has achieved environmental benefits and improved economic and social outcomes for small-scale producers at the level of the farm household. We reviewed over 2600 papers in the peer-review literature and identified 24 cases of unique combinations of study area, certification program, and commodity in 16 papers that rigorously analyzed differences between treatment (certified households) and control groups (uncertified households) for a wide range of response variables. Based on analysis of 347 response variables reported in these papers, we conclude that certification is associated on average with positive outcomes for 34% of response variables, no significant difference for 58% of variables, and negative outcomes for 8% of variables. No significant differences were observed for different categories of responses (environmental, economic and social) or for different commodities (banana, coffee and tea), except negative outcomes were significantly less for environmental than other outcome categories (p = 0.01). Most cases (20 out of 24) investigated coffee certification and response variables were inconsistent across cases, indicating the paucity of studies to conduct a conclusive meta-analysis. The somewhat positive results indicate that voluntary certification programs can sometimes play a role in meeting sustainable development goals and do not support the view that such programs are merely greenwashing. However, results also indicate that

  19. Population Pharmacokinetics of Colistin Methanesulfonate in Rats: Achieving Sustained Lung Concentrations of Colistin for Targeting Respiratory Infections

    PubMed Central

    W. S. Yapa, Shalini; Li, Jian; Porter, Christopher J. H.; Nation, Roger L.

    2013-01-01

    Colistin methanesulfonate (CMS), the inactive prodrug of colistin, is administered by inhalation for the management of respiratory infections. However, limited pharmacokinetic data are available for CMS and colistin following pulmonary delivery. This study investigates the pharmacokinetics of CMS and colistin following intravenous (i.v.) and intratracheal (i.t.) administration in rats and determines the targeting advantage after direct delivery into the lungs. In addition to plasma, bronchoalveolar lavage (BAL) fluid was collected to quantify drug concentrations in lung epithelial lining fluid (ELF). The resulting data were analyzed using a population modeling approach in S-ADAPT. A three-compartment model described the disposition of both compounds in plasma following i.v. administration. The estimated mean clearance from the central compartment was 0.122 liters/h for CMS and 0.0657 liters/h for colistin. Conversion of CMS to colistin from all three compartments was required to fit the plasma data. The fraction of the i.v. dose converted to colistin in the systemic circulation was 0.0255. Two BAL fluid compartments were required to reflect drug kinetics in the ELF after i.t. dosing. A slow conversion of CMS (mean conversion time [MCTCMS] = 3.48 h) in the lungs contributed to high and sustained concentrations of colistin in ELF. The fraction of the CMS dose converted to colistin in ELF (fm,ELF = 0.226) was higher than the corresponding fractional conversion in plasma after i.v. administration. In conclusion, pulmonary administration of CMS achieves high and sustained exposures of colistin in lungs for targeting respiratory infections. PMID:23917323

  20. Position of the academy of nutrition and dietetics: nutrition security in developing nations: sustainable food, water, and health.

    PubMed

    Nordin, Stacia M; Boyle, Marie; Kemmer, Teresa M

    2013-04-01

    It is the position of the Academy of Nutrition and Dietetics that all people should have consistent access to an appropriately nutritious diet of food and water, coupled with a sanitary environment, adequate health services, and care that ensure a healthy and active life for all household members. The Academy supports policies, systems, programs, and practices that work with developing nations to achieve nutrition security and self-sufficiency while being environmentally and economically sustainable. For nations to achieve nutrition security, all people must have access to a variety of nutritious foods and potable drinking water; knowledge, resources, and skills for healthy living; prevention, treatment, and care for diseases affecting nutrition status; and safety-net systems during crisis situations, such as natural disasters or deleterious social and political systems. More than 2 billion people are micronutrient deficient; 1.5 billion people are overweight or obese; 870 million people have inadequate food energy intake; and 783 million people lack potable drinking water. Adequate nutrient intake is a concern, independent of weight status. Although this article focuses on nutritional deficiencies in developing nations, global solutions for excesses and deficiencies need to be addressed. In an effort to achieve nutrition security, lifestyles, policies, and systems (eg, food, water, health, energy, education/knowledge, and economic) contributing to sustainable resource use, environmental management, health promotion, economic stability, and positive social environments are required. Food and nutrition practitioners can get involved in promoting and implementing effective and sustainable policies, systems, programs, and practices that support individual, community, and national efforts.

  1. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    PubMed

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  2. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND CONSTRUCTION OF NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used...

  3. Moving Toward Sustainability: Sustainable and Effective Practices for Creating Your Own Water Utility Roadmap

    EPA Pesticide Factsheets

    The document builds on the Effective Utility Management framework. It provides utilities of various sizes with a series of proven and effective practices to help achieve the outcomes in Effective Utility Management.

  4. The use of Jatropha curcas to achieve a self sufficient water distribution system: A case study in rural Senegal

    NASA Astrophysics Data System (ADS)

    Archer, Alexandra

    The use of Jatropha curcas as a source of oil for fueling water pumps holds promise for rural communities struggling to achieve water security in arid climates. The potential for use in developing communities as an affordable, sustainable fuel source has been highly recommended for many reasons: it is easily propagated, drought resistant, grows rapidly, and has high-oil-content seeds, as well as medicinal and economic potential. This study uses a rural community in Senegal, West Africa, and calculates at what level of Jatropha curcas production the village is able to be self-sufficient in fueling their water system to meet drinking, sanitation and irrigation requirements. The current water distribution system was modelled to represent irrigation requirements for nine different Jatropha curcas cultivation and processing schemes. It was found that a combination of using recycled greywater for irrigation and a mechanical press to maximize oil recovered from the seeds of mature Jatropha curcas trees, would be able to operate the water system with no diesel required.

  5. Spoiling and sustainability: technology, water insecurity, and visibility in Arctic Alaska.

    PubMed

    Eichelberger, Laura

    2014-01-01

    One third of households in Alaska Native villages lack running water and sewer services. Historically, this public health need drove policies to improve access to treated water and sanitation. However, despite public health being a stated priority of water infrastructure development, current policies require demonstrated economic sustainability in ways that render suffering from water insecurity invisible. In this article, I situate the introduction of water treatment technologies within the history of domination coproduced with vulnerability. These processes are reflected in local narratives describing the relationships between technology, tradition, and suffering. By drawing attention to the role of the state in creating vulnerability, village leaders are trying to historicize and insert their health concerns into the sustainability conversation using narratives that both fit within and challenge the ideology of sustainability. These narratives are thus central to Iñupiat struggles for visibility.

  6. Beyond good intentions: The role of proactive coping in achieving sustained behavioural change in the context of diabetes management.

    PubMed

    Thoolen, Bart Johan; de Ridder, Denise; Bensing, Jozien; Gorter, Kees; Rutten, Guy

    2009-03-01

    This study examines the effectiveness of a brief self-management intervention to support patients recently diagnosed with type-2 diabetes to achieve sustained improvements in their self-care behaviours. Based on proactive coping, the intervention emphasizes the crucial role of anticipation and planning in maintaining self-care behaviours. In a randomised controlled trial among recent screen-detected patients, participants who received the intervention were compared with usual-care controls, examining changes in proximal outcomes (intentions, self-efficacy and proactive coping), self-care behaviour (diet, physical activity and medication) and weight over time (0, 3 and 12 months). Subsequently, the contribution of proactive coping in predicting maintenance of behavioural change was analysed using stepwise hierarchical regression analyses, controlling for baseline self-care behaviour, patient characteristics, and intentions and self-efficacy as measured after the course. The intervention was effective in improving proximal outcomes and behaviour with regard to diet and physical activity, resulting in significant weight loss at 12 months. Furthermore, proactive coping was a better predictor of long-term self-management than either intentions or self-efficacy. Proactive coping thus offers new insights into behavioural maintenance theory and can be used to develop effective self-management interventions.

  7. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  8. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    SciTech Connect

    Wang Jiexin; Wang Zhihui; Chen Jianfeng Yun, Jimmy

    2008-12-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N{sub 2} adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 {mu}m, and had a specific surface area of about 306 m{sup 2}/g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties.

  9. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.

  10. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  11. Water: The conveyor belt for sustainable livelihoods and economic development

    NASA Astrophysics Data System (ADS)

    Mapani, Benjamin; Meck, Maideyi; Makurira, Hodson; Magole, Lapologang; Mashauri, Damas; mazvimavi, Dominic; Mul, Marloes

    2016-04-01

    The theme for the 2014 symposium focused on the contribution of integrated water resources management (IWRM) to socio-economic development. A number of papers presented various methods that could be used to enable society to access clean water; sanitation and provision of water for rainfed and irrigation based agriculture and aquaculture. Water is the engine of development, that drives both money generating ventures as well as activities which cannot be assigned exact monetary value, but are essential for the social and economic well being of communities. It is now accepted that in order to produce most products, the contribution of water has to be factored in; from manufacturing to mining. The role that water plays in the has a much higher economic value than most people realize.

  12. Working towards sustainable urban water management: the vulnerability blind spot.

    PubMed

    Werbeloff, L; Brown, R

    2011-01-01

    The unprecedented water scarcity in Australia coincides with the adoption of a new urban water rhetoric. The 'Security through Diversity' strategy has been adopted in a number of Australian cities as a new and innovative approach to urban water management. Although this strategy offers a more holistic approach to urban water management, in practice, the Security through Diversity strategy is largely being interpreted and implemented in a way that maintains the historical dependence on large scale, centralised water infrastructure and therefore perpetuates existing urban water vulnerabilities. This research explores the implementation of Security through Diversity as the new water scarcity response strategy in the cities of Perth and Melbourne. Through a qualitative study with over sixty-five urban water practitioners, the results reveal that the practitioners have absorbed the new Security through Diversity language whilst maintaining the existing problem and solution framework for urban water management. This can be explained in terms of an entrenched technological path dependency and cognitive lock-in that is preventing practitioners from more comprehensively engaging with the complexities of the Security through Diversity strategy, which is ultimately perpetuating the existing vulnerability of our cities. This paper suggests that greater engagement with the underlying purpose of the security though diversity strategy is a necessary first step to overcome the constraints of the traditional technological paradigm and more effectively reduce the continued vulnerability of Australian cities.

  13. Sustainability of least cost policies for meeting Mexico City's future water demand

    NASA Astrophysics Data System (ADS)

    Downs, Timothy J.; Mazari-Hiriart, Marisa; DomíNguez-Mora, Ramón; Suffet, I. H.

    2000-08-01

    Meeting future water demand without degrading ecosystems is one important indicator of sustainable development. Using simulations, we showed that compared to existing policy, more sustainable water supply options are similar or cheaper in cost. We probabilistically forecasted the Mexico City metropolitan zone population for the year 2015 to be 23.5 million and total required water supply to be 106 m3 s-1. We optimized existing and potential supply sources from aquifers, surface water, treatment/reuse, and efficiency/demand management by cost to meet future supply needs; the applied source supply limits determined the degree of sustainability. In two scenarios to supply 106 m3 s-1, the business-as-usual scenario (zero sustainability) had an average relative unit cost of 1.133; while for the most sustainable scenario (it includes reducing potential supply basins' exploitation limits by 50%), the value was 1.121. One extreme scenario to supply the forecast's 95% confidence value (124 m3 s-1) showed little unit cost change (1.106). The simulation shows sustainable policies can be cost-effective.

  14. Sustainable Urban Water and Wastewater Services: The TRUST Approach

    EPA Science Inventory

    The TRUST (Transitions to the Urban Water Services of Tomorrow) Project is a research program funded by the European Union Seventh Framework Programme. The overall objective of TRUST is to help water and wastewater authorities and utilities across Europe to formulate and impleme...

  15. Toward Sustainable Water Resource Management: Challenges and Opportunities

    EPA Science Inventory

    The United States has derived significant economic benefit from an abundant and high-quality water supply. The ability of the nation to continue this pace into the future is uncertain because of a number of significant challenges. These include increasing water demand because of ...

  16. EPA's Safe and Sustainable Water Resources Research Program

    EPA Science Inventory

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an inte...

  17. First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change

    EPA Science Inventory

    EPA Office of Research and Development (ORD) and EPA Office of Water (OW) joinined efforts to assess and evaluate programmatic, research & development (R&D) needs for sustainable water infrastructure development and effective adaptation to climate changes. The purpose of this pr...

  18. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  19. Making sustainable water and sanitation in the Peruvian Andes: an intervention model.

    PubMed

    Campos, Marco

    2008-01-01

    Sustainability of water supplies in remote rural communities is problematic and resource consuming. CARE has a long history of working hand in hand with remote rural communities and devising programs tailored to their needs. We present here an intervention that integrates development of water supplies and sanitation, with operation and maintenance skills development and training of health promoters that can educate from within the community that ensures the sustainability of drinking water supply systems in rural communities. The training used is innovative in that it uses a series of video-workshops which are found to be particularly useful in communities with high illiteracy rates.

  20. Sustainable land and water management of River Oases along the Tarim River

    NASA Astrophysics Data System (ADS)

    Disse, Markus

    2016-05-01

    The Tarim Basin in Xinjiang province in northwest China is characterized by a hyper arid climate. Climate change and a strong increase in agricultural land use are major challenges for sustainable water management. The largest competition for water resources exists between irrigated fields and natural riparian vegetation, which is dependent on seasonal flooding of the Tarim River. In addition to numerous water management measures implemented by the Chinese government, the Sino-German project SuMaRiO (Sustainable Management of River Oases along the Tarim River) provided a decision support system based on ecosystem services for the Chinese stakeholders. This tool will help to implement sustainable land and water management measures in the next 5-year plan.

  1. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  2. Urban Stormwater Quality: Linking Pesticide Variability To Our Sustainable Water Future

    NASA Astrophysics Data System (ADS)

    Rippy, M.; Deletic, A.; Gernjak, W.

    2015-12-01

    Climate change and global population growth demand creative, multidisciplinary, and multi-benefit approaches for sustaining adequate fresh water resources and protecting ecosystem health. Currently, a driving factor of aquatic ecosystem degradation (stormwater) is also one of the largest untapped urban freshwater resources. This suggests that ecosystem protection and potable water security might both be achieved via treating and capturing stormwater for human use (e.g., potable substitution). The viability of such a scheme, however, depends on 1) initial stormwater quality (e.g., the contaminants present and their associated human/environmental health risks), 2) the spatial and temporal variability of contaminants in stormwater, and 3) the capacity of existing technologies to treat those contaminants to fit for purpose standards. Here we present results from a four year study of urban stormwater conducted across ten catchments and four states in Australia that addresses these three issues relative to stormwater pesticides. In total, 19 pesticides were detected across all sites and times. In general, pesticide concentrations were lower than has been reported in other countries, including the United States, Canada and Europe. This is reflected in few exceedences of public health (< 1%) and aquatic ecosystem standards (0% for invertebrates and fish, < 1% for algae and plants). Interestingly, pesticide patterns were found to be stable across seasons, and years, but varied across catchments. These catchment-specific fingerprints may reflect preferential commercial product use, as they map closely to co-occurrence patterns in registered Australian products. Importantly, the presence of catchment-specific pesticide variability has clear management implications; namely, urban stormwater must be managed at the catchment level and target local contaminant suites in order to best achieve desired human use and environmental protection standards.

  3. Sustainable Urban Waters: Opportunities to Integrate Environmental Protection in Multi-objective Projects

    EPA Science Inventory

    Abstract: Nonpoint source pollution is an ongoing challenge for environmental agencies who seek to protect waters of the U.S. Urban stream and waterfront redevelopment projects present opportunities to achieve integrated environmental, economic, and social benefits in urban water...

  4. A streamlined sustainability assessment tool for improved decision making in the urban water industry.

    PubMed

    Schulz, Matthias; Short, Michael D; Peters, Gregory M

    2012-01-01

    Water supply is a key consideration in sustainable urban planning. Ideally, detailed quantitative sustainability assessments are undertaken during the planning stage to inform the decision-making process. In reality, however, the significant time and cost associated with undertaking such detailed environmental and economic assessments is often cited as a barrier to wider implementation of these key decision support tools, particularly for decisions made at the local or regional government level. In an attempt to overcome this barrier of complexity, 4 water service providers in Melbourne, Australia, funded the development of a publicly available streamlined Environmental Sustainability Assessment Tool, which is aimed at a wide range of decision makers to assist them in broadening the type and number of water servicing options that can be considered for greenfield or backlog developments. The Environmental Sustainability Assessment Tool consists of a simple user interface and draws on life cycle inventory data to allow for rapid estimation of the environmental and economic performance of different water servicing scenarios. Scenario options can then be further prioritized by means of an interactive multicriteria analysis. The intent of this article is to identify the key issues to be considered in a streamlined sustainability assessment tool for the urban water industry, and to demonstrate the feasibility of generating accurate life cycle assessments and life cycle costings, using such a tool. We use a real-life case study example consisting of 3 separate scenarios for a planned urban development to show that this kind of tool can emulate life cycle assessments and life cycle costings outcomes obtained through more detailed studies. This simplified approach is aimed at supporting "sustainability thinking" early in the decision-making process, thereby encouraging more sustainable water and sewerage infrastructure solutions.

  5. Sustainable water quality management framework and a strategy planning system for a river basin.

    PubMed

    Chen, Ching-Ho; Liu, Wei-Lin; Leu, Horng-Guang

    2006-12-01

    In Taiwan, the authorities have spent years working on remedying polluted rivers. Generally, the remediation planning works are divided into two phases. During the first phase, the allowed pollution discharge quantity and abatement quantity of each drainage zone, including the assimilative capacity, are generated based on the total river basin. In the second phase, the abatement action plans for each pollution source in each drainage zone are respectively devised by the related organizations based on the strategies generated during the first phase. However, the effectiveness of linking the two phases is usually poor. Highly integrated performances are not always achieved because the separate two-phase method does not take system and management thinking into consideration in the planning stage. This study pioneers the use of the Managing for Results (MFR) method in planning strategies and action plans for river water quality management. A sustainable management framework is proposed based on the concept and method of MFR, Management Thinking, and System Analysis. The framework, consisting of planning, implementation, and controlling stages, systematically considers the relationships and interactions among four factors: environment, society, economy, and institution, based on the principles of sustainable development. Based on the framework, the Modified Bounded Implicit Enumeration algorithm, which is used as a solving method, is combined with Visual Basic software and MS Excel to develop a computer system for strategy planning. The Shetzu River, located in northern Taiwan, is applied as a case study. According to the theoretical, practical, and regulatory considerations, the result-oriented objectives are defined to first improve the pollution length of the Shetzu River in specific remediation periods to finally meet regulated water quality standards. The objectives are then addressed as some of the constraints for the strategy planning model. The model objective

  6. How to Quantify Sustainable Development: A Risk-Based Approach to Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sarang, Amin; Vahedi, Arman; Shamsai, Abolfazl

    2008-02-01

    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.

  7. How to quantify sustainable development: a risk-based approach to water quality management.

    PubMed

    Sarang, Amin; Vahedi, Arman; Shamsai, Abolfazl

    2008-02-01

    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.

  8. Handbook on Planning for Sustainability for Water and Wastewater Utilities

    EPA Pesticide Factsheets

    The handbook details steps utilities can undertake to enhance their existing planning processes to ensure that water infrastructure investments are cost-effective over their life-cycle, resource efficient and support other relevant community goals.

  9. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches.

    PubMed

    Xue, Xiaobo; Schoen, Mary E; Ma, Xin Cissy; Hawkins, Troy R; Ashbolt, Nicholas J; Cashdollar, Jennifer; Garland, Jay

    2015-06-15

    Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been applied to elements of these water services (i.e. water resources, drinking water, stormwater or wastewater treatment alone), we argue for the importance of developing and combining the system-based tools and metrics in order to holistically evaluate the complete water service system based on the concept of integrated resource management. We analyzed the strengths and weaknesses of key system-based tools and metrics, and discuss future directions to identify more sustainable municipal water services. Such efforts may include the need for novel metrics that address system adaptability to future changes and infrastructure robustness. Caution is also necessary when coupling fundamentally different tools so to avoid misunderstanding and consequently misleading decision-making.

  10. Sustain

    SciTech Connect

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  11. Sustainability of ground water quality considering land use changes and public health risks.

    PubMed

    Twarakavi, Navin K C; Kaluarachchi, Jagath J

    2006-12-01

    One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality (GWQ). Another issue of equal interest is the sustainability of natural resources for future generations. To understand the sustainability of the natural resources such as water in general, one needs to understand the impact of future land use changes on the natural resources. This work proposes a methodology to address sustainability of GWQ considering land use changes, aquifer vulnerability to multiple contaminants, and public health risks. The methodology was demonstrated for the Sumas-Blaine aquifer in Washington State. The land transformation model predicted that nearly 60 percent of the land use practices would change in the Sumas-Blaine Aquifer by the year 2015. The accuracy of the LTM model predictions increased to greater levels as the spatial resolution was decreased. Aquifer vulnerability analysis was performed for major contaminants using the binary logistic regression (LR) method. The LR model, along with the predicted future land use, was used to estimate the future GWQ using two indices-carcinogenic and non-carcinogenic ground water qualities. Sustainability of GWQ was then analyzed using the concept of 'strong' sustainability. The sustainability map of GWQ showed improvements in many areas where urbanization is expected to occur. The positive impact of urbanization on GWQ is an indication of the extensive damage caused by existing agricultural activities in the study area.

  12. An Examination of Successful Leadership Behaviors Exhibited by Middle School Principals in Stimulating and Sustaining African-American Students' Achievement on the California Standards Test in Mathematics

    ERIC Educational Resources Information Center

    Williams, Jacqueline

    2013-01-01

    The purpose of this research study was to examine leadership behaviors of middle school principals who have been successful in stimulating and sustaining African-American students' mathematics achievement on the California Standards Test. Specifically, this research sought to answer the following questions: 1) How do middle school principal…

  13. Rehabitilation and extension of a khettara for a sustainable use of underground water resources

    NASA Astrophysics Data System (ADS)

    Pilia, A.; Spanu, V.; Concollato, C.; Calzolai, E.; Valenilla, A. M.

    2009-04-01

    extension and the optimal peculiarities for the new channelling, for a sustainable use of underground water resources. The methodology consisted principally of topographic and water level measurements through wells and piezometers. Most of these measurements were made in water wells that already exist, due to the existence of the old khettara, while in the areas where enough density of measurement points is not found, new piezometres have been realised. Moreover, an analysis of rain gauge data and a valuation of the quantity of the underground water taken from the system have been carried out, in order to make a first hydrogeological balance. From the achieved results with the hydrogeological study an extension of the khettara of 230 m with a E-W direction has been made, that allowed to reintercept the alluvial ground water and to create a drainage system able to pick up the underground water in a sustainable way, also during the driest period of the year. Work carried out with a Bambini nel Deserto project, with the financial support of UNDP, the local ONG AHT Hassi Labiad in collaboration with Osservatorio Mediterraneo Onlus.

  14. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    NASA Astrophysics Data System (ADS)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  15. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  16. Sustainable water management under future uncertainty with eco-engineering decision scaling

    NASA Astrophysics Data System (ADS)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  17. Sustainable water management under future uncertainty with eco-engineering decision scaling

    USGS Publications Warehouse

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  18. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  19. Assessing disproportionate costs to achieve good ecological status of water bodies in a Mediterranean river basin.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2011-08-01

    Water management is becoming increasingly important as the demand for water grows, diversifies, and includes more complex environmental concerns. The Water Framework Directive (WFD) seeks to achieve a good ecological status for all European Community water bodies by 2015. To achieve this objective, economic consideration of water management must be given to all decision-making processes. Exemption (time or level of stringency) from the objectives of the EU Directive can be justified by proving that the cost of implementing measures is disproportionate to the benefits. This paper addresses the issue of disproportionate costs through a cost-benefit analysis (CBA). To predict the costs, the function costs method is used. The quantification of environmental benefits is more complex, because they are not determined by the market. As an alternative to stated preference methods, we use the distance function approach to estimate the environmental benefits of improving water quality. We then apply this methodological approach to a Mediterranean River Basin in Spain. The results show that the achievement of good status could not be rejected based on the criterion of disproportionate costs in this river basin. This paper illustrates that CBA is a useful tool to inform policy and decision making. Furthermore, it is shown that economics, particularly the valuation of environmental benefits, plays a crucial role in fulfilling the environmental objectives of the WFD.

  20. Sustainability and scale-up of household water treatment and safe storage practices: Enablers and barriers to effective implementation.

    PubMed

    Ojomo, Edema; Elliott, Mark; Goodyear, Lorelei; Forson, Michael; Bartram, Jamie

    2015-11-01

    Household water treatment and safe storage (HWTS) provides a solution, when employed correctly and consistently, for managing water safety at home. However, despite years of promotion by non-governmental organizations (NGOs), governments and others, boiling is the only method to achieve scale. Many HWTS programs have reported strong initial uptake and use that then decreases over time. This study maps out enablers and barriers to sustaining and scaling up HWTS practices. Interviews were carried out with 79 practitioners who had experience with HWTS programs in over 25 countries. A total of 47 enablers and barriers important to sustaining and scaling up HWTS practices were identified. These were grouped into six domains: user guidance on HWTS products; resource availability; standards, certification and regulations; integration and collaboration; user preferences; and market strategies. Collectively, the six domains cover the major aspects of moving products from development to the consumers. It is important that each domain is considered in all programs that aim to sustain and scale-up HWTS practices. Our findings can assist governments, NGOs, and other organizations involved in HWTS to approach programs more effectively and efficiently.

  1. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  2. Sustainable Landscape Systems for Managing Storm Water 2nd Edition

    EPA Science Inventory

    Rain gardens are designed to capture and infiltrate rainwater in the landscape. These gardens are also called "rain water gardens". Rainwater is routed to the garden and filtered naturally by the plants and soils in the garden. This filtration process removes nutrients and poll...

  3. Municipal Wastewater: A Rediscovered Resource for Sustainable Water Reuse

    EPA Science Inventory

    Both population growth and movement puts forth the need for increased regional water supplies across the globe. While significant progress has been made in the area of building new infrastructure to capture freshwater and divert it to urban and rural areas, there exists a consid...

  4. Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: A new picture of water sustainability in India

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Perveen, Shama; Lall, Upmanu

    2013-04-01

    India is a poster child for groundwater depletion and chronic water stress. Often, water sustainability is measured through an estimate of the difference between the average supply and demand in a region. However, water supply and demand are highly variable in time and space. Hence, measures of scarcity need to reflect temporal imbalances even for a fixed location. We introduce spatially distributed indices of water stress that integrate over time variations in water supply and demand. The indices reflect the maximum cumulative deficit in a regional water balance within year and across years. This can be interpreted as the amount that needs to be drawn from external storage (either aquifers or surface reservoirs or interarea transfers) to meet the current demand pattern given a variable climate and renewable water supply. A simulation over a long period of record (historical or projected) provides the ability to quantify risk. We present an application at a district level in India considering more than a 100 year data set of rainfall as the renewable supply, and the recent water use pattern for each district. Consumption data are available through surveys at the district level, and consequently, we use this rather than river basins as the unit of analysis. The rainfall endogenous to each district is used as a potentially renewable water supply to reflect the supply-demand imbalances directly at the district level, independent of potential transfers due to upstream-induced runoff or canals. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution. Implications of the analysis for India and for other applications are discussed.

  5. Water-controlled wealth of nations: Using Water Footprints to Estimate Nations Carrying Capacities and Demographic Sustainability

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos; D'Odorico, Paolo

    2014-05-01

    Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations based on calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-run sustainability of the food trade system as a whole. Water rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (1) cooperative interactions among nations whereby water rich countries maintain a tiny fraction of their food production available for export; (2) changes in consumption patterns; and (3) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.

  6. Meeting water needs for sustainable development: an overview of approaches, measures and data sources

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Reusser, Dominik E.; Sullivan, Caroline A.; Kropp, Jürgen P.

    2013-04-01

    An essential part of a global transition towards sustainability is the Millennium Development Goals (MDG), providing a blueprint of goals to meet human needs. Water is an essential resource in itself, but also a vital factor of production for food, energy and other industrial products. Access to sufficient water has only recently been recognized as a human right. One central MDG is halving the population without access to safe drinking water and sanitation. To adequately assess the state of development and the potential for a transition towards sustainability, consistent and meaningful measures of water availability and adequate access are thus fundamental. Much work has been done to identify thresholds and definitions to measure water scarcity. This includes some work on defining basic water needs of different sectors. A range of data and approaches has been made available from a variety of sources, but all of these approaches differ in their underlying assumptions, the nature of the data used, and consequently in the final results. We review and compare approaches, methods and data sources on human water use and human water needs. This data review enables identifying levels of consumption in different countries and different sectors. Further comparison is made between actual water needs (based on human and ecological requirements), and recognised levels of water abstraction. The results of our review highlight the differences between different accounts of water use and needs, and reflect the importance of standardised approaches to data definitions and measurements, making studies more comparable across space and time. The comparison of different use and allocation patterns in countries enables levels of water use to be identified which allow for an adequate level of human wellbeing to be maintained within sustainable water abstraction limits. Recommendations are provided of how data can be defined more clearly to make comparisons of water use more meaningful and

  7. Development of Chengdu and sustainable utilization of the ancient Dujiangyan Water-Conservancy Project

    NASA Astrophysics Data System (ADS)

    Huang, X.; You, J.; Yang, P.; Chai, X.

    2015-05-01

    The Dujiangyan Water-Conservancy Project is a great water irrigation works in Chinese cultural history, which led the Min River water to the vast Chengdu Plain, and created fertile and pretty "land of abundance". Now Chengdu is facing increased water demand stress due mainly to rapid urbanization. This paper first analyses the available water resources of Chengdu based on historical hydrological data from 1964 to 2008. The results show that the average annual water resources were 8.9 billion m3 in 1986 and 7.9 billion m3 in 2008 under various environmental conditions. The future tendency of water demand in city development planning is predicted by the Policy Dialogue Model (PODIUM). Finally, the strategies for water resources exploitation accompanying the sustainable development pattern are studied. The result illustrates that rational and careful management are required to balance the gap between water supply and demand

  8. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  9. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  10. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  11. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  12. Distributed optimal technology networks: a concept and strategy for potable water sustainability.

    PubMed

    Weber, W J

    2002-01-01

    Viable strategies for ensuring adequate supplies of potable water are essential to long-term societal sustainability. The steadily increasing necessity for multiple reuse of water in urban societies is even now taxing our technical and financial abilities to meet ongoing needs for water suitable for human consumption. As a consequence, the current practice of treating the entire water demands of urban communities to the increasingly stringent standards required for drinking water is becoming an unsustainable practice, and thus a questionable strategy for planning and development of urban water systems. An innovative technology-based concept for implementation of a more sustainable strategy and practice for potable water is developed here. The concept is predicated on the inherent advantages of flexibility and responsiveness associated with decentralization of complex functions and operations. Specifically, it calls for strategic dispersal of flexible advanced treatment and control technologies throughout urban water transport and storage networks. This is in direct contradistinction to current strategies and practices of centralized and inflexible monolithic facilities. By integrating use-related satellite systems with critical components of existing systems and infrastructures, the concept can enable and facilitate optimal cost-effective applications of highly sophisticated advanced treatment and on-line monitoring and control technologies to in-place infrastructures in a holistic and sustainable manner.

  13. Light Water Reactor Sustainability Program: Digital Architecture Project Plan

    SciTech Connect

    Thomas, Ken

    2014-09-01

    There are many technologies available to the nuclear power industry to improve efficiency in plant work activities. These range from new control room technologies to those for mobile field workers. They can make a positive impact on a wide range of performance objectives – increase in productivity, human error reduction, validation of results, accurate transfer of data, and elimination of repetitive tasks. It is expected that the industry will more and more turn to these technologies to achieve these operational efficiencies to lower costs. At the same time, this will help utilities manage a looming staffing problem as the inevitable retirement wave of the more seasoned workers affects both staffing levels and knowledge retention. A barrier to this wide-scale implementation of new technologies for operational efficiency is the lack of a comprehensive digital architecture that can support the real-time information exchanges needed to achieve the desired operational efficiencies. This project will define an advanced digital architecture that will accommodate the entire range of system, process, and plant worker activity to enable the highest degree of integration, thereby creating maximum efficiency and productivity. This pilot project will consider a range of open standards that are suitable for the various data and communication requirements of a seamless digital environment. It will map these standards into an overall architecture to support the II&C developments of this research program.

  14. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  15. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    NASA Astrophysics Data System (ADS)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  16. Local institutional development and organizational change for advancing sustainable urban water futures.

    PubMed

    Brown, Rebekah R

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  17. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  18. Sustainability appraisal of water governance regimes: the case of Guanacaste, Costa Rica.

    PubMed

    Kuzdas, Christopher; Wiek, Arnim; Warner, Benjamin; Vignola, Raffaele; Morataya, Ricardo

    2014-08-01

    Sustainability appraisals produce evidence for how well water governance regimes operate and where problems exist. This evidence is particularly relevant for regions that face water scarcity and conflicts. In this study, we present a criteria-based and participatory sustainability appraisal of water governance in a region with such characteristics-the dry tropics of NW Costa Rica. Data collection included 47 interviews and three stakeholder workshops. The appraisal was conducted through a collaborative and iterative process between researchers and stakeholders. Out of the 25 sustainability criteria used, seven posed a significant challenge for the governance regime. We found challenges faced by the governance regime primarily clustered around and were re-enforced by failing coordination related to the use, management, and protection of groundwater resources; and inadequate leadership to identify collective goals and to constructively deliberate alternative ways of governing water with diverse groups. The appraisal yielded some positive impact in the study area, yet we found its application provided only limited strategic information to support broader problem-solving efforts. Insights from this study suggest key starting points for sustainable water governance in the Central American dry tropics, including investing in increasingly influential collective organizations that are already active in water governance; and leveraging policy windows that can be used to build confidence and disperse more governing authority to regional and local governing actors that are in-tune with the challenges faced in the dry tropics. We conclude the article with reflections on how to produce research results that are actionable for sustainable water governance.

  19. Rural water supply and sanitation (RWSS) coverage in Swaziland: Toward achieving millennium development goals

    NASA Astrophysics Data System (ADS)

    Mwendera, E. J.

    An assessment of rural water supply and sanitation (RWSS) coverage in Swaziland was conducted in 2004/2005 as part of the Rural Water Supply and Sanitation Initiative (RWSSI). The initiative was developed by the African Development Bank with the aim of implementing it in the Regional Member Countries (RMCs), including Swaziland. Information on the RWSS sector programmes, costs, financial requirements and other related activities was obtained from a wide range of national documents, including sector papers and project files and progress reports. Interviews were held with staff from the central offices and field stations of Government of Swaziland (GOS) ministries and departments, non-governmental organizations (NGOs), bilateral and multilateral external support agencies, and private sector individuals and firms with some connection to the sector and/or its programmes. The assessment also involved field visits to various regions in order to obtain first hand information about the various technologies and institutional structures used in the provision of water supplies and sanitation services in the rural areas of the country. The results showed that the RWSS sector has made significant progress towards meeting the national targets of providing water and sanitation to the entire rural population by the year 2022. The assessment indicated that rural water supply coverage was 56% in 2004 while sanitation coverage was 63% in the same year. The results showed that there is some decline in the incidence of water-related diseases, such as diarrhoeal diseases, probably due to improved water supply and sanitation coverage. The study also showed that, with adequate financial resources, Swaziland is likely to achieve 100% coverage of both water supply and sanitation by the year 2022. It was concluded that in achieving its own national goals Swaziland will exceed the Millennium Development Goals (MDGs). However, such achievement is subject to adequate financial resources being

  20. Quantitative sustainability and qualitative concerns in an irrigations system using recycled water to supplement limited groundwater supply

    NASA Astrophysics Data System (ADS)

    Gowing, John; Alataway, Abed

    2013-04-01

    Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable

  1. Sustainability of donor-funded rural water supply and sanitation projects in Mbire district, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kwangware, Johnson; Mayo, Aloyce; Hoko, Zvikomborero

    The sustainability of donor-funded rural water supply and sanitation projects was assessed in Mbire district, Zimbabwe in terms of level of community participation, quality of implementation and reliability of the systems. The study was carried out through questionnaires, focus group discussions, interviews and field observations. The results show that the quality of implementation of the projects was deemed to be good and participation of the communities in project ideas initiation and choice of technology was found to be very low. Reliability of the systems was found to be very high with 97% of the boreholes in all the three wards studied being functional. Financial management mechanisms were very poor because water consumers were not willing to pay for operation and maintenance. The projects were classified as potentially sustainable with sustainability index between 5.00 and 6.67. Poor financial management mechanisms for effective borehole maintenance, poor quality of construction and lack of community participation in project planning were found to be potential threats to the sustainability of the projects. Future projects should establish the need for the service and should thus be demand driven to ensure effective participation of the water consumers and enhance project's potential for sustainability.

  2. Water hyacinth in China: a sustainability science-based management framework.

    PubMed

    Lu, Jianbo; Wu, Jianguo; Fu, Zhihui; Zhu, Lei

    2007-12-01

    The invasion of water hyacinth (Eichhornia crassipes) has resulted in enormous ecological and economic consequences worldwide. Although the spread of this weed in Africa, Australia, and North America has been well documented, its invasion in China is yet to be fully documented. Here we report that since its introduction about seven decades ago, water hyacinth has infested many water bodies across almost half of China's territory, causing a decline of native biodiversity, alteration of ecosystem services, deterioration of aquatic environments, and spread of diseases affecting human health. Water hyacinth infestations have also led to enormous economic losses in China by impeding water flows, paralyzing navigation, and damaging irrigation and hydroelectricity facilities. To effectively control the rampage of water hyacinth in China, we propose a sustainability science-based management framework that explicitly incorporates principles from landscape ecology and Integrated Pest Management. This framework emphasizes multiple-scale long-term monitoring and research, integration among different control techniques, combination of control with utilization, and landscape-level adaptive management. Sustainability science represents a new, transdisciplinary paradigm that integrates scientific research, technological innovation, and socioeconomic development of particular regions. Our proposed management framework is aimed to broaden the currently dominant biological control-centered view in China and to illustrate how sustainability science can be used to guide the research and management of water hyacinth.

  3. Water Hyacinth in China: A Sustainability Science-Based Management Framework

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Wu, Jianguo; Fu, Zhihui; Zhu, Lei

    2007-12-01

    The invasion of water hyacinth ( Eichhornia crassipes) has resulted in enormous ecological and economic consequences worldwide. Although the spread of this weed in Africa, Australia, and North America has been well documented, its invasion in China is yet to be fully documented. Here we report that since its introduction about seven decades ago, water hyacinth has infested many water bodies across almost half of China’s territory, causing a decline of native biodiversity, alteration of ecosystem services, deterioration of aquatic environments, and spread of diseases affecting human health. Water hyacinth infestations have also led to enormous economic losses in China by impeding water flows, paralyzing navigation, and damaging irrigation and hydroelectricity facilities. To effectively control the rampage of water hyacinth in China, we propose a sustainability science-based management framework that explicitly incorporates principles from landscape ecology and Integrated Pest Management. This framework emphasizes multiple-scale long-term monitoring and research, integration among different control techniques, combination of control with utilization, and landscape-level adaptive management. Sustainability science represents a new, transdisciplinary paradigm that integrates scientific research, technological innovation, and socioeconomic development of particular regions. Our proposed management framework is aimed to broaden the currently dominant biological control-centered view in China and to illustrate how sustainability science can be used to guide the research and management of water hyacinth.

  4. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    SciTech Connect

    Trettin, Carl C.; Amatya, Devendra; Coleman, Mark

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  5. Understanding why women adopt and sustain home water treatment: insights from the Malawi antenatal care program.

    PubMed

    Wood, Siri; Foster, Jennifer; Kols, Adrienne

    2012-08-01

    In many settings in Africa, social marketing has proven more successful in generating brand recognition for chlorine water treatment products than in promoting their use. To promote household use of one such product in Malawi, WaterGuard, the Ministry of Health (MOH) and Population Services International (PSI) distributed free hygiene kits that included WaterGuard to pregnant women attending antenatal clinics in 2007. Follow-up surveys documented a sustained increase in WaterGuard use three years after the initial intervention. In 2010, PATH (www.path.org) conducted qualitative research on the factors motivating women to adopt, sustain, or discontinue use. To provide context, interviews were also conducted with their friends, relatives, and husbands. Interviews revealed that sustained use of WaterGuard does not necessarily imply consistent use. Most respondents reported switching back and forth between WaterGuard and stock chlorine distributed for free by the government, and many treated water seasonally rather than year-round. Qualitative findings suggest that two program strategies strongly influenced women's decisions to adopt, purchase, and continue using WaterGuard. First, positive, ongoing contacts with health care workers, especially during home visits, raised awareness of the need to treat water, encouraged trial use, and supported continuing use. Second, an extended free trial of the product overcame initial cost barriers and allowed women and their families to experience the health benefits of WaterGuard, appreciate its value and relevance to their lives, and get used to its taste. Social support-from like-minded relatives, friends, neighbors, health care workers, husbands, and children-was also a critical factor that promoted consistent, ongoing use of WaterGuard. The findings confirm the importance of interpersonal communication in prompting adoption of household water treatment and suggest that consumers assess the perceived value of a product, not

  6. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e

  7. Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management

    NASA Astrophysics Data System (ADS)

    Tsao, J.; Li, J.; Chou, C.; Tung, C.

    2009-12-01

    Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.

  8. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.

    PubMed

    Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K

    2012-01-01

    Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.

  9. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  10. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability.

    PubMed

    Grant, Stanley B; Saphores, Jean-Daniel; Feldman, David L; Hamilton, Andrew J; Fletcher, Tim D; Cook, Perran L M; Stewardson, Michael; Sanders, Brett F; Levin, Lisa A; Ambrose, Richard F; Deletic, Ana; Brown, Rebekah; Jiang, Sunny C; Rosso, Diego; Cooper, William J; Marusic, Ivan

    2012-08-10

    Humans create vast quantities of wastewater through inefficiencies and poor management of water systems. The wasting of water poses sustainability challenges, depletes energy reserves, and undermines human water security and ecosystem health. Here we review emerging approaches for reusing wastewater and minimizing its generation. These complementary options make the most of scarce freshwater resources, serve the varying water needs of both developed and developing countries, and confer a variety of environmental benefits. Their widespread adoption will require changing how freshwater is sourced, used, managed, and priced.

  11. Whole systems thinking for sustainable water treatment design

    NASA Astrophysics Data System (ADS)

    Huggins, Mitchell Tyler

    Microbial fuel cell (MFC) technology could provide a low cost alternative to conventional aerated wastewater treatment, however there has been little comparison between MFC and aeration treatment using real wastewater substrate. This study attempts to directly compare the wastewater treatment efficiency and energy consumption and generation among three reactor systems, a traditional aeration process, a simple submerged MFC configuration, and a control reactor acting similar as natural lagoons. Results showed that all three systems were able to remove >90% of COD, but the aeration used shorter time (8 days) then the MFC (10 days) and control reactor (25 days). Compared to aeration, the MFC showed lower removal efficiency in high COD concentration but much higher efficiency when the COD is low. Only the aeration system showed complete nitrification during the operation, reflected by completed ammonia removal and nitrate accumulation. Suspended solid measurements showed that MFC reduced sludge production by 52-82% as compared to aeration, and it also saved 100% of aeration energy. Furthermore, though not designed for high power generation, the MFC reactor showed a 0.3 Wh/g COD/L or 24 Wh/m3 (wastewater treated) net energy gain in electricity generation. These results demonstrate that MFC technology could be integrated into wastewater infrastructure to meet effluent quality and save operational cost. The high cost and life-cycle impact of electrode materials is one major barrier to the large scale application of microbial fuel cells (MFC). We also demonstrate that biomass-derived black carbon (biochar), could be a more cost effective and sustainable alternative to granular activated carbon (GAC) and graphite granule (GG) electrodes. In a comparison study, two biochar materials made from lodgepole pine sawdust pellets (BCp) and lodgepole pine woodchips (BCc), gassified at a highest heat temperature (HHT) of 1000°C under a heating rate of 16°C/min, showed a

  12. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  13. Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water

    EPA Science Inventory

    Sustainable synthesis of chemical entities by microwave heating with nano-catalysis in water •CRADA’s with the private companies, CEM corporation and VeruTEK Technologies •Green Chemistry principles are accommodated via multi-faceted approach. Learning from nature- using na...

  14. Extreme events: being prepared for the pitfalls with progressing sustainable urban water management.

    PubMed

    Keath, N A; Brown, R R

    2009-01-01

    It is widely accepted that new, more sustainable approaches to urban water management are required if cities and ecosystems are to become resilient to the effects of growing urban populations and global warming. Climate change predictions show that it is likely that cities around the world will be subject to an increasing number of extreme and less predictable events including flooding and drought. Historical transition studies have shown that major events such as extremes can expedite the adoption of new practices by destabilising existing management regimes and opening up new windows of opportunity for change. Yet, they can also act to reinforce and further entrench old practices. This case study of two Australian cities responding to extreme water scarcity reveals that being unprepared for extremes can undermine progress towards sustainable outcomes. The results showed that despite evidence of significant progress towards sustainable urban water management in Brisbane and Melbourne, the extreme water scarcity acted to reinforce traditional practices at the expense of emerging sustainability niches. Drawing upon empirical research and transitions literature, recommendations are provided for developing institutional mechanisms that are able to respond proactively to extreme events and be a catalyst for SUWM when such opportunities for change arise.

  15. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches

    EPA Science Inventory

    Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been ...

  16. EFFECT OF URBANIZATION ON SUSTAINABILITY OF WATER RESOURCES IN THE POCONO CREEK WATERSHED

    EPA Science Inventory

    Understanding the effects of population growth and urbanization on the hydrologic balance of the watershed is of paramount importance for sustainable water resources management. The 120 km2 Pocono Creek watershed in Eastern Pennsylvania that drains into one of the main...

  17. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems.

    PubMed

    Behzadian, Kourosh; Kapelan, Zoran

    2015-09-15

    Despite providing water-related services as the primary purpose of urban water system (UWS), all relevant activities require capital investments and operational expenditures, consume resources (e.g. materials and chemicals), and may increase negative environmental impacts (e.g. contaminant discharge, emissions to water and air). Performance assessment of such a metabolic system may require developing a holistic approach which encompasses various system elements and criteria. This paper analyses the impact of integration of UWS components on the metabolism based performance assessment for future planning using a number of intervention strategies. It also explores the importance of sustainability based criteria in the assessment of long-term planning. Two assessment approaches analysed here are: (1) planning for only water supply system (WSS) as a part of the UWS and (2) planning for an integrated UWS including potable water, stormwater, wastewater and water recycling. WaterMet(2) model is used to simulate metabolic type processes in the UWS and calculate quantitative performance indicators. The analysis is demonstrated on the problem of strategic level planning of a real-world UWS to where optional intervention strategies are applied. The resulting performance is assessed using the multiple criteria of both conventional and sustainability type; and optional intervention strategies are then ranked using the Compromise Programming method. The results obtained show that the high ranked intervention strategies in the integrated UWS are those supporting both water supply and stormwater/wastewater subsystems (e.g. rainwater harvesting and greywater recycling schemes) whilst these strategies are ranked low in the WSS and those targeting improvement of water supply components only (e.g. rehabilitation of clean water pipes and addition of new water resources) are preferred instead. Results also demonstrate that both conventional and sustainability type performance indicators

  18. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  19. Radioactive Waste Management - It's Role in contributing and achieving Sustainability. R1.13 The French strategy of waste management: technical and political dimensions of sustainability

    SciTech Connect

    Bazile, F.

    2007-07-01

    The sustainability of an energy policy depends on the manner in which it satisfies environmental, economical and social requirements. Nuclear energy is not an exception. The objectives of the future nuclear systems, as defined in the Generation IV International Forum, tend to optimize the ability of nuclear energy to satisfy sustainable development goals. In this regard, they involve strong commitments concerning waste management policy : five designs in six are based on a closed fuel cycle, in order to minimize the volume and radiotoxicity of final waste, and to recycle the fissile materials to save natural resources. Since its beginnings, the French civil nuclear programme has considered a long-term perspective and has developed spent fuel reprocessing. The French current industrial technology has already permitted to recycle 96% of spent fuel materials, to save 30% of natural resources, to reduce by 5 the amount of waste and to reduce by 10 the waste radiotoxicity, all these benefits for less than 6% of the kWh total cost. This strategy has always been criticized by the nuclear opponents, precisely because they saw that it was a sustainable way, and didn't accept to consider nuclear energy as a sustainable source of power. Two arguments were put forward these criticisms. First, the cost of reprocessing versus once-through cycle and second, the risk of proliferation induced by U-Pu partitioning process. These arguments were also invoked in international debates, and they have also been pleaded by the anti-nukes during the National Debate on HLLLW, at the end of 2005, preceding the vote of a new law in 2006 by the French parliament. Fortunately they have not convinced public opinion in France nor political decision-makers. A majority of people with no regard to technical background understand that recycling and saving the natural resources are sustainable principles. And, from a technical point of view, the 6% over cost does not seem significant considering the

  20. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production.

    PubMed

    Cooper, D Craig; Sehlke, Gerald

    2012-03-20

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a "safe" level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints will limit our options for meeting society's growing demand for energy while also reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the climate wedges proposal of Pacala and Socolow (Science2004, 305 (5686), 968-972) and evaluating the potential water-use impacts of the wedges associated with energy production. GHG mitigation options that improve energy conversion or use efficiency can simultaneously reduce GHG emissions, lower energy costs, and reduce energy impacts on water resources. Other GHG mitigation options (e.g., carbon capture and sequestration, traditional nuclear, and biofuels from dedicated energy crops) increase water requirements for energy. Achieving energy sustainability requires deployment of alternatives that can reduce GHG emissions, water resource impacts, and energy costs.

  1. Fatal Penetrating Injuries Sustained by High-pressure Water Jet Unit.

    PubMed

    Radojevic, Nemanja; Radnic, Bojana; Curovic, Ivana

    2015-11-01

    The high-pressure water jet unit is a generator of frequent burst of water jets. The water jet reaches very high speeds and is able to cause wounds similar to those of high-velocity projectiles. In the presented case, unusual fatal injuries sustained by water jet are presented. Operating with the unit, an untrained worker accidentally activated a high-pressure water jet unit, and the extremely high pressure of water liberated the jet unit from his hand and whirled it around him. A jet stream of water ran across his body and caused fatal penetrating injuries in the femoral region. The edges of the wound were mainly sharp with contusion rings on the skin beyond the edges. Exploring the inside of the canals during the autopsy, the left femoral artery and vein were found to be completely transected. The resemblance to a firearm entry wound and the severity of the internal injury make it a noteworthy entity.

  2. Scientific and social landscapes: New frameworks and forums for water management and sustainability

    USGS Publications Warehouse

    Turner, Christine; Karl, Herman A.

    2001-01-01

    The Two Decades of Water Law and Policy Reform conference examines the agenda for reforming and improving water law that has developed during the past two decades in the West, assesses what has (and has not) been accomplished by pursuing these reforms, and explores lessons and implications for future water law and policy. The papers and discussion provide analysis and lessons that can guide the new administration, Congress, federal agencies, state governments, and communities as they seek to find policy solutions to the challenges posed by the tremendous economic and demographic changes occurring in the West, in order to ensure the sustainability of the region’s unique environment. Specific sessions focus on reforms such as improving the scientific and technical basis for water management, water conservation and efficiency, protecting environmental values in meeting water demands, and creating new models of governance for water issues.

  3. Slow-sand water filter: Design, implementation, accessibility and sustainability in developing countries

    PubMed Central

    Clark, Peter A.; Pinedo, Catalina Arango; Fadus, Matthew; Capuzzi, Stephen

    2012-01-01

    Summary The need for clean water has risen exponentially over the globe. Millions of people are affected daily by a lack of clean water, especially women and children, as much of their day is dedicated to collecting water. The global water crisis not only has severe medical implications, but social, political, and economic consequences as well. The Institute of Catholic Bioethics at Saint Joseph’s University has recognized this, and has designed a slow-sand water filter that is accessible, cost-effective, and sustainable. Through the implementation of the Institute’s slow-sand water filter and the utilization of microfinancing services, developing countries will not only have access to clean, drinkable water, but will also have the opportunity to break out of a devastating cycle of poverty. PMID:22739748

  4. Slow-sand water filter: design, implementation, accessibility and sustainability in developing countries.

    PubMed

    Clark, Peter A; Pinedo, Catalina Arango; Fadus, Matthew; Capuzzi, Stephen

    2012-07-01

    The need for clean water has risen exponentially over the globe. Millions of people are affected daily by a lack of clean water, especially women and children, as much of their day is dedicated to collecting water. The global water crisis not only has severe medical implications, but social, political, and economic consequences as well. The Institute of Catholic Bioethics at Saint Joseph's University has recognized this, and has designed a slow-sand water filter that is accessible, cost-effective, and sustainable. Through the implementation of the Institute's slow-sand water filter and the utilization of microfinancing services, developing countries will not only have access to clean, drinkable water, but will also have the opportunity to break out of a devastating cycle of poverty.

  5. Sustainable or Adaptive Water Resources Management in the Indus River Basin, Pakistan under Uncertainties?

    NASA Astrophysics Data System (ADS)

    Dars, G. H.; Moradkhani, H.

    2012-12-01

    Pakistan has one of the largest contiguous irrigation systems in the world called as Indus River Irrigation System (IRIS). In 1951, soon after its independence, Pakistan was water abundant country but due to poor management practices the country has now become water scarce. This study will provide a detailed analysis of the water management issues and emerging challenges of the Indus River Basin in Pakistan. The research shows the importance of hydrometeorologic forecast under aleatory and epistemic uncertainties and that the Pakistan needs to focus on adaptive management to climate and land use changes and developing reservoirs to enhance water storage capacity keeping in view environmental degradation, and also adopting modern techniques of monitoring the flow of water to have equitable and justifiable shares from individual watercourse to all provinces so as interprovincial and transboundary water conflicts may not happen in the future. Subsequently, a paradigm shift is needed in water resources development and management for sustainable economic growth.

  6. Evaluating sustainable energy strategies for a water utility.

    PubMed

    Zakkour, P D; Gochin, R J; Lester, J N

    2002-07-01

    Research suggests that political will to deliver improvements in the quality of surface water in the UK and across the EU, alongside measures to place tighter controls on the quality of biosolids applied to agricultural land, will augment the levels of energy used in sewage and sludge treatment. This coincides with increasing concerns over the use of fossil fuel derived energy sources and their potential to enhance the Earth's greenhouse effect and promote global climate change, creating a serious paradox for these responsible for managing the aquatic environment. However, previous research also suggests that novel technologies and practices could potentially mitigate the problem in hand. This paper describes the development of a model for estimating future energy use and CO2 emissions in the wastewater treatment sector, and outlines the results of different projections using incumbent and novel practices. Indications are that using incumbent approaches could augment CO2 emissions by 15-30% in the medium- to long-term, while loss of the agricultural sludge route and deployment of an incineration strategy could mean increases are of the order of 50-70%. Alternatively, the construction of a greater number of sludge treatment facilities, with greater biogas recovery, could reduce this burden to around -8 to +7% over the same period, while the realisation of the full potential an anaerobic pre-treatment process could lead to reductions of up to 16%. Nevertheless, some of the options will come at a higher cost than incumbents, and the potential for making the business case for these investments is explored.

  7. North American Water Program (NAWP): A Vision to Address North America's Freshwater Sustainability Challenges

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P.; van Oevelen, P. J.; Schiffer, R. A.; Entin, J. K.; Bosilovich, M. G.; Schlosser, C. A.; Wood, E. F.; Ek, M. B.

    2012-12-01

    Dramatically changing climates has had an indelible impact on North America's water crisis; the rapid melting of glaciers has profound implications for the sustainability of Canada's rivers. However, projected increases in water demand from increasing population, industrial, energy, and agriculture needs may have four times more impact on the water supply-demand imbalance than climate change. Reliable prediction of hydrologic change and extremes is of critical importance for policy and decision makers to adapt to these future water challenges. However, the models that we use to understand and forecast water availability, flooding, and drought are simply not up to the task of addressing our most pressing societal issues and national security. We need a decisive and coordinated effort to systematically improve water cycle prediction skill, coupled with reliable methodologies to translate those predictions into actionable water supply and quality information to support sustainable water management - this a primary motivation for the proposed North American Water Program (NAWP). To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental-to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources, as an integral part of the global climate system. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information

  8. North American Water Program (NAWP): A Vision to Address North America's Freshwater Sustainability Challenges

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2013-05-01

    Dramatically changing climates has had an indelible impact on North America's water crisis; the rapid melting of glaciers has profound implications for the sustainability of Canada's rivers. However, projected increases in water demand from increasing population, industrial, energy, and agriculture needs may have four times more impact on the water supply-demand imbalance than climate change. Reliable prediction of hydrologic change and extremes is of critical importance for policy and decision makers to adapt to these future water challenges. However, the models that we use to understand and forecast water availability, flooding, and drought are simply not up to the task of addressing our most pressing societal issues and national security. We need a decisive and coordinated effort to systematically improve water cycle prediction skill, coupled with reliable methodologies to translate those predictions into actionable water supply and quality information to support sustainable water management - this a primary motivation for the proposed North American Water Program (NAWP). To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental-to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources, as an integral part of the global climate system. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information

  9. North American Water Program (NAWP): A Vision to Address North America's Freshwater Sustainability Challenges

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P. R.; Schiffer, R. A.; Entin, J. K.

    2013-12-01

    Dramatically changing climates has had an indelible impact on North America's water crisis; the rapid melting of glaciers has profound implications for the sustainability of Canada's rivers. However, projective increases in water demand from increasing population, industrial energy, and agriculture needs may have four times more impact on the water supply-demand imbalance than climate change. Reliable prediction of hydrologic change and extremes is of critical importance for policy and decision makers to adapt to these future water challenges. However, the models that we use to understand and forecast water availability, flooding, and drought are simply not up to the task of addressing our most pressing societal issues and national security. We need a decisive and coordinative effort to systematically improve water cycle prediction skill, coupled with reliable methodologies to translate those predictions into actionable water supply and quality information to support sustainable water management - this is a primary motivation for the proposed North American Water Program (NAWP). To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental-to-decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observationable and prediction resources available, NAWP will significantly advance skill in predicting, assessing, and managing variability and changes in North American water resources, as an integral part of the global climate system. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the

  10. Going Green: A Comparative Case Study of How Three Higher Education Institutions Achieved Progressive Measures of Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew R.

    2009-01-01

    Leal Filho, MacDermot, and Padgam (1996) contended that post-secondary institutions are well suited to take on leadership responsibilities for society's environmental protection. Higher education has the unique academic freedom to engage in critical thinking and bold experimentation in environmental sustainability (Cortese, 2003). Although…

  11. Institutional Incorporation of Screening, Brief Intervention, and Referral to Treatment (SBIRT) in Residency Training: Achieving a Sustainable Curriculum

    ERIC Educational Resources Information Center

    Scott, Denise M.; McLaurin-Jones, TyWanda; Brown, Fannie D.; Newton, Robin; Marshall, Vanessa J.; Kalu, Nnenna; Cain, Gloria E.; Taylor, Robert E.

    2012-01-01

    The success of implementing a screening, brief intervention and referral to treatment (SBIRT) program within a medical residency program for sustainability is contingent upon a well-crafted training curriculum that incorporates substance abuse education and clinical practice skills. The goal of the Howard University (HU) SBIRT program is to train…

  12. Inferring anthropogenic trends from satellite data for water-sustainability of US cities near artificial reservoirs

    NASA Astrophysics Data System (ADS)

    Yigzaw, Wondmagegn; Hossain, Faisal

    2015-10-01

    Anthropogenic activities affect the water cycle and water supply at global and regional spatial scales, and approaches to water management must consider anthropogenic inputs. One of the major inputs in local-to-regional availability of water and the water cycle is land use land cover change as a result of urbanization, artificial reservoirs, and irrigation activity. To understand evolving trends in local hydrologic cycle for water sustainability of growing cities, this study employed a multi-factorial approach involving population trends, water use (and demand), streamflow, and various satellite-derived water-relevant variables. These variables are daily precipitation (from Tropical Rainfall Measuring Mission-TRMM, 3B42.V7), Normalized Difference Vegetation Index (NDVI) (from Moderate Resolution Imaging Spectroradiometer-MODIS-MOD13A1), land surface temperature (LST) (from MODIS-MOD11A2), and land cover (MODIS-MCD12Q1). Long term trends in such data were used to understand temporal and spatial trends in impounded watersheds hosting a large and growing city. The cities studied for water sustainability were Atlanta, Georgia and Buford dam; Columbia, South Carolina and Saluda dam; Columbus, Ohio and Alum Creek dam; Montgomery, Alabama and Jordan dam; Tulsa, Oklahoma and Keystone dam; and Tuscaloosa, Alabama and Tuscaloosa dam. Our study reveals that daily mean stream flow has been decreasing in all but one (Tulsa) of the areas selected. Satellite data trends between 2000 and 2012 showed a steady decrease in precipitation and NDVI, while LST has gradually increased. We attribute the NDVI (i.e., gradual decrease in vegetation cover) to LST rather than precipitation trends. The results of this research suggest that future temperature projections from climate models can be used in understanding vegetation activity and water availability over the study areas. Cities with larger upstream watershed area are potentially more sustainable and resilient (than those with small

  13. A decision support framework for sustainable urban water planning and management in new urban areas.

    PubMed

    Makropoulos, C K; Morley, M; Memon, F A; Butler, D; Savic, D; Ashley, R A

    2006-01-01

    The paper discusses issues of decision support within the context of sustainable development and more specifically sustainable water cycle management to provide a context and a rationale for the decision support approach adopted within an on-going U.K. EPSRC-funded project, WaND. The paper proposes a set-up for a flexible, upgradeable, efficient and modular decision support framework and associated tools. Furthermore, the paper presents early prototypes of three decision support tools developed within the proposed framework including initial results for one of them.

  14. Bacteriological Monitoring and Sustainable Management of Beach Water Quality in Malaysia: Problems and Prospects

    PubMed Central

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-01-01

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia. PMID:22980239

  15. Bacteriological monitoring and sustainable management of beach water quality in Malaysia: problems and prospects.

    PubMed

    Dada, Ayokunle Christopher; Asmat, Ahmad; Gires, Usup; Heng, Lee Yook; Deborah, Bandele Oluwaseun

    2012-04-28

    Despite the growing demand of tourism in Malaysia, there are no resolute efforts to develop beaches as tourist destinations. With no incentives to monitor public beaches or to use them in a sustainable manner, they might eventually degenerate in quality as a result of influx of pollutants. This calls for concerted action plans with a view to promoting their sustainable use. The success of such plans is inevitably anchored on the availability of robust quality monitoring schemes. Although significant efforts have been channelled to collation and public disclosure of bacteriological quality data of rivers, beach water monitoring appears left out. This partly explains the dearth of published information related to beach water quality data. As part of an on-going nation-wide surveillance study on the bacteriological quality of recreational beaches, this paper draws on a situation analysis with a view to proffering recommendations that could be adapted for ensuring better beach water quality in Malaysia.

  16. Water To Drink: Sustaining Watersheds and the People Who Need Them

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control.

  17. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.

    PubMed

    Nnane, Daniel Ekane

    2011-11-15

    Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment.

  18. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  19. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  20. Sustainable water services and interaction with water resources in Europe and in Brazil

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  1. A planning-oriented sustainability assessment framework for peri-urban water management in developing countries.

    PubMed

    Starkl, Markus; Brunner, Norbert; López, Eduardo; Martínez-Ruiz, José Luis

    2013-12-15

    DPSIR and the three-pillar model are well-established frameworks for sustainability assessment. This paper proposes a planning-oriented sustainability assessment framework (POSAF). It is informed by those frameworks but differs insofar as it puts more emphasis on a constructivist conception which recognises that sustainability needs to be defined anew for each planning problem. In finding such a consensus definition, POSAF uses participatory scenario analysis and participatory planning, technical feasibility study, participatory assessment, analysis of trade-offs and social networks in an unusual combination and for goals that differ from the original conceptions of these methods. POSAF was applied in a peri-urban area of Mexico City for the design of improved water service provision, integrating solid waste management. It supported consensus amongst users about the importance of environmental issues, informed planners about the values of stakeholders and users, detected local differences, and identified possible conflicts at an early stage of decision-making.

  2. The significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach.

    PubMed

    Fricke, Wieland

    2015-02-01

    In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381-392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water is energized through the co-transport of ions such as K(+) and Cl(-) through plasma membrane-located transporters. The emphasis of the model is on the thermodynamic feasibility of the co-transport mechanism per se. However, what is lacking is a quantitative evaluation of the energy input required at the organismal level to sustain such a co-transport mechanism in the face of considerable net (transpirational) flows of water through the system. Here, we use a ratio of 500 water molecules being co-transported for every pair of K(+) and Cl(-) ions, as proposed for the animal system, to calculate the energy required to sustain daytime and night-time transpirational water flow in barley plants through a water co-transport mechanism. We compare this energy with the total daily net input of energy through photosynthetic carbon assimilation. Water co-transport can facilitate the filling of xylem against a difference in Ψ of 1.0MPa and puts a minor drain on the energy budget of the plant. Based on these findings it cannot be excluded that water co-transport in plants contributes significantly to xylem filling during night-time and possibly also daytime transpiration.

  3. Sustaining the benefits of rural water supply investments: Experience from Cochabamba and Chuquisaca, Bolivia

    NASA Astrophysics Data System (ADS)

    Davis, Jennifer; Lukacs, Heather; Jeuland, Marc; Alvestegui, Alfonso; Soto, Betty; LizáRraga, Gloria; Bakalian, Alex; Wakeman, Wendy

    2008-12-01

    Many rural water supply interventions in developing countries have been marked by a poor record of sustainability. Considerable progress has been made over the past several decades on the development of lower-cost technologies that are easier for communities in developing countries to maintain and also on improving project design and implementation to enhance sustainability of outcomes. Less attention has been given to the necessary and sufficient supports for water system maintenance in the postconstruction period. This study explores the contribution of various types of postconstruction support (PCS) to the sustainability of rural water supply systems in Bolivia. Using regression and matched pair statistical analyses, the effects of PCS on water system performance and user satisfaction with service are modeled. Communities that received management-oriented PCS visits from external agencies, and those whose system operators attended training workshops, had better performing systems than communities that received no such support. Engineering-oriented PCS visits to communities had no measurable impact on system functioning or user satisfaction.

  4. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    NASA Astrophysics Data System (ADS)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  5. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  6. Applying sustainable water management concepts in rural and urban areas: some thoughts about reasons, means and needs.

    PubMed

    Wilderer, P A

    2004-01-01

    Serving the world population with adequate drinking water and sanitation is an important prerequisite, not only to hygienic safety, but to prosperity and political stability as well, and will foster the adaptive capacity of the societies in the developing countries and beyond. To avoid hygienic and political disasters impacting the world economy, investment in water supply and sanitation must urgently be made. Whether the classical system of urban water supply and sanitation is appropriate to satisfy the needs of the developing world, however, and whether this system meets the general criteria of sustainability is questionable. The costs and the time needed for installation of sewers and wastewater treatment plants are tremendous. In water shortage areas, the amount of tap water required to transport pollutants to the treatment plant is hardly affordable. Recovery and re-introduction of valuable substances, including water, into the urban cycle of materials is impossible because of mixing and dilution effects inherent in the system. Decentralized water and wastewater management should be seriously taken into account as an alternative. Source separation of specific fractions of domestic and industrial wastewater, separate treatment of these fractions and recovery of water and raw materials including fertilizer and energy are the main characteristics of modern high-tech on-site treatment/reuse systems. Mass production of the key components of the system could reduce the costs of the treatment units to a reasonable level. On-site units could be installed independently of the development stage of the urban sewer system. In conjunction with building new housing complexes a stepwise improvement of the hygienic situation in urban and peri-urban areas could be achieved, therefore. Remote control of the satellite systems using modern telecommunication methods would allow reliable operation, and comfort for the users. Intensive research is required, however, to develop this

  7. Achievements of risk-based produced water management on the Norwegian continental shelf (2002-2008).

    PubMed

    Smit, Mathijs G D; Frost, Tone K; Johnsen, Ståle

    2011-10-01

    In 1996, the Norwegian government issued a White Paper requiring the Norwegian oil industry to reach the goal of "zero discharge" for the marine environment by 2005. To achieve this goal, the Norwegian oil and gas industry initiated the Zero Discharge Programme for discharges of produced formation water from the hydrocarbon-containing reservoir, in close communication with regulators. The environmental impact factor (EIF), a risk-based management tool, was developed by the industry to quantify and document the environmental risks from produced water discharges. The EIF represents a volume of recipient water containing concentrations of one or more substances to a level exceeding a generic threshold for ecotoxicological effects. In addition, this tool facilitates the identification and selection of cost-effective risk mitigation measures. The EIF tool has been used by all operators on the Norwegian continental shelf since 2002 to report progress toward the goal of "zero discharge," interpreted as "zero harmful discharges," to the regulators. Even though produced water volumes have increased by approximately 30% between 2002 and 2008 on the Norwegian continental shelf, the total environmental risk from produced water discharges expressed by the summed EIF for all installations has been reduced by approximately 55%. The total amount of oil discharged to the sea has been reduced by 18% over the period 2000 to 2006. The experience from the Zero Discharge Programme shows that a risk-based approach is an excellent working tool to reduce discharges of potential harmful substances from offshore oil and gas installations.

  8. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    SciTech Connect

    Birol, Fatih

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  9. Developing sustainable water management scenarios by using thorough hydrologic analysis and environmental criteria.

    PubMed

    Zacharias, I; Dimitriou, E; Koussouris, Th

    2003-12-01

    Wetlands constitute a significant source of life since they incorporate unique habitats with endemic and migrant species. They also contribute to the preservation of high global biodiversity and they are under protection according to EU legislation. Nevertheless, during the last century, significant degradation has been observed in wetlands, mainly due to intensification of agriculture and poor water management practices. Calcareous fens habitat with the endangered species Cladium mariscus and Carex spp. is an ecologically significant wetland that undergoes great ecological stresses globally, due to the irrational use of water resources. In Trichonis lake, Western Greece, this habitat has been under deterioration during the last 50 years due to the lack of a sustainable water management plan that has caused destabilization of the hydrologic balance and high water level fluctuations. This human induced hydrologic regime has led to seasonal shifting between drought and flooding which constitute unfavorable conditions for this fen habitat and as a result significant elimination of this ecosystem extent has occurred. This study has adopted technologically advanced scientific methods such as GIS applications and remote sensing techniques to quantify the existing water resources and formulate a sustainable management scheme by considering both anthropogenic water uses and environmental protection.

  10. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    PubMed

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  11. The future of water resources systems analysis: Toward a scientific framework for sustainable water management

    NASA Astrophysics Data System (ADS)

    Brown, Casey M.; Lund, Jay R.; Cai, Ximing; Reed, Patrick M.; Zagona, Edith A.; Ostfeld, Avi; Hall, Jim; Characklis, Gregory W.; Yu, Winston; Brekke, Levi

    2015-08-01

    This paper presents a short history of water resources systems analysis from its beginnings in the Harvard Water Program, through its continuing evolution toward a general field of water resources systems science. Current systems analysis practice is widespread and addresses the most challenging water issues of our times, including water scarcity and drought, climate change, providing water for food and energy production, decision making amid competing objectives, and bringing economic incentives to bear on water use. The emergence of public recognition and concern for the state of water resources provides an opportune moment for the field to reorient to meet the complex, interdependent, interdisciplinary, and global nature of today's water challenges. At present, water resources systems analysis is limited by low scientific and academic visibility relative to its influence in practice and bridled by localized findings that are difficult to generalize. The evident success of water resource systems analysis in practice (which is set out in this paper) needs in future to be strengthened by substantiating the field as the science of water resources that seeks to predict the water resources variables and outcomes that are important to governments, industries, and the public the world over. Doing so promotes the scientific credibility of the field, provides understanding of the state of water resources and furnishes the basis for predicting the impacts of our water choices.

  12. Water Quality Remote Sensing in Support of the UN Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Odermatt, Daniel; Stelzer, Kerstin; Koponen, Sampsa; Philipson, Petra; Brockmann, Carsten; Saile, Philipp; Koetz, Benjamin

    2016-08-01

    The Sustainable Development Goals are a new UN policy framework that ensures the environmental sustainability of socio-economic development. This framework calls for global environmental information and new technologies that can efficiently facilitate such information. Remote sensing has a large potential to meet this information demand given its quickly improving usability in operational services.We discuss several previously identified adoption barriers for remotely sensed water quality parameters against the background of this growing potential, and describe requirements for a pilot service in the SDG context, which will be operated in collaboration with the UN GEMS/Water Data Centre and several national authorities throughout 2016, using Landsat-8 and Sentinel-2 data.

  13. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  14. Quantification of Water Energy Nexus for Sustainable Development at Local Level: Case Study of Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Grover, S.; Tayal, S.

    2014-12-01

    Interdependency between water and energy is generally transacted in trade-off mode; where either of the resource gets affected because of the other. Generally this trade-off is commonly known as water-energy nexus. Many studies have been undertaken in various parts of the world using various approaches to tease out the intricate nexus. This research has adopted a different approach to quantify the inter-dependency. The adopted approach made an attempt to tease out the nexus from demand side for both the resources. For water demand assessment PODIUM Sim model was used and for other parameters available secondary data was used. Using this approach percentage share of water for energy and energy for water was estimated. For an informed decision making and sustainable development, assessment was carried out at state level as most of the policies are made specifically for the state. The research was done for the southernmost state of India, Tamil Nadu which is a rapidly growing industrial hub. Tamil Nadu is energy and water intensive state and the analysis shows that the share of water demand from energy sector compared to water demand from other major sectors is miniscule. While, the energy demand in water sector for various processes in different sectors compared to energy demand as total has a comparable share of range 15-25%. This analysis indicated the relative risk sectors face in competition for the resource. It point outs that water sector faces fierce competition with other sectors for energy. Moreover, the results of the study has assessed that state has negative water balance, which may make access to water more energy intensive with time. But, a projection into future scenario with an assumption based on the ongoing policy program of improving irrigation efficiency was made. It provided a solution of a potential positive equilibrium which conserves both water and energy. This scenario gave promising results which indicated less of water demand from

  15. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  16. Development of sustainable Palladium-based catalysts for removal of persistent contaminants from drinking water

    NASA Astrophysics Data System (ADS)

    Shuai, Danmeng

    Pd-based catalytic reduction has emerged as an advanced treatment technology for drinking water decontamination, and a suite of persistent contaminants including oxyanions, N-nitrosoamines, and halogenated compounds are amenable to catalytic reduction. The primary goal of this study is to develop novel Pd-based catalysts with enhanced performance (i.e., activity, selectivity, and sustainability) to remove contaminants from drinking water. The effects of water quality (i.e., co-contaminants in water matrix), catalyst support, and catalyst metal were explored, and they provide insights for preparing catalysts with faster kinetics, higher selectivity, and extended lifetime. Azo dyes are wide-spread contaminants, and they are potentially co-exisiting with target contaminants amenable for catalytic removal. The probe azo dye methyl orange (MO) enhanced catalytic reduction kinetics of a suite of oxyanions (i.e., nitrate, nitrite, bromate, chlorate, and perchlorate) and diatrizoate significantly but not N-nitrosodimethylamine (NDMA) with a variety of Pd-based catalysts. Nitrate was selected as a probe contaminant, and several different azo dyes (i.e., (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. A hydrogen atom shuttling mechanism was proposed and a kinetic model was proposed based on Bronsted-Evans-Polanyi (BEP) theory, and they suggest sorbed azo dyes and reduced hydrazo dyes shuttle hydrogen atoms to oxyanions or diatrizoate to enhance their reduction kinetics. Next, vapor-grown carbon nanofiber (CNF) supports were used to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). In order to evaluate the amount of interior versus exterior loading of Pd nanoparticles, a fast and accurate geometric

  17. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-07-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high

  18. Screening of sustainable groundwater sources for integration into a regional drought-prone water supply system

    NASA Astrophysics Data System (ADS)

    Stigter, T. Y.; Monteiro, J. P.; Nunes, L. M.; Vieira, J.; Cunha, M. C.; Ribeiro, L.; Nascimento, J.; Lucas, H.

    2009-01-01

    This paper reports on the qualitative and quantitative screening of groundwater sources for integration into the public water supply system of the Algarve, Portugal. The results are employed in a decision support system currently under development for an integrated water resources management scheme in the region. Such a scheme is crucial for several reasons, including the extreme seasonal and annual variations in rainfall, the effect of climate change on more frequent and long-lasting droughts, the continuously increasing water demand and the high risk of a single-source water supply policy. The latter was revealed during the severe drought of 2004 and 2005, when surface reservoirs were depleted and the regional water demand could not be met, despite the drilling of emergency wells. For screening and selection, quantitative criteria are based on aquifer properties and well yields, whereas qualitative criteria are defined by water quality indices. These reflect the well's degree of violation of drinking water standards for different sets of variables, including toxicity parameters, nitrate and chloride, iron and manganese and microbiological parameters. Results indicate the current availability of at least 1100 l s-1 of high quality groundwater (55% of the regional demand), requiring only disinfection (900 l s-1) or basic treatment, prior to human consumption. These groundwater withdrawals are sustainable when compared to mean annual recharge, considering that at least 40% is preserved for ecological demands. A more accurate and comprehensive analysis of sustainability is performed with the help of steady-state and transient groundwater flow simulations, which account for aquifer geometry, boundary conditions, recharge and discharge rates, pumping activity and seasonality. They permit an advanced analysis of present and future scenarios and show that increasing water demands and decreasing rainfall will make the water supply system extremely vulnerable, with a high

  19. EPA's Safe and Sustainable Water Resources Research Program: Water Systems Research

    EPA Science Inventory

    Water systems challenged by limited resources, aging infrastructure, shifting demographics, climate change, and extreme weather events need transformative approaches to meet public health and environmental goals, while optimizing water treatment and maximizing resource recovery a...

  20. Groundwater Storage vs. Surface Water Storage - Why Sustainability Requires a Different Management Framework

    NASA Astrophysics Data System (ADS)

    Mehl, S.; Davids, J. C.

    2015-12-01

    Storing water in times of excess for use in times of shortage is an essential water-management tool, especially in climates typified by precipitation in one season and demand in another. The three primary water storage mechanisms in the Western US, and much of the world in fact, are: seasonal snow pack, surface water reservoirs, and groundwater aquifers. In California, nearly every major river has one or more large dam and reservoir and current focus has shifted toward off-stream storage. In addition to California's surface reservoirs, groundwater aquifers provide huge volumes of water storage that are heavily utilized during times of drought. With California's new Sustainable Groundwater Management Act (SGMA) substantial attention is presently focused on developing strategies for using groundwater storage more effectively in conjunction with surface-storage reservoirs. However, compared to surface water storage, we need to think differently and develop new frameworks if we want to manage groundwater storage sustainably. Despite its immense capacity, groundwater storage is harder to manage because there are physical constraints to how fast water can be put into and withdrawn from aquifers, its boundaries are not as well defined as those of a surface reservoir, and it is part of a dynamic, porous media flow system where the Theis concepts of capture govern. Therefore, groundwater does not behave as a level pool like surface water reservoirs, which has several implications for effective management: 1) extraction/injection locations can have substantial impacts on the system, 2) interactions with the surface water systems can be nonlinear and complex and 3) hydraulic effects can continue long after pumping/injection has stopped. These nonlinear spatial and temporal responses, coupled with long time scales, makes management of groundwater storage much different than surface water storage. Furthermore, failure to fully understand these issues can lead to mismanagement

  1. Bridging the Gap: Ideas for water sustainability in the western United States

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Passell, H. D.; Roach, J. D.

    2012-12-01

    Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  2. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  3. Army Installations Water Sustainability Assessment: An Evaluation of Vulnerability to Water Supply

    DTIC Science & Technology

    2009-09-01

    CERL TR-09-38 160 7.2.6 Alternate water sources Thus far, most water efficiency measures discussed have focused on using less water to meet human...36 4.1 Regional resource assessment framework and metrics ...........................................38 4.2...4.6.1 Framework limitations .....................................................................................................53 4.6.2 Using

  4. Sustainable Water Resources Management in a Complex Watershed Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Schuster, J. P.; McPhee, J.

    2007-05-01

    The Aconcagua River Basin in central Chile supplies water for over one million people, high-return agriculture, mining and hydropower industries. The Aconcagua river basin has Mediterranean/semi-arid climate, its hydrologic regime varies along its path from snow- to a rainfall-dominated, and significant stream-aquifer interaction is observed throughout the river path. A complex water market operates in the Aconcagua River Basin, where private owners hold surface and subsurface water rights independently of land ownership and/or intended use. The above yield integrated watershed management critical for the sustainability of basin operations, moreover under conditions of significant precipitation interannual variability and uncertain future climatic scenarios. In this work we propose an integrated hydrologic-operational model for the Aconcagua River in order to evaluate sustainable management scenarios under conditions of climatic uncertainty. The modeling software WEAP (Water Evaluation and Planning System) serves as the platform for decision support, allowing the assessment of diverse scenarios of water use development and hydrologic conditions. The hydrologic component of the adopted model utilizes conceptual functions for describing the relations between different hydrologic variables. The management component relies on economic valuation for characterizing the space of efficient operational policies.

  5. An Ecologically-Sustainable Surface Water Withdrawal Framework for Cropland Irrigation: A Case Study in Alabama

    NASA Astrophysics Data System (ADS)

    Srivastava, Puneet; Gupta, Anand K.; Kalin, Latif

    2010-08-01

    Agricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods. The model was successfully calibrated and validated for surface runoff, base flow, and total stream flow. The stream flows generated by the model at several locations within the watershed were then used to examine how much water can be sustainably withdrawn from streams of various orders (first, second and third). Although there was a considerable year-to-year variability in the amount of water that can be withdrawn, a 16-year average showed that first, second, and third order streams can irrigate about 11.6, 10.3, and 10.6% of their drainage areas, respectively. The percentage of drainage area that can be irrigated was not a function of stream order.

  6. An ecologically-sustainable surface water withdrawal framework for cropland irrigation: a case study in Alabama.

    PubMed

    Srivastava, Puneet; Gupta, Anand K; Kalin, Latif

    2010-08-01

    Agricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods. The model was successfully calibrated and validated for surface runoff, base flow, and total stream flow. The stream flows generated by the model at several locations within the watershed were then used to examine how much water can be sustainably withdrawn from streams of various orders (first, second and third). Although there was a considerable year-to-year variability in the amount of water that can be withdrawn, a 16-year average showed that first, second, and third order streams can irrigate about 11.6, 10.3, and 10.6% of their drainage areas, respectively. The percentage of drainage area that can be irrigated was not a function of stream order.

  7. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    SciTech Connect

    none, none; Tuchman, Nancy

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  8. Urban Cholera and Water Sustainability Challenges under Climatic and Anthropogenic Change

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A.; Huq, A.; Faruque, A. G.; Colwell, R. R.

    2013-12-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city of the world - Dhaka, Bangladesh. Emerging megacities in the developing world, especially those located in coastal regions of the tropics remain vulnerable to similar. However, there has not been any systematic study on linking the long-term disease trends with changes in related climatic, environmental, or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or societal factors: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns. An interesting change is observed in the seasonal trends of cholera incidence; while an endemic upward trend is seen in the dry season, the post-monsoon trend seem to be more epidemic in nature. Evidence points to growing urbanization and rising population in unplanned settlements that have negligible to poor water and sanitation systems compounded by increasing frequency of record flood events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of spring outbreaks, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate water sustainability challenges in the context of climatic and anthropogenic changes in the region.

  9. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions.

    PubMed

    Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2017-02-01

    The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH2PO4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased.

  10. Sustainable Communities: A Lens for Envisioning and Achieving a Community-Based Culture of Social and Ecological Peace

    ERIC Educational Resources Information Center

    Verhagen, Frans C.

    2014-01-01

    One of the obstacles to dealing with the social and ecological crises that obstruct the achievement of a culture of peace is silo thinking in global governance. A unidimensional mode of planning, silo thinking leads to decisions based on the area of expertise of a particular agency or intergovernmental organization and fails to recognize linkages…

  11. A Systematic Approach for Measuring Sustained Effect and for Comparing Compensatory Education Programs Using Achievement Test Data.

    ERIC Educational Resources Information Center

    Noonan, Al

    The system discussed in this paper was successfully used to track approximately 17,000 students participating in various educational programs and to measure their gains through achievement test results. It was developed for a school district with twelve supplementary instruction programs, and has been in use since the 1975-76 school year. The…

  12. Persuasion factors influencing the decision to use sustainable household water treatment.

    PubMed

    Kraemer, Silvie M; Mosler, Hans-Joachim

    2010-02-01

    Solar water disinfection (SODIS) is a sustainable water treatment method. With the help of the sun and plastic bottles, water is treated and illnesses prevented. This paper aims to identify the factors influencing SODIS uptake, that is, why someone may become a SODIS user. This uptake decision can be influenced by persuasion. From behaviour theory, variables are recognised which have been proven to influence intention and behaviour and simultaneously can be influenced by persuasion. A total of (n = 878) structured interviews were conducted in a field study in Zimbabwe. Linear and binary logistic regressions showed that several of the initially proposed persuasion variables have significant influence. Persuasion factors have a stronger influence on the uptake of SODIS use and on intention to use SODIS in the future than on the amount of SODIS water consumed. Ideas are presented for using the effective variables in future SODIS campaigns and campaigns in other fields.

  13. Hype, harmony and human factors: applying user-centered design to achieve sustainable telehealth program adoption and growth.

    PubMed

    Rossos, P G; St-Cyr, O; Purdy, B; Toenjes, C; Masino, C; Chmelnitsky, D

    2015-01-01

    Despite decades of international experience with the use of information and communication technologies in healthcare delivery, widespread telehealth adoption remains limited and progress slow. Escalating health system challenges related to access, cost and quality currently coincide with rapid advancement of affordable and reliable internet based communication technologies creating unprecedented opportunities and incentives for telehealth. In this paper, we will describe how Human Factors Engineering (HFE) and user-centric elements have been incorporated into the establishment of telehealth within a large academic medical center to increase acceptance and sustainability. Through examples and lessons learned we wish to increase awareness of HFE and its importance in the successful implementation, innovation and growth of telehealth programs.

  14. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    SciTech Connect

    Vidic, Radisav

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  15. Coupled community cohesion and surface water hydrology determinants of groundwater use sustainability

    NASA Astrophysics Data System (ADS)

    Fernald, A.

    2013-12-01

    Water table elevations are dropping in irrigated locations of the western U.S. and the world where use exceeds recharge. Along the Rio Grande, community irrigation systems have been developed that are particularly suited to high interannual precipitation variability. These same systems that efficiently and equitable allocate surface irrigation water seem to also generate feedback loops that balance groundwater recharge with use. To identify drivers of groundwater sustainability, we studied the coupled human and natural system components of surface water - groundwater interactions at distinctive sites along the Rio Grande: vibrant community irrigation systems of northern New Mexico; separately controlled surface and groundwater irrigation systems of southern New Mexico; and groundwater irrigation systems that had entirely lost their historic community surface irrigation systems in northern Chihuahua, Mexico. At the northern New Mexico site we found both the hydrology and the community irrigation system generate positive feedback loops for sustainable groundwater and for return flow to the river that benefits downstream users. In southern New Mexico, positive feedbacks of reduced irrigation district surface deliveries lead to more groundwater pumping that in turn causes less efficient surface delivery, additional pumping and stressed groundwater systems. At the sites in Mexico, lack of community cohesion coupled with decades of groundwater pumping has led to negative feedbacks where additional pumping causes drops in groundwater levels that increase pumping costs and reduce the rate of groundwater declines. In ongoing work, we are using socio-cultural and hydrological data to inform a system dynamics model that will identify groundwater sustainability tipping points in terms of community cohesion and the balance between irrigation water use and groundwater recharge in surface water connected systems.

  16. The evolution of groundwater management paradigms in Kansas and possible new steps towards water sustainability

    NASA Astrophysics Data System (ADS)

    Sophocleous, Marios

    2012-01-01

    SummaryThe purpose of this paper is to trace the evolution of key water-related laws and management practices in Kansas, from the enactment of the Kansas Water Resources Appropriation Act of 1945 to the present, in order to highlight the state's efforts to create a more sustainable water future and in hopes that others will benefit from Kansas' experience. The 1945 Act provides the basic framework of water law (prior appropriation) in Kansas. Progression of groundwater management in the state encompasses local Groundwater Management Districts (GMDs) and their water-management programs, minimum-streamflow and TMDL standards, water-use reporting and water metering programs, use of modified safe-yield policies in some GMDs, the subbasin water-resources-management program, the integrated resource planning/aquifer storage and recovery project of the city of Wichita, the Central Kansas Water Bank, enhanced aquifer subunits management, and various water conservation programs. While these have all contributed to the slowing down of declines in groundwater levels in the High Plains aquifer and in associated ecosystems, they have not yet succeeded in halting those declines. Based on the assumption that the different management approaches have to operate easily within the prevailing water rights and law framework to succeed, a number of steps are suggested here that may help further diminish or reverse the declines of the High Plains aquifer. These include eliminating the "use it or lose it" maxim in the prior-appropriation framework, broadening the definition of "beneficial use," regulating domestic and other "exempt" wells, encouraging voluntary "sharing the shortage" agreements, and determining to what extent water rights may be regulated in the public interest without a compensable "taking". Further measures include establishing artificial recharge and/or aquifer storage and recovery projects wherever feasible and determining to what extent water-rights holders might be

  17. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics

  18. Moving Toward Universal Health Coverage (UHC) to Achieve Inclusive and Sustainable Health Development: Three Essential Strategies Drawn From Asian Experience

    PubMed Central

    Xu, Ye; Huang, Cheng; Colón-Ramos, Uriyoán

    2015-01-01

    Binagwaho and colleagues’ perspective piece provided a timely reflection on the experience of Rwanda in achieving the Millennium Development Goals (MDGs) and a proposal of 5 principles to carry forward in post-2015 health development. This commentary echoes their viewpoints and offers three lessons for health policy reforms consistent with these principles beyond 2015. Specifically, we argue that universal health coverage (UHC) is an integrated solution to advance the global health development agenda, and the three essential strategies drawn from Asian countries’ health reforms toward UHC are: (1) Public financing support and sequencing health insurance expansion by first extending health insurance to the extremely poor, vulnerable, and marginalized population are critical for achieving UHC; (2) Improved quality of delivered care ensures supply-side readiness and effective coverage; (3) Strategic purchasing and results-based financing creates incentives and accountability for positive changes. These strategies were discussed and illustrated with experience from China and other Asian economies. PMID:26673477

  19. The Energy-Water Nexus: Managing the Links between Energy and Water for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Hussey, Karen; Petit, Carine

    2010-05-01

    Water and energy are both indispensable inputs to modern economies but currently both resources are under threat owing to the impacts of an ever-increasing population and associated demand, unsustainable practices in agriculture and manufacturing, and the implications of a changing climate. However, it is where water and energy rely on each other that pose the most complex challenges for policy-makers. Water is needed for mining coal, drilling oil, refining gasoline, and generating and distributing electricity; and, conversely, vast amounts of energy are needed to pump, transport, treat and distribute water, particularly in the production of potable water through the use of desalination plants and waste water treatment plants. Despite the links, and the urgency in both sectors for security of supply, in existing policy frameworks energy and water policies are developed largely in isolation from one another. Worse still, some policies designed to encourage alternative energy supplies give little thought to the resultant consequences on water resources, and, similarly, policies designed to secure water supplies pay little attention to the resultant consequences on energy use. The development of new technologies presents both opportunities and challenges for managing the energy-water nexus but a better understanding of the links between energy and water is essential in any attempt to formulate policies for more resilient and adaptable societies. The energy-water nexus must be adequately integrated into policy and decision-making or governments run the risk of contradicting their efforts, and therefore failing in their objectives, in both sectors. A series of COST Exploratory Workshops, drawing on on-going research in the energy-water nexus from a number of international teams, identified the implications of the energy-water nexus on the development of (i) energy policies (ii) water resource management policies and (iii) climate adaptation and mitigation policies. A

  20. Sustainable Groundwater and Surface Water Management in the Rio Yaqui Basin, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Munoz-Hernandez, A.; Mayer, A. S.

    2008-05-01

    The purpose of this work is to focus on a coastal basin located primarily in Northwest Mexico, the Rio Yaqui Basin. The basin has roughly 72,000 square kilometers of land and it is classified as a semi-arid climate with an average rainfall of 527 mm per year. The water to meet user demands comes from three reservoirs, in series, constructed along the river. Agriculture is the main user of water in the basin. The farmers use groundwater as a buffer when the surface water is insufficient to meet irrigation demands. However, if the extractions become greater than the natural recharge, the aquifer could suffer irreversible damage caused by overexploitation and salt water intrusion. A rainfall-runoff model for the Rio Yaqui Basin has been created and calibrated on a monthly basis for a period of thirty years. A node link network that includes the main reservoirs and the river reaches is the conceptual basis for the surface water model. A MATLAB code was developed to estimate the monthly storage in the reservoirs by solving a water balance. The program reproduces the water allocation within the basin based on water rights and also includes the maximum groundwater usage allowed to the farmers. The rainfall-runoff model was coupled with a groundwater model of the Yaqui Valley developed by Addams (2004) and modified by Schoups (2006). This model includes flow in the main canals and infiltration to the aquifer. The impacts of climate change and climate variability on the surface water and groundwater storage are assessed. A sensitivity analysis was explored in order to assess the sustainability of the basin under various water management practices. Addams L. 2004. Water resource policy evaluation using a combined hydrologic-economic-agronomic modeling framework: Yaqui Valley, Sonora, Mexico. Ph.D.dissertation, Stanford University. Schoups G., C.L.Addams, J.L.Minjares, and S.M.Gorelick. 2006. Sustainable conjunctive water management in irrigated agriculture: Model formulation

  1. Indirect water management through Life Cycle Assessment: Fostering sustainable production in developing countries

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S.

    2009-04-01

    Life Cycle Assessment (LCA) represents a methodological framework for analyzing the total environmental impact of any product or service of our daily life. After tracking all associated emissions and the consumption of resources, this impact is expressed with respect to a few common impact categories. These are supposed to reflect major societal and environmental priorities. However, despite their central role in environmental processes, to date hydrological as well as hydrogeological aspects are only rarely considered in LCA. Compared with standard impact categories within LCA, water is special. In contrast to other abiotic resources such as crude oil, it can be replenished. Total freshwater resources are immense, but not evenly distributed and often scarce in regions of high demand. Consequently, threads to natural water bodies have immense spatial dependency. Setting up functional relationships in order to derive a generally valid and practicable evaluation is tedious due to the complex, insufficiently understood, and uncertain natural processes involved. LCA that includes the environmental effects of water consumption means global indirect water resource management. It supports goal-directed consumer behaviour that aims to reduce pressure on natural water systems. By developing a hydrologically-based assessment of potential impacts from human interaction with natural water bodies, "greener" products can be prioritised. More sustainable and environmentally friendly water management is the result. The proposed contribution presents an operational assessment method of global surface water consumption for impacts on human health and ecosystem quality within a LCA framework. A major focus is the issue of how such global assessment helps to quantify potential impacts from water-intensive production in developing countries, where the means for proper water management are often limited. We depict a compensation scheme for impacts related to water consumption that

  2. Developing Index for Sustainable Water Use with Environmental and Socioeconomic Indicators: an Application for Hydrologic Units in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kong, I.

    2014-12-01

    This study aimed to develop index for sustainable water use over hydrologic units in South Korea. We identified major indicators for sustainable water use with considering multiple aspects of water use: not only physical, biological and chemical aspects but also social and environmental aspects. Furthermore, stressors for sustainable water use were of major interests because they were straightforward and easy to measure in comparison to indicators representing the state- and impact-related indictors. As a result, sustainability index was constructed with a theme-based hierarchical approach. It is comprised of two components of stress and response to sustainable water use and each component includes five sub-components of human water requirements, water quality requirements, 4) h, equitable water use and others. Then for each sub-component, multiple indicators, i.e., proxy variables were identified. For drainage basins in South Korea, standard hydrologic units with their total number of about 100 across the country, total 19 indicators were identified and their data from the various sources such as remote-sensing based datasets and survey-based national datasets were collected for current times. Then they were integrated to estimate the sustainability index with a multi-criteria decision making (MCDM) approach. At last, we evaluated sustainability index with focusing on the spatial variability of indices and indicators and the sensitivity of indices to individual indicators to better understand the sustainability of water use in Korea. In addition, we derived the indices with different MCDM methods to evaluate the sensitivity of index to various mathematical techniques.

  3. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  4. Short-term sustainability of drainage water reuse: spatio-temporal impacts on soil chemical properties.

    PubMed

    Corwin, Dennis L; Lesch, Scott M; Oster, James D; Kaffka, Stephen R

    2008-01-01

    Greater urban demand for finite water resources, increased frequency of drought resulting from erratic weather, and increased pressure to reduce drainage water volumes have intensified the need to reuse drainage water. A study was initiated in 1999 on a 32.4-ha saline-sodic field (Lethent clay loam series; fine, montmorillonitic, thermic, Typic Natrargid) located on the west side of California's San Joaquin Valley (WSJV) with the objective of evaluating the sustainability of drainage water reuse with respect to impact on soil quality. An evaluation after 5 yr of irrigation with drainage water is presented. Geo-referenced measurements of apparent soil electrical conductivity (EC(a)) were used to direct soil sampling at 40 sites to characterize the spatial variability of soil properties (i.e., salinity, Se, Na, B, and Mo) crucial to the soil's intended use of growing Bermuda grass (Cynodon dactylon (l.) Pers.) for livestock consumption. Soil samples were taken at 0.3-m increments to a depth of 1.2 m at each site in August 1999, April 2002, and November 2004. Drainage water varying in salinity (0.8-16.2 dS m(-1)), SAR (5.4-52.4), Mo (80-400 microg L(-1)), and Se (<1-700 microg L(-1)) was applied to the field since July 2000. An analysis of the general temporal trend shows that overall soil quality has improved due to leaching of B from the top 0.6 m of soil; salinity and Na from the top 1.2 m, but primarily from 0 to 0.6 m; and Mo from the top 1.2 m. Short-term sustainability of drainage water reuse is supported by the results.

  5. Use of science to guide city planning policy and practice: how to achieve healthy and sustainable future cities.

    PubMed

    Sallis, James F; Bull, Fiona; Burdett, Ricky; Frank, Lawrence D; Griffiths, Peter; Giles-Corti, Billie; Stevenson, Mark

    2016-12-10

    Land-use and transport policies contribute to worldwide epidemics of injuries and non-communicable diseases through traffic exposure, noise, air pollution, social isolation, low physical activity, and sedentary behaviours. Motorised transport is a major cause of the greenhouse gas emissions that are threatening human health. Urban and transport planning and urban design policies in many cities do not reflect the accumulating evidence that, if policies would take health effects into account, they could benefit a wide range of common health problems. Enhanced research translation to increase the influence of health research on urban and transport planning decisions could address many global health problems. This paper illustrates the potential for such change by presenting conceptual models and case studies of research translation applied to urban and transport planning and urban design. The primary recommendation of this paper is for cities to actively pursue compact and mixed-use urban designs that encourage a transport modal shift away from private motor vehicles towards walking, cycling, and public transport. This Series concludes by urging a systematic approach to city design to enhance health and sustainability through active transport and a move towards new urban mobility. Such an approach promises to be a powerful strategy for improvements in population health on a permanent basis.

  6. Packaged water: optimizing local processes for sustainable water delivery in developing nations.

    PubMed

    Dada, Ayokunle C

    2011-07-29

    With so much global attention and commitment towards making the Water and Sanitation targets of the Millennium Development Goals (MDGs) a reality, available figures seem to speak on the contrary as they reveal a large disparity between the expected and what currently obtains especially in developing countries. As studies have shown that the standard industrialized world model for delivery of safe drinking water technology may not be affordable in much of the developing world, packaged water is suggested as a low cost, readily available alternative water provision that could help bridge the gap. Despite the established roles that this drinking water source plays in developing nations, its importance is however significantly underestimated, and the source considered unimproved going by 'international standards'. Rather than simply disqualifying water from this source, focus should be on identifying means of improvement. The need for intervening global communities and developmental organizations to learn from and build on the local processes that already operate in the developing world is also emphasized. Identifying packaged water case studies of some developing nations, the implication of a tenacious focus on imported policies, standards and regulatory approaches on drinking water access for residents of the developing world is also discussed.

  7. Assessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae kinberg.

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2001-11-01

    The viability of vermireactors fed with different proportions of water hyacinth (WH) and cowdung (CD) was assessed over six-month trials. All reactors performed sustainably with a steadily rising vermicast output, worm zoomass, and number of offspring. There was no mortality in any of the reactors. A change in the WH:CD ratios from 4:1 to 6:1 had no discernable impact on the reactor performances. Attempts were also made to improve the efficiency of the reactors in terms of vermicast production per unit time and per unit digester volume. These attempts led to the 'high-rate' vermireactor in which 5.6 times greater vermicast was produced per litre of digester volume per day than in the 'low-rate' reactors. The high-rate vermireactors also performed sustainably, with steady vermicast output, animal growth, and reproduction.

  8. China's water sustainability in the 21st century: a climate-informed water risk assessment covering multi-sector water demands

    NASA Astrophysics Data System (ADS)

    Chen, X.; Naresh, D.; Upmanu, L.; Hao, Z.; Dong, L.; Ju, Q.; Wang, J.; Wang, S.

    2014-05-01

    China is facing a water resources crisis with growing concerns as to the reliable supply of water for agricultural, industrial and domestic needs. High inter-annual rainfall variability and increasing consumptive use across the country exacerbates the situation further and is a constraint on future development. For water sustainability, it is necessary to examine the differences in water demand and supply and their spatio-temporal distribution in order to quantify the dimensions of the water risk. Here, a detailed quantitative assessment of water risk as measured by the spatial distribution of cumulated deficits for China is presented. Considering daily precipitation and temperature variability over fifty years and the current water demands, risk measures are developed to inform county level water deficits that account for both within-year and across-year variations in climate. We choose political rather than watershed boundaries since economic activity and water use are organized by county and the political process is best informed through that unit. As expected, the risk measures highlight North China Plain counties as highly water stressed. Regions with high water stress have high inter-annual variability in rainfall and now have depleted groundwater aquifers. The stress components due to agricultural, industrial and domestic water demands are illustrated separately to assess the vulnerability of particular sectors within the country to provide a basis for targeted policy analysis for reducing water stress.

  9. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  10. America's Water: An opportunity for a new sustainable design from a One Water Perspective

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2014-12-01

    "The time has come," the Walrus said,"To talk of many things:Of pipes--and sewers--and plumbing-tape--Of reuse--and CSOs--And why the wastewater treatment plant is stinking--And whether houses have wings." In a world that seeks solutions to problems of water, energy and waste, and risks from a changing climate, a few lights shine bright. In challenges of aging infrastructure, we see an opportunity. As drinking water and wastewater treatment standards tighten and pose a financial threat to communities, we see an opportunity. As the financial industry looks askance at funding large water infrastructure projects with an uncertain payback, we see opportunity. As others fear for the environment amidst an approaching commoditization of water, we see opportunity. We visualize a new world in which water is treated exquisitely for the purposes of consumption. Rainwater harvesting addresses CSOs, and need, and point of use systems treat rain and waste water for use, so the environment can breathe a bit easier. Sensors, smart grids, targeted treatment and innovation in systems and business architecture is in the offing as enabling technologies. Yes, even as autonomous vehicles seek to seduce you on an inter-city journey, a revolution in water technologies and systems operation is imminent. Perhaps this talk will illuminate you on the technological possibility, the social barriers to overcome, and the innovation frontier that awaits us

  11. Inferring Anthropogenic Trends from Satellite Data for Water-sustainability of US Cities Near Artificial Reservoirs

    NASA Astrophysics Data System (ADS)

    Yigzaw, W. Y.; Hossain, F.

    2015-12-01

    Impact of anthropogenic activities on water cycle and water supply has different effects at global and regional spatial scales, ensuing the need for a design and water management approach that considers anthropogenic inputs. One of the major inputs in local-to-regional availability of water and the water cycle are land use land cover change as a result of urbanization, artificial reservoirs and irrigation activity. This study employed a multi-factorial approach involving population trends, water use (and demand), streamflow; and various satellite derived water-relevant variables. These variables are: daily precipitation (from TRMM, 3B42.V7), Normalized Difference Vegetation Index-NDVI (from MODIS-MOD13A1), land surface temperature-LST (from MODIS-MOD11A2), and land cover (MODIS-MCD12Q1). Long terms exhibited by such data were used to understand temporal and spatial trends in impounded watersheds hosting a large and growing city in its proximity. The selected cities are: City of Atlanta-Georgia and Buford dam; Columbia-South Carolina and Saluda dam; Columbus-Ohio and Alum Creek dam; Montgomery-Alabama and Jordan dam; Tulsa-Oklahoma and Keystone dam; Tuscaloosa-Alabama and Tuscaloosa dam were selected. our study reveals that daily mean stream flow has been decreasing in all but one (Tulsa) of the areas selected. Satellite data trends between 2000 and 2012 showed a steady decrease in precipitation and NDVI; while LST has gradually increased. We attribute the NDVI (i.e., gradual decrease in vegetation cover) to LST rather than precipitation trends. The results of this research suggested that future temperature projection from climate models can be used in understanding vegetation activity and water availability over the study areas. Cities with larger upstream watershed area are potentially more sustainable and resilient (than those with small watersheds) as a result of spatial variability of water resources' response to climate change. Inter-basin water resources

  12. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    NASA Astrophysics Data System (ADS)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  13. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.

    PubMed

    Chavanpatil, Mahesh D; Khdair, Ayman; Patil, Yogesh; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2007-12-01

    Poor drug encapsulation efficiency and rapid release of the encapsulated drug limit the use of nanoparticles in biomedical applications involving water-soluble drugs. We have developed a novel polymer-surfactant nanoparticle formulation, using the anionic surfactant Aerosol OT (AOT) and polysaccharide polymer alginate, for sustained release of water-soluble drugs. Particle size of nanoparticles, as determined by atomic force microscopy and transmission electron microscopy, was in the range of 40-70 nm. Weakly basic molecules like methylene blue, doxorubicin, rhodamine, verapamil, and clonidine could be encapsulated efficiently in AOT-alginate nanoparticles. In vitro release studies with basic drug molecules indicate that nanoparticles released 60-70% of the encapsulated drug over 4 weeks, with near zero-order release during the first 15 days. Studies with anionic drug molecules demonstrate poorer drug encapsulation efficiency and more rapid drug release than those observed with basic drugs. Further studies investigating the effect of sodium concentration in the release medium and the charge of the drug suggest that calcium-sodium exchange between nanoparticle matrix and release medium and electrostatic interaction between drug and nanoparticle matrix are important determinants of drug release. In conclusion, we have formulated a novel surfactant-polymer drug delivery carrier demonstrating sustained release of water-soluble drugs.

  14. Integrative sensing and prediction of urban water for sustainable cities (iSPUW)

    NASA Astrophysics Data System (ADS)

    Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.

    2014-12-01

    We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.

  15. Integrated hydrologic modeling as a key for sustainable urban water resources planning.

    PubMed

    Eshtawi, Tamer; Evers, Mariele; Tischbein, Bernhard; Diekkrüger, Bernd

    2016-09-15

    In this study, a coupling of surface water (SWAT), groundwater (MODFLOW) and solute transport (MT3DMS) models was performed to quantify surface-groundwater and quantity-quality interactions under urban area expansion. The responses of groundwater level, nitrate concentrations (related to human activities) and chloride concentrations (related to seawater intrusion) to urban area expansion and corresponding changes in the urban water budget were examined on a macro-scale level. The potentials of non-conventional water resources scenarios, namely desalination, stormwater harvesting and treated wastewater (TWW) reuse were investigated. In a novel analysis, groundwater improvement and deterioration under each scenario were defined in spatial-temporal approach. The quality deterioration cycle index was estimated as the ratio between the amounts of low and high quality recharge components within the Gaza Strip boundary predicted for year 2030. The improvement index for groundwater level (IIL) and the improvement index for groundwater quality (IIQ) were developed for the scenarios as measures of the effectiveness toward sustainable groundwater planning. Even though the desalination and TWW reuse scenarios reflect a noticeable improvement in the groundwater level, the desalination scenario shows a stronger tendency toward sustainable groundwater quality. The stormwater harvesting scenario shows a slight improvement in both groundwater quality and quantity. This study provides a 'corridor of options', which could facilitate future studies focusing on developing a micro-level assessment of the above scenarios.

  16. Design for sustainable development--household drinking water filter for arsenic and pathogen treatment in Nepal.

    PubMed

    Ngai, Tommy K K; Shrestha, Roshan R; Dangol, Bipin; Maharjan, Makhan; Murcott, Susan E

    2007-10-01

    In the last 20 years, the widespread adoption of shallow tubewells in Nepal Terai region enabled substantial improvement in access to water, but recent national water quality testing showed that 3% of these sources contain arsenic above the Nepali interim guideline of 50 microg/L, and up to 60% contain unsafe microbial contamination. To combat this crisis, MIT, ENPHO and CAWST together researched, developed and implemented a household water treatment technology by applying an iterative, learning development framework. A pilot study comparing 3 technologies against technical, social, and economic criteria showed that the Kanchan Arsenic Filter (KAF) is the most promising technology for Nepal. A two-year technical and social evaluation of over 1000 KAFs deployed in rural villages of Nepal determined that the KAF typically removes 85-90% arsenic, 90-95% iron, 80-95% turbidity, and 85-99% total coliforms. Then 83% of the households continued to use the filter after 1 year, mainly motivated by the clean appearance, improved taste, and reduced odour of the filtered water, as compared to the original water source. Although over 5,000 filters have been implemented in Nepal by January 2007, further research rooted in sustainable development is necessary to understand the technology diffusion and scale-up process, in order to expand access to safe water in the country and beyond.

  17. Fair and sustainable irrigation water management in the Babai basin, Nepal.

    PubMed

    Adhikari, B; Verhoeven, R; Troch, P

    2009-01-01

    This paper attempts to find a strategy to provide year-round irrigation for cultivating three crops per year in the southern plains of the country taking a case study of the Babai basin. Despite having enough flows during the summer for growing rice in total 27,000 ha area, the dry season flows of the Babai river can irrigate only 6,300 ha in winter and 4,000 ha in spring limiting the cropping intensity to 138.50%. It is proposed to irrigate the 7,500 ha southern dry area at the right bank bringing water from a large snow-fed river: the Karnali. Water balance study of the three irrigation regions to be irrigated from the Babai source preserving their existing water rights showed that the year-round irrigation at the west with the proposed arrangement will fall short of only 13.9 million m(3) water volume. At the east side, the head reach area and the tail portion will fall short of 19.4 and 66.4 million m(3) of water to insure a cropping intensity of 250%. The deficits can be fulfilled by means of capturing the excess river water of rainy season in local reservoirs and by making conjunctive use of groundwater. The proposed solution is financially, environmentally and socially viable being a cost effective, user friendly and should be the linchpin towards attaining a sustainable year-round irrigation in the region.

  18. Oil and gas company policy regarding the concept of sustainable development (water resources)

    NASA Astrophysics Data System (ADS)

    Matyugina, E. G.; Pogharnitskaya, O. V.; Grinkevich, L. S.; Belozerova, D. S.; Strelnikova, A. B.

    2016-03-01

    The paper considers oil and gas companies implementing the strategy of sustainable development. Being vital to the national economy, oil and gas companies have a significant impact on the environment. Having analyzed the statistical data, the authors state that the leading Russian oil and gas companies contribute to the industry dynamics and conduct eco-friendly production practices. The environmental component is reported to be integrated in production, HR, information and other company policies, which results in “greening” both economic cooperation and place of production. The authors report the inverse relation between production dynamics and significance of the impact on water resources.

  19. Integrated crop water management might sustainably halve the global food gap

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.

    2016-02-01

    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.

  20. Evaluation of Four Water Management Policies for Ogallala Aquifer Sustainability in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Hernandez, J. E.; Gowda, P. H.; Howell, T. A.; Marek, T. H.; Ha, W.; Almas, L. K.

    2010-12-01

    Diminishing groundwater supply in the Ogallala Aquifer will severely reduce regional crop and animal production in the absence of a sustainable water management policy. It is essential to mitigate adverse impacts on the regional economy due to future withdrawals of the limited groundwater resource. Currently, approximately ten alternative water management policies are being debated by policy makers in the Central and Southern High Plains of the Ogallala Aquifer region. Before implementing any new policy or modifying current policies, newer alternative policies should be evaluated for their impact on groundwater levels with eventual extension to regional economic impacts. The main objective of this study was to evaluate four water management policies, from the debated ones, on future groundwater levels in the Ogallala Aquifer beneath four heavily irrigated counties (Dallam, Sherman, Hartley, and Moore) located in the northwest corner of the Texas High Plains using a calibrated ModFlow model. The four water management policies were (1) voluntary permanent conversion to dry land production up to 10% of the total irrigated area, (2) adoption of advances in biotechnology that allow water use reductions at a rate of 1% per year up to 10% of current use, (3) mandatory water use reduction to decrease the total water pumped by 10% (volume per unit land area per year), and (4) voluntary temporary conversion to dry land production during 15 years for a maximum area of 10% of the total irrigated area. The water management policies were converted into water demand rates for ModFlow model inputs. Simulations were conducted for a 50-year (2010-2060) period. Preliminary results indicate that a combination of more than one policy will be required to produce a significant reduction in the current groundwater depletion rates.

  1. Climate Change and water in Southwestern North America special feature: water, climate change, and sustainability in the southwest.

    PubMed

    MacDonald, Glen M

    2010-12-14

    The current Southwest drought is exceptional for its high temperatures and arguably the most severe in history. Coincidentally, there has been an increase in forest and woodland mortality due to fires and pathogenic outbreaks. Although the high temperatures and aridity are consistent with projected impacts of greenhouse warming, it is unclear whether the drought can be attributed to increased greenhouse gases or is a product of natural climatic variability. Climate models indicate that the 21st century will be increasingly arid and droughts more severe and prolonged. Forest and woodland mortality due to fires and pathogens will increase. Demography and food security dictate that water demand in the Southwest will remain appreciable. If projected population growth is twinned with suburb-centered development, domestic demands will intensify. Meeting domestic demands through transference from agriculture presents concerns for rural sustainability and food security. Environmental concerns will limit additional transference from rivers. It is unlikely that traditional supply-side solutions such as more dams will securely meet demands at current per-capita levels. Significant savings in domestic usage can be realized through decreased applications of potable water to landscaping, but this is a small fraction of total regional water use, which is dominated by agriculture. Technical innovations, policy measures, and market-based solutions that increase supply and decrease water demand are all needed. Meeting 21st-century sustainability challenges in the Southwest will also require planning, cooperation, and integration that surpass 20th-century efforts in terms of geographic scope, jurisdictional breadth, multisectoral engagement, and the length of planning timelines.

  2. How to use water footprint as an indicator to assess the sustainability of food systems? Insights from a Mediterranean perspective

    NASA Astrophysics Data System (ADS)

    Altobelli, Filiberto; Meybeck, Alexandre; Gitz, Vincent; Dalla Marta, Anna

    2014-05-01

    The water footprint (WF) accounts for both the direct and indirect water use. It enables to calculate the water used to produce specific agricultural products. These have different water footprints. Thus the composition of the diet drives its water footprint, and ultimately agriculture's water consumption. This paper considers how the WF indicator could be used to assess the sustainability of food systems. FAO has started to study the notion of sustainable diets in order to design methods and indicators towards their assessment in different agro-ecological zones. A first issue is to identify issues which are critical to sustainability in a given area. Water scarcity is the most critical development problem in the Mediterranean area and the single most important factor in limiting agricultural growth. Water availability in the region has been declining steadily since the late 1950s. In turn, agriculture is one of the main water user. The Mediterranean diet model has been well scientifically characterized through its new revised pyramidal representation (Bach et al, 2011). Studies have calculated that the Mediterranean diet consumes less water then Anglo-Saxon types of diets. But such studies measure the water footprint of a model rather than the reality of food consumption patterns in the Mediterranean area. Moreover for a given water footprint, the "net" environmental impact depends not only on water consumption but also on water scarcity (WS) in the area of production, and also at the time of production. Therefore a more complete indicator to assess the sustainability of a food system from a consumption perspective could be WF/WS. It would include the distinction between green and blue water, as well as methodologies to determine the most appropriate scale (local, national, watershed) and measure it. Such a use of the WF, applied to domestic and imported food products alike, would enable to assess the water impact of food consumption. It could be completed by an

  3. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  4. Linking knowledge with action in the pursuit of sustainable water-resources management

    PubMed Central

    Jacobs, Katharine; Lebel, Louis; Buizer, James; Addams, Lee; Matson, Pamela; McCullough, Ellen; Garden, Po; Saliba, George; Finan, Timothy

    2016-01-01

    Managing water for sustainable use and economic development is both a technical and a governance challenge in which knowledge production and sharing play a central role. This article evaluates and compares the role of participatory governance and scientific information in decision-making in four basins in Brazil, Mexico, Thailand, and the United States. Water management institutions in each of the basins have evolved during the last 10–20 years from a relatively centralized water-management structure at the state or national level to a decision structure that involves engaging water users within the basins and the development of participatory processes. This change is consistent with global trends in which states increasingly are expected to gain public acceptance for larger water projects and policy changes. In each case, expanded citizen engagement in identifying options and in decision-making processes has resulted in more complexity but also has expanded the culture of integrated learning. International funding for water infrastructure has been linked to requirements for participatory management processes, but, ironically, this study finds that participatory processes appear to work better in the context of decisions that are short-term and easily adjusted, such as water-allocation decisions, and do not work so well for longer-term, high-stakes decisions regarding infrastructure. A second important observation is that the costs of capacity building to allow meaningful stakeholder engagement in water-management decision processes are not widely recognized. Failure to appreciate the associated costs and complexities may contribute to the lack of successful engagement of citizens in decisions regarding infrastructure. PMID:20080611

  5. Linking knowledge with action in the pursuit of sustainable water-resources management.

    PubMed

    Jacobs, Katharine; Lebel, Louis; Buizer, James; Addams, Lee; Matson, Pamela; McCullough, Ellen; Garden, Po; Saliba, George; Finan, Timothy

    2016-04-26

    Managing water for sustainable use and economic development is both a technical and a governance challenge in which knowledge production and sharing play a central role. This article evaluates and compares the role of participatory governance and scientific information in decision-making in four basins in Brazil, Mexico, Thailand, and the United States. Water management institutions in each of the basins have evolved during the last 10-20 years from a relatively centralized water-management structure at the state or national level to a decision structure that involves engaging water users within the basins and the development of participatory processes. This change is consistent with global trends in which states increasingly are expected to gain public acceptance for larger water projects and policy changes. In each case, expanded citizen engagement in identifying options and in decision-making processes has resulted in more complexity but also has expanded the culture of integrated learning. International funding for water infrastructure has been linked to requirements for participatory management processes, but, ironically, this study finds that participatory processes appear to work better in the context of decisions that are short-term and easily adjusted, such as water-allocation decisions, and do not work so well for longer-term, high-stakes decisions regarding infrastructure. A second important observation is that the costs of capacity building to allow meaningful stakeholder engagement in water-management decision processes are not widely recognized. Failure to appreciate the associated costs and complexities may contribute to the lack of successful engagement of citizens in decisions regarding infrastructure.

  6. Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water

    NASA Astrophysics Data System (ADS)

    Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong

    2014-04-01

    The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm2 active area create a serpentine flow-field on an active area of 100 cm2 and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums.

  7. Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water.

    PubMed

    Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong

    2014-04-04

    The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm(2) active area create a serpentine flow-field on an active area of 100 cm(2) and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums.

  8. Positive taxis and sustained responsiveness to water motions in larval zebrafish.

    PubMed

    Groneberg, Antonia H; Herget, Ulrich; Ryu, Soojin; De Marco, Rodrigo J

    2015-01-01

    Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions--also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties.

  9. Positive taxis and sustained responsiveness to water motions in larval zebrafish

    PubMed Central

    Groneberg, Antonia H.; Herget, Ulrich; Ryu, Soojin; De Marco, Rodrigo J.

    2015-01-01

    Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions—also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties. PMID:25798089

  10. Comparative analysis of the outflow water quality of two sustainable linear drainage systems.

    PubMed

    Andrés-Valeri, V C; Castro-Fresno, D; Sañudo-Fontaneda, L A; Rodriguez-Hernandez, J

    2014-01-01

    Three different drainage systems were built in a roadside car park located on the outskirts of Oviedo (Spain): two sustainable urban drainage systems (SUDS), a swale and a filter drain; and one conventional drainage system, a concrete ditch, which is representative of the most frequently used roadside drainage system in Spain. The concentrations of pollutants were analyzed in the outflow of all three systems in order to compare their capacity to improve water quality. Physicochemical water quality parameters such as dissolved oxygen, total suspended solids, pH, electrical conductivity, turbidity and total petroleum hydrocarbons were monitored and analyzed for 25 months. Results are presented in detail showing significantly smaller amounts of outflow pollutants in SUDS than in conventional drainage systems, especially in the filter drain which provided the best performance.

  11. A Research Experience for Undergraduates on Sustainable Land and Water Resources

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A. R.; Myrbo, A.; Ito, E.; Howes, T.

    2011-12-01

    A new research experience for undergraduates is being piloted which supports student involvement in management of land and water resources with sustainability as the major focus. Working on two Native American reservations (Fond du Lac Band of Lake Superior Chippewa, and Confederated Salish and Kootenai Tribes of Flathead Reservation) and in conjunction with local tribal colleges, we particularly focus on management of tribal land and water resources. In this way we work to both increase the involvement of Native American students in the geosciences and support ethical partnerships for research on Native lands. Students also have the opportunity to work experimentally at the St. Anthony Falls Laboratory in conjunction with the National Center for Earth-surface Dynamics.

  12. Conceptual energy and water recovery system for self-sustained nano membrane toilet.

    PubMed

    Hanak, Dawid P; Kolios, Athanasios J; Onabanjo, Tosin; Wagland, Stuart T; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-10-15

    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm(3)/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

  13. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    NASA Astrophysics Data System (ADS)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  14. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.

    PubMed

    Field, Robert W; Pearce, Graeme K

    2011-05-11

    Critical flux theory evolved as a description of the upper bound in the operating envelope for controlled steady state environments such as cross-flow systems. However, in the application of UF membranes in the water industry, dead-end (direct-flow) designs are used. Direct-flow is a pseudo steady state operation with different fouling characteristics to cross-flow, and thus the critical flux concept has limited applicability. After a review of recent usage of the critical flux theory, an alternative concept for providing design guidelines for direct-flow systems namely that of the threshold flux is introduced. The concept of threshold flux can also be applicable to cross-flow systems. In more general terms the threshold flux can be taken to be the flux that divides a low fouling region from a high fouling region. This may be linked both to the critical flux concept and to the concept of a sustainable flux. The sustainable flux is the one at which a modest degree of fouling occurs, providing a compromise between capital expenditure (which is reduced by using high flux) and operating costs (which are reduced by restricting the fouling rate). Whilst the threshold flux can potentially be linked to physical phenomena alone, the sustainable flux also depends upon economic factors and is thus of a different nature to the critical and threshold fluxes. This distinction will be illustrated using some MBR data. Additionally the utility of the concept of a threshold flux will be illustrated using pilot plant data obtained for UF treatment of four sources of water.

  15. The consequences of tourism for sustainable water use on a tropical island: Zanzibar, Tanzania.

    PubMed

    Gössling, S

    2001-02-01

    Many developing countries in the tropics have focused on tourism to generate additional income sources and to diversity the economy. Coastlines in particular have been on the forefront of tourist infrastructure development. Here, the presence of a large number of tourists has often had negative consequences for the sustainable use of the available resources, which in turn has had an effect on the integrity of the ecosystems. In this paper, the situation is described for the use of freshwater resources on the east coast of Zanzibar, Tanzania. This region is water poor, relying on freshwater derived from seasonal rains and stored in less efficient aquifers, which consist of freshwater lenses floating on the underlying seawater. Tourism in the area has grown rapidly in recent years and is expected to further increase in the future. This development is expected to put additional pressure on the freshwater resources of the east coast, which show already signs of over-use. The consequences of overexploitation can include the lowering of the groundwater table, land subsidence, deteriorating groundwater quality, and saltwater intrusion. These, in turn, determine the living conditions in coastal areas and the effects will be felt both by the local populations and the tourist industry. An investigation is made into the causes and consequences of water abstraction by the tourist industry. The results show that present levels of withdrawal are not sustainable, and parts of the local populations are already experiencing water deficits on a daily basis. In the future, if the expected increase in tourist numbers occurs, the pressure on the aquifers will correspondingly increase. The results could be that the tourism in the area becomes unsustainable, which could have an adverse effect on the national economy and also on the local population and environment. Therefore, a precautionary water-management approach is suggested.

  16. Infrastructure Task Force Sustainable Infrastructure Goals and Concepts Document - November 2011

    EPA Pesticide Factsheets

    This document outlines the concepts of appropriate infrastructure and sustainable management entities to guide the coordinated federal efforts to achieve greater sustainable access to safe drinking water and basic sanitation.

  17. Evaluating Ground Water Storage towards Sustainable Water-Food-Energy Management

    NASA Astrophysics Data System (ADS)

    Barik, Beas; Saheer, Sahana; Pathak, Amey; Ghosh, Subimal

    2016-04-01

    India's agricultural sector is largely dependent upon monsoon, however the monsoon mechanism has always been unpredictable and often meteorological droughts have occurred. In order to survive the meteorological droughts groundwater has been used extensively for irrigation. Government policies have also been framed to withdraw groundwater by providing energy required to pump it at subsidized rates to maintain the food security. The depleting groundwater goes unnoticed as it is overshadowed by the high agricultural productivity. However, if the groundwater depletion rate is overlooked, especially for the major agrarian zones, then irrigation cannot be dependent on groundwater for long, thus affecting the overall agricultural productivity. So, in this study we attempt to find out the present status of groundwater and its recharge and withdrawal rates considering the hydrological year (June to May) which coincides with the start of the agricultural season. The study area considered here are the two of the major agrarian zones, Maharashtra and Goa (Region 1) and North- Western India (comprising of the states of Punjab, Delhi, Haryana, Chandigarh and Rajasthan) (Region 2). The two regions show opposite trends in groundwater depletion for the period 2002 to 2014. The Region 2 shows a consistent decreasing trend of groundwater whereas Region 1 shows a declining trend during the initial drought years but for the recent years it shows an increasing trend. Our results show the importance of region wise study, since groundwater variability across different regions depend on the rainfall received, cropping pattern, type of crops, soil and various other natural and anthropogenic factors. In order to formulate better and sustainable groundwater monitoring and management policies the key factors causing depletion or replenishment over the regions will be identified.

  18. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  19. A hydro-economic model for water level fluctuations: combining limnology with economics for sustainable development of hydropower.

    PubMed

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.

  20. A Hydro-Economic Model for Water Level Fluctuations: Combining Limnology with Economics for Sustainable Development of Hydropower

    PubMed Central

    Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia

    2014-01-01

    Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619

  1. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  2. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoming; Fu, Bojie; Piao, Shilong; Wang, Shuai; Ciais, Philippe; Zeng, Zhenzhong; Lü, Yihe; Zeng, Yuan; Li, Yue; Jiang, Xiaohui; Wu, Bingfang

    2016-11-01

    Revegetation of degraded ecosystems provides opportunities for carbon sequestration and bioenergy production. However, vegetation expansion in water-limited areas creates potentially conflicting demands for water between the ecosystem and humans. Current understanding of these competing demands is still limited. Here, we study the semi-arid Loess Plateau in China, where the `Grain to Green’ large-scale revegetation programme has been in operation since 1999. As expected, we found that the new planting has caused both net primary productivity (NPP) and evapotranspiration (ET) to increase. Also the increase of ET has induced a significant (p < 0.001) decrease in the ratio of river runoff to annual precipitation across hydrological catchments. From currently revegetated areas and human water demand, we estimate a threshold of NPP of 400 +/- 5 g C m-2 yr-1 above which the population will suffer water shortages. NPP in this region is found to be already close to this limit. The threshold of NPP could change by -36% in the worst case of climate drying and high human withdrawals, to +43% in the best case. Our results develop a new conceptual framework to determine the critical carbon sequestration that is sustainable in terms of both ecological and socio-economic resource demands in a coupled anthropogenic-biological system.

  3. Building leadership capacity to drive sustainable water management: the evaluation of a customised program.

    PubMed

    Taylor, A C

    2010-01-01

    This paper describes a customised, six-month, leadership development program (LDP) that was designed for emerging leaders in the Australian water industry who were promoting sustainable urban water management (SUWM). It also presents results from an evaluation of the program's benefits, costs and overall 'return on investment' (ROI). The program was designed to help build emergent leadership capacity in the water industry, given strong evidence that this form of leadership plays an important role in advancing SUWM. It involved '360-degree feedback' processes, training, individual leadership development plans, and coaching sessions. Its design was informed by a review of the literature, and its content was informed by local empirical research involving effective SUWM leaders. The evaluation used a seven-tier assessment framework that examined different dimensions of the program's performance using source and methodological triangulation. The results indicate that such LDPs can produce a range of positive outcomes, such as promoting desired leadership behaviours and generating a positive ROI estimate. Specifically, the program's estimated ROI was approximately 190% after only one year. The primary conclusion is that evidence-based LDPs which are highly customised for specific types of leaders in the water industry represent a promising type of intervention to build forms of leadership capacity which are needed to successfully promote SUWM.

  4. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design.

    PubMed

    Khatun, Sabera; Sutradhar, Kumar B

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

  5. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design

    PubMed Central

    Khatun, Sabera; Sutradhar, Kumar B.

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations. PMID:24966835

  6. Sustainable water deliveries from the Colorado River in a changing climate.

    PubMed

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  7. Water, ecology and health: ecosystems as settings for promoting health and sustainability.

    PubMed

    Parkes, Margot W; Horwitz, Pierre

    2009-03-01

    Despite the proposed ecological and systems-based perspectives of the settings-based approach to health promotion, most initiatives have tended to overlook the fundamental nature of ecosystems. This paper responds to this oversight by proposing an explicit re-integration of ecosystems within the healthy settings approach. We make this case by focusing on water as an integrating unit of analysis. Water, on which all life depends, is not only an integral consideration for the existing healthy settings (schools, hospitals, workplaces) but also highlights the ecosystem context of health and sustainability. A focus on catchments (also know as watersheds and river basins) exemplifies the scaled and upstream/downstream nature of ecosystems and draws into sharp focus the cross-sectoral and transdisciplinary context of the social and environmental determinants of health. We position this work in relation to the converging agendas of health promotion and ecosystem management at the local, regional and global scales--and draw on evidence from international initiatives as diverse as the WHO Commission on Social Determinants of Health, and the Millennium Ecosystem Assessment. Using water as a vehicle for understanding the systemic context for human wellbeing, health promotion and disease prevention draws inevitable attention to key challenges of scale, intersectoral governance and the complementary themes of promoting resilience and preventing vulnerability. We conclude by highlighting the importance of building individual and institutional capacity for this kind of integration--equipping a new generation of researchers, practitioners and decision-makers to be conversant with the language of ecosystems, capable of systemic thought and focused on settings that can promote both health and sustainability.

  8. Sharing Water Data to Encourage Sustainable Choices in Areas of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Abad, J. D.; Vastine, J.; Yoxtheimer, D.; Wilderman, C.; Vidic, R.; Hooper, R. P.; Brasier, K.

    2012-12-01

    participants to assess data gaps. Fourth, the team was encouraged to search for data that plug gaps. Fifth, the database should be easily sustained by others long-term if the Shale Network team simplifies the process of uploading data and finds ways to create community buy-in or incentives for data uploads. Sixth, the database itself and the workshops for the database should drive future agreement about analytical protocols. Seventh, the database is already encouraging other groups to publish data online. Finally, a user interface is needed that is easier and more accessible for citizens to use. Overall, it is clear that sharing data is one way to build bridges among decision makers, scientists, and citizens to understand issues related to sustainable development of energy resources in the face of issues related to water quality and quantity.

  9. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    NASA Astrophysics Data System (ADS)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  10. Source Water Protection and Sustainability: a Practical Approach to Assessing Risk

    NASA Astrophysics Data System (ADS)

    Nelson, D. O.; Chinitz, A. E.

    2009-12-01

    The recognition of climate change and the realization of the finite nature of sources of drinking water have spurred communities to develop resource sustainable practices. Sustainability requires overall management of the resource, and protecting existing and future water supplies from contamination plays a key role. Continued population growth will place increasing demands on water supplies and climate change will likely reduce groundwater recharge as well as increase the desire to replace dwindling surface water sources with groundwater. Aware of the need to protect its resource, the City of Springfield has delineated the source water protection areas (SWPAs) surrounding its wells and wellfields and has an ordinance in place that allows the City to establish specific guidelines associated with chemical usage. The City has established a range of best management strategies that vary in degree as a function of the time-of-travel zone and the presumed risk that a specific chemical poses to groundwater. When the guidelines were initially established, the City used more of a blanket approach to imposing specific practices on facilities within the SWPAs. The various approaches used were not site-specific and were based on limited information, reflecting limited resources, that were applied throughout the SWPAs as a function of proximity to the well(s). This practice led to the City’s receiving many questions from developers, etc., regarding “Why do you consider this product a risk?” The City needed an objective, consistent risk assessment tool that would reflect not only the specific chemical but also the geologic characteristics of the site where the chemical would be used. We used existing well reports to develop GIS coverages of both weighted hydraulic conductivity and depth to the aquifer that were then overlain on to the SWPA coverages. This exercise provided an assessment of the ease of water movement to the aquifer. Using that information, a spreadsheet was

  11. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  12. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    PubMed

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  13. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  14. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  15. Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium

    PubMed Central

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alexander S.

    2012-01-01

    ABSTRACT The relationship between dinitrogenase-driven H2 production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H2 at rates up to 400 µmol ⋅ mg Chl−1 ⋅ h−1 in parallel with uninterrupted photosynthetic O2 production. Notably, sustained coproduction of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ⋅ mg Chl−1 ⋅ h−1, respectively. Oscillations were not observed when CO2 was omitted, and instead H2 and O2 evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H2 production displayed a strong dose dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H2 production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H2 production over that period. Collectively, our results demonstrate that uninterrupted H2 production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels. PMID:22872781

  16. Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium

    SciTech Connect

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2012-08-07

    Continuously illuminated nitrogen-deprived Cyanothece sp. ATCC 51142 evolved H2 via dinitrogenase at rates up to 400 μmol•mg Chl-1•h-1 in parallel with photosynthetic O2 production. Notably, sustained co-production of H2 and O2 occurred over 100 h in the presence of CO2, with both gases displaying inverse oscillations which eventually dampened to stable rates. Oscillations were not observed when CO2 was omitted, while H2 and O2 evolution rates were positively correlated. In situ light saturation analyses of H2 production displayed dose-dependence and lack of O2 inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect the short-term H2 production indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. Collectively, our results demonstrate that uninterrupted H2 production in unicellular diazotrophic cyanobacteria can be fueled by water photolysis without the detrimental effects of O2 and have important implications for sustainable production of biofuels.

  17. Improving the sustainability of granular iron/pumice systems for water treatment.

    PubMed

    Bilardi, Stefania; Calabrò, Paolo S; Caré, Sabine; Moraci, Nicola; Noubactep, Chicgoua

    2013-05-30

    Metallic iron (Fe(0)) is currently used in subsurface and above-ground water filtration systems on a pragmatic basis. Recent theoretical studies have indicated that, to be sustainable, such systems should not contain more than 60% Fe(0) (vol/vol). The prediction was already validated in a Fe(0)/sand system using methylene blue as an operational tracer. The present work is the first attempt to experimentally verify the new concept using pumice particles. A well-characterized pumice sample is used as operational supporting material and is mixed with 200 g of a granular Fe(0), in volumetric proportions, varying from 0 to 100%. The resulting column systems are characterized (i) by the time dependent evolution of their hydraulic conductivity and (ii) for their efficiency for the removal of Cu(II), Ni(II), and Zn(II) from a three-contaminants-solution (about 0.3 mM of each metal). Test results showed a clear sustainability of the long term hydraulic conductivity with decreasing Fe(0)/pumice ratio. In fact, the pure Fe(0) system clogged after 17 days, while the 25% Fe(0) system could operate for 36 days. The experimental data confirmed the view that well-designed Fe(0) PRBs may be successful at removing both reducible and non-reducible metal species.

  18. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral.

    PubMed

    Naumann, Malik S; Orejas, Covadonga; Wild, Christian; Ferrier-Pagès, Christine

    2011-11-01

    Scleractinian cold-water corals (CWC) represent key taxa controlling deep-sea reef ecosystem functioning by providing structurally complex habitats to a high associated biodiversity, and by fuelling biogeochemical cycles via the release of organic matter. Nevertheless, our current knowledge on basic CWC properties, such as feeding ecology and key physiological processes (i.e. respiration, calcification and organic matter release), is still very limited. Here, we show evidence for the trophic significance of zooplankton, essentially sustaining levels of the investigated key physiological processes in the cosmopolitan CWC Desmophyllum dianthus (Esper 1794). Our results from laboratory studies reveal that withdrawal (for up to 3 weeks) of zooplankton food (i.e. Artemia salina) caused a significant decline in respiration (51%) and calcification (69%) rates compared with zooplankton-fed specimens. Likewise, organic matter release, in terms of total organic carbon (TOC), decreased significantly and eventually indicated TOC net uptake after prolonged zooplankton exclusion. In fed corals, zooplankton provided 1.6 times the daily metabolic C demand, while TOC release represented 7% of zooplankton-derived organic C. These findings highlight zooplankton as a nutritional source for D. dianthus, importantly sustaining respiratory metabolism, growth and organic matter release, with further implications for the role of CWC as deep-sea reef ecosystem engineers.

  19. Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water.

    PubMed

    Choe, Jong Kwon; Mehnert, Michelle H; Guest, Jeremy S; Strathmann, Timothy J; Werth, Charles J

    2013-05-07

    Environmental impacts of conventional and emerging perchlorate drinking water treatment technologies were assessed using life cycle assessment (LCA). Comparison of two ion exchange (IX) technologies (i.e., nonselective IX with periodic regeneration using brines and perchlorate-selective IX without regeneration) at an existing plant shows that brine is the dominant contributor for nonselective IX, which shows higher impact than perchlorate-selective IX. Resource consumption during the operational phase comprises >80% of the total impacts. Having identified consumables as the driving force behind environmental impacts, the relative environmental sustainability of IX, biological treatment, and catalytic reduction technologies are compared more generally using consumable inputs. The analysis indicates that the environmental impacts of heterotrophic biological treatment are 2-5 times more sensitive to influent conditions (i.e., nitrate/oxygen concentration) and are 3-14 times higher compared to IX. However, autotrophic biological treatment is most environmentally beneficial among all. Catalytic treatment using carbon-supported Re-Pd has a higher (ca. 4600 times) impact than others, but is within 0.9-30 times the impact of IX with a newly developed ligand-complexed Re-Pd catalyst formulation. This suggests catalytic reduction can be competitive with increased activity. Our assessment shows that while IX is an environmentally competitive, emerging technologies also show great promise from an environmental sustainability perspective.

  20. Water supply sustainability and adaptation strategies under anthropogenic and climatic changes of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Estupina, Valérie Borrell; Dezetter, Alain; Servat, Eric

    2015-12-01

    Assessing water supply sustainability is crucial to meet stakeholders' needs, notably in the Mediterranean. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km2, France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need to evaluate possible future changes in water allocation capacity in the catchment, using climate change, dam management and water use scenarios. A modelling framework that was already calibrated and validated on this catchment over the last 50 years was used to assess whether water resources could meet water demands at the 2030 horizon for the domestic, agricultural and environmental sectors. Water supply sustainability was evaluated at the sub-basin scale according to priority allocations using a water supply capacity index, frequency of unsatisfactory years as well as the reliability, resilience and sustainability metrics. Water use projections were based on the evolution of population, per-unit water demand, irrigated areas, water supply network efficiency, as well as on the evaluation of a biological flow. Climate projections were based on an increase in temperature up to 2°C and a decrease in daily precipitation by 20%. Adaptation strategies considered reducing per-unit water demand for the domestic sector and the importation of water volume for the agricultural sector. The dissociated effects of water use and climatic constraints on water supply sustainability were evaluated. Results showed that the downstream portions would be the more impacted as they are the most exploited ones. In the domestic sector, sustainability indicators would be more degraded by climate change scenarios than water use constraints. In the agricultural sector the negative impact of water use scenarios would be

  1. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Sallée, Jean-Baptiste; Bowie, Andrew R.; Lévy, Marina; Swart, Sebastiaan; Boyd, Philip W.

    2014-04-01

    Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surface waters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter together with year-round diffusion across density surfaces, known as diapycnal diffusion, are the main physical processes that carry iron-laden subsurface waters to the surface. Here, we analyse data on dissolved iron concentrations in the top 1,000 m of the Southern Ocean, taken from all known and available cruises to date, together with hydrographic data to determine the relative importance of deep winter mixing and diapycnal diffusion to dissolved iron fluxes at the basin scale. Using information on the vertical distribution of iron we show that deep winter mixing supplies ten times more iron to the surface ocean each year, on average, than diapycnal diffusion. Biological observations from the sub-Antarctic sector suggest that following the depletion of this wintertime iron pulse, intense iron recycling sustains productivity over the subsequent spring and summer. We conclude that winter mixing and surface-water iron recycling are important drivers of temporal variations in Southern Ocean primary production.

  2. Sustainability in urban water resources management - some notes from the field

    NASA Astrophysics Data System (ADS)

    Shuster, W.; Garmestani, A.; Green, O. O.

    2014-12-01

    Urban development has radically transformed landscapes, and along with it, how our cities and suburbs cycle energy and water. One unfortunate outcome of urbanization is the production of massive volumes of uncontrolled runoff volume. Our civic infrastructure is sometimes marginally capable of handling even dry-weather fluxes without wastewater system overflows, much less the challenges of wet-weather events. The predominance of runoff volume in urban water balance has had serious ramifications for regulatory activity, municipal financial matters, and public health. In the interest of protecting human health and the environment, my group's research has primarily addressed the integration of social equity, economic stabilization, and environmental management to underpin the development of sustainable urban water cycles. In this talk, I will present on: 1) the Shepherd Creek Stormwater Management project wherein an economic incentive was used to recruit citizen stormwater managers and distribute parcel-level, green infrastructure-based stormwater control measures; and 2) our urban soil pedologic-hydrologic assessment protocol that we use as a way of understanding the capacity for urban soils to provide ecosystem services, and in cities representing each of the major soil orders.

  3. Evaluation of sustainable electron donors for nitrate removal in different water media.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Breen, Peter; Cook, Perran L M; Deletic, Ana

    2015-11-15

    An external electron donor is usually included in wastewater and groundwater treatment systems to enhance nitrate removal through denitrification. The choice of electron donor is critical for both satisfactory denitrification rates and sustainable long-term performance. Electron donors that are waste products are preferred to pure organic chemicals. Different electron donors have been used to treat different water types and little is known as to whether there are any electron donors that are suitable for multiple applications. Seven different carbon rich waste products, including liquid and solid electron donors, were studied in comparison to pure acetate. Batch-scale tests were used to measure their ability to reduce nitrate concentrations in a pure nutrient solution, light greywater, secondary-treated wastewater and tertiary-treated wastewater. The tested electron donors removed oxidised nitrogen (NOx) at varying rates, ranging from 48 mg N/L/d (acetate) to 0.3 mg N/L/d (hardwood). The concentrations of transient nitrite accumulation also varied across the electron donors. The different water types had an influence on NOx removal rates, the extent of which was dependent on the type of electron donor. Overall, the highest rates were recorded in light greywater, followed by the pure nutrient solution and the two partially treated wastewaters. Cotton wool and rice hulls were found to be promising electron donors with good NOx removal rates, lower leachable nutrients and had the least variation in performance across water types.

  4. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    PubMed

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination.

  5. Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies.

    PubMed

    Springer, Nathaniel P; Duchin, Faye

    2014-04-15

    In the early 21st century the extensive clearing of forestland, fresh water scarcity, and sharp rises in the price of food have become causes for concern. These concerns may be substantially exacerbated over the next few decades by the need to provide improved diets for a growing global population. This study applies an inter-regional input-output model of the world economy, the World Trade Model, for analysis of alternative scenarios about satisfying future food requirements by midcentury. The scenario analysis indicates that relying only on more extensive use of arable land and fresh water would require clearing forests and exacerbating regional water scarcities. However, a combination of less resource-intensive diets and improved agricultural productivity, the latter especially in Africa, could make it possible to use these resources sustainably while also constraining increases in food prices. Unlike the scenario outcomes from other kinds of economic models, our framework reveals the potential for a decisive shift of production and export of agricultural products away from developed countries toward Africa and Latin America. Although the assumed changes in diets and technologies may not be realizable without incentives, our results suggest that these regions exhibit comparative advantages in agricultural production due to their large remaining resource endowments and their potential for higher yields.

  6. Assess and improve the sustainability of water treatment facility using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tejada-Martinez, Andres; Lei, Hongxia; Zhang, Qiong

    2016-11-01

    Fluids problems in water treatment industry are often simplified or omitted since the focus is usually on chemical process only. However hydraulics also plays an important role in determining effluent water quality. Recent studies have demonstrated that computational fluid dynamics (CFD) has the ability to simulate the physical and chemical processes in reactive flows in water treatment facilities, such as in chlorine and ozone disinfection tanks. This study presents the results from CFD simulations of reactive flow in an existing full-scale ozone disinfection tank and in potential designs. Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT (the product of disinfectant concentration and contact time) obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone disinfection tank designs and developed a composite indicator to quantify the sustainability of ozone disinfection tank in technological, environmental and economic dimensions.

  7. Overview of the U.S. DOE Light Water Reactor Sustainability Program

    SciTech Connect

    Shannong M. Bragg-Sitton; Jeremy T. Busby; Bruce P. Hallbert; Kathryn A. McCarthy; Richard Reister; Curtis L. Smith; Donald L. Williams

    2013-05-01

    The U.S. Department of Energy's Light Water Reactor Sustainability (LWRS) Program focuses on re­search and development to support the long-term operation of the nation's com­ mercial nuclear power plants. Extending the operation of current plants is essential to re­ alizing the administration's goals of reduc­ inggreenhouse gas emissions to 80 percent below 1990 levels by the year 2050. The science-based technical results from the LWRS Program provide data to help own­ ers make informed decisions on long-term operation and subsequent license renewal (the Nuclear Regulatory Commission's term for a second license renewal), thereby re­ ducing the uncertainty, and therefore the risk, associated with those decisions.

  8. REACTOR PRESSURE VESSEL ISSUES FOR THE LIGHT-WATER REACTOR SUSTAINABILITY PROGRAM

    SciTech Connect

    Nanstad, Randy K; Odette, George Robert

    2010-01-01

    The Light Water Reactor Sustainability Program Plan is a collaborative program between the U.S. Department of Energy and the private sector directed at extending the life of the present generation of nuclear power plants to enable operation to at least 80 years. The reactor pressure vessel (RPV) is one of the primary components requiring significant research to enable such long-term operation. There are significant issues that need to be addressed to reduce the uncertainties in regulatory application, such as, 1) high neutron fluence/long irradiation times, and flux effects, 2) material variability, 3) high-nickel materials, 4)specimen size effects and the fracture toughness master curve, etc. The first issue is the highest priority to obtain the data and mechanistic understanding to enable accurate, reliable embrittlement predictions at high fluences. This paper discusses the major issues associated with long-time operation of existing RPVs and the LWRSP plans to address those issues.

  9. Soil-water interactions: implications for the sustainability of urban areas

    NASA Astrophysics Data System (ADS)

    Ferreira, António J. D.; Ferreira, Carla S. S.; Walsh, Rory P. D.

    2015-04-01

    Cities have become recently the home for more than half of the world's population. Cities are often seen as ecological systems just a short step away from collapse [Newman 2006]. Being a human construction, cities disrupt the natural cycles and the patterns of temporal and spatial distribution of environmental and ecological processes. Urbanization produces ruptures in biota, water, energy and nutrients connectivity that can lead to an enhanced exposure to disruptive events that hamper the wellbeing and the resilience of urban communities in a global change context. And yet, mankind can't give up of these structures one step away from collapse. In this paper we visit the ongoing research at the Ribeira dos Covões peri-urban catchment, as the basis to discuss several important processes and relations in the water-soil interface: A] the impact of the build environment and consequently the increase of the impervious area on the generation and magnitude of hydrological processes at different scales, the impact on flash flood risk and the mitigation approaches. B] the pollutant sources transport and fade in urban areas, with particular emphasis in the role of vegetation and soils in the transmission of pollutants from the atmosphere to the soil and to the water processes. C] the use and the environmental services of the urban ecosystems (where the relations of water, soil and vegetation have a dominate role) to promote a better risk and resources governance. D] the special issue of urban agriculture, where all the promises of sustainability and threats to wellbeing interact, and where the soil and water relations in urban areas are more significant and have the widest and deepest implications.

  10. Designing the Monitoring of Water-Related Sustainable Development Goals Based on Value of Information

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Levy, M. A.; de Sherbinin, A. M.; Fischer, A.

    2015-12-01

    The proposed Sustainable Development Goals (SDGs) represent an unprecedented international commitment to collective action and targeted interventions at global, regional, and national scales. Existing monitoring and data infrastructures are inadequate for producing the variety of environmental and socioeconomic information needed to ensure efficient and effective outcomes across the range of interlinked SDGs and targets. The scientific community needs to take a lead in developing new tools and approaches that, at reasonable cost, provide monitoring data of sufficient quality and spatial and temporal coverage to support informed decision making by diverse stakeholders. The expanded SDGs related to water offer the opportunity to explore potential new monitoring approaches and data system architectures in a key sector, building on existing water monitoring capabilities and incorporating new technologies and methods. Since additional investments in monitoring will undoubtedly be limited, it is important to assess carefully the value of information produced by different options and their associated risks and tradeoffs. We review here the existing set of water monitoring systems, known gaps and limitations, stakeholder inputs on data needs, and the potential value of information in light of alternative water sector interventions. Of particular interest are opportunities to share investments in monitoring across sectors and stakeholders (e.g., public and private entities) and to identify where incremental improvements in water monitoring could have significant benefits for other SDGs (e.g., related to health, energy, agriculture, and climate change). Value of information is also driven by the numbers of people affected by decisions or able to take advantage of improved data, which implies the need not only to collect and archive data, but also to invest in making data accessible and usable to diverse and geographically dispersed users.

  11. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  12. Sustainability of Scottish water quality in the early 21st century.

    PubMed

    Ferrier, Robert C; Edwards, Anthony C

    2002-07-22

    This paper reviews some of the current water quality issues relating to the surface waters of Scotland and highlights some of the key issues likely to be significant over the next decade. The sustainable management of water quality requires an appreciation of the temporal and spatial assessment of the resource, together with an identification of reference or natural conditions from which to determine change, and the elucidation of the drivers of change. Only through this integrated approach, can appropriate management strategies be developed and prioritised, bearing in mind that impacts may be decoupled from sources in both time and space. This paper highlights recent trends in water quality (from a hydrochemical perspective) with separation into three broad groups: rivers, lochs and estuaries. For rivers, a general reduction in concentration of determinants that are more indicative of urban point sources (phosphorus, ammonium, suspended solids, biochemical oxygen demand etc.) is apparent, while in more agriculturally-dominated areas, an increase in concentration of solutes that are considered more diffuse in origin, (e.g. nitrate) is reported. The increasing contribution to total loads from diffuse pollutants is a priority area for both research and policy. Current scientific challenges are to define the most appropriate spatial context within which regional water quality issues can be monitored and managed. It is likely that future emphasis will be placed on making an initial ecoregion based grouping in conjunction with physically defined catchment, which will be used to quantify site-specific impacts. Such an organisational approach will provide a mechanism that enables a targeted monitoring strategy to be developed. This will allow the establishment of ecologically based targets for water quality, and an improved understanding the biogeochemistry of pollution reversibility and ecosystem recovery. It is also fundamental to the development of tools through which

  13. Connectivity research in Iceland - using scientific tools to establish sustainable water management strategies

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    Since the ninth century when the first settlers arrived in Iceland the island has undergone deforestation and subsequent vegetation degradation and soil erosion. Almost the entire birch forest and woodland, which originally covered ~ 25% of the nation, have been deforested through wood cutting and overgrazing. Consequently, soil erosion seriously affects over 40% of the country. During the last 50 years extensive drainage of wetlands has taken place. Furthermore, about 75% of Iceland electricity production comes from hydropower plants, constructed along the main rivers. Along with seismic and volcanic activities the above mentioned anthropogenic impacts continuously altered the hydro-geomorphic connectivity in many parts of the island. In the framework of ongoing efforts to restore ecosystems and their services in Iceland a thorough understanding of the hydro-geomorphic processes is essential. Field observations and numerical models are crucial tools to adopt appropriate management strategies and help decision makers establish sustainable governance strategies. Sediment transport models have been used in the past to investigate the impacts of hydropower dams on sediment transport in downstream rivers (Finger et al., 2006). Hydropower operations alter the turbidity dynamics in downstream freshwater systems, affecting visibility and light penetration into the water, leading to significant changes in primary production (Finger et al., 2007a). Overall, the interruption of connectivity by physical obstructions can affect the entire food chain, hampering the fishing yields in downstream waters (Finger et al., 2007b). In other locations hydraulic connectivity through retreating glaciers assures water transfer from upstream to downstream areas. The drastically retreat of glaciers can raise concerns of future water availability in remote mountain areas (Finger et al., 2013). Furthermore, the drastic reduction of glacier mass also jeopardizes the water availability for

  14. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    consumption impacts, depending on irrigation -- water consumption for energy rises from 7% to 18% under the base case. Arizona is further from major shale basins, but aims to reduce unsustainable groundwater usage. Desalination by itself will increase annual impacts by at least 2% in all impact categories by 2035, and prioritizing renewable energy sources along with desalination was found to lower GHGs by 1% from BAU, but increase 2035 impacts in all other categories by at least 10% from new construction or operation. In both PA and AZ, changes in impacts and shifting sources have interconnected tradeoffs, making the water-enegy nexus a key part of managing environmental problems such as climate change. Future energy and water supplies are also likely to show higher interdependencies, which may or may not improve regional sustainability. This work offers a way to combine four important sets of information to enable the generation of answers to key regional planning questions around these two key resources.

  15. Assessment of Change Drivers Affecting the Sustainability of Gravity Fed Water Supply in the Alto Beni Watershed of Bolivia

    NASA Astrophysics Data System (ADS)

    Fry, L. M.; Mihelcic, J. R.; Watkins, D. W.; Reents, N.

    2008-12-01

    In the Alto Beni region of Bolivia, most communities rely on gravity fed systems for their drinking water. Gravity fed drinking water systems are often viewed as a feasible and sustainable method of delivering safe natural spring water to developing communities, because minimal treatment is required and pumping is unnecessary. However, communities in the Alto Beni watershed are finding the need to extend their systems to more distant springs to provide sufficient water. Drivers of change within the watershed that have the potential to affect the sustainability of gravity fed water systems include a 3% population growth rate, an expected 200% increase in agricultural use of land, expansion of water and sanitation coverage (83% and 72% increases in coverage respectively), and a changing climate with a roughly 1.5% projected increase in the mean annual temperature from the 1990s and a 2 to 4% decrease in dry season precipitation by the 2030s. These changes affect both demand and supply from springs. Indicators for these change drivers are evaluated in seventeen watersheds within the Alto Beni. The research presented is the beginning of a monitoring program using low cost methods and local participants to study the impacts of changes on the sustainability of water systems in the region.

  16. Daclatasvir plus sofosbuvir, with or without ribavirin, achieved high sustained virological response rates in patients with HCV infection and advanced liver disease in a real-world cohort

    PubMed Central

    Welzel, Tania M; Petersen, Jörg; Herzer, Kerstin; Ferenci, Peter; Gschwantler, Michael; Wedemeyer, Heiner; Berg, Thomas; Spengler, Ulrich; Weiland, Ola; van der Valk, Marc; Rockstroh, Jürgen; Peck-Radosavljevic, Markus; Zhao, Yue; Jimenez-Exposito, Maria Jesus; Zeuzem, Stefan

    2016-01-01

    Objective We assessed the effectiveness and safety of daclatasvir (DCV) plus sofosbuvir (SOF), with or without ribavirin (RBV), in a large real-world cohort, including patients with advanced liver disease. Design Adults with chronic HCV infection at high risk of decompensation or death within 12 months and with no available treatment options were treated in a European compassionate use programme. The recommended regimen was DCV 60 mg plus SOF 400 mg for 24 weeks; RBV addition or shorter duration was allowed at physicians' discretion. The primary endpoint was sustained virological response at post-treatment week 12 (SVR12). Results Of the 485 evaluable patients, 359 received DCV+SOF and 126 DCV+SOF+RBV. Most patients were men (66%), white (93%) and treatment-experienced (70%). The most frequent HCV genotypes were 1b (36%), 1a (33%) and 3 (21%), and 80% of patients had cirrhosis (42% Child–Pugh B/C; 46% Model for End-Stage Liver Disease score >10). SVR12 (modified intention-to-treat) was achieved by 91% of patients (419/460); 1 patient had virological breakthrough and 13 patients relapsed. Virological failure was not associated with treatment group (adjusted risk difference DCV+SOF minus DCV+SOF+RBV: 1.06%; 95% CI −2.22% to 4.35%). High SVR12 was observed regardless of HCV genotype or cirrhosis, liver transplant or HIV/HCV coinfection status. Twenty eight patients discontinued treatment due to adverse events (n=18) or death (n=10) and 18 died during follow-up. Deaths and most safety events were associated with advanced liver disease and not considered treatment related. Conclusions DCV+SOF with or without RBV achieved high SVR12 and was well tolerated in a diverse cohort of patients with severe liver disease. Trial registration number NCT0209966. PMID:27605539

  17. Smart SUDS: recognising the multiple-benefit potential of sustainable surface water management systems.

    PubMed

    Jose, Roshni; Wade, Rebecca; Jefferies, Chris

    2015-01-01

    How can we make sustainable urban drainage systems (SUDS) smart? SUDS help us to manage surface water runoff from urban environments but they are capable of delivering much more. This paper looks beyond the water quantity and quality improvement functions of SUDS and investigates the multiple benefits that can be gained by implementing smart SUDS solutions. This work provides a new perspective, using methodologies not normally associated with SUDS research, to determine multiple benefits. The outputs of the work can potentially assist decision-makers, designer and planners in recognising the potential for multiple benefits that can be delivered by SUDS. The ecosystem services (ES) associated with a large redevelopment in Dundee, Scotland, UK, are identified and a public perception study together with public participatory geographical information system (PPGIS) methods was used to confirm the goods and benefits of the SUDS. The paper presents findings on the public perception of SUDS as they provide cultural benefits such as recreation, aesthetics and biodiversity. The results show that greenspace is important when choosing a location, and willingness to pay for greenspace is high in this area. This paper concludes that SUDS provide multi-functional benefits in relation to the ES, thereby justifying the cachet of being termed Smart SUDS.

  18. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    NASA Astrophysics Data System (ADS)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  19. Sustaining water resource use in the degraded environment of the Irangi Hills, central Tanzania

    NASA Astrophysics Data System (ADS)

    Kangalawe, Richard Y. M.

    The Irangi Hills in the semiarid central Tanzania are known for their severe land degradation, particularly through soil erosion. This study aims at investigating the dynamics in the local resource management and adaptive farming strategies. A combination of conventional survey methods, participatory analysis, soil description and aerial photo interpretations were used in the analysis of spatial and temporal land-use patterns. Results from the study showed that farmers utilised all possible niches in the landscape with the agricultural practices varying considerably, depending on spatial variations in soil conditions, water availability and retention capacity of the soil. The hard clayey soils were often ploughed at the end of the rainy season, before the soil dried out, to facilitate timeliness of planting in the following growing season, and to enhance water infiltration at the onset of the rainy season. Seasonally waterlogged soils were intensively cultivated and planted late during the growing season, with crops maturing only from groundwater resource. To make effective use of available groundwater resources during the dry season, the droughty and often infertile sands in ephemeral watercourses are used for growing vegetables or sugarcane in sunken holes without additional fertilisers/manure. This suggests that the crops grown obtain sufficient nutrients only from groundwater resources. However, the sustainability of cultivation in these ephemeral waterways is still questionable.

  20. Developing Local Curriculum Framework on Water Resource and Disaster Course for Enhancing Students' Learning Achievements in the Basic Educational System

    ERIC Educational Resources Information Center

    Chunrasaksakun, Chunwadee; Sanrattana, Unchalee; Tungkasamit, Angkana; Srisawat, Niwat

    2015-01-01

    The aim of the paper was to administer and prepare teachers for management to their students' learning achievements within the curriculum framework of water resource and disaster management. This course was compared to manage learning into different school sizes with the sample size in the lower secondary education schools with two groups of 28…

  1. Water quality status of dugouts from five districts in Northern Ghana: implications for sustainable water resources management in a water stressed tropical savannah environment.

    PubMed

    Cobbina, Samuel J; Anyidoho, Louis Y; Nyame, Frank; Hodgson, I O A

    2010-08-01

    This study was primarily aimed at investigating the physicochemical and microbial quality of water in 14 such dugouts from five districts in the northern region of Ghana. Results obtained suggest that except for colour, turbidity, total iron and manganese, many physicochemical parameters were either within or close to the World Health Organisation's acceptable limits for drinking water. Generally, colour ranged from 5 to 750 Hz (mean 175 Hz), turbidity from 0.65 to 568 nephelometric turbidity units (NTU; mean 87.9 NTU), total iron from 0.07 to 7.85 mg/L (mean 1.0 mg/L) and manganese from 0.03 to 1.59 mg/L (mean 0.50 mg/L). Coliform counts in water from all the dugouts in both wet and dry seasons were, however, above the recommended limits for drinking water. Total and faecal coliforms ranged from 125 to 68,000 colony forming units (cfu)/100 mL (mean 10,623 cfu/100 mL) and <1 to 19,000 cfu/100 mL (mean 1,310 cfu /100 mL), respectively. The poor microbial quality, as indicated by the analytically significant presence of coliform bacteria in all samples of dugout water, strongly suggests susceptibility and exposure to waterborne diseases of, and consequent health implications on, the many people who continuously patronise these vital water resources throughout the year. In particular, more proactive sustainable water management options, such as introduction to communities of simple but cost-effective purification techniques for water drawn from dugouts for drinking purposes, education and information dissemination to the water users to ensure environmentally hygienic practices around dugouts, may be needed.

  2. Sustainability Base Construction Update

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    2012-01-01

    Construction of the new Sustainability Base Collaborative support facility, expected to become the highest performing building in the federal government continues at NASA's Ames Research Center, Moffet Field, Calif. The new building is designed to achieve a platinum rating under the leadership in Energy and Environment Design (LEED) new construction standards for environmentally sustainable construction developed by the U. S. Green Building Council, Washington, D. C. When completed by the end of 2011, the $20.6 million building will feature near zero net energy consumption, use 90 percent less potable water than conventionally build buildings of equivalent size, and will result in reduced building maintenance costs.

  3. Soil and water conservation for sustainable land management: where do we stand ?

    NASA Astrophysics Data System (ADS)

    Govers, Gerard

    2014-05-01

    Although soil and water conservation efforts date back to the 1930's in the USA, the imp