Science.gov

Sample records for achieve thrust propellantless

  1. Propellantless Propulsion Technologies for In-Space Transportation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.

  2. Propellantless AOCS Design for a 160-m, 450-kg Sailcraft of the Solar Polar Imager Mission

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Thomas, Stephanie; Paluszek, Michael; Murphy, David

    2005-01-01

    An attitude and orbit control system (AOCS) is developed for a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. The SPI mission is one of several Sun- Earth Connections solar sail roadmap missions currently envisioned by NASA. A reference SPI sailcraft consists of a 160-m, 150-kg square solar sail, a 250-kg spacecraft bus, and 50-kg science payloads, The 160-m reference sailcraft has a nominal solar thrust force of 160 mN (at 1 AU), an uncertain center-of-mass/center-of-pressure offset of +/- 0.4 m, and a characteristic acceleration of 0.35 mm/sq s. The solar sail is to be deployed after being placed into an earth escaping orbit by a conventional launch vehicle such as a Delta 11. The SPI sailcraft first spirals inwards from 1 AU to a heliocentric circular orbit at 0.48 AU, followed by a cranking orbit phase to achieve a science mission orbit at a 75-deg inclination, over a total sailing time of 6.6 yr. The solar sail will be jettisoned after achieving the science mission orbit. This paper focuses on the solar sailing phase of the SPI mission, with emphasis on the design of a reference AOCS consisting of a propellantless primary ACS and a microthruster-based secondary (optional) ACS. The primary ACS employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness and effectiveness of such a propellantless primary ACS would be enhanced by the secondary ACS which employs tip-mounted, lightweight pulsed plasma thrusters (PPTs). The microPPT-based ACS is mainly intended for attitude recovery maneuvers from off-nominal conditions. A relatively fast, 70-deg pitch reorientation within 3 hrs every half orbit during the orbit cranking phase is shown to be feasible, with the primary ACS, for possible solar observations even during the 5-yr cranking orbit phase.

  3. Optimal propellantless rendez-vous using differential drag

    NASA Astrophysics Data System (ADS)

    Dell`Elce, L.; Kerschen, G.

    2015-04-01

    Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.

  4. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  5. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    NASA Technical Reports Server (NTRS)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  6. Exploration of the Galilean Moons using Electrodynamic Tethers for Propellantless Maneuvers and Self-Powering

    NASA Astrophysics Data System (ADS)

    Lorenzini, E. C.; Curreli, D.; Zanutto, D.

    2010-01-01

    Recent studies have demonstrated the benefits of using electrodynamic tethers (EDT) for the exploration of the inner region of the Jovian system. Intense planetary magnetic field and reasonable environmental plasma density make the electrodynamic interaction of the conductive tether with the plasmasphere strong. The interaction is responsible for a Lorentz force that can be conveniently used for propellantless maneuvers and extraction of electrical power for on board use. Jupiter and the four Galilean Moons represent an exceptional gravitational environment for the study of the orbital dynamics of an EDT. The dynamics of such a system was analyzed using a 3-body model, consisting of the planet plus one of its moons (Io in this work) and the EDT itself. New and interesting features appear, like for example the possibility to place the tether in equilibrium with respect to a frame co-rotating with the moon at points that do not coincide with the classical Lagrangian points for non-null electrodynamic forces.

  7. Abdominal thrusts

    MedlinePlus

    ... call 911 . If the person loses consciousness, start CPR . If you are not comfortable performing abdominal thrusts, ... American Red Cross. First Aid/CPR/AED Participant's Manual. 2nd ... Red Cross; 2014. Berg RA, Hemphill R, Abella BS, et al. Part 5: ...

  8. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  9. Differential-drag-based roto-translational control for propellant-less spacecraft

    NASA Astrophysics Data System (ADS)

    Pastorelli, Mirko; Bevilacqua, Riccardo; Pastorelli, Stefano

    2015-09-01

    This paper proposes a novel technique to perform propellant-free chaser-target spacecraft relative maneuvers while simultaneously stabilizing the chaser's attitude with respect to the local vertical local horizontal coordinate system centered at its body center of mass. The control forces required for relative maneuvers at low Earth orbits can be generated by varying the relative aerodynamic drag via maneuverable sails placed in the back-end of the spacecraft. At the same time, aerodynamic torques resulting from the displacement of the centers of pressure of the sails can stabilize the orientation of the spacecraft. In this work, the target vehicle is assumed to maneuver an identical sail in a cooperative fashion and will be centered and attitude-stabilized in its local vertical local horizontal coordinate system. The proposed approach is based on the idea of virtual thrusters, emulating the sail's center of pressure offset in the controller. Several test cases are presented for various existing spacecraft, demonstrating successful propellant-less roto-translational control of the chaser spacecraft.

  10. Solid rocket thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.

  11. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Blodmer, H. E.

    1980-01-01

    Results of steady state reverse and forward to reverse thrust transient performance tests are presented. The original quiet, clean, short haul, experimental engine four segment variable fan nozzle was retested in reverse and compared with a continuous, 30 deg half angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30 deg exlet resulted in lower engine vibrations, lower fan blade stress, and approximately a 20 percent improvement in reverse thrust. Objective reverse thrust of 35 percent of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff to reverse thrust transients.

  12. Reverse thrust performance of the QCSEE variable pitch turbofan engine

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Reemsnyder, D. C.; Bloomer, H. E.

    1980-01-01

    Results of steady-state reverse and forward-to-reverse thrust transient performance tests are presented. The original QCSEE 4-segment variable fan nozzle was retested in reverse and compared with a continuous, 30-deg half-angle conical exlet. Data indicated that the significantly more stable, higher pressure recovery flow with the fixed 30-deg exlet resulted in lower engine vibrations, lower fan blade stress and approximately a 20% improvement in reverse thrust. Objective reverse thrust of 35% of takeoff thrust was reached. Thrust response of less than 1.5 sec was achieved for the approach and the takeoff-to-reverse thrust transients.

  13. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  14. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  15. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  16. Variable thrust cartridge

    DOEpatents

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  17. PPT Thrust Stand

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1995-01-01

    A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.

  18. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  19. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  20. Thrust stand for low-thrust liquid pulsed rocket engines.

    PubMed

    Xing, Qin; Zhang, Jun; Qian, Min; Jia, Zhen-yuan; Sun, Bao-yuan

    2010-09-01

    A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz. PMID:20887003

  1. Electronics Engineering Department Thrust Area report FY'84

    SciTech Connect

    Minichino, C.; Phelps, P.L.

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

  2. Environmental Thrust Handbook.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    This handbook was prepared as a tool to assist U. S. Department of Agriculture (USDA) employees coordinate their resources and efforts to help people improve their environment. Twenty-two projects are outlined as potential environmental thrusts at the community level. It is the role of USDA employees to encourage and assist, in every way possible,…

  3. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.

  4. Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    2000-01-01

    The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems. All data gathered in this investigation are contained in the CD-ROM.

  5. Studies of leading-edge thrust phenomena

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Mack, R. J.

    1980-01-01

    A study of practical limitations on achievement of theoretical leading-edge thrust has been made and an empirical method for estimation of attainable thrust has been developed. The method is based on a theoretical analysis of a set of two-dimensional airfoils to define thrust dependence on airfoil geometric characteristics and arbitrarily defined limiting pressures, an examination of two-dimensional airfoil experimental data to provide an estimate of limiting pressure dependence on local Mach number and Reynolds number, and employment of simple sweep theory to adapt the method to three-dimensional wings. Because the method takes into account the spanwise variation of airfoil section characteristics, an opportunity is afforded for design by iteration to maximize the attainable thrust and the attendant performance benefits. The applicability of the method was demonstrated by comparisons of theoretical and experimental aerodynamic characteristics for a series of wing-body configurations. Generally, good predictions of the attainable thrust and its influence on lift and drag characteristics were obtained over a range of Mach numbers from 0.24 to 2.0.

  6. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  7. Monte Mountain thrust, additional confirmation of the central Nevada thrust

    SciTech Connect

    Chamberlain, A.K. ); Chamberlain, R.L. )

    1990-05-01

    The Monte Mountain thrust, a newly identified thrust exposed in the Timpahute Range, east central Nevada places porous Devonian reservoir rocks over rich Mississippian source rocks at the peak oil generating window. The thrust provides insurmountable evidence of a thrust model that may lead to discovery of giant oil and gas fields along the 400-mi long central Nevada thrust belt. The Timpahute Range lies a little over 50 mi on strike to the south of the prolific Grant Canyon field. Scattered remnants of the north-trending thrust belt are obscured by parallel valleys of Tertiary valley fill and volcanics. The fact that the east-west-trending Timpahute Range could contain exposures of the north-south-trending central Nevada thrust belt attracted them to the range, Familiarity with the stratigraphic section led to the discovery of the thrust. As much as 750 ft of Devonian Guilmette sandstones, in the hanging wall just above the thrust contact have been erroneously mapped as Mississippian Scotty Wash sandstones. These Devonian sandstones could be excellent reservoir rocks. Sandstones in the Guilmette increase in thickness westward. East-vergent thrusting has juxtaposed plates of thicker Guilmette sandstones with plates of thinner sandstones, Reconstruction of Devonian paleogeography provides a clue to the amount of displacement along thrust boundaries.

  8. Advanced thrust chamber designs

    NASA Technical Reports Server (NTRS)

    Dietrich, F. J.; Leach, A. E.

    1971-01-01

    A regeneratively cooled thrust chamber has been designed and fabricated, consisting of an inner TD nickel liner which was spin formed, welded, and machined and an outer shell of electroformed nickel. Coolant channels were produced in the outer surface of the inner liner by the electric discharge machining process before electroforming the shell. Accessory manifolds and piping were attached by welding. Manufacturing processes employed are described.

  9. Thrust Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  10. Recommended Practices in Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John

    2013-01-01

    Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.

  11. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  12. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  13. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  14. High Rate Data Delivery Thrust Area

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul

    2000-01-01

    In this paper, a brief description of the high rate data delivery (HRDD) thrust area, its focus and current technical activities being carried out by NASA centers including JPL, academia and industry under this program is provided. The processes and methods being used to achieve active participation in this program are presented. The developments in space communication technologies, which will shape NASA enterprise missions in the 21 st. century, are highlighted.

  15. Controls on thrust belt curvature, Wyoming-Idaho thrust belt

    SciTech Connect

    Montgomery, J.M. Jr. . Dept. of Geological Sciences)

    1993-04-01

    Structural curvature in the northern part of the Wyoming-Idaho thrust belt (WITB) may be the result of either along-strike variations in pre-thrust stratigraphy or a buttress which physically concentrated shortening, or possibly both. Most thrust sheets of the WITB strike northward and were translated eastward, but in the Snake River Range (SRR) (the northernmost range in the WITB), structural strike curves from northward to nearly westward. Structural cross sections of the SRR are generally drawn in a radial pattern creating a volumetric imbalance in regional palinspastic restorations. Stratigraphic separation diagrams of major, through-going thrust faults in the SRR show extensive cut off in upper Paleozoic strata. New measured sections of upper Paleozoic stratigraphy at locations in several major thrust sheets of the WITB and in the foreland, new structural cross sections and mapping, and existing paleomagnetic data are used in a new interpretation of the origin of structural curvature in the WITB. Published paleomagnetic data require counterclockwise rotation of frontal thrust sheets along the northern boundary of the WITB, but no rotation of eastward-translated thrust sheets farther south along most of the WITB. Evidence for both a pre-existing west-trending depositional margin and rotation of frontal thrust sheets suggests that buttressing and modification of structural strike occurred along an oblique ramp where differences in stratigraphic thickness and possible pre-existing fault partitioning of the Paleozoic strata are localized.

  16. A 10 nN resolution thrust-stand for micro-propulsion devices.

    PubMed

    Chakraborty, Subha; Courtney, Daniel G; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors. PMID:26628174

  17. A 10 nN resolution thrust-stand for micro-propulsion devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  18. A 10 nN resolution thrust-stand for micro-propulsion devices

    SciTech Connect

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-15

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  19. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  20. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  1. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  2. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  3. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  4. Static Performance of a Wing-Mounted Thrust Reverser Concept

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Yetter, Jeffrey A.

    1998-01-01

    An experimental investigation was conducted in the Jet-Exit Test Facility at NASA Langley Research Center to study the static aerodynamic performance of a wing-mounted thrust reverser concept applicable to subsonic transport aircraft. This innovative engine powered thrust reverser system is designed to utilize wing-mounted flow deflectors to produce aircraft deceleration forces. Testing was conducted using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0, a supercritical left-hand wing section attached via a pylon, and wing-mounted flow deflectors attached to the wing section. Geometric variations of key design parameters investigated for the wing-mounted thrust reverser concept included flow deflector angle and chord length, deflector edge fences, and the yaw mount angle of the deflector system (normal to the engine centerline or parallel to the wing trailing edge). All tests were conducted with no external flow and high pressure air was used to simulate core and fan engine exhaust flows. Test results indicate that the wing-mounted thrust reverser concept can achieve overall thrust reverser effectiveness levels competitive with (parallel mount), or better than (normal mount) a conventional cascade thrust reverser system. By removing the thrust reverser system from the nacelle, the wing-mounted concept offers the nacelle designer more options for improving nacelle aero dynamics and propulsion-airframe integration, simplifying nacelle structural designs, reducing nacelle weight, and improving engine maintenance access.

  5. Quantifying Early Miocene in-sequence and out-of-sequence thrusting at the Alpine-Carpathian junction

    NASA Astrophysics Data System (ADS)

    Beidinger, A.; Decker, K.

    2014-03-01

    A detailed reconstruction of late Oligocene and Early Miocene thrusting at the leading edge of the East Alpine fold-thrust belt is achieved from well data, seismic, and interpretative cross sections. Data are used for constraining the paleogeographic positions of the Alpine thrusts, quantifying in-sequence/out-of-sequence thrust distances, assessing the timing of thrust propagation from structurally higher units into more external ones, and estimating thrust velocities. Results are depicted in five palinspastic maps for time slices between ~26 Ma and ~16 Ma. The termination of foreland-propagating thrusting at the Alpine front is apparently controlled by the subcrop topography of the European basement, which includes a major recess in the east leading to a diachronic along-strike termination of foreland-propagating thrusting with younger thrust ages and higher in-sequence thrust distances in the east. Early locking of foreland-propagating thrusting in the west causes prominent out-of-sequence thrusts which add to the in-sequence thrust distances there. Continuing consecutive detachment of foreland units in the east occurs at rather fast propagation velocities with time intervals between foreland-thrust-propagations ranging between 0.1 and 0.7 Ma. The resulting increase of in-sequence thrust distances from west to east is balanced by out-of-sequence thrusts in the west. The total amount of late Oligocene to Early Miocene thrusting is quantified with a minimum of 51 km. Average thrust velocities range between 4.6 and 5.2 mm/yr. This rate refers to the movement of the basal thrust at the leading edge of the fold-thrust belt, which occurs contemporaneous with the eastward lateral extrusion of the Eastern Alps in the hinterland.

  6. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  7. In-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    The major aspects of processes that may be used for the determination of in-flight thrust are reviewed. Basic definitions are presented as well as analytical and ground-test methods for gathering data and calculating the thrust of the propulsion system during the flight development program of the aircraft. Test analysis examples include a single-exhaust turbofan, an intermediate-cowl turbofan, and a mixed-flow afterburning turbofan.

  8. Micro thrust and heat generator

    SciTech Connect

    Garcia, E.J.

    1995-12-31

    The present invention relates generally to micromachines such as microengines or micromotors. More specifically, the invention is directed to a micro rocket which functions as a source of heat and thrust, and utilizes chemical energy to drive or power micromechanical apparatuses. The invention is adaptable to applications involving defense, bio-medical, manufacturing, consumer product, aviation, automotive, computer, inspection, and safety systems. A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachine techniques (LIGA).

  9. Army (MANTECH) Thrust Area Concept: Optics Thrust Area

    NASA Technical Reports Server (NTRS)

    Kopacz, Stanley P.

    1992-01-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  10. Army (MANTECH) thrust area concept: Optics thrust area

    NASA Astrophysics Data System (ADS)

    Kopacz, Stanley P.

    1992-04-01

    With the shrinking of the U.S. Army's material needs and the compression of defense requirements, the Army Manufacturing Technology (MANTECH) Program has the opportunity to advance the manufacturing state-of-the-art and solve near term production problems of the U.S. industrial base. To exploit this opportunity, the Army restructured its MANTECH efforts in FY 90 based on a thrust area concept. Each of the ten current thrusts, directed by a thrust area manager, has a broad technical objective selected to improve specific manufacturing processes. The manager is charged with setting objectives, selecting tasks, monitoring execution, leveraging external resources, and establishing microfactories to promote technology transfer. The Optics Manufacturing Thrust is an example of the concept. It is currently directed at revitalizing the domestic precision optics manufacturing base, now characterized by high labor costs and 1940's technology, through introduction of revolutionary machines, new processes, and Computer Integrated Manufacturing (CIM) principles. Leveraging of MANTECH dollars with those of industry, academia, and state governments led to the establishment of the center for Optics Manufacturing and plans for regional centers. Recognition of the U.S. as a world leader in precision optics manufacturing and a dramatic reduction of both manufacturing time and cost should accrue from thrust area efforts.

  11. Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment

    NASA Astrophysics Data System (ADS)

    Li, L.; Hirota, M.; Ouchi, K.; Saito, T.

    2016-03-01

    Shock vector control (SVC) in a converging-diverging nozzle with a rectangular cross-section is discussed as a fluidic thrust vectoring (FTV) method. The interaction between the primary nozzle flow and the secondary jet is examined using experiments and numerical simulations. The relationships between FTV parameters [nozzle pressure ratio (NPR) and secondary jet pressure ratio (SPR)] and FTV performance (thrust pitching angle and thrust pitching moment) are investigated. The experiments are conducted with an NPR of up to 10 and an SPR of up to 2.7. Numerical simulations of the nozzle flow are performed using a Navier-Stokes solver with input parameters set to match the experimental conditions. The thrust pitching angle and moment computed from the force-moment balance are used to evaluate FTV performance. The experiment and numerical results indicate that the FTV parameters (NPR and SPR) directly affect FTV performance. Conventionally, FTV performance evaluated by the common method using thrust pitching angle is highly dependent on the location of evaluation. Hence, in this study, we show that the thrust pitching moment, a parameter which is independent of the location, is the appropriate figure of merit to evaluate the performance of FTV systems.

  12. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  13. Low thrust propulsion literature survey

    NASA Technical Reports Server (NTRS)

    Monroe, Darrel

    1989-01-01

    A literature search was performed to investigate the area of low thrust propulsion. In an effort to evaluate this technology, a number of articles, obtained through the use of the NASA-RECON database, were collected and categorized. The study indicates that although much was done, particularly in the 1960's and 1970's, more can be done in the area of practical navigation and guidance. It is suggested that the older studies be reinvestigated to see what potential there exists for future low thrust applications.

  14. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  15. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  16. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  17. Recognizing thrust faults on remote sensing images

    SciTech Connect

    Prost, G.L. )

    1990-09-01

    This article examines the geomorphic evidence for thrusting and compares it to the expression of other faults and unconformities on remote sensing images. No single feature identifies thrusting, but rather the coincidence of several factors builds a case for a thrust interpretation. An example from Pakistan illustrates the geomorphic criteria in an area with excellent exposures and classic thrust features. The structure interpretation is supported by construction of cross sections; together these are used to suggest areas of exploration interest.

  18. Studies on Thrust Characteristic of High-Thrust Spiral Motor

    NASA Astrophysics Data System (ADS)

    Kominami, Tsutomu; Fujimoto, Yasutaka

    Linear actuators are used in various industrial applications. Connentional linear actuators are a combination of a rotational motor and a ball screw, a hydraulic actuator, or a linear motor. However, these actuators have some demerits. This paper proposes a spiral motor (SPRM) that comprises a spiral stator and a spiral mover. Owing to its spiral structure, the SPRM can be expected to show better performance as compared to the conventional linear actuator. However, it is not easy to manufacture spiral stators and spiral movers. In this paper, thrust and torque equations derived from a magnetic circuit are introduced. A prototype is developed and its specifications are provided. Sixty fan-shaped stator blocks are mounted on the frame and forty-eight fan-shaped mover blocks with flat surfaces are mounted on the axis. These blocks form an approximately spiral structure. The blocks are not difficult to manufacture. The feasibility of the developed SPRM is confirmed by performing basic experiments. First, the SPRM is driven by using synchronous control. Subsequently, the thrust is measured by a load cell and the thrust constant is determined.

  19. Low thrust orbit determination program

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Shults, G. L.; Huling, K. R.; Ratliff, C. W.

    1972-01-01

    Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP).

  20. The thrust minimization problem and its applications

    NASA Astrophysics Data System (ADS)

    Ivanyukhin, A. V.; Petukhov, V. G.

    2015-07-01

    An indirect approach to the optimization of trajectories with finite thrust based on Pontryagin's maximum principle is discussed. The optimization is aimed at calculating the minimum thrust for a point-to-point flight completed within a given interval of time with a constant exhaust velocity and a constant power. This may help calculate the region of existence of the optimum trajectory with thrust switching: it is evident that the latter problem may be solved if minimum thrust is lower than or equal to the available thrust in the problem with switching. A technique for calculating the optimum trajectories with a finite thrust by solving the problem of minimization of the thrust acceleration with a subsequent numerical continuation with respect to the mass flow towards the thrust minimization problem is proposed. This technique offers an opportunity to detect degeneracies associated with the lack of thrust or specific impulse. In effect, it allows one to calculate the boundaries of the region of existence of trajectories with thrust switching and thus makes it possible to automate the process of solving the problem of optimization of trajectories with thrust switching.

  1. Secondary production of massive quarks in thrust

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Mateu, Vicent; Pietrulewicz, Piotr

    2016-01-01

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+e- → hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(ΛQCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  2. Modular multi-engine thrust control assembly

    SciTech Connect

    Sakurai, S.

    1986-02-04

    This patent describes a modular thrust control lever assembly for controling forward/reverse thrust generated by an aircraft engine. It includes an electric/electronic engine thrust control system, an inhibit mechanism for preventing inadverent or premature establishment of at least one of forward and reverse engine thrust. It consists of a (a) housing; (b) a control lever assembly pivotally mounted within the housing for fore and aft pivotal movement in a single vertical plane; (c) movable inhibit mechanism normally mounted in the path of movement of the laterally projecting roller on the control lever assembly between at least one of the maximum thrust limit positions of the assembly and the adjacent intermediate idle thrust position; (d) a electric/electronic engine thrust control system including an mechanism for reconfiguring the thrust controls of the engine upon movement of the thrust control lever assembly to the adjacent intermediate idle thrust position; (e) a mechanism responsive to the output signal for shifting the inhibit mechanism out of the path of movement of the control lever assembly.

  3. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  4. Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2007-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance.

  5. An Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Wernet, Mark P.; John, Wentworth T.

    2004-01-01

    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold: first, to add to the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. Second, to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and predicting what thrust augmentation values may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (having no mean component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the various measurements made. These include both thrust and Digital Particle Imaging Velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called Formation Number serves as a useful dimensionless number by which to characterize the jet and predict performance.

  6. Thrust Production and Wake Structure of an Actuated Lamprey Model

    NASA Astrophysics Data System (ADS)

    Buchholz, James; Smits, Alexander

    2004-11-01

    Thrust generation is studied for a flexible lamprey model which is actuated periodically to produce a streamwise traveling wave. Shape memory alloy actuators are used to achieve this deformation. The flow field is investigated using DPIV and flow visualization for a range of Strouhal numbers based on peak-to-peak amplitude of the trailing edge. The vortex kinematics in the spanwise and streamwise planes are examined, and a three-dimensional unsteady vortex model of the wake will be discussed.

  7. Computer program for flat sector thrust bearing performance

    NASA Technical Reports Server (NTRS)

    Presler, A. F.; Etsion, I.

    1977-01-01

    A versatile computer program is presented which achieves a rapid, numerical solution of the Reynolds equation for a flat sector thrust pad bearing with either compressible or liquid lubricants. Program input includes a range in values of the geometric and operating parameters of the sector bearing. Performance characteristics are obtained from the calculated bearing pressure distribution. These are the load capacity, center of pressure coordinates, frictional energy dissipation, and flow rates of liquid lubricant across the bearing edges. Two sample problems are described.

  8. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  9. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  10. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  11. Reverse-thrust technology for variable-pitch fan propulsion systems

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Schaefer, J. W.; Dietrich, D. A.

    1976-01-01

    Tests conducted to develop the technology necessary to meet the unique reverse-thrust performance requirements of a variable pitch fan propulsion system are discussed. The losses and distortion associated with the air entering the fan and core compressor from the rear of the engine, the direction of fan blade pitch rotation for best reverse-thrust aeroacoustic performance, and engine response and operating characteristics during forward- to reverse-thrust transients are among the factors studied. The test results of several scale fan models as well as a full-size variable pitch fan engine are summarized. Results show the following: a flared exhaust nozzle makes a good reverse-thrust inlet; acceptable core inlet duct recovery and distortion levels in reverse flow were demonstrated; adequate thrust levels were achieved; forward- to reverse-thrust response time achieved was better than the goal; thrust and noise levels strongly favor reverse through feather pitch; and finally, flight-type inlets make the establishment of reverse flow more difficult.

  12. The Beaufort Sea fold-and-thrust belt, northwestern Canada: Implications for thrust-belt evolution

    SciTech Connect

    Root, K.G. )

    1991-06-01

    The northeasternmost segment of the Cordilleran thrust belt of western North American underlies the Beaufort Sea continental margin. Folds and associated northesat-directed thrusts in this region formed synchronously with Tertiary sedimentation. As a result, the times of fold development can be determined from reflection seismic data by analyzing lateral thickness changes in stratigraphic sequences of known ages, and onlap and truncation relationships at unconformities. Thrust faulting occurred throughout the late Paleocene-Pliocene. The abundant temporal data indicate the deformational seuqence was significantly differet from the simple, steplike, foreland-propagating model formulated in other less well-dated thrust belts. Many thrusts were active simultaneously, especially during the late Eocnee, when the region of active thrusting had an across-strike width of greater than 200 km. This observation calls into question the popular concept that only one thrust moves at a time as a thrust belt develops. The thrust belt propagated along, as well as across, strike. During the late Paleocene-middle Eocene, the area of active thrusting was bounded on the southeast by poorly imaged zones of right-lateral strike-slip faults that apparently are the northern offshore continuation of the Rapid fault array. The change in the age of thrusting along strike results in no obvious geometrical anomalies and could not be deduced without timing information. This has an important implication: temporal data cannot necessarily be projected along strike in a thrust belt.

  13. Low thrust rocket test facility

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Schneider, Steven J.

    1990-01-01

    A low thrust chemical rocket test facility has recently become operational at the NASA-Lewis. The new facility is used to conduct both long duration and performance tests at altitude over a thruster's operating envelope using hydrogen and oxygen gas for propellants. The facility provides experimental support for a broad range of objectives, including fundamental modeling of fluids and combustion phenomena, the evaluation of thruster components, and life testing of full rocket designs. The major mechanical and electrical systems are described along with aspects of the various optical diagnostics available in the test cell. The electrical and mechanical systems are designed for low down time between tests and low staffing requirements for test operations. Initial results are also presented which illustrate the various capabilities of the cell.

  14. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  15. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A technology program aimed at improving the performance of low thrust chemical rockets for spacecraft onboard applications is reviewed. Navier-Stokes analyses of low Reynolds number rocket flows have been compared with local flow property measurements obtained using Rayleigh and Raman diagnostics in a 100 N gaseous hydrogen/gaseous oxygen rocket. It is indicated that computational domain should include the near injector flow and that the shear layer combustion model needs improvement. The system analyses and technical efforts intended to develop a technology base for higher performance propellants are presented. A LOX/hydrazine engine is demonstrated to have a 95 percent theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1.

  16. Static Investigation of a Multiaxis Thrust-Vectoring Nozzle With Variable Internal Contouring Ability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Mills, Charles T. L.; Mason, Mary L.

    1997-01-01

    The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.

  17. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  18. Pulsed thrust measurements using laser interferometry

    NASA Astrophysics Data System (ADS)

    Cubbin, E. A.; Ziemer, J. K.; Choueiri, E. Y.; Jahn, R. G.

    1997-06-01

    An optical interferometric proximeter system (IPS) for measuring thrust and impulse bit of pulsed electric thrusters was developed. Unlike existing thrust stands, the IPS-based thrust stand offers the advantage of a single system that can yield electromagnetic interference-free, high accuracy (<2% error) thrust measurements within a very wide range of impulses (100 μN s to above 10 N s) covering the impulse range of all known pulsed plasma thrusters. In addition to pulsed thrusters, the IPS is theoretically shown to be capable of measuring steady-state thrust values as low as 20 μN for microthrusters such as the field emission electric propulsion thruster. The IPS-based thrust stand relies on measuring the dynamic response of a swinging arm using a two-sensor laser interferometer with 10 nm position accuracy. The wide application of the thrust stand is demonstrated with thrust measurements of an ablative pulsed plasma thruster and a quasi-steady magnetoplasmadynamic thruster.

  19. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If...

  20. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If...

  1. 14 CFR 33.97 - Thrust reversers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust reversers. 33.97 Section 33.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.97 Thrust reversers. (a) If...

  2. Solar-electric propulsion breadboard thrust subsystem

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1972-01-01

    A solar-electric propulsion breadboard thrust subsystem has been designed, built, and tested. A 1500-h test was performed to demonstrate the functional capabilities of the subsystem. Described are the subsystem functions and testing process. The results show that the ground work has been established for development of an engineering model of the thrust subsystem.

  3. Thrust-Vector Deflectors For Spacecraft

    NASA Technical Reports Server (NTRS)

    Soong, William C.

    1990-01-01

    Rotating shield steers thrust in desired direction. Report discusses use of thrust-vector deflectors (TVD's) to enhance controllability and reduce number of small rocket engines (thrustors) needed to control attitudes of artificial satellites. Developed in aircraft industry for use in jet engines. Principal advantages gained, lower cost and greater simplicity.

  4. Measuring Model Rocket Engine Thrust Curves

    ERIC Educational Resources Information Center

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  5. Mu rhythm desynchronization by tongue thrust observation

    PubMed Central

    Sakihara, Kotoe; Inagaki, Masumi

    2015-01-01

    We aimed to investigate the mu rhythm in the sensorimotor area during tongue thrust observation and to obtain an answer to the question as to how subtle non-verbal orofacial movement observation activates the sensorimotor area. Ten healthy volunteers performed finger tap execution, tongue thrust execution, and tongue thrust observation. The electroencephalogram (EEG) was recorded from 128 electrodes placed on the scalp, and regions of interest were set at sensorimotor areas. The event-related desynchronization (ERD) and event-related synchronization (ERS) for the mu rhythm (8–13 Hz) and beta (13−25 Hz) bands were measured. Tongue thrust observation induced mu rhythm ERD, and the ERD was detected at the left hemisphere regardless whether the observed tongue thrust was toward the left or right. Mu rhythm ERD was also recorded during tongue thrust execution. However, temporal analysis revealed that the ERD associated with tongue thrust observation preceded that associated with execution by approximately 2 s. Tongue thrust observation induces mu rhythm ERD in sensorimotor cortex with left hemispheric dominance. PMID:26441599

  6. Geometry and structural development of the Saltville thrust system, southwestern Virginia

    SciTech Connect

    Bartholomew, M.J. . Earth Sciences and Resources Inst.); Lewis, S.E. ); Schultz, A.P.; McDowell, R.C. )

    1993-03-01

    The structural components of the Saltville thrust system are: (1) the main Saltville thrust is at the base of the Mississippian-Cambrian sequence; this thrust tips in the Sinking Creek anticline; (2) the Maggie thrust displaces the overturned limb of the anticline forelandward of the overturned limb of the Clover Hollow Mountain (footwall) syncline; (3) the en echelon series of footwall synclines extends 25 km SW from the Maggie thrust to Poplar Hill; (4) the Brushy Mountain (hinge) fault extends from Poplar Hill > 20 km SW beyond Mechanicsburg; and (5) smaller faults are associated both with detachment of some footwall synclines from the subjacent Narrows thrust sheet and with destruction of overturned limbs of the footwall synclines. This northern 100 km-long, terminal segment of the Saltville thrust most resembles recent models of fault propagation folding. A high initial ramp-angle (20--30[degree]) favored development of a footwall syncline. A more stable, low ramp-angle (10--15[degree]) was subsequently achieved through ramp-smoothing processes related to destruction of the footwall syncline through flattening (cleavage development), faulting through the hinge, and detachment of the syncline from the footwall. As displacement decreases northeastward along the Saltville thrust, some displacement is absorbed in the ramp-smoothing, syncline-destruction processes and some is transferred to the Maggie (breakthrough) thrust. After breakthrough the syncline-destruction processes produced hinge-migration and rotation resulting in cleavage-transected folds in proximity of the footwall syncline. The fault zone that detaches the footwall syncline is folded about the younger Clover Hollow anticline. Cleavage is axial planar to the Clover Hollow anticline indicating that cleavage development in the footwall accompanied all developmental stages of the Saltville thrust system and continued through initial development of a structurally lower duplex.

  7. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  8. Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Capone, Francis J.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.

  9. Oxygen/Alcohol Dual Thrust RCS Engines

    NASA Technical Reports Server (NTRS)

    Angstadt, Tara; Hurlbert, Eric

    1999-01-01

    A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.

  10. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  11. Low thrust chemical rocket technology

    NASA Astrophysics Data System (ADS)

    Schneider, Steven J.

    1992-11-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  12. Low-Thrust Control of a Lunar Mapping Orbit

    NASA Technical Reports Server (NTRS)

    Harl, Nathan; Pernicka, Henry J.

    2007-01-01

    A method is presented for generating and maintaining a lunar mapping orbit using continuous low-thrust hardware. Optimal control theory is used to maintain a lunar orbit that is low-altitude, near-polar, and Sun-synchronous; three typical requirements for a successful lunar mapping mission. The analysis of the optimal control problem leads to the commonly seen two-point boundary value problem, which is solved using a simple indirect shooting algorithm. Simulations are presented for a 50-day mapping duration, in which it is shown that a very tight control is achieved with thrust levels below 1 N for a 1000 kg spacecraft. A straightforward approach for using the method presented to compute missions of any duration is also discussed.

  13. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  14. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  15. Insulated Engine, 100-Pound Thrust

    NASA Technical Reports Server (NTRS)

    Roth, N. R.

    1966-01-01

    The design and test results of an insulated, 100-pound thrust engine capable of delivering high performance, providing long, steady state and pulse mode endurance, and maintaining a low outside surface temperature of 4000 F, are presented. Included are descriptions of the injector designs and insulation materials investigated, plus a discussion of the thermal analysis and test results. Continuous operation in excess of 29 minutes, and start capability in excess of 4900 pulses, have been demonstrated. To allow the use of available chamber materials and coating systems under insulated conditions, the major challenge to the designer was to define an injector design that would provide gas temperatures and performance of a predetermined value. The solution was the development of an unbalanced, 8-element triplet injector having an unequal fuel distribution within each element, capable of providing a specific impulse in excess of 290 pounds at reduced wall temperatures. The design consists of a columbium chamber and nozzle utilizing a silicide coating, a columbium injector, a composite insulation system of aluminum oxide

  16. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  17. Pulsed Ejector Thrust Amplification Tested and Modeled

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  18. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.

  19. Rocket thrust variation with foamed liquid propellants

    NASA Technical Reports Server (NTRS)

    Morrell, G

    1957-01-01

    An analysis is presented on a method for varying rocket thrust by varying the bulk density of the propellants. This density variation was accomplished by uniformly dispersing an inert, insoluble gas in the liquid propellants. Only qualitative agreement with theory was obtained from preliminary experiments with a 1000-pound-thrust ammonia - nitric acid rocket engine; the required experimental gas-flow rates were two to six times greater than those predicted by theory. It was demonstrated, however, that this method of rocket-thrust variation is feasible.

  20. Low-thrust chemical orbit transfer propulsion

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    The need for large structures in high orbit is reported in terms of the many mission opportunities which require such structures. Mission and transportation options for large structures are presented, and it is shown that low-thrust propulsion is an enabling requirement for some missions and greatly enhancing to many others. Electric and low-thrust chemical propulsion are compared, and the need for an requirements of low-thrust chemical propulsion are discussed in terms of the interactions that are perceived to exist between the propulsion system and the large structure.

  1. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  2. Performance characterization of a helicon double layer thruster using direct thrust measurements

    NASA Astrophysics Data System (ADS)

    Pottinger, Sabrina; Lappas, Vaios; Charles, Christine; Boswell, Rod

    2011-06-01

    The performance of a helicon double layer thruster (HDLT) has been characterized using a pendulum type thrust stand and retarding field energy analyser. Data recorded for a fixed propellant flow rate of 16 sccm of krypton and fixed magnetic field topology show that the thrust generated increases linearly with increasing radio frequency input power over a range 250-650 W. Over the power range investigated thrust levels of approximately 1-2.8 mN were achieved. A maximum effective specific impulse of 280 s was determined using the thrust data. Ion energy distribution functions indicate that increasing power corresponds to improved plasma generation processes as general trends show increasing plasma and beam currents with increasing power.

  3. Comparative investigation of multiplane thrust vectoring nozzles

    NASA Technical Reports Server (NTRS)

    Capone, F.; Smereczniak, P.; Spetnagel, D.; Thayer, E.

    1992-01-01

    The inflight aerodynamic performance of multiplane vectoring nozzles is critical to development of advanced aircraft and flight control systems utilizing thrust vectoring. To investigate vectoring nozzle performance, subscale models of two second-generation thrust vectoring nozzle concepts currently under development for advanced fighters were integrated into an axisymmetric test pod. Installed drag and vectoring performance characteristics of both concepts were experimentally determined in wind tunnel testing. CFD analyses were conducted to understand the impact of internal flow turning on thrust vectoring characteristics. Both nozzles exhibited drag comparable with current nonvectoring axisymmetric nozzles. During vectored-thrust operations, forces produced by external flow effects amounted to about 25 percent of the total force measured.

  4. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  5. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  6. Tests on Thrust Augmenters for Jet Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Shoemaker, James M

    1932-01-01

    This series of tests was undertaken to determine how much the reaction thrust of a jet could be increased by the use of thrust augmenters and thus to give some indication as to the feasibility of jet propulsion for airplanes. The tests were made during the first part of 1927 at the Langley Memorial Aeronautical Laboratory. A compressed air jet was used in connection with a series of annular guides surrounding the jet to act as thrust augmenters. The results show that, although it is possible to increase the thrust of a jet, the increase is not large enough to affect greatly the status of the problem of the application of jet propulsion to airplanes.

  7. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  8. GSFC Technology Thrusts and Partnership Opportunities

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline

    2010-01-01

    This slide presentation reviews the technology thrusts and the opportunities to partner in developing software in support of the technological advances at the Goddard Space Flight Center (GSFC). There are thrusts in development of end-to-end software systems for mission data systems in areas of flight software, ground data systems, flight dynamic systems and science data systems. The required technical expertise is reviewed, and the supported missions are shown for the various areas given.

  9. JPL micro-thrust propulsion activities

    NASA Technical Reports Server (NTRS)

    Mueller, J.; Marrese, C.; Ziemer, J.; Green, A.; Yang, E.; Mojarradi, M.; Johnson, T.; White, V.; Bame, D.

    2002-01-01

    Formation flying and microspacecraft constellation missions pose new propulsion requirements. Formationflying spacecraft, due to the tight positioning and pointing control requirements, may need thrust control within 1- 20 uN to an accuracy of 0.1 uN for LISA and ST-7, for example. Future missions may have extended thrust ranges into the sub - mN range. However, all do require high specific impulses (>500 sec) due to long required thruster firings.

  10. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated

  11. Thrust faulting and hydrocarbon generation: discussion

    SciTech Connect

    Warner, M.A.; Royse, F.

    1987-07-01

    Following the discovery of large volumes of hydrocarbons in the Cordilleran thrust belt of southwestern Wyoming and northern Utah, Angevine and Turcotte (1983), Edman and Surdam (1984), and Furlong and Edman (1984) discussed the role of thrust faulting in hydrocarbon generation. The authors concluded that overthrusting plays an important or even dominant role in the process of hydrocarbon generation in overthrust terrains. These conclusions may be in error because they are based on a mathematical analysis of thermal and geologic models that have little resemblance to actual thrust-belt geology. In this discussion, the authors discuss shortcomings of the thermal model used in the papers referred to above; emphasize the differences between their model and the geologic facts as they exist in thrust belts in general and in western Wyoming in particular; and caution readers about applying the conclusions based on such a model in the search for hydrocarbons. They contend that the temperature effects of thrust faulting were rather insignificant in the process of hydrocarbon generation in the Wyoming thrust belt.

  12. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  13. The interaction between deepwater channel systems and growing thrusts and folds, toe-thrust region of the deepwater Niger Delta

    NASA Astrophysics Data System (ADS)

    Jolly, Byami; Whittaker, Alex; Lonergan, Lidia

    2015-04-01

    factor of > 2, with a corresponding width decrease of approximately 25%. Channel incision across growing structures is achieved through enhanced bed-shear stress driven incision (up to 200 Pa) and flow velocity (up to 5 ms-1), assuming typical bulk sediment concentrations of 0.6%. Comparison of structural uplift since 1.7 Ma, and channel incision over an equivalent period, shows that some of these channels are able to keep pace with the time-integrated uplift since 1.7 Ma, and may have reached a topographic (bathymetric) steady-state with respect to on-going thrusting. However, some of the sea-bed channels are yet to reach topographic steady-state because of factors which include recent change in gradient caused by structural uplift, and the impact of active channel diversion by growing structures. Generally, bed-shear stresses of ~150 Pa are sufficient to keep pace with structural strain rates of 10-15 s-1. More widely, our data demonstrates that submarine channel systems dynamically adjust their geometry and basal gradient in order to keep pace with growth of tectonic structures and our results suggest that these factors must be incorporated into models to fully predict the downslope pathways of sea-bed channels in structurally complex areas.

  14. Thrusting and sedimentation along an emergent thrust front: an example from the External Sierras of the Southern Pyrenees, Spain

    SciTech Connect

    Anastasio, D.J.; De Paor, D.G.

    1985-01-01

    Depending on the relative rates of thrusting and erosion, emergent thrusts, like glaciers, may advance or retreat while continually moving forward. The relative rates of thrusting and erosion as a thrust ruptures the land surface also control the mountain front geometry. For listric thrusts, the high angle of intersection with the land surface results in primarily upward rather than horizontal movement. If thrust movement is much faster than the prevailing erosion a large emergent toe will develop as the thrust sheet advances over its synorogenic deposits. Alternatively, if the erosion rates are generally faster than thrusting, synorogenic deposits will progressively onlap onto a receding mountain front. Comparable rates of thrusting and erosion result in steady state uplift and denudation. In the External Sierras the thrust front reached the synorogenic surface during the Paleogene and resulted in the accumulation of thick synorogenic deposits. Relatively slow rates of thrusting (<1mm/a) and uplift (<0.5mm/a) of the External Sierras, coupled with moderate erosion rates resulted in a near stationary mountain front. Despite this, temporal and spatial fluctuations in the thrusting resulted in three different mountain front geometries. In places, the thrust front has been buried by molasse, elsewhere, the emergent thrust sheet has deformed its proximal molasse by bulldozing, producing deposits analogous to push moraines, and in other places the frontal thrust has overridden its molasse. Striated cobbles within the molasse immediately below the frontal thrust may have functioned like ball bearings, reducing the friction with the overriding thrust sheet.

  15. Very high thrust-to-weight rocket engines

    NASA Astrophysics Data System (ADS)

    Glass, James F.; Goracke, B. David; Levack, Daniel J. H.

    1998-01-01

    High delta-V earth-to-orbit missions have put a premium on high performance booster rocket engines. While significant improvements to specific impulse are unlikely, high thrust-to-weight design provides a promising avenue for improving mission and vehicle capabilities and margins. Several approaches can contribute to achieving such engine designs, including proper design optimization, simplification, geometry, propellant selection, and the application of advanced materials. Incorporation of the first four approaches can yield factors of about two improvements in current liquid engine designs. The utilization of emerging material capabilities could yield another factor of two improvement with the possibility of even larger gains with far-term materials and designs.

  16. Design of high power electromechanical actuator for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Myers, W. N.

    1991-01-01

    NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

  17. Middle Proterozoic thrusting in central New Mexico

    SciTech Connect

    Grambling, J.A.; Thompson, A.G. . Dept. of Earth and Planetary Sciences); Dallmeyer, R.D. . Dept. of Geology)

    1992-01-01

    Ductile thrust faults truncate contact-metamorphic aureoles surrounding two 1.4 Ga plutons in central New Mexico. The Priest quartz monzonite (1440 Ma) and Sandia granite (1420 Ma) are 50 km apart in the continuous Sandia/Manzano mountain chain. Thermobarometry and phase relations demonstrate that country-rock temperatures rose from 700 C toward the pluton, at pressure near 4 kb. The northern edge of this aureole is cut by the southeast-dipping ductile Monte Largo thrust fault. Prograde, greenschist-facies metamorphism of footwall rocks accompanied local retrogression of hangingwall rocks during thrusting. This second metamorphism took place at P-T conditions of 2-3 kb and 450-475 C. Another contact aureole surrounds the Sandia granite. Mafic rocks near the granite reflect amphibolite-facies conditions, whereas pelites display low-pressure contact assemblages. Quantitative temperatures increase from 500--750 C toward the granite, at pressures of 2.5--3.5 kb. The shallowly southeast-dipping Vincent Moore fault truncates the Sandia granite and the southern portion of its contact aureole. This ductile shear zone emplaced greenschist-facies rocks northwestward above the Sandia contact aureole. Footwall rocks were retrograded to the greenschist facies within 100 m of this fault; the retrograde phases are aligned parallel to the trace of the thrust. Metamorphic temperatures in hangingwall rocks (during thrusting ) were 400-475 C at pressures above 2.75 kb. Additional northwest-vergent ductile thrusts are found elsewhere in the mountain chain. This may represent the age of thrusting and of the related greenschist and the related greenschist-facies metamorphic overprint.

  18. On the Thrust of a Single Electrode Electrohydrodynamic Thruster

    NASA Astrophysics Data System (ADS)

    Ilit', Tomáš; Váry, Michal; Valko, Pavol

    2015-03-01

    Linear thrust generation by a single pin emitter electrode under AC excitation has been studied. Presented are thrust measurements of a single electrode thruster, in comparison with classical, two electrode electrohydrodynamic thruster. The experiments show comparable thrust for both configurations at low voltage levels, suggesting higher thrust-to-weight ratio of single electrode thrusters at low applied voltages. Further, a hypothesis of single electrode thrust creation is proposed.

  19. Thrust Augmentation with Mixer/Ejector Systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig

    2002-01-01

    Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.

  20. Thrust Measurement of Pure Magnetic Sail

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuma; Kimura, Toshiyuki; Ayabe, Tomohiro; Funaki, Ikkoh; Yamakawa, Hiroshi; Horisawa, Hideyuki

    A Pure Magnetic Sail is a deep space propulsion system consisting of a coil mounted on a spacecraft. In order to predict the thrust characteristics of a Pure Magnetic Sail in space, thrust measurement and magnetic field measurement were conducted using a scale model in a laboratory. To simulate the solar wind, a magnetoplasmadynamic arcjet provides a high density (2×1019 m-3) and high velocity (47 km/s) plasma flow that impinges on a 20-turn 25-mm-radius coil simulating a Pure Magnetic Sail. When the magnetic cavity size of the scale model (L) is increased from 0.12 to 0.17 m, the thrust increases from 0.47 to 0.92 N. Scaling up, this experiment corresponds to a 300-km diameter Pure Magnetic Sail in space. The thrust also depends on the coil tilt angle, which is the angle between the direction of the solar wind flow and the coil axis. The maximum thrust of 1.5 N is obtained for a tilt angle of 90 degrees.

  1. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  2. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    PubMed Central

    Booth, David T.

    2014-01-01

    ABSTRACT Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1) increased swimming speed is achieved through an increased stroke rate; (2) force produced per stroke is proportional to stroke amplitude, (3) that forward thrust is produced during both the down and up phases of stroking; and (4) that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of swimming. The

  3. Status of Low Thrust Work at JSC

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  4. Pulsed thrust measurements using electromagnetic calibration techniques.

    PubMed

    Tang, Haibin; Shi, Chenbo; Zhang, Xin'ai; Zhang, Zun; Cheng, Jiao

    2011-03-01

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 μN s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 μN s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 μN s with 95% credibility. PMID:21456799

  5. Thrust Vector Control using movable probes

    NASA Technical Reports Server (NTRS)

    Cavalleri, Robert; Tiarn, Weihnurng; Readey, Harvey

    1990-01-01

    A study was undertaken to determine if movable probes or struts positioned in the nozzle can be used to provide Thrust Vector Control of the Space Shuttle Solid Rocket Booster. The study employed CFD to determine estimates of the shock standoff distance from the probe. An empirical correlation was used to construct the shock shape and the pressure distribution generated by the probe. The TVC performance for a single and multiple number of probes was then used to determine requirements for a maximum thrust angle offset of 7.5 degrees. Consideration was given to what materials would be suitable for the probe and if active cooling is required. Based on the performance analysis and thermal requirements, a Probe Thrust Vector Control (PTVC) system was sized. Indications are that a PTVC system weight is in the 1500 1bm weight range, compared to the existing weight of 7500 1bm for the SRB nozzle gimble system.

  6. Test plan pressure fed thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Dunn, Glenn

    1990-01-01

    Aerojet is developing the technology for the design of a reliable, low cost, efficient, and lightweight LOX/RP-1 pressure fed engine. This technology program is a direct result of Aerojet's liquid rocket booster (LRB) study and previous NASA studies that identified liquid engines using high bulk density hydrocarbon fuels as very attractive for a space transportation system (STS). Previous large thrust LOX/RP-1 engine development programs were characterized by costly development problems due to combustion instability damage. The combustion stability solution was typically obtained through trial and error methods of minimizing instability damage by degrading engine performance. The approach to this program was to utilize existing and newly developed combustion analysis models and design methodology to create a thrust chamber design with features having the potential of producing reliable and efficient operation. This process resulted in an engine design with a unique high thrust-per-element OFO triplet injector utilizing a low cost modular approach. Cost efficient ablative materials are baselined for the injector face and chamber. Technology demonstration will be accomplished through a hot fire test program using appropriately sized subscale hardware. This subscale testing will provide a data base to supplement the current industry data bank and to anchor and validate the applied analysis models and design methodology. Once anchored and validated, these analysis models and design methodology can be applied with greatly increased confidence to design and characterize a large scale pressure fed LOX/RP-1 thrust chamber. The objective of this test program is to generate a data base that can be used to anchor and validate existing analysis models and design methodologies and to provide early concept demonstration of a low cost, efficient LOX/RP-1 thrust chamber. Test conditions and hardware instrumentation were defined to provide data sufficient to characterize combustion

  7. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  8. Sub-micro-Newton resolution thrust balance.

    PubMed

    Hathaway, G

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (∼0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster. PMID:26520993

  9. Sub-micro-Newton resolution thrust balance

    NASA Astrophysics Data System (ADS)

    Hathaway, G.

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (˜0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  10. A microNewton thrust stand for average thrust measurement of pulsed microthruster.

    PubMed

    Zhou, Wei-Jing; Hong, Yan-Ji; Chang, Hao

    2013-12-01

    A torsional thrust stand has been developed for the study of the average thrust for microNewton pulsed thrusters. The main body of the thrust stand mainly consists of a torsional balance, a pair of flexural pivots, a capacitive displacement sensor, a calibration assembly, and an eddy current damper. The behavior of the stand was thoroughly studied. The principle of thrust measurement was analyzed. The average thrust is determined as a function of the average equilibrium angle displacement of the balance and the spring stiffness. The thrust stand has a load capacity up to 10 kg, and it can theoretically measure the force up to 609.6 μN with a resolution of 24.4 nN. The static calibrations were performed based on the calibration assembly composed of the multiturn coil and the permanent magnet. The calibration results demonstrated good repeatability (less than 0.68% FSO) and good linearity (less than 0.88% FSO). The assembly of the multiturn coil and the permanent magnet was also used as an exciter to simulate the microthruster to further research the performance of the thrust stand. Three sets of force pulses at 17, 33.5, and 55 Hz with the same amplitude and pulse width were tested. The repeatability error at each frequency was 7.04%, 1.78%, and 5.08%, respectively. PMID:24387476

  11. Variable thrust/specific-impulse of multiplexed electrospray microthrusters

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.

    We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale

  12. Thrust Characteristics of High-Thrust Spiral Motor Using FEM Analysis

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jin; Fujimoto, Yasutaka

    We propose a spiral-type motor that has high thrust characteristics as a linear actuator. This motor generates torque around the axis and thrust in the axial direction only by electromagnetic force. It has little friction because no additional hardware is required for straight-line movement. This paper presents the concept of the spiral motor. The finite-element method (FEM) analysis certifies that this motor has high motor constant as same as High Density Linear Motor (HDL). We also study a method to compensate the thrust fluctuation of 5-pitch-stator 6-pitch-mover model

  13. Ascent thrust vector control system test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available

  14. Ramp initiation in a thrust wedge.

    PubMed

    Panian, John; Wiltschko, David

    2004-02-12

    Collisional mountain belts are characterized by fold and thrust belts that grow through sequential stacking of thrust sheets from the interior (hinterland) to the exterior (foreland) of the mountain belt. Each of these sheets rides on a fault that cuts up through the stratigraphic section on inclined ramps that join a flat basal fault at depth. Although this stair-step or ramp-flat geometry is well known, there is no consensus on why a particular ramp forms where it does. Perturbations in fault shape, stratigraphy, fluid pressure, folding, and surface slope have all been suggested as possible mechanisms. Here we show that such pre-existing inhomogeneities, though feasible causes, are not required. Our computer simulations show that a broad foreland-dipping plastic strain band forms at the surface near the topographic inflection produced by the previous ramp. This strain band then migrates towards the rigid base, where the plastic strain is preferentially concentrated in a thrust ramp. Subsequent ramps develop toward the foreland in a similar fashion. Syntectonic erosion and deposition may strongly control the location of thrust ramps by enhancing or removing the surface point of initiation. PMID:14961118

  15. Thrust faulting and hydrocarbon generation: reply

    SciTech Connect

    Edman, J.D.; Furlong, K.P.

    1987-07-01

    This paper is a rebuttal of an earlier paper trying to refute the claims of these authors. They believe this reply illustrates that the simplifications used by Warner and Royse (1987) in their model are generally inappropriate to describe the thermal history of units in the Western Overthrust belt, as well as other overthrust regions. Although their shortcuts produce results that are generally consistent with measured maturity values for some specific modeling sites, the differences in maturation history and the mismatch for the general thrust case make their model a less effective predictive tool. At this stage in the understanding of overthrust thermal processes, you cannot predict a priori when the thermal effects of thrusting will be significant and when they will be minimal. Defining the exact relationship between thrusting and hydrocarbon accumulations in overthrust areas requires additional work and data collection. In particular, workers must consider case histories where the hanging wall contains thick sequences of resistant strata. By incorporating additional constraints, instead of returning to the simplified assumption of constant thermal gradients in tectonic regions, the understanding of the evolution and maturation history of thrust belts is improved.

  16. Take-off and propeller thrust

    NASA Technical Reports Server (NTRS)

    Schrenk, Martin

    1933-01-01

    As a result of previous reports, it was endeavored to obtain, along with the truest possible comprehension of the course of thrust, a complete, simple and clear formula for the whole take-off distance up to a certain altitude, which shall give the correct relative weight to all the factors.

  17. Thrust reverser for high bypass turbofan engine

    SciTech Connect

    Matta, R.K.; Bhutiani, P.K.

    1990-05-08

    This patent describes a thrust reverser for a gas turbine engine of the type which includes an outer wall spaced from the center body of a core engine to define a bypass duct therebetween. The thrust reverser comprising: circumferentially displaced blocker doors, each of the doors being movable between a normal position generally aligned with the outer wall and a thrust reversing position extending transversely of the bypass duct for blocking the exhaust of air through the bypass duct and directing the air through an opening in the outer wall for thrust reversal; each of the blocker doors being of lightweight construction and including a pit in the inner surface thereof in the normal position; means for covering the pit during normal flow of air through the bypass duct to reduce the pressure drop in the bypass duct and to reduce noise. The covering means including a pit cover hingedly mounted at one end thereof on the blocker door and means of biasing the pit cover away from the blocker door to a position providing smooth flow of air through the bypass duct during normal operation.

  18. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  19. An aerostatic thrust bearing with a stiffness of ?

    NASA Astrophysics Data System (ADS)

    Yoshimoto, S.

    1996-03-01

    This paper proposes a new type of aerostatic thrust bearing in order to achieve 10 times larger bearing stiffness compared with that of conventional aerostatic bearings. In this bearing, a porous restrictor with 1 - 3 mm diameter is employed instead of a conventional feed-hole restrictor to restrain gas flow entering the bearing clearance to a very small amount and the proposed bearing can operate in a bearing clearance of less than 0957-4484/7/1/008/img2. The static characteristics of the proposed bearing are investigated theoretically and experimentally. It is consequently found that the proposed bearing can achieve a very high bearing stiffness of 0957-4484/7/1/008/img3.

  20. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  1. Preliminary Design of Low-Thrust Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Sims, Jon A.; Flanagan, Steve N.

    1997-01-01

    For interplanetary missions, highly efficient electric propulsion systems can be used to increase the mass delivered to the destination and/or reduce the trip time over typical chemical propulsion systems. This technology is being demonstrated on the Deep Space 1 mission - part of NASA's New Millennium Program validating technologies which can lower the cost and risk and enhance the performance of future missions. With the successful demonstration on Deep Space 1, future missions can consider electric propulsion as a viable propulsion option. Electric propulsion systems, while highly efficient, produce only a small amount of thrust. As a result, the engines operate during a significant fraction of the trajectory. This characteristic makes it much more difficult to find optimal trajectories. The methods for optimizing low-thrust trajectories are typically categorized as either indirect, or direct. Indirect methods are based on calculus of variations, resulting in a two-point boundary value problem that is solved by satisfying terminal constraints and targeting conditions. These methods are subject to extreme sensitivity to the initial guess of the variables - some of which are not physically intuitive. Adding a gravity assist to the trajectory compounds the sensitivity. Direct methods parameterize the problem and use nonlinear programming techniques to optimize an objective function by adjusting a set of variables. A variety of methods of this type have been examined with varying results. These methods are subject to the limitations of the nonlinear programming techniques. In this paper we present a direct method intended to be used primarily for preliminary design of low-thrust interplanetary trajectories, including those with multiple gravity assists. Preliminary design implies a willingness to accept limited accuracy to achieve an efficient algorithm that executes quickly.

  2. Analysis of the gas-lubricated flat-sector-pad thrust bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat sector-shaped pad geometry for a gas-lubricated thrust bearing is analyzed considering both the pitch and roll of the pad. It is shown that maximum load capacity is achieved when the pad is tilted so as to create uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves, and a comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.

  3. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  4. Static thrust improvement of a linear proportional solenoid

    SciTech Connect

    Yamada, H.; Kihara, S.; Yamaguchi, M.; Nakagawa, H.; Hagiwara, K.

    1994-11-01

    A linear proportional solenoid (LPS) is an actuator for a proportional control valve used in hydraulic pressure-control devices. The LPS thrust must be constant over a specified displacement range, and must be proportional to the current. This paper describes simulations of the thrust-displacement characteristics of LPSes as determined by FEM, conducted with the aim of improving the LPM thrust. In model P, where high flux-density permendur was used in the LPS stator and mover, the maximum thrust increased from 27 to 40 N. The range of constant thrust, however, decreased from 1.0 to 0.5 mm. In model S, where permendur was used in the stator and mover, and the salient pole of the stator in the LPS was modified, the range of constant thrust was the same as in the present model. Moreover, the static thrust in the range of constant thrust increased from 27 to 38 N.

  5. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  6. Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX

    NASA Astrophysics Data System (ADS)

    Nawaz, Anuscheh; Albertoni, Riccardo; Auweter-Kurtz, Monika

    2010-08-01

    The effect of electric parameters on the thrust efficiency of an ablative pulsed plasma thruster was studied. Analytically, it was shown that a higher efficiency can be obtained by increasing energy of a bank of capacitors. This can be achieved by changing the inductance per distance of the plasma sheet, or reducing the resistance of the circuit and the mass bit. Further, an optimum discharge time was found when the capacitance and the inductance were varied. A low initial inductance increases the thrust efficiency. Experimentally, these trends can be verified by comparing two thrusters: SIMP-LEX and ADD SIMP-LEX, with their different initial inductances. For ADD SIMP-LEX, the optimal thrust efficiency for different capacities was determined to be 31% at 60μF for a 17 J configuration.

  7. Design and test of electromechanical actuators for thrust vector control

    NASA Technical Reports Server (NTRS)

    Cowan, J. R.; Weir, Rae Ann

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  8. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Marchand, Belinda G.; Brown, Aaron J.; Tracy, William H.; Weeks, Michael W.

    2010-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections (or targeting) process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new model for the two-level corrections process is formulated here to accommodate finite burn arcs. This paper presents the development and formulation of the finite burn two-level corrector, used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. A performance comparison between the impulsive and finite burn models is also presented. The present formulation ensures all entry constraints are met, without violating the available fuel budget, while allowing for low-thrust scenarios with long burn durations.

  9. Design and test of electromechanical actuators for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Weir, Rae Ann

    1993-05-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

  10. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  11. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  12. Development of a Lightweight Thrust Chamber Assembly Utilizing In-Situ Reinforced Silicon Nitride

    NASA Astrophysics Data System (ADS)

    Elvander, J.; Wherley, B.; Claflin, S.

    1999-06-01

    The paper describes the status of the Light Weight Thrust Chamber Assembly (LWTCA) program currently underway at Boeing Rocketdyne Propulsion and Power, under contract with the US Air Force Research Laboratory. The goal of the program is to demonstrate technology which will lead to a 40% reduction in weight (including the nozzle), a 50% reduction in cost, a 75% reduction in part count and a 3% increase in specific impulse on a full scale, 400 klbf thrust LOX/hydrogen booster engine. The demonstration will be performed through the use of manufacturing technology demonstrator hardware and 60 klbf thrust hot-fire tests. The primary means to achieving these goals is by using in-situ reinforced silicon nitride for structural components. Silicon nitride is an advanced ceramic material that has high specific strength and fracture toughness, and can be cast to near- net part shape. Tests to validate the material properties of in-situ reinforced silicon nitride are discussed, along with the resulting changes to traditional thrust chamber design as a result of the improved properties. The progress towards manufacturing and hot-fire testing a thrust chamber assembly from the material is also described.

  13. Thrust generation by a heaving flexible foil: Resonance, nonlinearities, and optimality

    NASA Astrophysics Data System (ADS)

    Paraz, Florine; Schouveiler, Lionel; Eloy, Christophe

    2016-01-01

    Flexibility of marine animal fins has been thought to enhance swimming performance. However, despite numerous experimental and numerical studies on flapping flexible foils, there is still no clear understanding of the effect of flexibility and flapping amplitude on thrust generation and swimming efficiency. Here, to address this question, we combine experiments on a model system and a weakly nonlinear analysis. Experiments consist in immersing a flexible rectangular plate in a uniform flow and forcing this plate into a heaving motion at its leading edge. A complementary theoretical model is developed assuming a two-dimensional inviscid problem. In this model, nonlinear effects are taken into account by considering a transverse resistive drag. Under these hypotheses, a modal decomposition of the system motion allows us to predict the plate response amplitude and the generated thrust, as a function of the forcing amplitude and frequency. We show that this model can correctly predict the experimental data on plate kinematic response and thrust generation, as well as other data found in the literature. We also discuss the question of efficiency in the context of bio-inspired propulsion. Using the proposed model, we show that the optimal propeller for a given thrust and a given swimming speed is achieved when the actuating frequency is tuned to a resonance of the system, and when the optimal forcing amplitude scales as the square root of the required thrust.

  14. Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion

    NASA Technical Reports Server (NTRS)

    Richter, G. P.; Price, H. G.

    1986-01-01

    The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.

  15. Spectacular exposures of thrusting in the core of concentric anticlines as models for oil exploration

    SciTech Connect

    Beall, J.J. )

    1996-01-01

    The Owl Creek Mountains are an east-west trending uplift located on the southern edge of the Bighorn Basin, Wyoming, comprised of a series of northwest-trending structures bounded by northeast-verging thrust faults. Mud Creek and Middle Mud Creek Anticlines are two basement-controlled folds located on the footwall of the Mud Creek-North Owl Creek Fault zone. Mud Creek and Middle Mud Creek anticlines are en echelon structures which trend approximately N30W. Exposed in the Jurassic section is a series of stacked thrust faults which die out downward into bedding. These faults achieve an additional structural relief on the crest of the anticline. This has important implications for the drilling of concentric structures and reservoir distribution. Three scenarios can possibly explain the en echelon arrangement of the two anticlines. The first calls for a single basement thrust, offset by a compartmental fault; the second possibility is two en enchelon thrust faults. The third is that of a single, sinuous, low-angle basement thrust fault. This third geometry will account for the apparent en echelon arrangement ofMud Creek - Middle Mud Creek Anticlines. Additionally, an abrupt change in the trend of Mud Creek Anticline is one of the indicators of left-oblique slip on west- trending basement faults of the north flank of the Owl Creeks and adjacent areas.

  16. Spectacular exposures of thrusting in the core of concentric anticlines as models for oil exploration

    SciTech Connect

    Beall, J.J.

    1996-12-31

    The Owl Creek Mountains are an east-west trending uplift located on the southern edge of the Bighorn Basin, Wyoming, comprised of a series of northwest-trending structures bounded by northeast-verging thrust faults. Mud Creek and Middle Mud Creek Anticlines are two basement-controlled folds located on the footwall of the Mud Creek-North Owl Creek Fault zone. Mud Creek and Middle Mud Creek anticlines are en echelon structures which trend approximately N30W. Exposed in the Jurassic section is a series of stacked thrust faults which die out downward into bedding. These faults achieve an additional structural relief on the crest of the anticline. This has important implications for the drilling of concentric structures and reservoir distribution. Three scenarios can possibly explain the en echelon arrangement of the two anticlines. The first calls for a single basement thrust, offset by a compartmental fault; the second possibility is two en enchelon thrust faults. The third is that of a single, sinuous, low-angle basement thrust fault. This third geometry will account for the apparent en echelon arrangement ofMud Creek - Middle Mud Creek Anticlines. Additionally, an abrupt change in the trend of Mud Creek Anticline is one of the indicators of left-oblique slip on west- trending basement faults of the north flank of the Owl Creeks and adjacent areas.

  17. Preliminary study of VTO thrust requirements for a V/STOL aircraft with lift plus lift/cruise propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Allen, J. L.

    1980-01-01

    A preliminary assessment was made of the VTO thrust requirements for a supersonic (Type B) aircraft with a Lift plus Lift/Cruise propulsion system. A baseline aircraft with a takeoff gross weight (TOGW) of 13 608 kg (30,000 lb) was assumed. Pitch, roll, and yaw control thrusts (i.e., the thrusts needed for aircraft attitude control in the flight hover mode) were estimated based on a specified set of maneuver acceleration requirements for V/STOL aircraft. Other effects (such as installation losses, suckdown, reingestion, etc.), which add to the thrust requirements for VTO were also estimated. For the baseline aircraft, the excess thrust required for attitude control of the aircraft during VTO and flight hover was estimated to range from 36.9 to 50.9 percent of the TOGW. It was concluded that the total thrust requirements for the aircraft/propulsion system are large and significant. In order to achieve the performance expected of this aircraft/propulsion system, reductions must be made in the excess thrust requirements.

  18. Thrust and Propulsive Efficiency from an Instructive Viewpoint

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2010-01-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static…

  19. Nature of thrusting along western flank of Bighorn Mountains, Wyoming

    SciTech Connect

    Noggle, K.S.

    1986-08-01

    The northern portion of the Bighorn Mountains is characterized by opposed mountain-front thrusts, of which the southwest direction is dominant. Blind basement thrusts along the northeastern flank do not pierce the folded Paleozoic cover; whereas on the western flank, southwest-directed thrust segments expose Precambrian rocks along a 24-km (14-mi) extent. Field studies on the western flank show evidence of four major southwest-directed thrust segments delineated by tear-fault boundaries, which include from northwest to southeast: (1) the Five Springs thrust, a low-angle, out-of-the-syncline fault mainly involving the sedimentary sequence; (2) the Bear Creek thrust, a continuation of the Five Springs out-of-the-syncline fault; (3) the South Beaver Creek thrust, which juxtaposes Precambrian rocks against a tectonically thinned, overturned anticlinal limb of Mississippian through Jurassic rocks and which is inward from an out-of-the-syncline thrust involving little displacement of Jurassic formations; and (4) a mountain-front reentrant that coincides with the zone where the South Beaver Creek thrust continues beneath Paleozoic cover, causing the upper flexure of a double monocline. The central portion of the Bighorn Mountains is thrust eastward, whereas the northern portion is thrust southwestward with much less displacement. The segmented association of southwest-directed basement thrusts along the western flank of the northern Bighorns is indicative of the major transport direction for that portion of the Bighorn uplift.

  20. Summary of Scale-Model Thrust-Reverser Investigation

    NASA Technical Reports Server (NTRS)

    Povolny, John H; Steffen, Fred W; Mcardle, Jack G

    1957-01-01

    An investigation was undertaken to determine the characteristics of several basic types of thrust-reverser. Models of three types, target, tailpipe cascade, and ring cascade, were tested with unheated air. The effects of design variables on reverse-thrust performance, reversed-flow boundaries, and thrust modulation characteristics were determined.

  1. Thrust vectoring for lateral-directional stability

    NASA Technical Reports Server (NTRS)

    Peron, Lee R.; Carpenter, Thomas

    1992-01-01

    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

  2. Low-thrust mission risk analysis.

    NASA Technical Reports Server (NTRS)

    Yen, C. L.; Smith, D. B.

    1973-01-01

    A computerized multi-stage failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust subsystem burn operation, the system failure processes, and the retargetting operations. The application of the method is used to assess the risks in carrying out a 1980 rendezvous mission to Comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates is the limiting factor in attaining a high mission reliability. But it is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.

  3. Thrust production by a mechanical swimming lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, M. C.; Smits, A. J.

    2011-05-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey to investigate the formation of the wake structure, the shedding vorticity from the body, and the relationship between thrust production and pressure on the surface of the robot. The robot mimics the motion of living lamprey in steady swimming by using a programmable microcomputer to actuate 13 servomotors that produce a traveling wave along the length of the lamprey body. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments. This indicates that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined, showing a clear connection between the location of vortex structures and the fluctuations of the pressure signal.

  4. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  5. NATURAL BARRIERS TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect

    NA

    2005-07-27

    This booklet contains project descriptions of work performed by the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), Office of Science and Technology and International's (OST&I) Natural Barriers Targeted Thrust during Fiscal Year (FY) 2004. The Natural Barriers Targeted Thrust is part of OST&I's Science and Technology Program which supports the OCRWM mission to manage and dispose of high-level radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits public confidence. In general, the projects described will continue beyond FY 2004 assuming that the technical work remains relevant to the proposed Yucca Mountain Repository and sufficient funding is made available to the Science and Technology Program.

  6. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  7. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Parametric data and preliminary designs on liquid rocket engines for low thrust cargo orbit-transfer-vehicles are described and those items where technology is required to enhance the designs are identified. The results of film cooling studies to establish the upper chamber pressure limit are given. The study showed that regen cooling with RP-1 was not feasible over the entire thrust and chamber pressure ranges. The thermal data showed that the RP-1 bulk temperature exceeded the study coking temperature limit of 1010 R. Based upon the results presented, O2/H2 and O2/CH4 regen engine systems and O2/H2 film cooled engines were selected for further study in the system analysis. Six engine design concepts are examined.

  8. Advanced tube-bundle rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Pavli, Albert J.

    1990-01-01

    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction.

  9. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  10. Low-thrust Isp sensitivity study

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.

  11. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  12. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  13. CFD Code Survey for Thrust Chamber Application

    NASA Technical Reports Server (NTRS)

    Gross, Klaus W.

    1990-01-01

    In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.

  14. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, S.; Effinger, M.; Holmes, R.; Lee, J.; Jaskowiak, M.

    2000-01-01

    Traditional metals like steel and copper alloys have been used for many years to fabricate injector and chamber components of thruster assemblies. While the materials perform well, reducing engine weights would help existing and future vehicles gain performance and payload capability. It may now be possible to reduce current thruster weights up to 50% by applying composite materials. In this task, these materials are being applied to an existing thrust cell design to demonstrate new fabrication processes and potential weight savings. Two ceramic matrix composite (CMC) designs, three polymer matrix composite (PMC) designs, and two metal matrix composite (MMC) designs are being fabricated as small chamber demonstration units. In addition, a new alloy of copper, chrome, and niobium (Cu-8Cr-4Nb) is being investigated for thrust chamber liners since it offers higher strength and increased cycle life over traditional alloys. This new alloy is being used for the liner in each MMC and PMC demonstration unit. During June-August of 2000, hot-fire testing of each unit is planned to validate designs in an oxygen/hydrogen environment at chamber pressures around 850 psi. Although the weight savings using CMC materials is expected to be high, they have proven to be much harder to incorporate into chamber designs based on current fabrication efforts. However, the PMC & MMC concepts using the Cu-8Cr-4Nb liner are nearly complete and ready for testing. Additional efforts intend to use the PMC & MMC materials to fabricate a full size thrust chamber (60K lb(sub f) thrust class). The fabrication of this full size unit is expected to be complete by October 2000, followed by hot-fire testing in November-December 2000.

  15. Low Carbon Propulsion Strategic Thrust Overview

    NASA Technical Reports Server (NTRS)

    Dryer, Jay

    2014-01-01

    NASA is taking a leadership role with regard to developing new options for low-carbon propulsion. Work related to the characterization of alternative fuels is coordinated with our partners in government and industry, and NASA is close to concluding a TC in this area. Research on alternate propulsion concepts continues to grow and is an important aspect of the ARMD portfolio. Strong partnerships have been a key enabling factor for research on this strategic thrust.

  16. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  17. Nozzle Thrust Optimization While Reducing Jet Noise

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Gilinsky, M. M.

    1995-01-01

    A Bluebell nozzle design concept is proposed for jet noise reduction with minimal thrust loss or even thrust augmentation. A Bluebell nozzle has a sinusoidal lip line edge (chevrons) and a sinusoidal cross section shape with linear amplitude increasing downstream in the divergent nozzle part (corrugations). The experimental tests of several Bluebell nozzle designs have shown nose reduction relative to a convergent-divergent round nozzle with design exhaust number M(e) = 1.5. The best design provides an acoustic benefit near 4dB with about 1 percent thrust augmentation. For subsonic flow ((M(e)= 0.6)), the tests indicated that the present method for design of Bluebell nozzles gives less acoustic benefit and in most cases jet noise increased. The proposed designs incorporate analytical theory and 2D and 3D numerical simulations. Full Navier-Stokes and Euler solvers were utilized. Boundary layer effects were used. Several different designs were accounted for in the Euler applications.

  18. Calculating track thrust with track functions

    NASA Astrophysics Data System (ADS)

    Chang, Hsi-Ming; Procura, Massimiliano; Thaler, Jesse; Waalewijn, Wouter J.

    2013-08-01

    In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a “calorimetric” measurement using both charged and neutral particles and a “track-based” measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape “track thrust” and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are nonperturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.

  19. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  20. Thrust and power measurements of Olympic swimmers

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Wu, Vicki; Hutchison, Sean; Mark, Russell

    2012-11-01

    Elite level swimming is an extremely precise and even choreographed activity. Swimmers not only know the exact number of strokes necessary to take them across the pool, they also plan to be a precise distance from the wall at the end of their last stroke. Too far away and they lose time by drifting into the wall. Too close and their competitor may slide in before their hand comes forward to touch the wall. In this context, it is important to know, in detail, where and how a swimmer propels her/himself through the water. Over the past decade, state-of-the-art flow and thrust measurement diagnostics have been brought to competitive swimming. But the ability to correlate stroke mechanics to thrust production without somehow constraining the swimmer has here-to-fore not been possible. Using high speed video, a simple approach to mapping the swimmer's speed, thrust and net power output in a time resolved manner has been developed. This methodology has been applied to Megan Jendrick, gold medalist in the 100 individual breast stroke and 4 × 100 medley relay events in 2000 and Ariana Kukors, 2009 world champion and continuing world record holder in the 200 individual medley. Implications for training future elite swimmers will be discussed.

  1. Deformation style in the Munsiari Thrust Zone: a study in the Madlakia-Munsiari-Dhapa section in north-eastern Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Moharana, Abhishek; Mishra, Anurag; Srivastava, Deepak C.

    2013-04-01

    folds. As the strain during progressive deformation achieved the levels that were too high for accommodation by ductile flow, it was released by development of a tectonic dislocation along a mechanically weak boundary, the Munsiari Thrust. The isoclinal folds and the Munsiari Thrust were developed at different stages of a common progressive deformation during the Himalayan orogeny. Contrary to the popular notion of consistency with respect to orientation, the stretching lineations show large directional variability due to distortion during the late folding.

  2. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  3. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Landry, K.

    2005-01-01

    operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.

  4. Ouachita Mountain thrust front: An integrated approach to prospect analysis in thrust belts

    SciTech Connect

    Dodge, R.L. ); Keeling, M.A. ); Cassiani, D. )

    1990-05-01

    The thrust front of the Ouachita Mountains in western Arkansas is defined by the prominent asymmetric Washburn anticline. Previously interpreted as a complexly thrust-faulted anticline, the feature has been reinterpreted as a delta or triangle structure based on integration of surface mapping from thematic mapper (TM) data with subsurface interpretation of seismic and well-log cross sections. The northern limb of the Washburn anticline consists of a relatively unfaulted steeply north-dipping sheet above a major north-dipping backthrust. The southern limb consists of several steeply south-dipping thrust sheets that form a duplex zone in the center of the delta structure. Seismic and well-log interpretations suggested the presence of the imbrication in the core of the structure, but poor seismic resolution within the structure made interpretation of the backthrust and duplex geometry difficult. Surface mapping from TM imagery indicates the presence of the backthrust and the extent and geometry of the delta structure. Thrust sheets and horses also crop out, and their geometry is a guide to interpretation of subsurface data sets. The new model of the Ouachita thrust front as a delta structure has aided in subsurface data analysis and has resulted in a better understanding of trap geometry and distribution. This study also demonstrates the application of detailed surface mapping from satellite remote-sensing data to prospect-scale analysis.

  5. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali

    2014-05-01

    The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.

  6. Initiation process of a thrust fault revealed by analog experiments

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Dotare, Tatsuya; Adam, Juergen; Hori, Takane; Sakaguchi, Hide

    2016-04-01

    We conducted 2D (cross-sectional) analog experiments with dry sand using a high resolution digital image correlation (DIC) technique to reveal initiation process of a thrust fault in detail, and identified a number of "weak shear bands" and minor uplift prior to the thrust initiation. The observations suggest that the process can be divided into three stages. Stage 1: characterized by a series of abrupt and short-lived weak shear bands at the location where the thrust will be generated later. Before initiation of the fault, the area to be the hanging wall starts to uplift. Stage 2: defined by the generation of the new thrust and its active displacement. The location of the new thrust seems to be constrained by its associated back-thrust, produced at the foot of the surface slope (by the previous thrust). The activity of the previous thrust turns to zero once the new thrust is generated, but the timing of these two events is not the same. Stage 3: characterized by a constant displacement along the (new) thrust. Similar minor shear bands can be seen in the toe area of the Nankai accretionary prism, SW Japan and we can correlate the along-strike variations in seismic profiles to the model results that show the characteristic features in each thrust development stage.

  7. Gas dynamic calibration of a nano-Newton thrust stand

    NASA Astrophysics Data System (ADS)

    Jamison, Andrew J.; Ketsdever, Andrew D.; Muntz, E. P.

    2002-10-01

    The ability to measure extremely low thrust levels with unusual precision is becoming more critical as attempts are made to characterize the performance of emerging micropropulsion systems. Many new attitude control concepts for nanospacecraft involve the production of thrust below 1 μN. A simple, but uniquely successful thrust stand has been developed and used to measure thrust levels as low as 86.2 nano-Newtons (nN) with an estimated accuracy of ±11%. Thrust levels in the range of 712 (nN) to 1 μN have been measured with an estimated accuracy of ±2%. Thrust is measured from an underexpanded orifice operating in the free molecule flow regime with helium, argon, and nitrogen propellants. The thrust stand is calibrated using results from direct simulation Monte Carlo numerical models and analytical solutions for free molecule orifice flow. The accuracy of the gas dynamic calibration technique, using free molecule orifice flow, has also been investigated. It is shown that thrust stand calibration using high Knudsen number helium flow can be accurate to within a few percent in the 80 to 1 μN thrust range for thin walled orifices when the stagnation pressure is accurately measured. The thrust stand and calibration technique exhibit significant improvement for accurate, low thrust measurements compared to currently published results.

  8. Conjunction challenges of low-thrust geosynchronous debris removal maneuvers

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; Schaub, Hanspeter

    2016-06-01

    The conjunction challenges of low-thrust engines for continuous thrust re-orbiting of geosynchronous (GEO) objects to super-synchronous disposal orbits are investigated, with applications to end-of-life mitigation and active debris removal (ADR) technologies. In particular, the low maneuverability of low-thrust systems renders collision avoidance a challenging task. This study investigates the number of conjunction events a low-thrust system could encounter with the current GEO debris population during a typical re-orbit to 300 km above the GEO ring. Sensitivities to thrust level and initial longitude and inclination are evaluated, and the impact of delaying the start time for a re-orbiting maneuver is assessed. Results demonstrate that the mean number of conjunctions increases hyperbolically as thrust level decreases, but timing the start of the maneuver appropriately can reduce the average conjunction rate when lower thrust levels are applied.

  9. Paleostress analysis of the Osning Thrust, Germany

    NASA Astrophysics Data System (ADS)

    Saintot, Aline; Kozakovski, Anna; Pascal, Christophe

    2013-04-01

    The Osning Thrust is a 100 km-scale NW-SE fault separating the Lower Saxony Basin to the NE from the Münsterland Basin to the SE. The fault has accommodated a polyphase deformation that started at least when it acted as one of the normal border faults of the Jurassic Lower Saxony Basin. Tectonic inversion of the basin in Late Cretaceous-Early Paleocene times led to the development of the SE-vergent Osning Thrust and to folding of rocks. A paleostress analysis was carried out in order to decipher the polyphase kinematics of the Osning Thrust. The fault slip data were collected in the folded Albian to Turonian stratigraphic units of the Münsterland basin, in the SE vicinity of a 20 km-long steep segment of the Osning Thrust. Fault slip data in sufficient amount to perform paleostress inversion were collected in 10 sites among 23 visited outcrops. Abundant minor faults trend sub-parallel to the NW-SE steep segment of the Osning Thrust but, surprisingly, they are dextral (and not reverse) in type. Another major set of E-W striking minor faults is remarkable. It corresponds to conjugate systems of either reverse or normal faults and to oblique- to strike-slip faults in a less extent. The paleostress tensors reveal a ca. N-S compression recorded in 5 locations under which the NW-SE steep faults were dextral and the E-W striking S- and N- dipping faults were reverse. Six stress tensors fit with a ca. N-S extension. They are calculated from E-W striking S- and N- dipping normal to oblique normal faults. The same N-S trend of minimum stress axis is also recorded with NNE-SSW dextral and E-W sinistral faults. We propose that along the studied segment of the Osning Thrust a N-S compressional stress field led to the inversion of the Lower Saxony Basin and that slip along the Osning Thrust was oblique reverse. At two locations, the N-S compressive stress states affected the rock prior to tilting of the beds (herein, due to folding) and at one site, the normal faults of the N

  10. The use of laterally vectored thrust to counter thrust asymmetry in a tactical jet aircraft

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A nonlinear, six degree-of-freedom flight simulator for a twin engine tactical jet was built on a hybrid computer to investigate lateral vectoring of the remaining thrust component for the case of a single engine failure at low dynamic pressures. Aircraft control was provided by an automatic controller rather than a pilot, and thrust vector control was provided by an open-loop controller that deflected a vane (located on the periphery of each exhaust jet and normally streamlined for noninterference with the flow). Lateral thrust vectoring decreased peak values of lateral control deflections, eliminated the requirement for steady-state lateral aerodynamic control deflections, and decreased the amount of altitude lost for a single engine failure.

  11. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  12. High-power, null-type, inverted pendulum thrust stand.

    PubMed

    Xu, Kunning G; Walker, Mitchell L R

    2009-05-01

    This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation. PMID:19485530

  13. Electrokinetics as a Propellantless Propulsion Source

    NASA Astrophysics Data System (ADS)

    Valone, Thomas

    This is a review of the worthwhile, innovative theories and concepts in electrogravitics and electrokinetics that could yield tremendous technological and economic dividends in both investment dollars and potential applications for future generations. Electrogravitics is most commonly associated with the 1918 work by Professor Nipher followed by the 1928 British patent #300,311 of T. Townsend Brown, the 1952 Special Inquiry File #24-185 of the Office of Naval Research into the "Electro-Gravity Device of Townsend Brown" and two widely circulated 1956 Aviation Studies Ltd. Reports on "Electrogravitics Systems" and "The Gravitics Situation." By definition, electrogravitics historically has had a purported relationship to gravity or the object's mass, as well as the applied voltage. An analysis of the 90-year old science of electrogravitics (or electrogravity) necessarily includes an analysis of electrokinetics. Electrokinetics, on the other hand, is more commonly associated with many patents of T. Townsend Brown as well as Agnew Bahnson, starting with the 1960 US patent #2,949,550 entitled, "Electrokinetic Apparatus." Electrokinetics, which often involves a capacitor and dielectric, has virtually no relationship that can be connected with mass or gravity. The Army Research Lab has recently issued a report on electrokinetics, analyzing the force on an asymmetric capacitor, while NASA has received three patents on the same design topic. To successfully describe and predict the purported motion in the direction of the positive terminal of the capacitor, it is desirable to use the classical electrokinetic field and force equations for the specific geometry involved. This initial review also suggests directions for further confirming measurements. This paper also reviews the published electrokinetic experiments by the Army Research Lab by Bahder and Fazi, California State University at Fullerton work by Woodward and Mahood, Erwin Saxl, and others.

  14. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  15. Jaw thrust can deteriorate upper airway patency.

    PubMed

    von Ungern-Sternberg, B S; Erb, T O; Frei, F J

    2005-04-01

    Upper airway obstruction is a frequent problem in spontaneously breathing children undergoing anesthesia or sedation procedures. Failure to maintain a patent airway can rapidly result in severe hypoxemia, bradycardia, or asystole, as the oxygen demand of children is high and oxygen reserve is low. We present two children with cervical masses in whom upper airway obstruction exaggerated while the jaw thrust maneuver was applied during induction of anesthesia. This deterioration in airway patency was probably caused by medial displacement of the lateral tumorous tissues which narrowed the pharyngeal airway. PMID:15777312

  16. STOL landing thrust: Reverser jet flowfields

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1987-01-01

    Analysis tools and modeling concepts for jet flow fields encountered upon use of thrust reversers for high performance military aircraft are described. A semi-empirical model of the reverser ground wall jet interaction with the uniform cross flow due to aircraft forward velocity is described. This ground interaction model is used to demonstrate exhaust gas ingestion conditions. The effects of control of exhaust jet vector angle, lateral splay, and moving versus fixed ground simulation are discussed. The Adler/Baron jet-in-cross flow model is used in conjunction with three dimensional panel methods to investigate the upper surface jet induced flow field.

  17. Entrainment and mixing in thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1983-01-01

    An experimental investigation of two-dimensional thrust augmenting ejector flows has been conducted. Measurements of the shroud surface pressure distribution, mean velocity, turbulent intensities and Reynolds stresses were made in two shroud geometries at various primary nozzle pressure ratios. The effects of shroud geometry and primary nozzle pressure ratio on the shroud surface pressure distribution, mean flow field and turbulent field were determined. From these measurements the evolution of mixing within the shroud of the primary flow and entrained fluid was obtained. The relationship between the mean flow field, the turbulent field and the shroud surface pressure distribution is discussed.

  18. Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Walkley, K. B.

    1984-01-01

    This paper describes methodology and an associated computer program for the design of wing lifting surfaces with attainable thrust taken into consideration. The approach is based on the determination of an optimum combination of a series of candidate surfaces rather than the more commonly used candidate loadings. Special leading-edge surfaces are selected to provide distributed leading-edge thrust forces which compensate for any failure to achieve the full theoretical leading-edge thrust, and a second series of general candidate surfaces is selected to minimize drag subject to constraints on the lift coefficient and, if desired, on the pitching moment coefficient. A primary purpose of the design approach is the introduction of attainable leading-edge thrust considerations so that relatively mild camber surfaces may be employed in the achievement of aerodynamic efficiencies comparable to those attainable if full theoretical leading-edge thrust could be achieved. The program provides an analysis as well as a design capability and is applicable to both subsonic and supersonic flow.

  19. Reconciling Himalayan midcrustal discontinuities: The Main Central thrust system

    NASA Astrophysics Data System (ADS)

    Larson, Kyle P.; Ambrose, Tyler K.; Webb, A. Alexander G.; Cottle, John M.; Shrestha, Sudip

    2015-11-01

    The occurrence of thrust-sense tectonometamorphic discontinuities within the exhumed Himalayan metamorphic core can be explained as part of the Main Central thrust system. This imbricate thrust structure, which significantly thickened the orogenic midcrustal core, comprises a series of thrust-sense faults that all merge into a single detachment. The existence of these various structures, and their potential for complex overprinting along the main detachment, may help explain the contention surrounding the definition, mapping, and interpretation of the Main Central thrust. The unique evolution of specific segments of the Main Central thrust system along the orogen is interpreted to be a reflection of the inherent basement structure and ramp position, and structural level of exposure of the mid-crust. This helps explain the variation in the timing and structural position of tectonometamorphic discontinuities along the length of the mountain belt.

  20. Experimental investigations of thrust vectoring systems for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Aoyagi, K.

    1977-01-01

    This paper presents a summary of two technology programs sponsored by NASA to investigate the characteristics of two thrust vectoring schemes for V/STOL aircraft. The operational capability of the VTOL aircraft is dependent on maximum utilization of the installed thrust in both the cruise and powered lift modes of flight. An effective thrust vectoring system on the cruise propulsion unit is therefore essential to provide maximum payload in hover and STOL plus minimum specific fuel consumption in loiter and cruise. Introducing a high by-pass ratio fan system, augmenting the gas generator thrust, as the propulsion system for VTOL aircraft places increased significance on the performance of the relatively short coupled thrust vectoring systems. The two programs discussed herein include both large-scale and small-scale tests of a vectoring hood system with a vented, internal-lip and swivel nozzle systems. These tests indicated that a satisfactory thrust vectoring system can be developed.

  1. Optimal high- and low-thrust geocentric transfer

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Edelbaum, T. N.

    1974-01-01

    A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.

  2. OMV/VTE variable thrust engine analysis

    NASA Technical Reports Server (NTRS)

    Larosillere, Louis; Litchford, Ron; Jeng, San-Mou

    1989-01-01

    The objective of the present work is to develop a predictive CFD based analytical tool for the variable thrust engine (VTE) in the orbital maneuvering vehicle (OMV). This objective is being accomplished within the framework of the Los Alamos KIVA computer code for chemically reactive flows with sprays. For the OMV application, the main structure of KIVA is to be retained while reformulating many of the phenomenological submodels, enhancing some of the numerics, and adding more features. The analytical model consists of the general conservation equations for two phase reactive flows and of submodels for turbulence, chemical reactions, and bipropellant sprays. Tailoring this model to the OMV engine brings about the added complexities of combustion and flow processes that occur in a liquid hypergolic propellant rocket chamber. This report exposes the foundation upon which the analytical tool is being constructed and developed. Results from a cursory computational exercise involving the simulation of the flow and combustion processes in a hypothetical N2H4/N2O4 rocket engine thrust chamber is presented and discussed.

  3. OMV/VTE variable thrust engine analysis

    NASA Technical Reports Server (NTRS)

    Larosillere, L.; Litchford, R.; Jeng, S. M.

    1995-01-01

    The objective of the present work is to develop a predictive CFD based analytical tool for the Variable Thrust Engine (VTE) in the Orbital Maneuvering Vehicle (OMV). This objective is being accomplished within the framework of the Los Alamos KIVA computer code for chemically reactive flows with sprays. For the OMV application, the main structure of KIVA is to be retained while reformulating many of the phenomenological submodels, enhancing some of the numerics, and adding more features. The analytical model consists of the general conservation equations for two-phase reactive flows and of submodels for turbulence, chemical reactions, and bipropellant sprays. Tailoring this model to the OMV engine brings about the added complexities of combustion and flow processes that occur in a liquid hypergolic propellant rocket chamber. This report exposes the foundation upon which the analytical tool is being constructed and developed. Results from a cursory computational exercise involving the simulation of the flow and combustion processes in a hypothetical N2H4/N204 rocket engine thrust chamber is presented and discussed.

  4. Thrust vector control using electric actuation

    SciTech Connect

    Bechtel, R.T.; Hall, D.K.

    1995-01-25

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  5. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  6. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  7. Experimental Results of Schlicher's Thrusting Antenna

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Niedra, Janis M.

    2001-01-01

    Experiments were conducted to test the claims by Rex L. Schlicher, et al., (Patent 5,142,86 1) that a certain antenna geometry produces thrust greatly exceeding radiation reaction, when driven by repetitive, fast rise, and relatively slower decay current pulses. In order to test this hypothesis, the antenna was suspended by strings as a 3 in pendulum. Current pulses were fed to the antenna along the suspension path by a very flexible coaxial line constructed from loudspeaker cable and copper braid sheath. When driving the antenna via this cabling, our pulser was capable of sustaining 1200 A pulses at a rate of 30 per second up to a minute. In this way, bursts of pulses could be delivered in synch with the pendulum period in order to build up any motion. However, when using a laser beam passing through a lens attached to the antenna to amplify linear displacement by a factor of at least 25, no correlated motion of the beam spot could be detected on a distant wall. We conclude, in agreement with the momentum theorem of classical electromagnetic theory, that any thrust produced is far below practically useful levels. Hence, within classical electrodynamics, there is little hope of detecting any low level motion that cannot be explained by interactions with surrounding structural steel and the Earth's magnetic field.

  8. Fluid storage and transport in thrust belts: the Gavarnie Thrust system revisited

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew

    2015-04-01

    There has been renewed interest in the pressure and movement of fluids in thrust systems in recent years with the discovery and increasing importance of slow slip earthquakes. Unfortunately the overpressured regime thought to be the source region for both normal and slow-slip earthquakes is inaccessible to direct observation, so information about the actual water content, flow regimes and permeability structure at the time of thrusting can only be obtained in exhumed rocks. The Gavarnie Thrust System in the Pyrenees (including the immediate footwall of the thrust and overlying thrust sheets) is exceptionally well studied in terms of structural and microstructural work, fluid inclusions, and isotopic tracing of fluid flow. Southward thrusting by 12-15 km occurred during the Eocene, and the current geometry of the thrust is a broad dome, allowing sampling at many locations. There is abundant evidence for near-lithostatic fluid pressures at depths of 8-15 km in the crust and temperatures of 300-400 °C, and fluids at these levels are dominated by hypersaline brines with Cl/Br ratios indicating evaporation of seawater. They are inferred to be derived from widespread Triassic evaporates, and stored in underlying redbeds and fractured basement rocks. There is also evidence from fluid inclusions for periodic pressure cycling down to near-hydrostatic values. This is thought to be related to co-seismic fault valve behaviour with release of fluid both into the shallow thrust and into steeply dipping shear zones in the hangingwall. Isotopic studies of carbonate mylonites along the Gavarnie thrust indicate unidirectional southward (structurally upward) flow of fluid , again probably mainly during transient veining events. These relatively slow moving fluids appear to have fed into a hydrostatic regime with topographically driven flow at higher levels. If time averaged permeability was high, most of the fluid would have rapidly escaped, since there is little opportunity to

  9. Feedback control for counterflow thrust vectoring with a turbine engine: Experiment design and robust control design and implementation

    NASA Astrophysics Data System (ADS)

    Dores, Delfim Zambujo Das

    2005-11-01

    Engineering research over the last few years has successfully demonstrated the potential of thrust vector control using counterflow at conditions up to Mach 2. Flow configurations that include the pitch vectoring of rectangular jets and multi-axis vector control in diamond and axisymmetric nozzle geometries have been studied. Although bistable (on-off) fluid-based control has been around for some time, the present counterflow thrust vector control is unique because proportional and continuous jet response can be achieved in the absence of moving parts, while avoiding jet attachment, which renders most fluidic approaches unacceptable for aircraft and missile control applications. However, before this study, research had been limited to open-loop studies of counterflow thrust vectoring. For practical implementation it was vital that the counterflow scheme be used in conjunction with feedback control. Hence, the focus of this research was to develop and experimentally demonstrate a feedback control design methodology for counterflow thrust vectoring. This research focused on 2-D (pitch) thrust vectoring and addresses four key modeling issues. The first issue is to determine the measured variable to be commanded since the thrust vector angle is not measurable in real time. The second related issue is to determine the static mapping from the thrust vector angle to this measured variable. The third issue is to determine the dynamic relationship between the measured variable and the thrust vector angle. The fourth issue is to develop dynamic models with uncertainty characterizations. The final and main goal was the design and implementation of robust controllers that yield closed-loop systems with fast response times, and avoid overshoot in order to aid in the avoidance of attachment. These controllers should be simple and easy to implement in real applications. Hence, PID design has been chosen. Robust control design is accomplished by using ℓ1 control theory in

  10. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  11. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.; Yost, M. C.; Tobin, R. D.

    1973-01-01

    Tests were conducted on the regenerative cooled thrust chamber of the space shuttle orbit maneuvering engine. The conditions for the tests and the durations obtained are presented. The tests demonstrated thrust chamber operation over the nominal ranges of chamber pressure mixture ratio. Variations in auxiliary film coolant flowrate were also demonstrated. High pressure tests were conducted to demonstrate the thrust chamber operation at conditions approaching the design chamber pressure for the derivative space tug application.

  12. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  13. Design and test of a magnetic thrust bearing

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Mikula, A.; Banerjee, B.; Lewis, D. W.; Imlach, J.

    1993-01-01

    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented.

  14. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  15. A review of thrust-vectoring schemes for fighter applications

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1978-01-01

    This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

  16. Kinematic modeling of folding above listric propagating thrusts

    NASA Astrophysics Data System (ADS)

    Cardozo, Nestor; Brandenburg, J. P.

    2014-03-01

    We describe a kinematic approach to simulate folds above listric propagating thrusts. The model is based on a pre-defined circular thrust geometry with a maximum central angle beyond which the thrust is planar, inclined shear above the circular thrust, and trishear in front of the thrust. Provided the trajectory of thrust propagation is established, the model can be run forward and backwards. We use this last feature to implement a global simulated annealing, inverse modeling strategy. This inverse modeling strategy is applied to synthetic folds as well as two real examples in offshore Venezuela and the Niger Delta toe-thrust system. These three examples illustrate the benefits of the algorithm, particularly in predicting the possible range of models that can fit the structures. Thrust geometry, depth to detachment level, and backlimb geometry have high impact in model parameters such as backlimb shear angle and fault slip; while forelimb geometry is critical to constrain parameters such as fault propagation to fault slip ratio and trishear angle. Steep to overturned beds in forelimb areas are often not imaged by seismic, so in the absence of additional well data, considering all possible thrust-fold geometries is critical for the modeling and whatever prediction (e.g. hydrocarbon trap integrity) is made from it.

  17. Unsteady thrust measurement techniques for pulse detonation engines

    NASA Astrophysics Data System (ADS)

    Joshi, Dibesh Dhoj

    Thrust is a critical performance parameter and its correct determination is necessary to characterize an engine. Many conventional thrust measurement techniques prevail. However, further developments are required for correct measurement of thrust in the case of a pulse detonation engine (PDE), since the entire thrust generation process is intermittent. The significant effect of system dynamics in the form of inertial forces, stress wave propagation and reflections initiated in the structure due to detonations and pulse-to-pulse interaction in a fast operating PDE further complicate the thrust measurement process. These complications call for a further, detailed study of the unsteady thrust characteristics. A general approach was first developed to recover actual thrust from the measured thrust generated by the PDE. The developed approach consisted of two steps. The first step incorporated a deconvolution procedure using a pre-established system transfer function and measured input to reconstruct the output yielding the deconvolved thrust. The second step accounted for inertial forces through an acceleration compensation procedure. These two steps allowed the actual thrust to be determined. A small scale PDE operating at 10 and 20 Hz with varied filling fractions and mixture equivalence ratios was used for the experimental application of the general approach. The analytical study of gas dynamics in the PDE while in operation and the measured pressure histories at the exit of the engine allowed the generated thrust during a cycle to be determined semi-empirically. The thrust values determined semi-empirically were compared against the experimental results. A dynamical model of the PDE was created for the study of the unsteady thrust characteristics using finite element analysis. The results from finite element analysis were compared against semi-empirical and experimental results. In addition, finite element analysis also facilitated to numerically determine the

  18. Thrust enhancement via gel-type liquid confinement of laser ablation of solid metal propellant

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Han, Tae-Hee; Gojani, Ardian B.; Yoh, Jack J.

    2010-01-01

    Laser propulsion has been developed as a suitable small thruster technology for the attitude control of micro and nano class satellites. Laser-based thrusters meet the satellite design criteria for being of light weight and cost effective, because they do not require fuel storing and oxidizer for combustion. Also, thrust control by laser propulsion is achieved fairly easy. In this paper, we consider the confinement of plasma expansion by a gel-type liquid material, which results in the enhancement of the thrust for propulsion. We also present our attempts to resolve some known issues regarding laser ablation of solid and liquid targets. The level of thrust is quantified via the momentum coupling coefficient, which was experimentally measured using a ballistic pendulum system. We have discovered that the laser ablation confinement by the gel-type medium results in 2.3 times more enhanced driving force as compared to the water confinement. A proof of performance is demonstrated for using gel-type material for generating propulsion, and material characterization for optimal thrust performance is presented.

  19. Experimental Investigation of Thrust Fault Rupture Mechanics

    NASA Astrophysics Data System (ADS)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  20. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  1. Small centrifugal pumps for low thrust rockets

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  2. Thrust Production in a Mechanical Swimming Lamprey

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Smits, Alexander

    2008-11-01

    To develop a comprehensive model of lamprey locomotion, we use a robotic lamprey as a means of investigating the surface pressure and wake structure during swimming. A programmable microcomputer actuates 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform is based on the motion of the American eel (Anguilla rostrata), as described by Tytell and Lauder (2004) and kinematic studies of living lamprey. The amplitude of the phase-averaged surface pressure distribution along the centerline of the robot increases toward the tail, which is consistent with previous momentum balance experiments indicating that thrust is produced mainly at the tail. The phase relationship between the pressure signal and the vortex shedding from the tail is also examined. The project is supported by NIH CNRS Grant 1R01NS054271.

  3. Thrust faults and back thrust in Madison range of southwestern Montana foreland

    SciTech Connect

    Tysdal, R.G.

    1986-04-01

    In the Rocky Mountain foreland of southwestern Montana, a zone of Late Cretaceous thrust faults, named the Hilgard fault system, extends along the west side of the Madison Range from Hebgen Lake northward for about 50 mi (80 km). The thrust faults are steep at their leading edges but flatten westward beneath the associated plates, where they commonly dip 25/sup 0/-30/sup 0/. Structural lows and highs are apparent beneath the Beaver Creek plate, the major thrust sheet of the system, and correlate with salients and reentrants of the plate. The Beaver Creek plate consists primarily of Archean metamorphic rocks, but Phanerozoic strata are preserved along the northern part of the plate's leading edge. Only the forward part of the plate is preserved in the Madison Range because Cenozoic normal faults of the Madison Range fault system dropped much of the plate beneath the Madison Valley on the west. The Kirkwood plate lies east of and beneath the Beaver Creek plate, and contains structures of the eastern part of the Hilgard system. The central segment of the leading edge of the Kirkwood plate is not completely detached from underlying strata. The leading edge of the northern part of the plate, defined by the Cache Creek fault, is flanked on the west by an associated anticline. The southern end of the Cache Creek fault is an eastward-dipping back thrust, which abruptly steepens on the west adjacent to the anticline. Both the fault and the anticline are believed to have formed above a concealed detachment fault. The southern part of the Kirkwood plate displays structures interpreted to represent displacement transfer from the Beaver Creek plate. 9 figures.

  4. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  5. Impact of plasma noise on a direct thrust measurement system.

    PubMed

    Pottinger, S J; Lamprou, D; Knoll, A K; Lappas, V J

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges. PMID:22462919

  6. Heat pipe technology for advanced rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1971-01-01

    The application of heat pipe technology to the design of rocket engine thrust chambers is discussed. Subjects presented are: (1) evaporator wick development, (2) specific heat pipe designs and test results, (3) injector design, fabrication, and cold flow testing, and (4) preliminary thrust chamber design.

  7. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  8. Simulations of directed energy thrust on rotating asteroids

    NASA Astrophysics Data System (ADS)

    Griswold, Janelle; Madajian, Jonathan; Johansson, Isabella; Pfau, Krysten; Lubin, Philip; Hughes, Gary B.; Gilkes, Aidan; Meinhold, Peter; Motta, Caio; Brashears, Travis; Zhang, Qicheng

    2015-09-01

    Asteroids that threaten Earth could be deflected from their orbits using directed energy to vaporize the surface, because the ejected plume creates a reaction thrust that alters the asteroid's trajectory. One concern regarding directed energy deflection is the rotation of the asteroid, as this will reduce the average thrust magnitude and modify the thrust direction. Flux levels required to evaporate surface material depend on surface material composition and albedo, thermal, and bulk mechanical properties of the asteroid, and rotation rate. The observed distribution of asteroid rotation rates is used, along with an estimated range of material and mechanical properties, as input to a 3D thermal-physical model to calculate the resultant thrust vector. The model uses a directed energy beam, striking the surface of a rotating sphere with specified material properties, beam profile, and rotation rate. The model calculates thermal changes in the sphere, including vaporization and mass ejection of the target material. The amount of vaporization is used to determine a thrust magnitude that is normal to the surface at each point on the sphere. As the object rotates beneath the beam, vaporization decreases, as the temperature drops and causes both a phase shift and magnitude decrease in the average thrust vector. A surface integral is calculated to determine the thrust vector, at each point in time, producing a 4D analytical model of the expected thrust profile for rotating objects.

  9. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thrust or power augmentation system. 25.945... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... must be able to withstand without failure the vibration, inertia, fluid, and structural loads that...

  10. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power augmentation system. (a) General....

  11. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or...

  12. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or...

  13. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Thrust or power augmentation system. 25.945 Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or...

  14. A magnetic coupling thrust stand for microthrust measurements

    NASA Astrophysics Data System (ADS)

    Wright, W. P.; Ferrer, P.

    2016-01-01

    A direct thrust measurement system that is based on a horizontal lever and utilizes a novel magnetic coupling mechanism to measure thrust has been developed. The system is capable of measuring thrusts as low as 10’s of μN. While zero drift is observed in the balance, tests have shown that they do not have an appreciable effect on thrust measurements. The thrust stand’s sensitivity can be adjusted by shifting the position of the coupling magnet inside the stand’s thrust support member, which allows flexibility for testing both higher and lower powered thrusters. The thrust stand has been modeled theoretically and the predicted results from the model are compared with experimentally measured data. The system was tested using a simple cold gas thruster and provided credible results that can be compared with other systems studied in the literature. Advantages include that the thrust stand is very cheap and easy to construct and further, the calibration process takes no longer than half an hour, facilitating rapid turnaround times while still retaining accuracy. Repeatability tests have shown that the balance gives consistent results.

  15. A Target Indirect Thrust Measurement Method of Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Huang, Xiqiao; Xiong, Yuefei; Li, Chao; Zheng, Longxi; Li, Qing

    2015-05-01

    An indirect thrust measurement method based on impulse of a target plate was developed, and a new thrust measurement system (TMS) was successfully designed and constructed. A series of multi-cycle experiments on thrust measurement were conducted to investigate the feasibility of this method with the newly-built indirect TMS. The thrust measurement of PDE was made at different plate target axial positions and operating frequencies. All the experiments were conducted using gasoline as fuel and air as oxidant. The experimental results implied that the thrust of PDE by using the indirect impulse method was a function of the target plate axial position, and there existed an optimum measurement position for PDE with a diameter of 60 mm. The optimum target plate position located at 3.33. According to the experimental results, the thrusts obtained by using indirect TMS were less than the actual values, and so the observed value of thrust was modified in order to make the thrust more reliable. A relative accurate calibration formula depending on the operating frequency was found.

  16. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David A.; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.

  17. Six degree-of-freedom thrust sensor for hybrid rocket.

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua

    2008-04-01

    Thrust is the reactive force experienced by a rocket due to the ejection of high velocity matter. The Hybrid Rocket Facility at the University of Arkansas at Little Rock (UALR) uses strain gauges mounted to an s-beam to measure axial direction thrust of the rocket. A new six degree of freedom thrust sensor has been built for the UALR Hybrid Rocket Facility. The six degrees of freedom are the thrust force components in the three spacial directions (Fx, Fy, Fz) plus the three moments (roll, pitch, yaw). Even though the majority of the rocket's thrust is in the axial direction, the components in the other directions are non-zero, and must be measured to account for the total work done by the rocket motor. The sensor design and fabrication are now complete. Calibration of the load cells on each of the six uni-axial legs of the sensor and any preliminary data available will be presented.

  18. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  19. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  20. New Highly Dynamic Approach for Thrust Vector Control

    NASA Astrophysics Data System (ADS)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  1. Interactive property of large thrust sheets with footwall rocks—the Sub thrust interactive duplex hypothesis: A mechanism of dome formation in thrust sheets

    NASA Astrophysics Data System (ADS)

    Hatcher, Robert D.

    1991-06-01

    Recently acquired Appalachian Ultradeep Core Hole (ADCOH) Project site investigation seismic reflection data and geologic data from the Appalachians and several other orogenic belts suggest an important mutually interdependent relationship exists between emplacement of large crystalline thrust sheets and the deforming foreland rocks beneath. This relationship suggests isolated domes beneath crystalline thrust sheets may be produced by passive folding of the sheet as a result of formation of an antiformal stack duplex in the platform sedimentary sequence beneath. Suggestions that domes in crystalline thrust sheets formed by interference of late open folds is doubtlessly still valid in places, but the platform duplex mechanism is probably also valid to explain the late doming of many crystalline and other large thrust sheets. The dome beneath the Shooting Creek and Brasstown Bald windows in the ADCOH site region is imaged as an antiformal stack duplex at depth. The Tallulah Falls dome, Grandfather Mountain and Mountain City windows, and Smokies Foothills duplex in the site region and elsewhere in the southern Blue Ridge are all late isolated domes and all are probably or demonstrably underlain by antiformal stack duplexes beneath the Blue Ridge-Piedmont composite crystalline thrust sheet. The Assynt window and footwall duplex benath the Arnabol and Moine thrusts in Scotland, and the Engadine window in the Alps may be similar structures.

  2. Tertiary structural evolution of the Gangdese thrust system southeastern Tibet

    SciTech Connect

    Yin, An; Harrison, M.; Ryerson, F.J.; Wenji, Chen; Kidd, W.S.F.; Copeland, P.

    1994-09-10

    Structural and thermochronological investigations of southern Tibet (Xizang) suggest that intracontinental thrusting has been the dominant cause for formation of thickened crust in the southernmost Tibetan plateau since late Oligocene. Two thrust systems are documented in this study: the north dipping Gangdese system (GTS) and the younger south dipping Renbu-Zedong system (RZT). West of Lhasa, the Gangdese thrust juxtaposes the Late Cretaceous forearc basin deposits of the Lhasa Block (the Xigaze Group) over the Tethyan sedimentary rocks of the Indian plate, whereas east of Lhasa, the fault juxtaposes the Late Cretaceous-Eocene, Andean-type arc (the Gangdese batholith) over Tethyan sedimentary rocks. Near Zedong, 150 km southeast of Lhasa, the Gangdese thrust is marked by a >200-m-thick mylonitic shear zone that consists of deformed granite and metasedimentary rocks. A major south dipping backthrust in the hanging wall of the Gangdese thrust puts the Xigaze Group over Tertiary conglomerates and the Gangdese plutonics north of Xigaze and west of Lhasa. A lower age bound for the Gangdese thrust of 18.3{+-}0.5 Ma is given by crosscutting relationships. The timing of slip on the Gangdese thrust is estimate to be 27-23 Ma from {sup 40}Ar/{sup 39}Ar thermochronology, and a displacement of at least 46{+-}9 km is indicated near Zedong. The age of the Gangdese thrust (GT) is consistent with an upper age limit of {approximately}24 Ma for the initiation of movement on the Main Central thrust. In places, the younger Renbu-Zedong fault is thrust over the trace of the GT, obscuring its exposure. The RZT appears to have been active at circa 18 Ma but had ceased movement by 8{+-}1 Ma. The suture between India and Asia has been complexely modified by development of the GTS, RZT, and, locally, strike-slip and normal fault systems. 64 refs., 14 figs., 2 tabs.

  3. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V

  4. NERVA 400E thrust train dynamic analysis

    NASA Technical Reports Server (NTRS)

    Vronay, D. F.

    1972-01-01

    The natural frequencies and dynamic responses of the NERVA 400E engine thrust train were determined for nuclear space operations (NSO), and earth-orbital shuttle (EOS) during launch and boost conditions. For NSO, a mini-tank configuration was analyzed with the forward end of the upper truss assumed fixed at the stage/mini-tank interface. For EOS, both a mini-tank and an engine only configuration were analyzed for a specific engine assembly support (EAS) stiffness. For all cases the effect of the shield on dynamic response characteristics was determined by performing parallel analyses with and without the shield. Gimbaling loads were not generated as that effort was scheduled after the termination date. The analysis, while demonstrating the adequacy of the engine design, revealed serious deficiencies in the EAS. Responses at the unsupported ends of the engine are excessive. Responses at the nuclear subsystem interface appear acceptable. It is recommended that additional analysis and design effort be expended upon the EAS to ensure that all engine responses stay within reasonable bounds.

  5. Interseismic coupling on the main Himalayan thrust

    NASA Astrophysics Data System (ADS)

    Stevens, V. L.; Avouac, J. P.

    2015-07-01

    We determine the slip rate and pattern of interseismic coupling on the Main Himalayan Thrust along the entire Himalayan arc based on a compilation of geodetic, interferometric synthetic aperture radar, and microseismicity data. We show that convergence is perpendicular to the arc and increases eastwards from 13.3 ± 1.7 mm/yr to 21.2 ± 2.0 mm/yr. These rates are comparable to geological and geomorphic estimates, indicating an essentially elastic geodetic surface strain. The interseismic uplift rate predicted from the coupling model closely mimics the topography, suggesting that a small percentage of the interseismic strain is permanent. We find that the fault is fully locked along its complete length over about 100 km width. We don't find any resolvable aseismic barrier that could affect the seismic segmentation of the arc and limit the along-strike propagation of seismic ruptures. The moment deficit builds up at a rate of 15.1 ± 1 × 1019 N m/yr for the entire length of the Himalaya.

  6. Cretaceous biostratigraphy in the Wyoming thrust belt.

    USGS Publications Warehouse

    Nichols, D.J.; Jacobson, S.R.

    1982-01-01

    In the Cretaceous section of the thrust belt, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites) , which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficult to obtain from the subsurface, however, and ammonites are restricted to rocks of marine origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in the subsurface because they can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. Stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming are correlated with the occurrence of ammonites and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior. -from Authors

  7. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

  8. Electronegative Gas Thruster - Direct Thrust Measurement Project

    NASA Technical Reports Server (NTRS)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  9. An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers

    NASA Technical Reports Server (NTRS)

    Scarritt, Sara K.; Marchand, Belinda G.; Weeks, Michael W.

    2009-01-01

    In earlier investigations, the adaptation and implementation of a modified two-level corrections process as the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such that the desired state at entry interface is achieved. In an actual onboard flight software implementation, these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although this process works well when the burn durations or burn arcs are small, this might not be the case during a contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new version of the modified two-level corrections process is formulated to handle the case of finite burn arcs. This paper presents the development and formulation of that finite burn modified two-level corrections process which can again be used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion. Additionally, performance results and a comparison between the two methods are presented. The finite burn two-level corrector formulation presented here ensures the entry constraints at entry interface are still met without violating the available fuel budget, while still accounting for much longer burn times in its design.

  10. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  11. Thrust and propulsive efficiency from an instructive viewpoint

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2010-09-01

    In a typical engineering or physics curriculum, the momentum equation is used for the determination of jet engine thrust. Even a simple thrust analysis requires a heavy emphasis on mathematics that can cause students and engineers to lose a physical perspective on thrust. This article provides for this physical understanding using only static pressures that act on engine surfaces. Such an alternative, but equivalent, method can offer insights into some special examples of jet engine thrust that contradict commonly held beliefs. One such example is provided by the engine bellmouth that is used for testing jet engines on the ground. The static pressure distribution clearly shows that the engine bellmouth actually experiences forward thrust. Another example is provided by the conic exhaust nozzle that is used at the end of some jet engines. The static pressure distribution shows that the conic nozzle does not experience any forward thrust (although the nozzle increases the overall thrust of an engine through higher pressures upstream of the nozzle). Following these examples, a basis for conceptualizing propulsive efficiency is discussed. This illustrates that it is more efficient to have a smaller acceleration of a large amount of air than a larger acceleration of a smaller amount of air.

  12. Structural style of the Marathon thrust belt, West Texas

    NASA Astrophysics Data System (ADS)

    Hickman, Robert G.; Varga, Robert J.; Altany, Robert M.

    2009-09-01

    The Marathon portion of the Ouachita thrust belt consists of a highly deformed allochthonous wedge of Cambrian-Pennsylvanian slope strata (Marathon facies) that was transported to the northwest and emplaced over Pennsylvanian foredeep sediments. The foredeep strata in turn overlie early-middle Paleozoic shelfal sediments which are deformed by late Paleozoic basement-involved reverse faults. The Dugout Creek thrust is the basal thrust of the allochthon. Shortening in this sheet and overlying sheets is ˜80%. Steep imbricate faults link the Dugout Creek thrust to upper level detachments forming complex duplex zones. Progressive thrusting and shortening within the allochthon folded the upper level detachments and associated thrust sheets. The Caballos Novaculite is the most competent unit within the Marathon facies and controlled development of prominent detachment folds. Deeper imbricate sheets composed of the Late Pennsylvanian foredeep strata, and possibly early-middle Paleozoic shelfal sediments developed concurrently with emplacement of the Marathon allochthon and folded the overlying allochthon. Following termination of thrusting in the earliest Permian, subsidence and deposition shifted northward to the Delaware, Midland and Val Verde foreland basins.

  13. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    NASA Astrophysics Data System (ADS)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  14. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  15. Electric sail control mode for amplified transverse thrust

    NASA Astrophysics Data System (ADS)

    Toivanen, P.; Janhunen, P.; Envall, J.

    2015-01-01

    The electric solar wind sail produces thrust by centrifugally spanned high voltage tethers interacting with the solar wind protons. The sail attitude can be controlled and attitude maneuvers are possible by tether voltage modulation synchronous with the sail rotation. Especially, the sail can be inclined with respect to the solar wind direction to obtain transverse thrust to change the osculating orbit angular momentum. Such an inclination has to be maintained by a continual control voltage modulation. Consequently, the tether voltage available for the thrust is less than the maximum voltage provided by the power system. Using a spherical pendulum as a model for a single rotating tether, we derive analytical estimations for the control efficiency for two separate sail control modes. One is a continuous control modulation that corresponds to strictly planar tether tip motion. The other is an on-off modulation with the tether tip moving along a closed loop on a saddle surface. The novel on-off mode is introduced here to both amplify the transverse thrust and reduce the power consumption. During the rotation cycle, the maximum voltage is applied to the tether only over two thrusting arcs when most of the transverse thrust is produced. In addition to the transverse thrust, we obtain the thrusting angle and electric power consumption for the two control modes. It is concluded that while the thrusting angle is about half of the sail inclination for the continuous modulation it approximately equals to the inclination angle for the on-off modulation. The efficiency of the on-off mode is emphasized when power consumption is considered, and the on-off mode can be used to improve the propulsive acceleration through the reduced power system mass.

  16. Role of detachments and thrust kinematics in Structural evolution of Kohat and Potwar fold thrust belt in Pakistan

    NASA Astrophysics Data System (ADS)

    Ghani, Humaad; Zeilinger, Gerold; Sobel, Edward; Heidarzadeh, Ghasem

    2016-04-01

    The Kohat and Potwar fold thrust belts in Pakistan represent the outermost external zone of the Himalayan fold and thrust system. The Main Boundary thrust marks their northern extent, showing that they are genetically linked; however, both exhibit a distinct contrast between the structural style at the surface and subsurface. This contrast becomes more conspicuous at the leading edge of the thrust belt where the Potwar allochothon extends further south, linked to Kohat in the north via an active strike-slip fault. Previous workers explained the structural evolution of the two belts separately, disregarding the influence of similar fold and thrusts developed in both belts. This research focuses on the preparation of a 3D structural model at the boundary of the two thrust belts to understand similarities and differences in their structural style and evolution. The model is constrained by integrating field, seismic and well data for better subsurface interpretation. Cross sections show that Potwar evolved on thrust faults originating from a basal detachment in Precambrian (pC) salt and terminating in Miocene Molasse forming duplexes of pre Himalayan strata. To the south, the Potwar allochothon is glided over a salt detachment with rare internal deformation toward its leading edge, forming fault bend fold thrust structure known as Salt range. The structural evolution towards the west in Kohat results from deformation on multiple detachment horizons at the pC salt, Eocene evaporites and Miocene Molasse. Disharmonic folding over Eocene evaporites is evident from their presence in the cores of outcropping folds. In the subsurface, closely spaced thrusts cut up section from basal detachment terminates in Eocene evaporites forming duplex in northern part of area. In south change of lithological facies from evaporites to limestone shift detachment level upward in to molasse strata which resemble structural style in northern Potwar. Thrusts at the surface evolved from the

  17. Thrust stand for high-power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, T. W.

    1991-01-01

    This paper describes a new high-power thrust stand developed for use with high-power (up to 250 kW) magnetoplasmadynamic (MPD) thrusters, which is installed in a high-vacuum MPD facility at Lewis Research Center. The design of the stand is based on inverted pendulum configuration, with the result of large displacements and high resolution. Calibration results showed that thrust measurements were linear and repeatable to within a fraction of 1 percent. The thrust stand was used for testing water-cooled MPD thrusters at power levels up to 125 kW. The thruster, however, is quite well suited for testing other types of electric propulsion devices.

  18. Fluid thrust control system. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Howell, W. L.; Jansen, H. B.; Lehmann, E. N. (Inventor)

    1968-01-01

    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls.

  19. ALBANIA: Thrust and backthrust systems of external Albanides: Examples

    SciTech Connect

    Bega, Z.; Janopulli, V.

    1995-08-01

    External Albanides have proved as an oil/gas province in a certain limited area. Better understanding of thrusting and backthrusting systems and how both systems work, could improve objectives for exploration beyond actual discoveries. Backthrusting is not seen any more typical for Cenozoic sediments, where buried front of thrust faulted belts are very active. Mesozoic rocks, that are dominated by westward thrust propagation are also affected by backthrusting, thus leaving more space for other units accommodation. New concepts postulated are based on Deep Holes, Seismic Data, Outcrops and Spot Imagery. Among onshore examples, some of them cross existing fields.

  20. A Regeneratively-Cooled Thrust Chamber for the Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall; Sparks, Dave; Woodcock, Gordon; Jim Turner (Technical Monitor)

    2000-01-01

    This document consists of presentation slides about the development of the regeneratively cooled thrust chamber for the Fastrac engine. The Fastrac engine was originally developed to demonstrate low cost design and fabrication methods. It was intended to be used in an expendable booster. The regen thrust chamber enables a more cost efficient test program. Using the low cost design and fabrication methodology designed for the 12K regeneratively cooled chamber, the contractor designed, developed and fabricated a regeneratively cooled thrust chamber for the Fastrac engine.

  1. Multiphysics Thrust Chamber Modeling for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation. A two-pronged approach is employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of heat transfer on thrust performance. Preliminary results on both aspects are presented.

  2. Managing Momentum on the Dawn Low Thrust Mission

    NASA Technical Reports Server (NTRS)

    Smith, Brett A.; Vanelli, Charles A.; Swenka, Edward R.

    2009-01-01

    Dawn is low-thrust interplanetary spacecraft enroute to the asteroids Vesta and Ceres in an effort to better understand the early creation of the solar system. After launch in September 2007, the spacecraft will flyby Mars in February 2009 before arriving at Vesta in summer of 2011 and Ceres in early 2015. Three solar electric ion-propulsion engines are used to provide the primary thrust for the Dawn spacecraft. Ion engines produce a very small but very efficient force, and therefore must be thrusting almost continuously to realize the necessary change in velocity to reach Vesta and Ceres.

  3. Dual-action gas thrust bearing for improving load capacity

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.

  4. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  5. Interplay of thrust, back-thrust, strike-slip and salt tectonics in a fold and thrust belt system: an example from Zakynthos Island, Greece

    NASA Astrophysics Data System (ADS)

    Zelilidis, A.; Papatheodorou, G.; Maravelis, A. G.; Christodoulou, D.; Tserolas, P.; Fakiris, E.; Dimas, X.; Georgiou, N.; Ferentinos, G.

    2016-01-01

    The southwestern flank of the Hellenic fold and thrust belt, situated along the southern edge of the Dinarides-Albanides-Hellenides continental convergent zone, was examined for reconstructing the tectonic deformation. This investigation presents an integrated study of onshore sedimentological and structural analyses, as well as offshore seismic lines, across the Pliocene-Pleistocene sedimentary succession in Zakynthos Island. Back-thrust faults, using the Triassic evaporites as decollement surface, during the Pliocene, and coeval diapiric intrusions formed three sub-basins on the hangingwall of the Kalamaki back-thrust fault. This interaction is responsible for the growth of the Skopos Mountain and the soft sediment deformation that formed synclines and slumps, respectively. Back-thrust and strike-slip faults were active during the early Pleistocene, and diapiric intrusions modified the bathymetry on the sea floor, giving rise to slumps and recumbent folds. At least five events of synsedimentary diapiric intrusions have been recognized and are marked by five slump horizons. During the Holocene, the diapiric intrusions between the Kalamaki back-thrust and the Vrachionas anticline could be either related to normal faults or gravitationally driven.

  6. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    NASA Astrophysics Data System (ADS)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  7. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through

  8. Investigation of Pneumatic Inlet and Diffuser Blowing on a Ducted Fan Propulsor in Static Thrust Operation

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne; Englar, Robert J.; Lee, Warren J.

    2003-01-01

    , to generate circulation in the sense of an accelerating duct design. The intent is to improve static thrust performance of a ducted fan tailored for high speed axial flight, while at the same time significantly reduce the pressure signature on the ground plane. Circulation control on the fan shroud is achieved by the Coanda effect.

  9. The Development of NASA's Low Thrust Trajectory Tool Set

    NASA Technical Reports Server (NTRS)

    Sims, Jon; Artis, Gwen; Kos, Larry

    2006-01-01

    Highly efficient electric propulsion systems can enable interesting classes of missions; unfortunately, they provide only a limited amount of thrust. Low-thrust (LT) trajectories are much more difficult to design than impulsive-type (chemical propulsion) trajectories. Previous low-thrust (LT) trajectory optimization software was often difficult to use, often had difficulties converging, and was somewhat limited in the types of missions it could support. A new state-of-the-art suite (toolbox) of low-thrust (LT) tools along with improved algorithms and methods was developed by NASA's MSFC, JPL, JSC, and GRC to address the needs of our customers to help foster technology development in the areas of advanced LT propulsion systems, and to facilitate generation of similar results by different analysts.

  10. Thrust Characteristics of Water Rocket and Their Improvement

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikio; Tomita, Nobuyuki; Takemae, Toshiaki

    The propulsive characteristics of water rockets are analyzed theoretically and experimentally. The unsteady thrust force acting on a PET bottle and the air pressure inside the bottle are measured simultaneously by the thrust test stand we have developed. The semi-empirical thrust history is obtained utilizing the air pressure history and it is compared with the measured thrust history. The results show qualitative agreement. The observation of the flow inside bottle by a high-speed video camera shows that the air precedes water when it is about to be discharged entirely. We have developed a flow regulator attached to the nozzle cap to reduce the precursor air discharge that is considered as a result of the swirling flow inside the bottle. The experimental results show that the air discharge and the body vibration are suppressed effectively.

  11. Style and timing of frontal structures, thrust belt, Central Utah

    SciTech Connect

    Lawton, T.F.

    1985-07-01

    The Cordilleran fold and thrust belt in central Utah may be divided into a western belt of Precambrian to lower Mesozoic strata shortened above ramp-style thrust faults and an eastern belt of folded middle to upper Mesozoic rocks. Shortening in the eastern foldbelt occurred above a bedding-plane thrust fault system that terminates within a thick section of Jurassic shale, siltstone, and anhydrite. Demonstrable synthrusting deposits within the region are late Early to Late Cretaceous in age. The age of synorogenic deposits and structural relations of postorogenic strata indicate that deformation was complete by the close of the Cretaceous or early Paleocene, and support a thrust mechanism for much of the folding in the region.

  12. Application of in-flight thrust determination uncertainty

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; Thompson, J. W., Jr.; Abernethy, R. B.; Biesiadny, T.; Havey, C. T.; Steurer, J. W.; Ascough, J. C.; Williams, D. D.

    1983-01-01

    A numerical example is given of a previously proposed methodology for the evaluation of in-flight thrust measurement uncertainty, using data extracted from a performance report comparing two different missile prototypes under a variety of flight conditions. Attention is given to the data for the AGM-68B Air Launched Cruise Missile, which is powered by the F107 dual-spool, mixed flow turbofan engine. Assessments are made of the definition of the measurement process, instrumentation error estimation, the propagation of errors to thrust calculation, mathematical model errors, the in-flight thrust error component, and correction to standard conditions. It is concluded that in-flight thrust measurement uncertainty limits can be evaluated from measurement system error analysis results and test data for the missile evaluation process presently described.

  13. Six degree-of-freedom thrust sensor for hybrid rocket

    NASA Astrophysics Data System (ADS)

    Strickland, Ryan

    2009-05-01

    Thrust is the reactive force experienced by a rocket due to the ejection of high velocity matter. A new six degree of freedom thrust sensor has been built for the UALR Hybrid Rocket Facility. The six degrees of freedom are the thrust force components in the three spacial directions (Fx, Fy, Fz) plus the three moments (roll, pitch, yaw). Even though the majority of the rocket's thrust is in the axial direction, the components in the other directions are non-zero, and must be measured to account for the total work done by the rocket motor. The load cells on each of the six uni-axial legs of the sensor were calibrated, and preliminary firing data was collected during the summer of 2008. This research project has been funded by a NASA EPSCoR grant, and a Hendrix Odyssey project award.

  14. Low-thrust solar electric propulsion navigation simulation program

    NASA Technical Reports Server (NTRS)

    Hagar, H. J.; Eller, T. J.

    1973-01-01

    An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included.

  15. Aerodynamics of thrust vectoring by Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Tseng, Jing-Biau; Lan, C. Edward

    1991-01-01

    Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex.

  16. Development of pneumatic thrust-deflecting powered-lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1986-01-01

    Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.

  17. Evaluation of rotating, incompressibly lubricated, pressurized thrust bearings

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1971-01-01

    Program evaluates a series hybrid, fluid film ball bearing consisting of an orifice compensated pressurized thrust bearing in conjunction with a self-acting journal bearing. Oil viscosities corresponding to experimentally measured ball bearing outer-race temperatures were used.

  18. Design and Analysis of an Electromagnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    Banerjee, Bibhuti; Rao, Dantam K.

    1996-01-01

    A double-acting electromagnetic thrust bearing is normally used to counter the axial loads in many rotating machines that employ magnetic bearings. It essentially consists of an actuator and drive electronics. Existing thrust bearing design programs are based on several assumptions. These assumptions, however, are often violated in practice. For example, no distinction is made between maximum external loads and maximum bearing forces, which are assumed to be identical. Furthermore, it is assumed that the maximum flux density in the air gap occurs at the nominal gap position of the thrust runner. The purpose of this paper is to present a clear theoretical basis for the design of the electromagnetic thrust bearing which obviates such assumptions.

  19. Direct thrust force measurement of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Wahid, Mazlan Abdul; Faiz, M. Z. Ahmad; Saqr, Khalid M.

    2012-06-01

    In this paper we present the result of High-Speed Reacting Flow Laboratory (HiREF) pulse detonation engine (PDE) experimental study on direct thrust measurement. The thrust force generated by the repetitive detonation from a 50 mm inner diameter and 600 mm length tube was directly measured using load cell. Shchelkin spiral was used as an accelerator for the Deflagration to Detonation Transition (DDT) phenomenon. Propane-oxygen at stoichiometric condition was used as the combustible fuel-air mixture for the PDE. The PDE was operated at the operation frequency of 3Hz during the test. The amount of thrust force that was measured during the test reaching up to 70N. These values of thrust force were found to be fluctuating and its combustion phenomenon has been analyzed and discussed.

  20. Thrust imbalance of the Space Shuttle solid rocket motors

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Sforzini, R. H.; Shackelford, B. W., Jr.

    1981-01-01

    The Monte Carlo statistical analysis of thrust imbalance is applied to both the Titan IIIC and the Space Shuttle solid rocket motors (SRMs) firing in parallel, and results are compared with those obtained from the Space Shuttle program. The test results are examined in three phases: (1) pairs of SRMs selected from static tests of the four developmental motors (DMs 1 through 4); (2) pairs of SRMs selected from static tests of the three quality assurance motors (QMs 1 through 3); (3) SRMs on the first flight test vehicle (STS-1A and STS-1B). The simplified internal ballistic model utilized for computing thrust from head-end pressure measurements on flight tests is shown to agree closely with measured thrust data. Inaccuracies in thrust imbalance evaluation are explained by possible flight test instrumentation errors.

  1. 53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Early use of thrust manipulation versus non-thrust manipulation: a randomized clinical trial.

    PubMed

    Cook, Chad; Learman, Kenneth; Showalter, Chris; Kabbaz, Vincent; O'Halloran, Bryan

    2013-06-01

    The purpose of this study was to investigate the comparative effectiveness of early use of thrust (TM) and non-thrust manipulation (NTM) in sample of patients with mechanical low back pain (LBP). The randomized controlled trial included patients with mechanically reproducible LBP, ≥ age 18-years who were randomized into two treatment groups. The main outcome measures were the Oswestry Disability Index (ODI) and a Numeric Pain Rating Scale (NPRS), with secondary measures of Rate of Recovery, total visits and days in care, and the work subscale of the Fears Avoidance Beliefs Questionnaire work subscale (FABQ-w). A two-way mixed model MANCOVA was used to compare ODI and pain, at baseline, after visit 2, and at discharge and total visits, days in care, and rate of recovery (while controlling for patient expectations and clinical equipoise). A total of 149 subjects completed the trial and received care over an average of 35 days. There were no significant differences between TM and NTM at the second visit follow-up or at discharge with any of the outcomes categories. Personal equipoise was significantly associated with ODI and pain. The findings suggest that there is no difference between early use of TM or NTM, and secondarily, that personal equipoise affects study outcome. Within-groups changes were significant for both groups. PMID:23040656

  3. A double pendulum plasma thrust balance and thrust measurement at a tandem mirror exhaust

    SciTech Connect

    Yang, T.F.; Liu, P.; Chang-Diaz, F.R.; Lander, H.; Childs, R.A.; Becker, H.D.; Fairfax, S.A.

    1995-09-01

    For the purpose of measuring the plasma momentum flux in a plasma system, a highly sensitive and precision balance has been developed. It can measure a force, an impulse, or thrust as low as 0.1 mN free of mechanical noise, electrical and magnetic pickups. The double pendulum system consists of two parallel conducting plates. One or both of the plates can be suspended by needles. The needle suspended plate (or plates) can swing freely with negligible friction because of the sharp points of the needles. When one of the plates is impacted by an impulse it will swing relatively to the fixed plate or other movable plate. The capacitance between the plates changes as a result of such a motion. The change of capacitance as a function of time is recorded as an oscillating voltage signal. The amplitude of such a voltage signal is proportional to the impacting force or impulse. The proportional factor can be calibrated. The forces can thus be read out from the recorded value of the voltage. The equation of motion for the pendulum system has been solved analytically. The circuit equation for the electronic measurement system has been formulated and solved numerically. Using this balance the thrust at the exhaust of a Tandem Mirror plasma thruster has been measured. The analytical solution of the overall characteristics agrees greatly with the measurement. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report

    PubMed Central

    Simpson, Brad G; Simon, Corey B

    2014-01-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain. PMID:24976753

  5. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the eight-day August 2013 test campaign designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster, but instead will describe the test integration, test operations, and the results obtained from the test campaign. Approximately 30-50 micro-Newtons of thrust were recorded from an electric propulsion test article consisting primarily of a radio frequency (RF) resonant cavity excited at approximately 935 megahertz. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level, within a stainless steel vacuum chamber with the door closed but at ambient atmospheric pressure. Several different test configurations were used, including two different test articles as well as a reversal of the test article orientation. In addition, the test article was replaced by an RF load to verify that the force was not being generated by effects not associated with the test article. The two test articles were designed by Cannae LLC of Doylestown, Pennsylvania. The torsion pendulum was designed, built, and operated by Eagleworks Laboratories at the NASA Johnson Space Center of Houston, Texas. Approximately six days of test integration were required, followed by two days of test operations, during which, technical issues were discovered and resolved. Integration of the two test articles and their supporting equipment was performed in an iterative fashion between the test bench and the vacuum chamber. In other words, the test article was tested on the bench, then moved to the chamber, then moved back as needed to resolve issues. Manual frequency control was required throughout the test. Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not

  6. Improved thrust calculations of active magnetic bearings considering fringing flux

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Kim, Kwan-Ho; Ko, Kyoung-Jin; Choi, Ji-Hwan; Sung, So-Young; Lee, Yong-Bok

    2012-04-01

    A methodology for deriving fringing permeance in axisymmetric devices such as active thrust magnetic bearings (ATMBs) is presented. The methodology is used to develop an improved equivalent magnetic circuit (EMC) for ATMBs, which considers the fringing effect. This EMC was used to characterize the force between the housing and mover and the dependence of thrust and inductance on the air gap and input current, respectively. These characteristics were validated by comparison with those obtained by the finite element method and in experiments.

  7. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  8. The Selection of Propellers for High Thrust at Low Airspeed

    NASA Technical Reports Server (NTRS)

    Conway, Robert N.; Biermann, David

    1941-01-01

    Problem of improving thrust at low speeds is primarily one of reducing angle of attack of operation of sections to improve L/D or reducing blade helix angle. An analysis, based on recent propeller data, is presented for determining improvements in thrust or efficiency which could be obtained by increased number of blades, increased blade width, increased diameter, dual rotation, and two-speed gearing. All methods were found very effective, particularly two-speed gearing.

  9. Thrust Structure of Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This image illustrates technicians working on a full scale engineering mock-up of a Saturn V S-IC stage thrust structure nearing completion at the Manufacturing Engineering Laboratory at Marshall Space Flight Center. The booster, 33 feet in diameter and 138 feet long, was powered by five F-1 engines that provided 7,500,000 pounds of thrust to start the monstrous vehicle on its journey into space.

  10. Recent advances in low-thrust propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1988-01-01

    The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.

  11. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ashpis, David E.; Laun, Matthew C.

    2013-11-01

    DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.

  12. An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Strykowski, Paul J.

    1997-01-01

    Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.

  13. Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle

    NASA Technical Reports Server (NTRS)

    Schirmer, Alberto W.; Capone, Francis J.

    1989-01-01

    In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

  14. Study of ejector geometry on thrust augmentation for pulse detonation engine ejector systems

    NASA Astrophysics Data System (ADS)

    Shehadeh, Ra'fat

    Pulse detonation engine (PDE) technology is a novel form of propulsion that offers the potential of high efficiency combustion with reduced hardware complexity. Although the primary interest of the research in the pulse detonation engine field is directed towards overcoming the problems associated with operating a pure PDE system, there are other worthy options to be considered for these engines. The PDE driven ejector concept is one such option where the system would be part of a hybrid PD/Turbofan engine. This system offers the promise of replacing the high-pressure turbine sections of the core of a high bypass turbofan engine. The purpose of the current research is to investigate the thrust augmentation capabilities of a PDE driven ejector and provide experimental data that would assist in understanding the behavior of such a system. The major potential advantages of the PDE-ejector include reduced costs due to the reduced engine weight, along with improved specific fuel consumption and specific power inherent in the incorporation of a PDE component. To achieve the goal of this research, the thrust augmentation of a PDE driven ejector was characterized for a set of configurations. Two separate PDE's were utilized in this study. The first PDE was capable of operating at a constant frequency of 10 Hz de to flow rate limitations, and another PDE built to have an operational frequency range of 10 Hz-70 Hz to test the effect of operational frequency on PDE-ejector systems. Optical diagnostics were employed at specific positions of interest to understand the physical behavior of the flow. Baseline experimental results helped define and understand the operational characteristics of the PDE's utilized in this study. Thrust measurements were then made for PDE driven ejector configurations. The parameters that were independently changed were the inlet geometry of a constant diameter ejector, as well as the overlap distance between the PDE tube exit and ejector tube inlet

  15. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    NASA Astrophysics Data System (ADS)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2015-12-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  16. Development of a Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, Charles M.; Merkowitz, Stephen M.

    2002-01-01

    A thrust stand has been built to measure the force-noise produced by electrostatic micro-Newton (muN) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 muN with a resolution of 0.1 muN. The stationary force-noise produced by these thrusters must not exceed 0.1 muN/dHz in the measurement bandwidth 10(exp -4) to 1 Hz. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from l0( -4) to 1 Hz with 0.1 muN/dHz sensitivity, absolute thrust measurements from 1-100 muN with better than 0.1 muN resolution, and dynamic thruster response from to 10 Hz. The LTS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  17. Superposed fold-thrust events at the Nevada Test Site

    USGS Publications Warehouse

    Cashman, Patricia H.; Cole, James C.; Trexler, James H., Jr.

    2000-01-01

    The Nevada Test Site (NTS), in southern Nye County, Nevada, straddles significant pre-Tertiary structural and stratigraphic boundaries. Detailed stratigraphy and biostratigraphy of the Upper Paleozoic section delineates the regional trust sheets and constrains their burial histories. The Paleozoic rocks record three phases of contractional deformation, overprinted by strike-slip faulting. These occured in the folloing order: (1) foreland-vergant folding and imbricate thrusting in the footwall of the Belted Range thrust; (2) hinterland-vergent folding and thrusting; and (3) north-vergant folding that we interpret as footwall deformation below a third major thrust system. Sinistral slip, typically accompanied by minor east-west shortening, has occured along a series of north-northeast--north-northwest--striking faults around Yucca Flat. This strike-slip faulting postdates both foreland-vergent and hinterland-vergent deformation, and predates the Cretaceous Climax stock; its age relative to the north-vergent folding and thrusting is unknown. Our new understanding of the geometry of these structures provides new insights into the correlation and interpretation of regional structural features. Field trip stops will examine: (1) the stratigraphic differences that allow us to distinguish the regional thrust sheets and constrain their burial histories; and (2) the field relationships that document the kinematics and relative ages of the penetrative deformational events.

  18. Advanced hydrogen/oxygen thrust chamber design analysis

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1973-01-01

    The results are reported of the advanced hydrogen/oxygen thrust chamber design analysis program. The primary objectives of this program were to: (1) provide an in-depth analytical investigation to develop thrust chamber cooling and fatigue life limitations of an advanced, high pressure, high performance H2/O2 engine design of 20,000-pounds (88960.0 N) thrust; and (2) integrate the existing heat transfer analysis, thermal fatigue and stress aspects for advanced chambers into a comprehensive computer program. Thrust chamber designs and analyses were performed to evaluate various combustor materials, coolant passage configurations (tubes and channels), and cooling circuits to define the nominal 1900 psia (1.31 x 10 to the 7th power N/sq m) chamber pressure, 300-cycle life thrust chamber. The cycle life capability of the selected configuration was then determined for three duty cycles. Also the influence of cycle life and chamber pressure on thrust chamber design was investigated by varying in cycle life requirements at the nominal chamber pressure and by varying the chamber pressure at the nominal cycle life requirement.

  19. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  20. Momentum Flux Measurements Using an Impact Thrust Stand

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Breizman, Boris; Bengtson, Roger

    2004-01-01

    A device has been developed to measure the force caused by a beam of charged and neutral particles impacting a target plate. This device, an impact thrust stand, was developed to allow thrusters, during early stages of development, to be quickly and easily exhausted and compared to other thrusters. Since some thruster concepts are tested using laboratory equipment that is heavy and cumbersome, measuring the momentum flux of the particles in the plume can be much simpler than placing the entire thruster on a thrust stand. Conservation of momentum requires the momentum flux measured in the plume to be related to the thrust produced by the thruster. The impact thrust stand was designed to be placed in the plume of an electric thruster and has been tested and compared to the thrust measured from a Hall thruster placed on a pendulum thrust stand. Force measurements taken at several axial locations in the magnetic nozzle region of the Variable Specific Impulse Magnetoplasma Rocket will be presented.

  1. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  2. Momentum flux measurements using an impact thrust stand

    NASA Astrophysics Data System (ADS)

    Chavers, Greg; Chang-Diaz, Franklin; Breizman, Boris; Bengtson, Roger

    2004-11-01

    A device has been developed to measure the force caused by a beam of charged and neutral particles impacting a target plate. This device, an impact thrust stand, was developed to allow thrusters, during early stages of development, to be quickly and easily evaluated and compared to other thrusters. Since some thruster concepts are tested using laboratory equipment that is heavy and cumbersome, measuring the momentum flux of the particles in the plume can be much simpler than placing the entire thruster on a thrust stand. Conservation of momentum requires the momentum flux measured in the plume to be related to the thrust produced by the thruster. The impact thrust stand was designed to be placed in the plume of an electric thruster and has been tested and compared to the thrust measured from a Hall thruster placed on a pendulum thrust stand. Force measurements taken at several axial locations in the magnetic nozzle region of the Variable Specific Impulse Magnetoplasma Rocket will be presented.

  3. Polyphase thrust tectonic in the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Paris, I. A.

    1986-01-01

    In the circa 3.5 by-old Barberton greenstone belt, the supracrustal rocks form a thick and strongly deformed thrust complex. Structural studies in the southern part of the belt have shown that 2 separate phases of over-thrusting (D sub 1 and D sub 2) successively dismembered the original stratigraphy. Thrust nappes were subsequently refolded during later deformations (D sub 3 and D sub 4). This report deals with the second thrusting event which, in the study region appears to be dominant, and (unlike the earlier thrusting), affects the entire supracrustal pile. The supracrustal rocks form a predominantly NE/SW oriented, SE dipping tectonic fan (the D sub 2 fan) in which tectonic slices of ophiolitic-like rocks are interleaved with younger sedimentary sequences of the Diepgezet and malalotcha groups. Structural and sedimentological data indicate that the D sub 2 tectonic fan was formed during a prolonged, multi-stage regional horizontal shortening event during which several types of internal deformation mechanisms were successively and/or simultaneously active. Movement appears to have been predominantly to the NW and to the N. During D sub 2, periods of quiescence and sedimentation followed periods of thrust propagation. Although the exact kinematics which led to the formation of this fan is not yet known, paleoenvironmental interpretations together with structural data suggest that D sub 2 was probably related to (an) Archean collision(s).

  4. Fuel optimum low-thrust elliptic transfer using numerical averaging

    NASA Astrophysics Data System (ADS)

    Tarzi, Zahi; Speyer, Jason; Wirz, Richard

    2013-05-01

    Low-thrust electric propulsion is increasingly being used for spacecraft missions primarily due to its high propellant efficiency. As a result, a simple and fast method for low-thrust trajectory optimization is of great value for preliminary mission planning. However, few low-thrust trajectory tools are appropriate for preliminary mission design studies. The method presented in this paper provides quick and accurate solutions for a wide range of transfers by using numerical orbital averaging to improve solution convergence and include orbital perturbations. Thus, preliminary trajectories can be obtained for transfers which involve many revolutions about the primary body. This method considers minimum fuel transfers using first-order averaging to obtain the fuel optimum rates of change of the equinoctial orbital elements in terms of each other and the Lagrange multipliers. Constraints on thrust and power, as well as minimum periapsis, are implemented and the equations are averaged numerically using a Gausian quadrature. The use of numerical averaging allows for more complex orbital perturbations to be added in the future without great difficulty. The effects of zonal gravity harmonics, solar radiation pressure, and thrust limitations due to shadowing are included in this study. The solution to a transfer which minimizes the square of the thrust magnitude is used as a preliminary guess for the minimum fuel problem, thus allowing for faster convergence to a wider range of problems. Results from this model are shown to provide a reduction in propellant mass required over previous minimum fuel solutions.

  5. Thrusting and wedge growth, Southern Alps of Lombardia (Italy)

    NASA Astrophysics Data System (ADS)

    Roeder, Dietrich

    1992-06-01

    A south-vergent fold-thrust belt of Miocene-Recent age accompanies the south slope of the Lombardian Alps and is partly buried beneath Plio-Pleistocene Po Valley basin fill. The belt is probably detached along a trans-crustal thrust, named Main South Alpine Thrust (MSAT), with an estimated dip slip of 70-100 km. Transport on this thrust piggybacks the Adamello pluton of Late Eocene age, pre-Adamello folds, and Oligocene-Miocene Insubric strike-slip structures, by ramping up through 12-15 km of Austro-Alpine (Adria) crust and through 8-10 km of Triassic to Eocene sediments. Folds in the Front Ranges are ascribed to MSAT ramping, not to pre-Adamello compression. The MSAT soles upward in a blind thrust beneath 3-4 km of Oligocene-Pliocene foredeep fill. Initial regional failure along the MSAT implies substantial and pre-existing topographic relief near the Insubric line. An average of 25% wedge thickening during MSAT transport is consistent with the requirement of Coulomb critical taper. Progression of the south-Alpine detachment from the MSAT to the base of the foreland sediments has added a thickness of 6-12 km in footwall imbrications to the base and the toe of the thrust wedge. This addition in wedge volume is consistent with wedge dynamics only if a mid-Miocene or younger spike of excess Alpine topography is admitted.

  6. Thrust stand for vertically oriented electric propulsion performance evaluation

    SciTech Connect

    Moeller, Trevor; Polzin, Kurt A.

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  7. Thrust stand for vertically oriented electric propulsion performance evaluation.

    PubMed

    Moeller, Trevor; Polzin, Kurt A

    2010-11-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater. PMID:21133502

  8. Development of A Thrust Stand to Meet LISA Mission Requirements

    NASA Technical Reports Server (NTRS)

    Willis, William D., III; Zakrzwski, C. M.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A thrust stand has been built and tested that is capable of measuring the force-noise produced by electrostatic micro-Newton (micro-Newton) thrusters. The LISA mission's Disturbance Reduction System (DRS) requires thrusters that are capable of producing continuous thrust levels between 1-100 micro-Newton with a resolution of 0.1 micro-Newton. The stationary force-noise produced by these thrusters must not exceed 0.1 pN/4Hz in a 10 Hz bandwidth. The LISA Thrust Stand (LTS) is a torsion-balance type thrust stand designed to meet the following requirements: stationary force-noise measurements from 10(exp-4) to 1 Hz with 0.1 micro-Newton resolution, absolute thrust measurements from 1-100 micro-Newton with better than 0.1 micro-Newton resolution, and dynamic thruster response from 10(exp -4) to 10 Hz. The ITS employs a unique vertical configuration, autocollimator for angular position measurements, and electrostatic actuators that are used for dynamic pendulum control and null-mode measurements. Force-noise levels are measured indirectly by characterizing the thrust stand as a spring-mass system. The LTS was initially designed to test the indium FEEP thruster developed by the Austrian Research Center in Seibersdorf (ARCS), but can be modified for testing other thrusters of this type.

  9. Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Warren, Clare J.; Singh, Athokpam K.; Roberts, Nick M. W.; Regis, Daniele; Halton, Alison M.; Singh, Rajkumar B.

    2014-07-01

    The Zimithang Thrust juxtaposes two lithotectonic units of the Greater Himalayan Sequence in Arunachal Pradesh, NE India. Monazite U-Pb, muscovite 40Ar/39Ar and thermobarometric data from rocks in the hanging and footwall constrain the timing and conditions of their juxtaposition across the structure, and their subsequent cooling. Monazite grains in biotite-sillimanite gneiss in the hanging wall yield LA-ICP-MS U-Pb ages of 16 ± 0.2 to 12.7 ± 0.4 Ma. A schistose gneiss within the high strain zone yields overlapping-to-younger monazite ages of 14.9 ± 0.3 to 11.5 ± 0.3 Ma. Garnet-staurolite-mica schists in the immediate footwall yield older monazite ages of 27.3 ± 0.6 to 17.1 ± 0.2 Ma. Temperature estimates from Ti-in-biotite and garnet-biotite thermometry suggest similar peak temperatures were achieved in the hanging and footwalls (~ 525-650 °C). Elevated temperatures of ~ 700 °C appear to have been reached in the high strain zone itself and in the footwall further from the thrust. Single grain fusion 40Ar/39Ar muscovite data from samples either side of the thrust yield ages of ~ 7 Ma, suggesting that movement along the thrust juxtaposed the two units by the time the closure temperature of Ar diffusion in muscovite had been reached. These data confirm previous suggestions that major orogen-parallel out-of-sequence structures disrupt the Greater Himalayan Sequence at different times during Himalayan evolution, and highlight an eastwards-younging trend in 40Ar/39Ar muscovite cooling ages at equivalent structural levels along Himalayan strike.

  10. Evolution of the Puente Hills Thrust Fault

    NASA Astrophysics Data System (ADS)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  11. Electromechanical actuation for thrust vector control applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  12. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type

  13. Electromagnetic launch, then lessening chemical thrust over time as laser beam powered ion thrust grows{emdash}to any orbit

    SciTech Connect

    Morse, T.M.

    1996-03-01

    The ElectroMagnetic (EM) Launch Tube (LT), using High-Temp SuperConduction (HTSC) EM launch coils if developed, will be built in a tall building, or, if not, at a steep angle up the west slope of an extinct volcano. The Reusable Launch Vehicle (RLV) exits the LT at such high velocity that the otherwise violent entry into the atmosphere is made possible by Special-Laser-Launch-Assist (SLLA), which ionizes and expands the atmosphere immediately ahead of the RLV. At first a brief period of chemical thrust is followed by a long period of ion thrust during ascent to orbit. As decades pass and greater ion thrust is developed, the period of chemical thrust shortens until it is no longer needed. The RLV{close_quote}s ion thrusters are powered by laser/maser, beamed first from the launch site, then from two large Solar-Power-Satellites (SPS) 180{degree} apart in Medium Earth Orbit (MEO) orbit. In orbit, the RLV is limited in where it can go only by the amount of propellant it carries or is stored in various orbits. The RLV can land at a launch site on Earth by using both chemical and ion thrust at first, and later by ion thrust alone as developments cause a far lighter RLV to carry no chemical engines/fuel/tanks. {copyright} {ital 1996 American Institute of Physics.}

  14. A Voice of One's Own: Born, Achieved, or Thrust upon One?

    ERIC Educational Resources Information Center

    O'Leary, Maureen E.

    As Langston Hughes' poem, "Theme for English B" recognizes, it is difficult for beginning writing students to develop a writing voice that is personal, yet expresses an awareness of context and community. Each writer/student potentially has three voices: (1) the voice students are born to, which reflects socio-economic and cultural background,…

  15. Geologic mapping delineates new thrust sheets, duplex structures, and timing relationships between the Meade and Crawford thrusts in Wyoming, Idaho, and Utah

    SciTech Connect

    Coogan, J.C.

    1993-04-01

    New geologic maps of nine complete and six partial 7.5[prime] quadrangles delineate a large-scale duplex comprised of at least five thrust sheets that together form the Sheep Creek culmination in the footwall of the Meade thrust. From west to east, the Sheep Creek culmination includes the Home Canyon, Sheep Creek, Red Mountain, northern Crawford, and Afton thrust sheets. The thrusts are floored by the regional sole decollement in the Cambrian Gros Ventre Formation and merge upward with a roof thrust that lies along the Meade thrust in the west and decollements in the Jurassic Gypsum Spring and Preuss salt intervals in the east. The individual thrusts of Sheep Creek culmination are generally blind thrusts that are recognized by integrating the surface mapping with subsurface well and seismic data in balanced cross sections. The common map expression for individual thrust sheets is marked by translated fault-propagation anticlines in upper Paleozoic, Triassic, and lower Jurassic rocks that are bordered to the east by frontal decollement fold trains in middle and upper Jurassic rocks. The Meade thrust is folded above the Sheep Creek culmination in the northern part of the map area, and it is specifically folded above the Crawford fault-propagation fold, Sublette anticline, north of the map area at Elk Valley, Idaho. Thus, the Meade and Crawford thrusts are not coeval, linked thrusts as previously assumed. Instead, the individual thrusts of Sheep Creek culmination form a linked, eastward-younging thrust system along which 30 km of Crawford thrust displacement in Utah is partitioned between the Sheep Creek, Red Mountain, northern Crawford, and Afton thrusts in Idaho and Wyoming.

  16. Bilateral and multiple cavitation sounds during upper cervical thrust manipulation

    PubMed Central

    2013-01-01

    Background The popping produced during high-velocity, low-amplitude (HVLA) thrust manipulation is a common sound; however to our knowledge, no study has previously investigated the location of cavitation sounds during manipulation of the upper cervical spine. The primary purpose was to determine which side of the spine cavitates during C1-2 rotatory HVLA thrust manipulation. Secondary aims were to calculate the average number of pops, the duration of upper cervical thrust manipulation, and the duration of a single cavitation. Methods Nineteen asymptomatic participants received two upper cervical thrust manipulations targeting the right and left C1-2 articulation, respectively. Skin mounted microphones were secured bilaterally over the transverse process of C1, and sound wave signals were recorded. Identification of the side, duration, and number of popping sounds were determined by simultaneous analysis of spectrograms with audio feedback using custom software developed in Matlab. Results Bilateral popping sounds were detected in 34 (91.9%) of 37 manipulations while unilateral popping sounds were detected in just 3 (8.1%) manipulations; that is, cavitation was significantly (P < 0.001) more likely to occur bilaterally than unilaterally. Of the 132 total cavitations, 72 occurred ipsilateral and 60 occurred contralateral to the targeted C1-2 articulation. In other words, cavitation was no more likely to occur on the ipsilateral than the contralateral side (P = 0.294). The mean number of pops per C1-2 rotatory HVLA thrust manipulation was 3.57 (95% CI: 3.19, 3.94) and the mean number of pops per subject following both right and left C1-2 thrust manipulations was 6.95 (95% CI: 6.11, 7.79). The mean duration of a single audible pop was 5.66 ms (95% CI: 5.36, 5.96) and the mean duration of a single manipulation was 96.95 ms (95% CI: 57.20, 136.71). Conclusions Cavitation was significantly more likely to occur bilaterally than unilaterally during upper cervical HVLA

  17. Internal performance characteristics of thrust-vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1995-01-01

    A series of thrust-vectored axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at the Langley research center. This study indicated that discontinuities in the performance occurred at low primary nozzle pressure ratios and that these discontinuities were mitigated by decreasing expansion area ratio. The addition of secondary flow increased the performance of the nozzles. The mid-to-high range of secondary flow provided the most overall improvements, and the greatest improvements were seen for the largest ejector area ratio. Thrust vectoring the ejector nozzles caused a reduction in performance and discharge coefficient. With or without secondary flow, the vectored ejector nozzles produced thrust vector angles that were equivalent to or greater than the geometric turning angle. With or without secondary flow, spacing ratio (ejector passage symmetry) had little effect on performance (gross thrust ratio), discharge coefficient, or thrust vector angle. For the unvectored ejectors, a small amount of secondary flow was sufficient to reduce the pressure levels on the shroud to provide cooling, but for the vectored ejector nozzles, a larger amount of secondary air was required to reduce the pressure levels to provide cooling.

  18. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect

    Hauser, E.C. )

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  19. Development of the Himalayan frontal thrust zone: Salt Range, Pakistan

    SciTech Connect

    Baker, D.M.; Lillie, R.J.; Yeats, R.S.; Johnson, G.D.; Yousuf, M.; Zamin, A.S.H.

    1988-01-01

    The Salt Range is the active frontal thrust zone of the Himalaya in Pakistan. Seismic reflection data show that a 1 km offset of the basement acted as a buttress that caused the central Salt Range-Potwar Plateau thrust sheet to ramp to the surface, exposing Mesozoic and Paleozoic strata. The frontal part of the thrust sheet was folded passively as it overrode the subthrust surface on a ductile layer of Eocambrian salt. Lack of internal deformation of the rear part of the thrust sheet is due to decoupling of sediments from the basement along this salt layer. Early to middle Pliocene (approx. 4.5 Ma) conglomerate deposition in the southern Potwar Plateau, previously interpreted in terms of compressional deformation, may instead document uplift related to basement normal faulting. Stratigraphic evidence, paleomagnetic dating of unconformities, and sediment-accumulation rates suggest that the thrust sheet began to override the basement offset from 2.1 to 1.6 Ma. Cross-section balancing demonstrates at least 20 to 23 km of shortening across the ramp. The rate of Himalayan convergence that can be attributed to underthrusting of Indian basement beneath sediments in the Pakistan foreland is therefore at least 9-14 mm/yr, about 20-35% of the total plate convergence rate.

  20. Simple control laws for low-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Petropoulos, Anastassios E.

    2003-01-01

    Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.

  1. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  2. Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector

    NASA Technical Reports Server (NTRS)

    Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.

    2005-01-01

    Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.

  3. Ground test of the D shaped vented thrust vectoring nozzle

    NASA Technical Reports Server (NTRS)

    Esker, D. W.

    1976-01-01

    Static ground tests of a large scale lift/cruise thrust vectoring nozzle were conducted to establish: (1) vectoring performance 'in' and 'out' of ground effect; (2) thrust spoilage capability; (3) compatibility of the nozzle with a turbotip fan; and (4) the nozzle structural temperature distribution. Vectoring performance of a short coupled, vented nozzle design on a large scale, (60%) basis was compared with small scale (4.5%) test nozzle results. The test nozzle was a "boilerplate" model of the MCAIR "D" vented nozzle configured for operation with the LF336/J85 turbotip lift fan system. Calibration of the LF336/J85 test fan with a simple convergent nozzle was performed with four different nozzle exit areas to establish reference thrust, nozzle pressure ratio, and nozzle corrected flow characteristics for comparison with the thrust vectoring nozzle data. Thrust vectoring tests with the 'D' vented nozzle were conducted over the range of vector angles between 0 and 117 deg for several different nozzle exit areas.

  4. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  5. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  6. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet

    NASA Astrophysics Data System (ADS)

    Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Shen, Li; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian

    2016-06-01

    To understand the effects of substantial topographic relief on deformation localization in the seismically active mountains, like the Longmen Shan thrust belt in the eastern Tibet, sandbox experiments were performed based on the framework of the critical taper theory. First, a reference experiment revealed that the critical taper angle was 12° for our experimental materials. Subsequently, different proto wedges (subcritical (6° in taper angle), critical (12°), and supercritical (20°)) were introduced to cover the range of natural topographic relief, and we used two setups: setup A considered only across-strike topographic relief, whereas setup B investigated along-strike segmentation of topography, consist of two adjacent proto wedges. In all experiments, thrust wedges grew by in-sequence accretion of thrust sheets. Setup A revealed an alternating mode of slip partitioning on the accreted thrusts, with large-displacement thrust and small-displacement thrust developing in turn. And contrasting wedge evolutions occurred according to whether the proto wedge was subcritical or critical-supercritical. In setup B, the differential deformation along the strike produced transverse structures such as tear fault and lateral ramp during frontal accretion. The observed tear fault and its associated thrust system resemble the seismogenic fault system of the 2008 Mw7.9 Wenchuan earthquake. Our experimental results could also explain first-order deformation features observed in the Longmen Shan. Consequently, we conclude that topographic features, including topographic relief across the range and along-strike segmentation of topography, contribute significantly to the kinematics and deformation localization in such active mountains.

  7. Geometry of a large-scale low-angle mid-crustal thrust (Woodroffe Thrust, Central Australia)

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Mancktelow, Neil S.; Hawemann, Friedrich; Pennacchioni, Giorgio; Camacho, Alfredo

    2015-04-01

    Young orogens, such as the Alps, mainly expose the upper part of the continental crust and it is not possible to follow large-scale thrusts (e.g. the Glarus Thrust) to great depth in order to study their changing rheological behavior. This knowledge, however, is crucial for determining the overall kinematic and dynamic response during collision, as middle to lower crustal rocks represent the major part of the total crustal section. Information from deeper parts of the continental crust can only be obtained directly by investigating regions where these levels are now exhumed. The Musgrave Ranges in Central Australia is a very well exposed, semi-desert area, in which numerous large-scale shear zones developed during the Petermann Orogeny around 550 Ma. The most prominent structure is the ˜400 km long E-W trending Woodroffe Thrust, which placed ˜1.2 Ga granulites onto similarly-aged amphibolite and granulite facies gneisses along a generally south-dipping thrust plane with a top-to-north shear sense. Geothermobarometric calculations on the associated mylonites established that the structure developed under mid-crustal conditions (500-650°C, 0.8-1 GPa). Regional P/T variations in the direction of thrusting are small, but show trends consistent with the south-dipping orientation of the thrust plane, which predicts deeper levels and a higher metamorphic grade in the south than in the north. They imply a very low gradient of only around 3°C/km for a distance of some 30 km in the movement direction of the thrust. Combined with a geothermal gradient on the order of 20°C/km, calculated from four separate P/T estimates from the hanging wall and footwall, this regional gradient indicates that the Woodroffe Thrust was originally shallow-dipping at an average angle of only around 9°. This suggests that upper crustal brittle thrusts do not necessarily steepen into the middle to lower crust, but can define very shallow-dipping, large-scale planar features, with dimensions in

  8. Thrust Generating Mechanism of Nozzle Powered by Single Laser Pulse

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hong, Yanji; She, Jinhu; Cao, Zhengrui; Wang, Junhua

    2006-05-01

    Using Sedov's strong explosion theory, the process of gas dynamics after air is broken down under the irradiation of single laser pulse is analyzed, and the analytic formulas of the fluid field parameters of the gas disturbed by shock wave inside the nozzle are educed. The theoretical values are validated by numerical simulation, and the thrust generating mechanism is disclosed. The result indicates that the thrust generated by the interaction of laser induced shock wave and nozzle is equal to the one generated by the reactive jet on nozzle exit during a period, but the trends of the thrust-time evolvement are different, which provides some available information for further study of the mechanism of air-breathing laser propulsion.

  9. Numerical grid generation and flow simulation in SSME thrust chamber

    SciTech Connect

    Gross, K.W.; Daley, P.L.; Przekwas, A.J.

    1987-01-01

    The development of liquid and solid rocket engines for future space projects demands a detailed optimization process for highly efficient performance and cost reasons. Also, testing of full size engines may not be feasible when the large size requires test facilities which are cost prohibitive or if vacuum operation cannot be acquired. For such situations only scaling from small test scale measurements or accurate analytical predictions will provide the performance prior to actually flying the mission. A rigorous approach for simulating the combustion processes in liquid rocket engines by employing a direct solution of Navier-Stokes equations within the entire volume of the thrust chambers is presented. This method is illustrated in the solution of reactive flow in the Space Shuttle Main Engine (SSME) thrust chamber. The objective is to review recent improvements in the mathematical model and to present the grid generation methodology suitable for rocket thrust chamber geometries.

  10. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  11. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1992-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5-s duration that corresponded to the experiments, and an extended loading cycle of 485.1 s duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location of failure in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  12. Methods for determining atypical gate valve thrust requirements

    SciTech Connect

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G.

    1995-04-01

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  13. Thrust Bearing with Rough Surfaces Lubricated by an Ellis Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2014-11-01

    In the paper the influence of bearing surfaces roughness on the pressure distribution and load-carrying capacity of a thrust bearing is discussed. The equations of motion of an Ellis pseudo-plastic fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and using the Christensen theory of hydrodynamic rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of a squeeze film bearing and an externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.

  14. Problems of millipound thrust measurement. The "Hansen Suspension"

    SciTech Connect

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  15. Thrust augmentor application for STOL and V/STOL

    NASA Technical Reports Server (NTRS)

    Aiken, T. N.

    1977-01-01

    A general parametric description is suggested for thrust augmentor application to STOL and V/STOL aircraft. The parameters and their relationships are discussed using several aircraft augmentor integration problems. For a STOL transport design, the ram drag is a key consideration, limiting the maximum gross augmentation that can be utilized. Maximizing gross augmentation and balancing the aircraft are key considerations for a V/STOL fighter design. Results from wind tunnel investigations on several different thrust augmentor concepts and system studies on STOL transport designs are also included.

  16. Thrust involvement of metamorphic rocks, southwestern Brooks Range, Alaska

    SciTech Connect

    Till, A.B.; Schmidt, J.M.; Nelson, S.W. )

    1988-10-01

    Most models for the tectonic history of the western Brooks Range treat Proterozoic and lower Paleozoic metamorphic rocks exposed in the southern part of the range as passive structural basement vertically uplifted late in the Mesozoic orogenic episode. Mapping in the metamorphic rocks shows that they can de divided into two structurally and metamorphically distinct belts, both of which were folded and thrust during the orogeny. Recognition of these belts and the nature of the contact separating them is critical to construction of accurate tectonic models of the Brooks Range fold and thrust belt.

  17. Experimental investigation of leading-edge thrust at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, R. M.; Miller, D. S.

    1983-01-01

    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings.

  18. Fabrication of liquid-rocket thrust chambers by electroforming

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Kazaroff, J. M.

    1974-01-01

    Electroforming has proven to be an excellent fabrication method for building liquid rocket regeneratively cooled thrust chambers. NASA sponsored technology programs have investigated both common and advanced methods. Using common procedures, several cooled spool pieces and thrust chambers have been made and successfully tested. The designs were made possible through the versatility of the electroforming procedure, which is not limited to simple geometric shapes. An advanced method of electroforming was used to produce a wire-wrapped, composite, pressure-loaded electroformed structure, which greatly increased the strength of the structure while still retaining the advantages of electroforming.

  19. Development of a 115 newton thrust hydrazine catalytic thruster

    NASA Astrophysics Data System (ADS)

    Hinckel, Jose N.

    1993-06-01

    This paper describes the design, fabrication and testing of a hydrazine catalytic thruster with a vacuum thrust of 115 newton. The design guidelines and procedures are presented and discussed. The thruster was tested over the range of feed pressure commonly used in blowdown systems with a ratio of 4:1; from 22 bar to 5.5 bar. The tests were conducted in atmospheric and altitude conditions. The measured thrust, chamber pressure and specific impulse were in good agreement with the design value. The mechanism responsible for the low frequency chamber pressure oscillations, observed during some test runs, is discussed.

  20. Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.

  1. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1992-01-01

    The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.

  2. Tectonothermal history of an exhumed thrust-sheet-top basin: An example from the south Pyrenean thrust belt

    NASA Astrophysics Data System (ADS)

    Labaume, Pierre; Meresse, Florian; Jolivet, Marc; Teixell, Antonio; Lahfid, Abdeltif

    2016-05-01

    This paper presents a new balanced structural cross section of the Jaca thrust-sheet-top basin of the southern Pyrenees combined with paleothermometry and apatite fission track (AFT) thermochronology data. The cross section, based on field data and interpretation of industrial seismic reflection profiles, allows refinement of previous interpretations of the south directed thrust system, involving the identification of new thrust faults, and of the kinematic relationships between basement and cover thrusts from the middle Eocene to the early Miocene. AFT analysis shows a southward decrease in the level of fission track resetting, from totally reset Paleozoic rocks and lower Eocene turbidites (indicative of heating to Tmax > ~120°C), to partially reset middle Eocene turbidites and no/very weak resetting in the upper Eocene-lower Oligocene molasse (Tmax < ~60°C). AFT results indicate a late Oligocene-early Miocene cooling event throughout the Axial Zone and Jaca Basin. Paleomaximum temperatures determined by vitrinite reflectance measurements and Raman spectroscopy of carbonaceous material reach up to ~240°C at the base of the turbidite succession. Inverse modeling of AFT and vitrinite reflectance data with the QTQt software for key samples show compatibility between vitrinite-derived Tmax and the AFT reset level for most of the samples. However, they also suggest that the highest temperatures determined in the lowermost turbidites correspond to a thermal anomaly rather than burial heating, possibly due to fluid circulation during thrust activity. From these results, we propose a new sequential restoration of the south Pyrenean thrust system propagation and related basin evolution.

  3. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  4. Columbia, Orbiter Vehicle (OV) 102, RCS engines thrusting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Columbia, Orbiter Vehicle (OV) 102, reaction control system (RCS) engine thrusting and one plume fire glow. One of the thruster firings of the forward RCS is captured with an astronaut's 35mm camera. Astronauts aimed their 35mm camera through the front windows to capture various firings of several of the thrusters which control the orbiter's movements in space.

  5. Jet Propulsion with Special Reference to Thrust Augmenters

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1933-01-01

    An investigation of the possibility of using thrust augmented jets as prime movers was carried out. The augmentation was to be effected by allowing the jet to mix with the surrounding air in the presence of bodies which deflect the air set in motion by the jet.

  6. Blueschist-facies metamorphism related to regional thrust faulting

    USGS Publications Warehouse

    Blake, M.C., Jr.; Irwin, W.P.; Coleman, R.G.

    1969-01-01

    Rocks of the blueschist (glaucophane schist) facies occur throughout the world in narrow tectonic belts associated with ultramafic rocks. In the Coast Range province of California, blueschist rocks are devloped in the eugeosynclinal Franciscan Formation of Late Mesozoic age. The blueschist rocks form a narrow belt for more than 800 km along the eastern margin of this province and commonly are separated from rocks of an overlying thrust plate by serpentinite. Increasing metamorphism upward toward the thrust fault is indicated mineralogically by a transition from pumpellyite to lawsonite and texturally by a transition from metagraywacke to schist. The blueschist metamorphism probably occurred during thrusting in a zone of anomalously high water pressure in the lower plate along the sole of the thrust fault. This tectonic mode of origin for blueschist differs from the generally accepted hypothesis involving extreme depth of burial. Other belts of blueschist-facies rocks, including the Sanbagawa belt of Japan, the marginal synclinal belt of New Zealand, and the blueschist-ultramafic belts of Venezuela, Kamchatka, Ural mountains, and New Caledonia have similar geologic relations and might be explained in the same manner. ?? 1969.

  7. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2015-01-01

    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz.

  8. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  9. Initial three-dimensional low-thrust trajectory design

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan; Abdelkhalik, Ossama

    2016-02-01

    This paper presents a method for rapid generation of three-dimensional low-thrust trajectories that utilizes Fourier series for shaping the position vector. The generated trajectories are feasible with respect to the given thrust acceleration constraints. An objective function is defined representing the overall mission cost, i.e. minimum ΔV . Four missions from Earth to Mars, the near Earth asteroid 1989ML, comet Tempel 1 and asteroid Dionysus are considered for assessing the performance of the algorithm. The selected missions present a range of various difficulties with different levels of thrust acceleration constraints. The Fourier series technique is flexible in generating various shapes rather than using one global shape. The proposed method is capable of rapid generation of sub-optimal feasible trajectories that are totally different from and comparable to the solutions of the state-of-the-art three-dimensional shape-based methods. This feature is quite favorable at the preliminary stages of low-thrust mission designs where various trajectory alternatives are required. The results also show that the obtained trajectories can be used as initial guesses for high fidelity optimal control tools.

  10. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  11. Effect of Operating Frequency on PDE Driven Ejector Thrust Performance

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh; Landry, K.; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.

    2005-01-01

    Results of an on-going study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) designed to operate at frequencies up to 50 Hz. The PDE used in these experiments utilizes an equi-molar mixture of oxygen and nitrogen as the oxidizer, and ethylene (C2H4) as the fuel, with the propellant mixture having an equivalence ratio of one. A line of sight laser absorption technique was used to determine the time needed for proper filling of the tube. Thrust measurements were made using an integrated spring damper system coupled with a linear variable displacement transducer. The baseline thrust of the PDE was first measured at each desired frequency and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The ejectors had varying lengths, and two different inlet geometries were tested for each ejector configuration. The parameter space for the study included PDE operation frequency, ejector length, overlap distance and the radius of curvature for the ejector inlets. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz.

  12. Digital field trip to the Central Nevada Thrust Belt

    SciTech Connect

    Chamberlain, A.K.; Hook, S.C.; Frost, K.R.

    1996-12-31

    Hydrocarbon exploration in the Central Nevada Thrust Belt is still in its infancy. However, this thrust belt contains all the elements necessary for hydrocarbon accumulations: thick, organically-rich shales; reefs, regional unconformities, karst surfaces, porous sandstones, and extensive and pervasive fractures; anticlines tens of miles long by miles wide; thrust faults that juxtapose potential source and reservoir rocks; and oil seeps. Along a fairway from Las Vegas to Elko, for example, thick Mississippian shales contain 4-6% total organic carbon and are oil-prone and thermally mature. This presentation from a laptop computer and LCD projector is a multimedia version of our October 12-14, 1995 field trip to document the hydrocarbon potential of the thrust belt in Clark, Lincoln, and Nye Counties. Outcrop images were recorded by a digital camera that has a resolution equivalent to a 14 inch computer screen; these images were then downloaded to the computer. All of the images were processed digitally on location to enhance picture quality and color contrast. Many were annotated on location with our observations, measurements, and interpretations. These field annotations are supplemented in this presentation by laboratory analyses. The presentation includes full-color, annotated outcrop images, sounds, and animations. The results show the viability of the new, inexpensive digital cameras to geologic field work in which a multimedia report, ready for presentation to management, can be generated in the field.

  13. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel burning thrust augmentor. 33.79 Section 33.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel...

  14. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel burning thrust augmentor. 33.79 Section 33.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel...

  15. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power...

  16. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel burning thrust augmentor. 33.79 Section 33.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel...

  17. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power...

  18. 14 CFR 33.79 - Fuel burning thrust augmentor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel burning thrust augmentor. 33.79 Section 33.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.79 Fuel...

  19. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power...

  20. 14 CFR 33.73 - Power or thrust response.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power or thrust response. 33.73 Section 33.73 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.73 Power...

  1. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  2. 10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the test stand deck to east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  4. Separability of drag and thrust in undulatory animals and machines.

    PubMed

    Bale, Rahul; Shirgaonkar, Anup A; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2014-01-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle. PMID:25491270

  5. Separability of drag and thrust in undulatory animals and machines

    NASA Astrophysics Data System (ADS)

    Bale, Rahul; Shirgaonkar, Anup A.; Neveln, Izaak D.; Bhalla, Amneet Pal Singh; Maciver, Malcolm A.; Patankar, Neelesh A.

    2014-12-01

    For nearly a century, researchers have tried to understand the swimming of aquatic animals in terms of a balance between the forward thrust from swimming movements and drag on the body. Prior approaches have failed to provide a separation of these two forces for undulatory swimmers such as lamprey and eels, where most parts of the body are simultaneously generating drag and thrust. We nonetheless show that this separation is possible, and delineate its fundamental basis in undulatory swimmers. Our approach unifies a vast diversity of undulatory aquatic animals (anguilliform, sub-carangiform, gymnotiform, bal-istiform, rajiform) and provides design principles for highly agile bioinspired underwater vehicles. This approach has practical utility within biology as well as engineering. It is a predictive tool for use in understanding the role of the mechanics of movement in the evolutionary emergence of morphological features relating to locomotion. For example, we demonstrate that the drag-thrust separation framework helps to predict the observed height of the ribbon fin of electric knifefish, a diverse group of neotropical fish which are an important model system in sensory neurobiology. We also show how drag-thrust separation leads to models that can predict the swimming velocity of an organism or a robotic vehicle.

  6. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generally, in regeneratively cooled engines, the fuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  7. Cooling of rocket thrust chambers with liquid oxygen

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Schlumberger, Julie A.

    1990-01-01

    Rocket engines using high pressure liquid oxygen (LOX) and kerosene (RP-1) as the propellants have been considered for future launch vehicle propulsion. Generaly, in regeneratively cooled engines, thefuel is used to cool the combustion chamber. However, hydrocarbons such as RP-1 are limited in their cooling capability at high temperatures and pressures. Therefore, LOX is being considered as an alternative coolant. However, there has been concern as to the effect on the integrity of the chamber liner if oxygen leaks into the combustion zone through fatigue cracks that may develop between the cooling passages and the hot-gas side wall. To address this concern, an investigation was previously conducted with simulated fatigue cracks upstream of the thrust chamber throat. When these chambers were tested, an unexpected melting in the throat region developed which was not in line with the simulated fatigue cracks. The current experimental program was conducted in order to determine the cause for the failure in the earlier thrust chambers and to further investigate the effects of cracks in the thrust chamber liner upstream of the throat. The thrust chambers were tested at oxygen-to-fuel mixture ratios from 1.5 to 2.86 at a nominal chamber pressure of 8.6 MPa. As a result of the test series, the reason for the failure occurring in the earlier work was determined to be injector anomalies. The LOX leaking through the simulated fatigue cracks did not affect the integrity of the chambers.

  8. Experiments on the Thrust of a Synthetic Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Ayers, Bradley; Henoch, Charles; Johari, Hamid

    2014-11-01

    A set of water tunnel experiments were conducted to investigate the effect of crossflow on the thrust of a synthetic jet. This research was motivated by the desire to generate significant turning moments on a fully-submerged, supercavitating vehicle without using control fins or canards. The water tunnel model was a sting-mounted, 3-inch diameter cylindrical body interfaced to a 6-axis waterproof load cell. The synthetic jet actuator was contained within the model and the jet orifice located near the aft end of the model was oriented perpendicular to the mean flow. The actuator consisted of an externally controlled solenoid driving a piston into the cavity. The jet thrust was measured over a broad range of synthetic jet operating parameters, including the actuation frequency and duty cycle, as well as the jet-to-crossflow velocity ratios. Previous work which is based on the slug flow model of an individual vortex ring predicts the time-averaged thrust scales with the square of actuation frequency and the stroke length. The measurements will be compared with the theoretical predictions, and the results will be used to assess the effect of crossflow on the thrust of synthetic jet. Sponsored by the ONR-ULI program.

  9. REAR DETAIL OF RIGHT ENGINE AND WING. THRUST REVERSER REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR DETAIL OF RIGHT ENGINE AND WING. THRUST REVERSER REMAINS OPEN. MECHANICS JONI BAINE (R) AND BILL THEODORE(L) OPEN FLAP CARRIAGE ACCESS WITH AN IMPACT GUN. THEY WILL CHECK TRANSMISSION FLUID AND OIL THE JACK SCREW. AT FAR LEFT UTILITY MECHANICS BEGIN BODY POLISHING. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  10. 49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION HEATER AND DUCTS ON RIGHT; UMBILICAL MAST POWER CONNECTORS ON LEFT; RAIL SYSTEM AND FIRE SUPPRESSION NOZZLES IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  12. Why style matters - uncertainty and structural interpretation in thrust belts.

    NASA Astrophysics Data System (ADS)

    Butler, Rob; Bond, Clare; Watkins, Hannah

    2016-04-01

    Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of

  13. The Madong Early Paleozoic fold-thrust belt in southern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Wen, Lei; Li, Hui-Li; Peng, Geng-Xin; Qiu, Bin; Zheng, Duo-Ming; Luo, Jun-Cheng; Zhang, Qiang; Jia, Tie-Gan

    2016-01-01

    The Madong fold-thrust belt, which strikes NE-SW and thrusts southeastward, locates in the southern Tarim Basin. It is a part of the Kunlun Early Paleozoic foreland fold-thrust belt, and so is the Tangnan fold-thrust belt on the southeast of Madong. The Madong and Tangnan fold-thrust belts developed in Cambrian-Ordovician strata, and the Middle Cambrian gypsum-salt layer serves as the main décollement surface. The Middle Silurian and above strata unconformably overlie Madong while the upper Lower Silurian unconformably overlie Tangnan. On the basis of the facts that: (1) the Upper Ordovician is the youngest strata involved in the fold-thrust deformation, (2) the upper-Lower to Middle Silurian is the oldest strata unconformably overlying the foreland fold-thrust belt (including Madong and Tangnan), and growth strata exist in the upper part of the Upper Ordovician, we infer that the deformation time of the Kunlun Early Paleozoic foreland fold-thrust belt (including Madong and Tangnan) was during the Late Ordovician-Early Silurian. Tangnan is the residual of the major part of the foreland fold-thrust belt. Its northwestward thrust direction represents the main thrust direction of the foreland fold-thrust belt. Madong is the front belt of the foreland fold-thrust belt. It mainly thrusts southeastward and serves as the back-thrust belt of the Kunlun Early Paleozoic foreland fold-thrust belt. It is a triangle zone between Madong and Tangnan. The Madong fold-thrust belt is the best-preserved section of the Kunlun Early Paleozoic collisional orogenic belt, and thus is an important geological record of the Kunlun Early Paleozoic orogeny.

  14. Three-dimensional geometry, strain rates and basement deformation mechanisms of thrust-bend folding

    NASA Astrophysics Data System (ADS)

    Wibberley, Christopher A. J.

    1997-03-01

    Models for thrust-bend folding of an isotropic medium are used to predict initial basement thrust sheet geometries and sub-surface thrust fault shapes from final basement thrust sheet structure. Predicted strains and strain rates from these models are compared with data on deformation fabrics in an example of a basement thrustbend fold in order to characterise the deformation response to thrust-bend folding. The Glencoul thrust sheet in the Moine Thrust Zone of north-west Scotland is restored to an initial thrust sheet geometry. Spatial and orientation distribution data of syn-emplacement fractures and cataclastic fault zones from within the Glencoul thrust sheet are then compared with the strain and strain rate histories predicted by thrust-bend folding models. A different set of cataclastic fault seams is demonstrated to have been generated at each frontal thrust bend. Cataclastic failure is restricted to portions of the thrust sheet that have moved over frontal bends with smaller radii of curvature. From model thrust-bend geometries and an assumed slip rate of 1 x 10 -10 ms -1, estimated minimum (critical) strain rates required for fracture failure of the Lewisian basement are 10 -11 to 10 -14 s -1 for shear strain rates and 10 -12 to 10 -15 s -1 for extensional strain rates.

  15. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  16. Extended performance solar electric propulsion thrust system study. Volume 3: Tradeoff studies of alternate thrust system configurations

    NASA Technical Reports Server (NTRS)

    Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.

  17. Thrust Augmentation of a Turbojet Engine at Simulated Flight Conditions by Introduction of a Water-Alcohol Mixture into the Compressor

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.

    1952-01-01

    An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.

  18. Design of a thrust stand for high power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1989-01-01

    A thrust stand for use with high power electric propulsion devices has been designed and tested. The thrust stand was specifically tailored to the needs of a 0.1 to 0.25 MW magnetoplasmadynamic (MPD) thruster program currently in progress at the NASA Lewis Research Center. The thrust stand structure was built as an inverted pendulum arrangement, supported at the base by water-cooled electrical power flexures. Thrust stand tares due to thruster discharge current were demonstrated to be negligible. Tares due to an applied field magnet current, after considerable effort, were reduced to less than 3.0 percent of measured thrust. These tares, however, could be determined independently and subtracted from the indicated thrust measurement. The paper gives a detailed description of the thrust stand design and operation with a 0.1 MW class MPD device. Other thrust stand tares due to vibration and thermal effects are discussed, along with issues of accuracy and repeatability.

  19. Design of a thrust stand for high power electric propulsion devices

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W.

    1989-01-01

    A thrust stand for use with high power electric propulsion devices was designed and tested. The thrust stand was specifically tailored to the needs of a 100 to 250 kW magnetoplasmadynamic (MPD) thruster program currently in progress at the NASA Lewis Research Center. The thrust stand structure was built as an inverted pendulum arrangement, supported at the base by water-cooled electrical power flexures. Thrust stand tares due to thruster discharge current were demonstrated to be negligible. Tares due to an applied field magnet current, after considerable effort, were reduced to less than 3.0 percent of measured thrust. These tares, however, could be determined independently and subtracted from the indicated thrust measurement. A detailed description is given for the thrust stand design and operation with a 100 kW class MPD device. Other thrust stand tares due to vibration and thermal effects are discussed, along with issues of accuracy and repeatability.

  20. Preliminary Analysis of Low-Thrust Gravity Assist Trajectories by An Inverse Method and a Global Optimization Technique.

    NASA Astrophysics Data System (ADS)

    de Pascale, P.; Vasile, M.; Casotto, S.

    The design of interplanetary trajectories requires the solution of an optimization problem, which has been traditionally solved by resorting to various local optimization techniques. All such approaches, apart from the specific method employed (direct or indirect), require an initial guess, which deeply influences the convergence to the optimal solution. The recent developments in low-thrust propulsion have widened the perspectives of exploration of the Solar System, while they have at the same time increased the difficulty related to the trajectory design process. Continuous thrust transfers, typically characterized by multiple spiraling arcs, have a broad number of design parameters and thanks to the flexibility offered by such engines, they typically turn out to be characterized by a multi-modal domain, with a consequent larger number of optimal solutions. Thus the definition of the first guesses is even more challenging, particularly for a broad search over the design parameters, and it requires an extensive investigation of the domain in order to locate the largest number of optimal candidate solutions and possibly the global optimal one. In this paper a tool for the preliminary definition of interplanetary transfers with coast-thrust arcs and multiple swing-bys is presented. Such goal is achieved combining a novel methodology for the description of low-thrust arcs, with a global optimization algorithm based on a hybridization of an evolutionary step and a deterministic step. Low thrust arcs are described in a 3D model in order to account the beneficial effects of low-thrust propulsion for a change of inclination, resorting to a new methodology based on an inverse method. The two-point boundary values problem (TPBVP) associated with a thrust arc is solved by imposing a proper parameterized evolution of the orbital parameters, by which, the acceleration required to follow the given trajectory with respect to the constraints set is obtained simply through

  1. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    NASA Astrophysics Data System (ADS)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  2. Parametric study of the lubrication of thrust loaded 120-mm bore ball bearings to 3 million DN

    NASA Technical Reports Server (NTRS)

    Signer, H.; Bamberger, E. N.; Zaretsky, E. V.

    1973-01-01

    A parametric study was performed with 120-mm bore angular-contact ball bearings under varying thrust loads, bearing and lubricant temperatures, and cooling and lubricant flow rates. Contact angles were nominally 20 and 24 deg with bearing speeds to 3 million DN. Endurance tests were run at 3 million DN and a temperature of 492 K (425 F) with 10 bearings having a nominal 24 deg contact angle at a thrust load of 22241 N (5000 lb). Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement by varying 4 parameters. These parameters are outer-race cooling, inner-race cooling, lubricant flow to the inner race, and oil inlet temperature. Preliminary endurance tests at 3 million DN and 492 K (425 F) indicate that long term bearing operation can be achieved with a high degree of reliability.

  3. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  4. Spacecraft Orbit Anomaly Representation Using Thrust-Fourier-Coefficients with Orbit Determination Toolbox

    NASA Astrophysics Data System (ADS)

    Ko, H.; Scheeres, D.

    2014-09-01

    Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX

  5. Scale independence of décollement thrusting

    USGS Publications Warehouse

    McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D., Jr.

    2007-01-01

    Orogen-scale décollements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with high-resolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master décollement at the top of bedrock. These 2–3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the décollement beneath the ice lobe thrust belt lies ∼70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces décollements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the décollement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism–independent behavior for décollement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a compressional driving mechanism directed subparallel to Earth's surface

  6. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  7. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Thomas E.

    1998-01-01

    NASA's Marshall Space Flight Center(MSFC) has been tasked with developing a 60,000 pound thrust, pump-fed, LOX/RP-1 engine under the Advanced Space Transportation Program(ASTP). This government-led design has been designated the Fastrac engine. The X-34 vehicle will use the Fastrac engine as the main propulsion system. The X-34 will be a suborbital vehicle developed by the Orbital Sciences Corporation. The X-34 vehicle will be launched from an L-1011 airliner. After launch, the X-34 vehicle will be able to climb to altitudes up to 250,000 feet and reach speeds up to Mach 8, over a mission range of 500 miles. The overall length, wingspan, and gross takeoff weight of the X-34 vehicle are 58.3 feet, 27.7 feet and 45,000 pounds, respectively. This report summarizes the plan of achieving a Fastrac thrust chamber assembly(TCA) stable bomb test that meets the JANNAF standards, the Fastrac TCA design, and the combustion instabilities exhibited by the Fastrac TCA during testing at MSFC's test stand 116 as determined from high-frequency fluctuating pressure measurements. This report also summarizes the characterization of the combustion instabilities from the pressure measurements and the steps taken to eliminate the instabilities.

  8. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  9. Calibration for Thrust and Airflow Measurements in the CE-22 Advanced Nozzle Test Facility

    NASA Technical Reports Server (NTRS)

    Werner, Roger A.; Wolter, John D.

    2010-01-01

    CE-22 facility procedures and measurements for thrust and airflow calibration obtained with choked-flow ASME nozzles are presented. Six calibration nozzles are used at an inlet total pressure from 20 to 48 psia. Throat areas are from 9.9986 to 39.986 sq. in.. Throat Reynolds number varies from 1.8 to 7.9 million. Nozzle gross thrust coefficient (CFG) uncertainty is 0.25 to 0.75 percent, with smaller uncertainly generally for larger nozzles and higher inlet total pressure. Nozzle discharge coefficient (CDN) uncertainty is 0.15 percent or less for all the data. ASME nozzle calibrations need to be done before and after research model testing to achieve these uncertainties. In addition, facility capability in terms of nozzle pressure ratio (NPR) and nozzle airflow are determined. Nozzle pressure ratio of 50 or more is obtainable at 40 psia for throat areas between 20 and 30 sq. in.. Also presented are results for two of the ASME nozzles vectored at 10deg, a dead-weight check of the vertical (perpendicular to the jet axis) force measurement, a calibration of load cell forces for the effects of facility tank deflection with tank pressure, and the calibration of the metric-break labyrinth seal.

  10. Reactive thrust cruise for a geosynchronous satellite with minimum fuel consumption

    NASA Astrophysics Data System (ADS)

    Sidi, Marcel

    1993-02-01

    A simple control concept utilizing product of inertia is used to provide active nutation control of a reactive thrust control system of a geosynchronous momentum-based satellite. The reactive thrust control system itself is immune to sensor noise and thus prevents unnecessary thrust firings. Any nutation excitation is damped in a small number of nutational periods, with no fuel consumption.

  11. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet engine thrust reverser system tests. 25.934 Section 25.934 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet...

  12. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  13. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  14. 14 CFR 25.934 - Turbojet engine thrust reverser system tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet engine thrust reverser system tests. 25.934 Section 25.934 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet...

  15. Evaluation of various thrust calculation techniques on an F404 engine

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1990-01-01

    In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.

  16. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David

    2016-01-01

    Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.

  17. Cenozoic thrust emplacement of a Devonian batholith, northeastern Brooks Range: Involvement of crystalline rocks in a foreland fold-and-thrust belt

    SciTech Connect

    Wallace, W.K.; Hanks, C.L. )

    1990-05-01

    Involvement of crystalline rocks in thrusting near the foreland basin of a fold-and-thrust belt is relatively uncommon. In the northeastern Brooks Range, the Devonian Okpilak batholith was thrust northward and structurally elevated above adjacent foreland basin deposits during Cenozoic fold-and-thrust deformation. The batholith may have acted initially as a regional structural buttress, but a drop in the basal detachment surface to greater depth south of the batholith resulted in northward transport of the batholith. Shortening within the batholith was accommodated by (1) the development of discrete thrust slices bounded by ductile shear zones, (2) simple shear and development of penetrative mesoscopic and microscopic fabrics throughout the batholith, or both. The Mississippian Kayak Shale, a regional detachment horizon at the base of the overlying cover sequence, is depositionally thin or absent adjacent to the batholith. Thus, most of the cover sequence remained structurally coupled to the batholith during thrusting and was shortened by the development of penetrative structures.

  18. Pneumatic hammer in aerostatic thrust bearings with single orifice compensation

    NASA Astrophysics Data System (ADS)

    Kong, Zhongke; Tao, Jizhong

    2013-01-01

    In dealing with the phenomenon of the pneumatic hammer in aerostatic thrust bearings, the vibrant model of the one-single freedom system has been established to study the pneumatic hammer from the point of sympathetic vibration. It is found that the bearings show a tendency to result in the pneumatic hammer with the increase of air supply pressure, and the occurrence probability of the pneumatic hammer will be reduced when the gas film thickness is maintained within a certain range. Meanwhile, the existence of the pneumatic hammer, which is caused by sympathetic vibration, is experimentally verified, and it is found that gas bearings undergo certain disturbance, which causes the system to produce micro breadth vibration. Accordingly, the micro breadth vibration causes the gas film and thrust face to form flow/structure coupled to excite the pneumatic hammer. Therefore, it provides another path to study the pneumatic hammer and is of academic value.

  19. SSME thrust chamber simulation using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.

  20. Geophysical interpretations of the Libby thrust belt, northwestern Montana

    USGS Publications Warehouse

    Kleinkopf, M. Dean; with sections by Harrison, Jack Edward; Stanley, W.D.

    1997-01-01

    Interpretations of gravity and aeromagnetic anomaly data, supplemented by results from two seismic reflection profiles and five magnetotelluric soundings, were used to study buried structure and lithology of the Libby thrust belt of northwestern Montana. The gravity anomaly data show a marked correlation with major structures. The Purcell anticlinorium and the Sylvanite anticline are very likely cored by stacks of thrust slices of dense crystalline basement rocks that account for the large gravity highs across these two structures. Gravity anomaly data for the Cabinet Mountains Wilderness show a string of four broad highs. The principal magnetic anomaly sources are igneous intrusive rocks, major fault zones, and magnetite-bearing sedimentary rocks of the Ravalli Group. The most important magnetic anomalies in the principal study area are five distinct positive anomalies associated with Cretaceous or younger cupolas and stocks.

  1. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  2. Optimal low thrust geocentric transfer. [mission analysis computer program

    NASA Technical Reports Server (NTRS)

    Edelbaum, T. N.; Sackett, L. L.; Malchow, H. L.

    1973-01-01

    A computer code which will rapidly calculate time-optimal low thrust transfers is being developed as a mission analysis tool. The final program will apply to NEP or SEP missions and will include a variety of environmental effects. The current program assumes constant acceleration. The oblateness effect and shadowing may be included. Detailed state and costate equations are given for the thrust effect, oblateness effect, and shadowing. A simple but adequate model yields analytical formulas for power degradation due to the Van Allen radiation belts for SEP missions. The program avoids the classical singularities by the use of equinoctial orbital elements. Kryloff-Bogoliuboff averaging is used to facilitate rapid calculation. Results for selected cases using the current program are given.

  3. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  4. Investigation of electroforming techniques. [fabrication of regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1975-01-01

    Copper and nickel electroforming was examined for the purpose of establishing the necessary processes and procedures for repeatable, successful fabrication of the outer structures of regeneratively cooled thrust chambers. The selection of electrolytes for copper and nickel deposition is described. The development studies performed to refine and complete the processes necessary for successful chamber shell fabrication and the testing employed to verify the applicability of the processes and procedures to small scale hardware are described. Specifications were developed to afford a guideline for the electroforming of high quality outer shells on regeneratively cooled thrust chamber liners. Test results indicated repeatable mechanical properties could be produced in copper deposits from the copper sulfate electrolyte with periodic current reversal and in nickel deposits from the sulfamate solution. Use of inert, removable channel fillers and the conductivizing of such is described. Techniques (verified by test) which produce high integrity bonds to copper and copper alloy liners are discussed.

  5. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  6. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  7. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-01-01

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface. PMID:25412707

  8. Extended performance solar electric propulsion thrust system design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Hawthorne, E. I.; Poeschel, R. L.

    1978-01-01

    A thrust system design has been established for an extended performance technology, 6.4 kW, 4800 sec specific impulse ion thruster. The configuration is comprised of ten thrusters configured with a power management and control subsystem in a modular thrust system design. The system design approach is an adaptation of that previously established for the baseline technology 2.7 kW, 3000 sec specific impulse ion thruster. The power management and control subsystem design includes a combination of individual electronics for each thruster and a set of electronics with redundancy that are common to all thrusters. The thermal dissipation from all electronics is removed with a common heat pipe/radiator assembly.

  9. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  10. Optimization of Low-Thrust Spiral Trajectories by Collocation

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Dankanich, John W.

    2012-01-01

    As NASA examines potential missions in the post space shuttle era, there has been a renewed interest in low-thrust electric propulsion for both crewed and uncrewed missions. While much progress has been made in the field of software for the optimization of low-thrust trajectories, many of the tools utilize higher-fidelity methods which, while excellent, result in extremely high run-times and poor convergence when dealing with planetocentric spiraling trajectories deep within a gravity well. Conversely, faster tools like SEPSPOT provide a reasonable solution but typically fail to account for other forces such as third-body gravitation, aerodynamic drag, solar radiation pressure. SEPSPOT is further constrained by its solution method, which may require a very good guess to yield a converged optimal solution. Here the authors have developed an approach using collocation intended to provide solution times comparable to those given by SEPSPOT while allowing for greater robustness and extensible force models.

  11. Entrainment and thrust augmentation in pulsatile ejector flows

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Bui, T.

    1981-01-01

    This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.

  12. ERBS orbit ascent utilizing continuous low thrust maneuvers

    NASA Technical Reports Server (NTRS)

    Hoge, S. L.; Oh, I.-H.

    1986-01-01

    The Earth Radiation Budget Satellite (ERBS) is a National Aeronautics and Space Administration (NASA) spacecraft whose purpose is to investigate the components of the earth's radiation budget. The ERBS was deployed in a 57 degree inclined, 352.2 kilometer altitude circular orbit by the NASA Space Transportation System (STS) on October 5, 1984. The spacecraft then ascended to its 603 kilometer, near-circular mission orbit by a series of continuous low-thrust maneuvers. The ERBS was the first free-flyer mission to rely on continuous low thrust to spiral from one circular orbit to another. Careful planning and monitoring of these maneuvers were essential to their successful execution. Errors in the prediction of the propulsion system performance or in burn duration would result in loss of contact with the spacecraft during a maneuver and could result in a premature end to the maneuver and difficulty in computing a definitive orbit.

  13. Propellant management for low thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  14. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  15. Jet-Engine Exhaust Nozzle With Thrust-Directing Flaps

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1996-01-01

    Convergent/divergent jet-engine exhaust nozzle has cruciform divergent passage containing flaps that move to deflect flow of exhaust in either or both planes perpendicular to main fore-and-aft axis of undeflected flow. Prototype of thrust-vector-control nozzles installed in advanced, high-performance airplanes to provide large pitching (usually, vertical) and yawing (usually, horizontal) attitude-control forces independent of attitude-control forces produced by usual aerodynamic control surfaces.

  16. A graphite-lined regeneratively cooled thrust chamber

    NASA Technical Reports Server (NTRS)

    Stubbs, V. R.

    1972-01-01

    Design concepts, based on use of graphite as a thermal barrier for regeneratively cooled FLOX-methane thrust chambers, have been screened and concepts selected for detailed thermodynamic, stress, and fabrication analyses. A single design employing AGCarb-101, a fibrous graphite composite material, for a thermal barrier liner and an electroformed nickel structure with integral coolant passages was selected for fabrication and testing. The fabrication processes and the test results are described and illustrated.

  17. Maneuver analysis for spinning thrusting spacecraft and spinning tethered spacecraft

    NASA Astrophysics Data System (ADS)

    Martin, Kaela M.

    During axial thrusting of a spin-stabilized spacecraft undergoing orbital injections or control maneuvers, misalignments and center-of-mass offset create undesired body-fixed torques. The effects of the body-fixed torques, which in turn cause velocity pointing errors, can be reduced by ramping up (and then ramping down) the thruster. The first topic discussed in this thesis derives closed-form solutions for the angular velocity, Euler angles, inertial velocity, and inertial displacement solutions with nonzero initial conditions. Using the closed-form solutions, the effect of variations in the spin-axis moment of inertia and spin-rate on the spacecraft velocity pointing error are shown. The analytical solutions closely match numerical simulations. The next topic considers various ramp-up profiles (including parabolic, cosine, logarithmic, exponential, and cubic) to heuristically find a suboptimal solution to reduce the velocity pointing error. Some of the considered cosine, logarithmic, exponential, parabolic, and cubic profiles drive the velocity pointing error to nearly zero and hence qualify as effective solutions. The third topic examines a large tethered spacecraft that produces artificial gravity with the propulsion system on one end of the tether. Instead of thrusting through the center of mass, the offset thrust occurs at an angle to the tether which is held in the desired direction by changing the spin rate to compensate for decreasing propellant mass. The dynamics and control laws of the system are derived for constant, time-varying, planar, and non-planar thrust as well as spin-up maneuvers. The final topic discusses how the Bodewadt solution of a self-excited rigid body is unable to accurately predict the motion compared to a numerical integration of the equations of motion.

  18. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  19. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  20. Combating chronic generator failures with a new thrust bearing design

    SciTech Connect

    Cote, C.; Detanne, D.

    1997-12-01

    Frequent and severe failures of spring-loaded thrust bearings can cost million of dollars, both in terms of repairs and generator downtime. Replacing spring-loaded bearings with a self-compensated diaphragm design greatly improved reliability and reduced costs at Alcan Smelters and Chemicals Ltd., Quebec, Canada. The article describes problem analysis, the evaluation of alternative bearing designs, and design and construction of the diaphragms. Analysis of the upper bracket, installation techniques, and operating experience are also described.

  1. Lift, drag and thrust measurement in a hypersonic impulse facility

    NASA Technical Reports Server (NTRS)

    Tuttle, S. L.; Mee, D. J.; Simmons, J. M.

    1995-01-01

    This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.

  2. CISLUNAR program manual: A low-thrust trajectory determination model

    NASA Technical Reports Server (NTRS)

    1988-01-01

    CISLUNAR is a stand-alone computer program designed to generate the trajectory of a low-thrust spacecraft travelling in Earth-Moon space. The program allows the creation of functional trajectories dependent on the supplied spacecraft characteristics. The trajectory generation is a user interactive process. The original intent was for the program user to modify the necessary control values until a staisfactory trajectory has been created.

  3. Structural analysis of cylindrical thrust chambers, volume 3

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1981-01-01

    A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.

  4. NASA's In-Space Propulsion Program

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2003-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. NASA's In-Space Propulsion (ISP) Program is investing in technologies to meet these needs. The ISP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5-10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, propellantless because they do not require on-board fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture. An overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them, will be provided.

  5. Characterization of Space Shuttle Reusable Rocket Motor Static Test Stand Thrust Measurements

    NASA Technical Reports Server (NTRS)

    Cook, Mart L.; Gruet, Laurent; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Space Shuttle Reusable Solid Rocket Motors (RSRM) are static tested at two ATK Thiokol Propulsion facilities in Utah, T-24 and T-97. The newer T-97 static test facility was recently upgraded to allow thrust measurement capability. All previous static test motor thrust measurements have been taken at T-24; data from these tests were used to characterize thrust parameters and requirement limits for flight motors. Validation of the new T-97 thrust measurement system is required prior to use for official RSRM performance assessments. Since thrust cannot be measured on RSRM flight motors, flight motor measured chamber pressure and a nominal thrust-to-pressure relationship (based on static test motor thrust and pressure measurements) are used to reconstruct flight motor performance. Historical static test and flight motor performance data are used in conjunction with production subscale test data to predict RSRM performance. The predicted motor performance is provided to support Space Shuttle trajectory and system loads analyses. Therefore, an accurate nominal thrust-to-pressure (F/P) relationship is critical for accurate RSRM flight motor performance and Space Shuttle analyses. Flight Support Motors (FSM) 7, 8, and 9 provided thrust data for the validation of the T-97 thrust measurement system. The T-97 thrust data were analyzed and compared to thrust previously measured at T-24 to verify measured thrust data and identify any test-stand bias. The T-97 FIP data were consistent and within the T-24 static test statistical family expectation. The FSMs 7-9 thrust data met all NASA contract requirements, and the test stand is now verified for future thrust measurements.

  6. A Simple Model of Pulsed Ejector Thrust Augmentation

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Deloof, Richard L. (Technical Monitor)

    2003-01-01

    A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.

  7. Geomechanical Modeling in Fold-and-Thrust Belts Systems

    NASA Astrophysics Data System (ADS)

    Gao, B.; Flemings, P. B.

    2015-12-01

    We present a large-strain poro-mechanical model to investigate the evolution of stress and strain in fold and thrust belt systems. We impose horizontal shortening in the model and observe that a tapered wedge develops. Inside the accretionary wedge, the horizontal effective stress increases to about 2.3 times the vertical effective stress. The maximum principle stress direction rotates gradually from the initial vertical direction to the horizontal direction as the sediment gets closer to the backstop. We use stress paths to illustrate how the stresses evolve during the thrust loading. We find the sediment stress path starts from uniaxial condition and moves towards critical state condition. We categorize the thrust belt into 3 zones according to their stress conditions from the backstop to the farfield: critical state region, transition region, and uniaxial region. We show that the sediments within the accretionary wedge are at critical state, which indicate they lost their strength to resist deformation. The sediment porosity decreases dramatically within the wedge due to high mean effective and differential stress. We built the model in finite element program Elfen. The sediments are modeled as poro-elastoplastic materials with a critical state soil model. Overall, our results provide insights of stress and porosity evolution in compressional regimes and can assist field stress and pressure predictions.

  8. Fracturing and brecciation along the Max Meadows thrust, southwestern Virginia

    SciTech Connect

    Haneberg, W.C.

    1984-04-01

    Fracturing is an important mechanism of porosity development in deformed hydrocarbon provinces such as the Eastern Overthrust belt, but the sizes and shapes of fractured zones place critical constraints on exploration strategies. Fracturing and brecciation associated with the Max Meadows thrust, along which the Cambrian Rome Formation have been emplaced atop the younger Cambrian Elbrook and Conococheague Formations of the Pulaski thrust sheet, are controlled by lithology, proximity to the fault, and mesoscopic folding. Within the Max Meadows sheet, Rome carbonates are highly fractured and, in fold cores near the fault, brecciated. Rome mudstones and sandstones are tightly folded, and near the fault have developed both an incipient axial planar cleavage and a set of closely spaced fractures striking perpendicular to fold axes. In comparison, the wholly carbonate sequence of the Pulaski sheet had earlier been folded into a large syncline characterized by bedding-parallel shear in shaly and thin-bedded layers, flexural slip folding, and localized fracturing of thick layers. Thus breccia and fracture porosity zones in the study area are highly localized, of irregular geometry, and essentially restricted to the upper thrust sheet. Zones of tectonic breccia and fracture porosity are not attractive exploration targets, then, unless they occur as uniform and widespread broken zones in sedimentologically and mechanically homogeneous beds.

  9. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.

  10. The NPL/ESA Micro-Newton Thrust Balance

    NASA Astrophysics Data System (ADS)

    Hughes, Ben; Perez Luna, Jaime

    2012-07-01

    Europe is pursuing a number of unique science missions which require extremely high performance micro- propulsion systems to perform precision attitude control to meet their challenging scientific goals. A number of different propulsion systems are under development to try and meet these needs, including systems based on FEEP, mini-ion and cold gas thruster technologies. The critical performance requirements for the thrusters are related to thrust accuracy, dynamic response and noise, where very challenging requirements are set. Although it is anticipated that the thruster technologies can meet these challenging requirements, verification of these performances by test presents its own difficulties, since the magnitude of the thrust noise required is close to the limit of available measurement devices, and the practicalities of testing thrusters under vacuum provide their own challenges. To address the complex measurement requirements, the UK’s National Physical Laboratory (NPL) is working closely with ESTEC to develop a state-of-the-art thrust balance that will provide traceable (to international measurement standards) measurements with a target measurement uncertainty of 1 μN (k = 2) and measurement bandwidth of 0 Hz to 10 Hz. The paper will focus on the design of the instrument, the detrimental effects of external vibration noise on the measurement, how this problem is being addressed and how we determine the measurement uncertainty in the presence of noise.

  11. Structural analysis of cylindrical thrust chambers, volume 1

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.

    1979-01-01

    Life predictions of regeneratively cooled rocket thrust chambers are normally derived from classical material fatigue principles. The failures observed in experimental thrust chambers do not appear to be due entirely to material fatigue. The chamber coolant walls in the failed areas exhibit progressive bulging and thinning during cyclic firings until the wall stress finally exceeds the material rupture stress and failure occurs. A preliminary analysis of an oxygen free high conductivity (OFHC) copper cylindrical thrust chamber demonstrated that the inclusion of cumulative cyclic plastic effects enables the observed coolant wall thinout to be predicted. The thinout curve constructed from the referent analysis of 10 firing cycles was extrapolated from the tenth cycle to the 200th cycle. The preliminary OFHC copper chamber 10-cycle analysis was extended so that the extrapolated thinout curve could be established by performing cyclic analysis of deformed configurations at 100 and 200 cycles. Thus the original range of extrapolation was reduced and the thinout curve was adjusted by using calculated thinout rates at 100 and 100 cycles. An analysis of the same underformed chamber model constructed of half-hard Amzirc to study the effect of material properties on the thinout curve is included.

  12. Thrust Characteristics of Multiple Lifting Jets in Ground Proximity

    NASA Technical Reports Server (NTRS)

    Davenport, Edwin E.; Spreeman, Kenneth P.

    1960-01-01

    An investigation has been made to determine the thrust characteristics within ground proximity of a series of models which might represent vertical take-off-and-landing (VTOL) aircraft with multiple exit jet engines exhausting vertically downward beneath a lifting surface. Variations in simulated engine configurations were provided by a series of nozzle insert plugs in which the number of jet exits, located symmetrically on a fixed circle, was varied, or the diameter of the circle was varied for a given number of jet exits. represent lifting surfaces, and high-pressure air was used to simulate jet-engine exhaust. Plywood plates were used to The results of the investigation showed that increasing the number of exits, such that an annular jet configuration was approached, provided more favorable thrust characteristics within ground proximity than any other variation in the geometry of these multiple jets. Tests of a configuration with two nozzles approximating a fan-in-wing VTOL aircraft with fans located at different spanwise locations indicated that the augmentation in thrust within ground proximity was greater for the arrangement with the more inboard location of the nozzles.

  13. Paleogene thrust tectonics in northwestern Venezuela: Petroleum system implications

    SciTech Connect

    Quijada, E.; Oropeza, S.

    1996-08-01

    Oil exploration in northeastern Perija Mountains, northwestern Maracaibo basin, has been difficult, mainly due to the various tectonic events that have strongly deformed this area. This study is an attempt at better understanding the effect of a Paleogene thrusting event on the petroleum system development in the area. Subsidence analysis interpretation at both sides of the NNE directed Tigre fault (which separates the northern Perija Mountains from the rest of the Maracaibo basin) suggests the onset of a foreland basin during, at least, Paleocene-Early Eocene time. Continuous sedimentation occurred from Late Cretaceous to Early Eocene, as long as it kept pace with subsidence, in the west block of the fault, while the east block acted as an obstacle against the thrust-sheet movement, delaying its subsidence. Sedimentation for this time is associated with a thick unit of mainly paralic sediments west of that fault and thinner continental (fluvial) to shallow marine sediments, with an intra-Paleocene/Early Eocene unconformity, east of it. So, this tectonic event, associated with convergence from the north, caused a south-verging thrust sheet giving rise to differences in the evolution of the petroleum system on both sides of the Tigre fault, mainly regarding the existence of source rocks and their generation/migration of hydrocarbons, preservation time and critical moment. Finally, in order to evaluate the oil exploration opportunities in northeastern Perija mountains, it is advisable that any integrated interpretation of the petroleum system processes (generation-migration-accumulation) take into account this tectonic event.

  14. The 3.3K thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.

    1974-01-01

    The cause of low-cycle fatigue failure of the 3.3K Thrust Chamber was investigated. This thrust chamber typifies the current trend in rocket nozzle design which calls for high performance coupled with weight and volume limitations as well as the requirement of reusability. The analysis was performed with the BOPACE finite-element computer program which provides capability to determine viscoplastic response of a structure subjected to cyclic thermal and mechanical loading. Results are presented which show the critical region for low-cycle fatigue and the history of strain within that region for each thermo-mechanical loading cycle in the 3.3K thrust chamber. The predicted behavior was used to evaluate the low-cycle fatigue life near the throat plane of the chamber. The results show that BOPACE provides an extremely accurate prediction of structural behavior; the critical region was identified and the life determined from computed strains was within 154 cycles of the observed failure at 1013 cycles.

  15. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  16. Camera Layout Design for the Upper Stage Thrust Cone

    NASA Technical Reports Server (NTRS)

    Wooten, Tevin; Fowler, Bart

    2010-01-01

    Engineers in the Integrated Design and Analysis Division (EV30) use a variety of different tools to aid in the design and analysis of the Ares I vehicle. One primary tool in use is Pro-Engineer. Pro-Engineer is a computer-aided design (CAD) software that allows designers to create computer generated structural models of vehicle structures. For the Upper State thrust cone, Pro-Engineer was used to assist in the design of a layout for two camera housings. These cameras observe the separation between the first and second stage of the Ares I vehicle. For the Ares I-X, one standard speed camera was used. The Ares I design calls for two separate housings, three cameras, and a lighting system. With previous design concepts and verification strategies in mind, a new layout for the two camera design concept was developed with members of the EV32 team. With the new design, Pro-Engineer was used to draw the layout to observe how the two camera housings fit with the thrust cone assembly. Future analysis of the camera housing design will verify the stability and clearance of the camera with other hardware present on the thrust cone.

  17. Cataclasites-ultracataclasites in a major thrust zone: Gaissa Thrust, N. Norwegian Caledonides.

    NASA Astrophysics Data System (ADS)

    Rice, A. Hugh N.; Grasemann, Bernhard

    2015-04-01

    Narrow fault zones of intense deformation imply strain localisation. This is superbly shown by the ~horizontal Caledonian basal décollement in N. Norway, where ~127 km of top E-to-ESE thrust displacement is concentrated in a ~3 cm thick principle slip zone within lower strain hanging wall and footwall cataclasites less than a few centimetres thick. A scan of a transport-direction parallel 8.5x11.5cm thin-section of the fault is enlarged to 0.7x1.0m in the poster. The Caledonian external imbricate zone here places anchizone pre-Marinoan quartzite/shales onto diagenetic-zone post-Gaskiers red/green shales, silts and fine sandstones. Carbonates are absent. The displacement was estimated from balanced cross-sections and branch-line restorations. In the hangingwall cataclastic zone, a coarse qtz-rich/clay-rich cataclastic compositional layering dips at <30° towards the hinterland. Sedimentary features are nowhere seen in this pervasively, cyclically fractured rock. A cataclastic foliation is locally present parallel to the compositional layering. Close to the principle slip zone, an irregular fabric develops parallel to the detachment. The hangingwall cataclasites are cut by foreland-dipping (<70°) fractures at all scales, with offsets of up to a few mm, rarely with a reverse shear-sense, creating lozenge shaped clasts of earlier cataclasites. Fractures concentrate darker material, indicating pressure solution; similar layers lie parallel to the compositional layering. The principle slip zone has at least 11 distinct bands, although these contain microstructural variations; not all persist across the sample. Three types of band can be distinguished, separated generally by principle slip surfaces. (1) layers containing abundant angular fragments of earlier cataclasite. A variably oriented cataclastic foliation is irregularly developed, dipping towards both foreland and hinterland and wrapping larger clasts. Some elongate clasts have an (oblique) earlier internal

  18. Design and analysis report for the RL10-2B breadboard low thrust engine

    NASA Technical Reports Server (NTRS)

    Brown, J. R.; Foust, R. R.; Galler, D. E.; Kanic, P. G.; Kmiec, T. D.; Limerick, C. D.; Peckham, R. J.; Swartwout, T.

    1984-01-01

    The breadboard low thrust RL10-2B engine is described. A summary of the analysis and design effort to define the multimode thrust concept applicable to the requirements for the upper stage vehicles is provided. Baseline requirements were established for operation of the RL10-2B engine under the following conditions: (1) tank head idle at low propellant tank pressures without vehicle propellant conditioning or settling thrust; (2) pumped idle at a ten percent thrust level for low G deployment and/or vehicle tank pressurization; and (3) full thrust (15,000 lb.). Several variations of the engine configuration were investigated and results of the analyses are included.

  19. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  20. Direct thrust measurement of a permanent magnet helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-01

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  1. Finite element analysis of direct thrust-controlled linear induction motor

    SciTech Connect

    Kwon, B.I.; Woo, K.I.; Kim, S. . Dept. of Electrical Engineering)

    1999-05-01

    This paper describes the finite element analysis of a direct thrust-controlled linear induction motor (LIM). The time-stepping finite element method and the moving mesh technique are used to calculate the dynamic characteristics of LIM during the direct thrust control. Because LIM has the end effect, thrust correction coefficient is introduced to predict an actual thrust in control. The simulation results, the thrust and the stator flux linkage are shown below and the stator current is compared with an experimental one.

  2. Geometry and Kinematics of the Lamu Basin Deep-Water Fold-and-Thrust Belt (East Africa)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Cruciani, Francesco; Porreca, Massimiliano

    2016-04-01

    are comparable to that of analogue-scaled structures, developed at convergent plate boundaries, e.g. the foreland fold-and-trust belts. However, its kinematic evolution shows some peculiar characters: shortening seems largely synchronous across the whole thrust belt and the maximum shortening is achieved in its frontal part (toe thrust), diminishing landward.

  3. Constraining the erosional response of deep-water channel systems to growing folds and thrusts, Niger Delta.

    NASA Astrophysics Data System (ADS)

    Whittaker, A. C.; Lonergan, L.; Jolly, B. A.

    2015-12-01

    Gravity-driven folds and thrusts often characterize the slope and deep-water settings of passive margins. These structures exert a significant control on sediment gravity flows because they determine the location and configuration of sediment depo-centres and transport systems. Here we exploit 3D seismic data in the outer toe-thrust region of the deep-water Niger Delta to analyse the interaction between Plio-Pleistocene channel systems and actively-growing folds and thrusts. We first map folds and thrusts from the seismic data and we use this data to reconstruct the history of fold growth in detail. We then make quantitative measurements of the geomorphic response of submarine channels to growing tectonic structures in order to provide new constraints on their long-term erosional dynamics. This information is used to infer morphodyanamic processes that sculpted the channel systems through time, and to estimate the bed shear stresses and fluid velocities of typical flow events. The bathymetric long profiles of these channels have concavities that range from -0.08 to -0.34, and an average gradient of ~1o. Thrusts are associated with a local steepening in channel gradient of up to 3 times, and this effect extends 0.5 - 2 km upstream of the thrust. Within these knickzones, channel incision increases by approximately by a factor of 2, with a corresponding width decrease of approximately 25%. Channel incision across growing structures is achieved through enhanced bed-shear stress driven incision (up to 200 Pa) and flow velocity (up to 5 ms-1) assuming typical bulk sediment concentrations of 0.6%. Comparison of structural uplift since 1.7 Ma, and channel incision over an equivalent period, shows that many of these channels are able to keep pace with the time-integrated uplift since 1.7 Ma, and may have reached a bathymetric steady-state. Generally, bed-shear stresses of ~150 Pa are sufficient to keep pace with structural strain rates of 10-15 s-1. More widely, our data

  4. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  5. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  6. Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns

    PubMed Central

    Clark, Richard P.; Smits, Alexander J.

    2009-01-01

    An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion. PMID:19946574

  7. Single-stage-to-orbit performance enhancement from take-off thrust augmentation

    SciTech Connect

    Galati, T.; Elkins, T.

    1997-01-01

    Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor{sup {reg_sign}} strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80{percent} of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H{sub 2} engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, I{sub sp} and pitch rate are quantified. {copyright} {ital 1997 American Institute of Physics.}

  8. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  9. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  10. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    NASA Astrophysics Data System (ADS)

    Bradley, Christopher M.

    The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot

  11. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  12. Polymers as fuel for laser-based microthrusters: An investigation of thrust, material, plasma and shockwave properties

    NASA Astrophysics Data System (ADS)

    Urech, L.; Lippert, T.; Phipps, C. R.; Wokaun, A.

    2007-07-01

    The micro-laser plasma thruster (μ-LPT) is a micropropulsion device, designed for steering and propelling of small satellites (1-10 kg). A laser is focused onto a polymer layer on a substrate to form a plasma, which produces the thrust that is used to control the satellite motion. Three different polymers were tested to understand the influence of their specific properties on the thrust performance: poly(vinyl chloride) (PVC) as a low-energetic material, a glycidyl azide polymer (GAP), and poly(vinyl nitrate) (PVN) as high-energetic polymers. Different absorbers (carbon nanoparticles or an IR dye) were added to the polymer to achieve absorption at the irradiation wavelength (1064 nm). The influence of the material and dopant properties on the decomposition characteristics and the energy release were investigated by thrust measurements and ns-shadowgraphy. Mass spectrometry and time- and space-resolved plasma emission spectroscopy in air and vacuum were used to analyze the degree of fragmentation as function of the material properties. The kinetic energies of selected fragments were calculated from the spectra. GAP + C showed the best performance in all measurements at high fluences, while at low fluences PVN + C revealed the best performance.

  13. NASA's In-Space Propulsion Technology Program

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Robinson, J.

    2004-11-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, ``propellantless" because they do not require on-board fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA's plans for advancing them as part of the \\$60M per year In-Space Propulsion Technology Program. Solar sails and aerocapture are candidates for flight validation as early as 2008 in partnership with NASA's New Millennium Program.

  14. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  15. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  16. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  17. NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy

    2005-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.

  18. Fault interaction along the Central Andean thrust front: The Las Peñas thrust, Cerro Salinas thrust and the Montecito Anticline

    NASA Astrophysics Data System (ADS)

    Schoenbohm, L. M.; Costa, C. H.; Brooks, B. A.; Bohon, W.; Gardini, C.; Cisneros, H.

    2013-12-01

    The region in west-central Argentina between the thin-skinned Precordillera and the thick-skinned Sierras Pampeanas structural domain is among the most active zones of thrust tectonics in the world. We quantify the rates of deformation on the east-vergent Las Peñas thrust (LPT), and the west-vergent Cerro Salinas thrust (CST). The Montecito anticline (MA) is located at their intersection. We mapped three key locations, collected stratigraphic logs from the MA, dated three ashes using U-Pb in zircon and dated 10 terraces using cosmogenic Be-10 depth profiles. Five terrace levels are present where the Rio Las Peñas crosses the LPT, up to 45 m above the modern river. Cosmogenic dating of the uppermost terrace (T1) yields and age of 123.8 +26.5/-12.3 ka. A reconstruction of this surface using a blind thrust rupture scenario indicates 73 +/- 7 m horizontal shortening and 34 +/- 3 m vertical displacement. Shortening across the structure is therefore 0.59 +0.10/-0.13 mm/yr with a vertical uplift rate of 0.27 +0.05/-0.06 mm/a. Previous work indicates higher rates to the south on the order of 2 mm/yr (Schmidt et al., 2011). Lower terraces give ages of 38.0 +11/-6.2 ka (T2) and 1.5 +5.0/-0.6 ka (T4). Three terrace levels are preserved near the center of the CST. The middle surface (T2) is folded across the axis of the structure and yields an age of 112.5 +33/-14.4 ka. Given 22.9 m surface uplift, this indicates a vertical uplift rate of 0.20 +0.05/-0.06 mm/yr, similar to the rate on the LPT. The upper terrace (T1) yields a younger age (97.1 +29.8/-12.4 ka); the T1 and T2 ages overlap within uncertainty, indicating rapid river incision at the time of their formation. An intercalated ash within the Neogene strata gives an age of 16.2 +/- 0.2. Previous work indicates long-term shortening rates of 0.8 mm/yr (Verges et al., 2007) and that the CST initiated after 8.5 Ma. The lowermost unit exposed in the MA is the Los Pozos Fm., with no indication of syn-depositional deformation

  19. The Cenozoic fold-and-thrust belt of Eastern Sardinia: Evidences from the integration of field data with numerically balanced geological cross section

    NASA Astrophysics Data System (ADS)

    Arragoni, S.; Maggi, M.; Cianfarra, P.; Salvini, F.

    2016-06-01

    Newly collected structural data in Eastern Sardinia (Italy) integrated with numerical techniques led to the reconstruction of a 2-D admissible and balanced model revealing the presence of a widespread Cenozoic fold-and-thrust belt. The model was achieved with the FORC software, obtaining a 3-D (2-D + time) numerical reconstruction of the continuous evolution of the structure through time. The Mesozoic carbonate units of Eastern Sardinia and their basement present a fold-and-thrust tectonic setting, with a westward direction of tectonic transport (referred to the present-day coordinates). The tectonic style of the upper levels is thin skinned, with flat sectors prevailing over ramps and younger-on-older thrusts. Three regional tectonic units are present, bounded by two regional thrusts. Strike-slip faults overprint the fold-and-thrust belt and developed during the Sardinia-Corsica Block rotation along the strike of the preexisting fault ramps, not affecting the numerical section balancing. This fold-and-thrust belt represents the southward prosecution of the Alpine Corsica collisional chain and the missing link between the Alpine Chain and the Calabria-Peloritani Block. Relative ages relate its evolution to the meso-Alpine event (Eocene-Oligocene times), prior to the opening of the Tyrrhenian Sea (Tortonian). Results fill a gap of information about the geodynamic evolution of the European margin in Central Mediterranean, between Corsica and the Calabria-Peloritani Block, and imply the presence of remnants of this double-verging belt, missing in the Southern Tyrrhenian basin, within the Southern Apennine chain. The used methodology proved effective for constraining balanced cross sections also for areas lacking exposures of the large-scale structures, as the case of Eastern Sardinia.

  20. Effect of Propeller-Axis Angle of Attack on Thrust Distribution over the Propeller Disk in Relation to Wake-Survey Measurement of Thrust

    NASA Technical Reports Server (NTRS)

    Pendley, Robert E

    1945-01-01

    Tests were made to investigate the variation of thrust distribution over the propeller disk with angle of pitch of the propeller thrust axis and to determine the disposition and the minimum number of rakes necessary to measure the propeller thrust. The tests were made at a low Mach number for a low and a high blade angle with the propeller operating at three small angles of pitch, and some of the tests were repeated at a higher Mach number. The data obtained show that, for small angles of pitch, large changes occur in the energy distribution in the wake which prohibit the use of a single survey rake for thrust measurement in flight tests and limit the use of a single rake in wind-tunnel tests. Under certain conditions, the energy distribution in the wake took on a symmetrical form and two diametrically opposed survey rakes were shown to be satisfactory for obtaining propeller thrust. (author)

  1. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    NASA Technical Reports Server (NTRS)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  2. Kinematic history of the ongoing growth of Himalayan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Yu, H.; Webb, A. G.

    2012-12-01

    Ongoing growth of the Himalayan fold-thrust belt since the Middle Miocene is mostly accomplished by the deformation of the Lesser Himalayan Sequence (a deformed package of rocks which dominates the southern half of the Himalaya). However, the first-order kinematic evolution of this process remains unclear. Four end-member models are proposed: frontal accretion through forward-propagation of a basal thrust; discrete underplating of thrust horses from the downgoing plate to the fold-thrust belt; expansion of the orogen via incremental accretion along the basal shear zone; and out-of-sequence faulting. Both the underplating and out-of-sequence models can explain the rapid uplift and exhumation observed along the central belt of the Himalaya. We test these models by determining the relationship between major thrust faults within the Lesser Himalayan sequence: the Berinag thrust and Tons thrust. Map geometries require >40 km and >80 km displacements along the Berinag and Tons thrusts, respectively. Field mapping along the Tons Valley and the lower Pabbar valley across the Lesser Himalayan Sequence reveals a new first-order thrust fault, which we term the Pabbar thrust. The Pabbar thrust is a ~300 m thick ductile shear zone separating the hanging wall of the Tons thrust (the Outer Lesser Himalayan Sequence) above from the hanging wall of the Berinag thrust (the Berinag Group) below, marked by S-C fabrics, mylonitic fabrics, and sheath folds, demonstrating top-to-the-southwest thrusting. Sheath folds, with hinges parallel to the stretching lineations defined by strongly elongated quartz grains in NE-SW direction, developed at cm to m scale of wavelength and amplitude within the shear zone. The Berinag and Tons thrust zones display both brittle features and ductile shear fabrics including southwest-directed brittle faults, southwest verging tight to open folds, and week southwest-trending stretching lineations. The ductile nature of the Pabbar thrust and the brittle

  3. Style and magnitude of Mesozoic thrust faulting in the hinterland of the Sevier thrust belt Pequop Mountains-Wood Hills-East Humboldt Range region, northeast Nevada

    SciTech Connect

    Camilleri, P.A. . Dept. of Geology and Geophysics)

    1993-04-01

    The Pequop Mountains (PM), Wood Hills (WH) and East Humboldt Range (EHR), NE Nevada, provide evidence that the hinterland of the Sevier thrust belt experienced large-magnitude Mesozoic shortening ([>=]55 km) and crustal thickening ([>=] 30 km). These ranges expose a structurally continuous crustal cross section of unmetamorphosed to high pressure upper amphibolite facies Triassic to Precambrian miogeoclinal strata. This sequence lies structurally beneath unmetamorphosed extensional klippen that omit metamorphic grade and crustal section, but also repeat stratigraphic units. Because they repeat stratigraphic units, the underlying miogeoclinal section, or footwall, must have once lain beneath a thrust fault (herein named the Windermere thrust). The footwall of the Windermere thrust was exhumed by two generations of top-to-the-W-NW low-angle normal faults that are distinguished by whether they are depositionally overlapped by Eocene volcanic rocks or if they cut the volcanic rocks in their hanging walls. The latter phase is associated with development of the mid-Tertiary extensional mylonitic shear zone in the EHR. An integration of geobarometric, metamorphic, and map data suggest (1) a NW dip of the footwall of the Windermere thrust with metamorphic facies belts trending perpendicular to dip direction and metamorphic grade increasing down dip, and (2) a top-to-the-SE sense-of-slip for the Windermere thrust. Assuming that the Windermere thrust comprised a flat on the youngest rocks exposed in the footwall (Triassic), the Mesozoic depth to the Windermere thrust in the northern PM is [>=] 7 km, in WH is [approximately]10--16 km, and in the EHR[>=]30 km. The Windermere thrust accommodated a minimum of 50 km of shortening associated with the Independence thrust is [>=] 5 km. These data indicate that the amount of hinterland shortening in NE Nevada greatly exceeds that to the south in the Eureka belt.

  4. Large-scale geometry of Montana thrust belt

    SciTech Connect

    Sears, J.W.; Dolberg, D.M.

    1986-08-01

    Regional plunge of a structural culmination in the Sawtooth Mountains, combined with seismic profiles and borehole data, show that the imbricated faults of the Montana Disturbed belt gather upward to merge into a duplex beneath a large thrust plate dominated by the Precambrian Belt Supergroup. The duplex formed after deposition of the Paleocene St. Mary River Formation. This thrust plate overlies the Lewis, Hoadley, El dorado, Steinbach, and related thrust faults and forms the main ranges of the Montana Rocky Mountains. The plate is shaped like a northeasterly tapering wedge; it is 3 to 4 km (10,000 to 13,000 ft) thick at its leading edge, but thickens to more than 25 km (15 mi) to the southwest. At its leading edge, the plate carries lower parts of the Belt supergroup, including the Greyson, Empire, and Spokane formations. These units and overlying parts of the Belt Supergroup thicken dramatically westward within the plate, and the older, very thick, metamorphosed Prichard Formation emerges along the Purcell and related anticlinoria. The plate forms a south-facing monocline along the Lewis and Clark line. The monocline is corrugated into a series of southeast-plunging en echelon folds of Late Cretaceous age and merges with the southern terminus of the Purcell anticlinorium. Along these folds, metamorphosed Belt strata of the plate plunge systematically beneath Paleozoic and Mesozoic rocks that are preserved in a regional structural depression at the foot of the monocline. Geometric constructions based on areal geology suggest that the monocline has 25 km (15 mi) of structural relief and overlies a major footwall ramp that continues northward beneath the Purcell anticlinorium. This footwall ramp corresponds to the depositional locus for the easterly tapering belt strata of the plate, suggesting a total northeasterly displacement of about 50 km (30 mi) for the plate.

  5. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  6. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Rinehart, Aidan W.; Simon, Donald L.; Chicatelli, Amy; Sowers, Shane

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  7. Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1992-01-01

    An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.

  8. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    SciTech Connect

    Dillon, J.T. ); Haxel, G.B. ); Tosdal, R.M. )

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sense of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.

  9. Structural analysis using thrust-fault hanging-wall sequence diagrams: Ogden duplex, Wasatch Range, Utah

    SciTech Connect

    Schirmer, T.W.

    1988-05-01

    Detailed mapping and cross-section traverses provide the control for structural analysis and geometric modeling of the Ogden duplex, a complex thrust system exposed in the Wasatch Mountains, east of Ogden, Utah. The structures consist of east-dipping folded thrust faults, basement-cored horses, lateral ramps and folds, and tear faults. The sequence of thrusting determined by means of lateral overlap of horses, thrust-splay relationships, and a top-to-bottom piggyback development is Willard thrust, Ogden thrust, Weber thrust, and Taylor thrust. Major decollement zones occur in the Cambrian shales and limestones. The Tintic Quartzite is the marker for determining gross geometries of horses. This exposed duplex serves as a good model to illustrate the method of constructing a hanging-wall sequence diagram - a series of longitudinal cross sections that move forward in time and space, and show how a thrust system formed as it moved updip over various footwall ramps. A hanging wall sequence diagram also shows the complex lateral variations in a thrust system and helps to locate lateral ramps, lateral folds, tear faults, and other features not shown on dip-oriented cross sections. 8 figures.

  10. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    SciTech Connect

    Waggoner, W.K.; Mora, C.I. . Dept. of Geological Sciences)

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS with mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.

  11. Static properties of hydrostatic thrust gas bearings with curved surfaces.

    NASA Technical Reports Server (NTRS)

    Rehsteiner, F. H.; Cannon, R. H., Jr.

    1971-01-01

    The classical treatment of circular, hydrostatic, orifice-regulated thrust gas bearings, in which perfectly plane bearing plates are assumed, is extended to include axisymmetric, but otherwise arbitrary, plate profiles. Plate curvature has a strong influence on bearing load capability, static stiffness, tilting stiffness, and side force per unit misalignment angle. By a suitable combination of gas inlet impedance and concave plate profile, the static stiffness can be made almost constant over a wide load range, and to remain positive at the closure load. Extensive measurements performed with convex and concave plates agree with theory to within the experimental error throughout and demonstrate the practical feasibility of using curved plates.

  12. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  13. Numerical simulation of variable thrust engine combustion chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Tsung L.; Chiang, Wei-Tang; Jang, Shyh-Dihng

    1992-07-01

    Numerical computations have been conducted for the combustion and fluid-dynamic processes of a variable thrust engine's combustion chamber at the choking condition for two different power levels. The engine in question is to be used by an orbital-maneuvering vehicle. Physical submodels are used in order to account for the two-phase interaction between bipropellant droplet flows and gas-phase flow; nozzle throat conditions are determined by both mass-conservation and thermodynamic relations. In view of the results obtained, the conventional association between fineness of fuel spray and the maximization of combustor efficiency requires reassessment.

  14. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  15. Computer Tomography Analysis of Fastrac Composite Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2000-01-01

    Computed tomography (CT) inspection has been integrated into the production process for NASA's Fastrac composite thrust chamber assemblies (TCAs). CT has been proven to be uniquely qualified to detect the known critical flaw for these nozzles, liner cracks that are adjacent to debonds between the liner and overwrap. CT is also being used as a process monitoring tool through analysis of low density indications in the nozzle overwraps. 3d reconstruction of CT images to produce models of flawed areas is being used to give program engineers better insight into the location and nature of nozzle flaws.

  16. Low-thrust trajectory analysis for the geosynchronous mission

    NASA Technical Reports Server (NTRS)

    Jasper, T. P.

    1973-01-01

    Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.

  17. Passive Thrust Oscillation Mitigation for the CEV Crew Pallet System

    NASA Technical Reports Server (NTRS)

    Sammons, Matthew; Powell, Cory; Pellicciotti, Joseph; Buehrle, Ralph; Johnson, Keith

    2012-01-01

    The Crew Exploration Vehicle (CEV) was intended to be the next-generation human spacecraft for the Constellation Program. The CEV Isolator Strut mechanism was designed to mitigate loads imparted to the CEV crew caused by the Thrust Oscillation (TO) phenomenon of the proposed Ares I Launch Vehicle (LV). The Isolator Strut was also designed to be compatible with Launch Abort (LA) contingencies and landing scenarios. Prototype struts were designed, built, and tested in component, sub-system, and system-level testing. The design of the strut, the results of the tests, and the conclusions and lessons learned from the program will be explored in this paper.

  18. Thrust vector control algorithm design for the Cassini spacecraft

    NASA Technical Reports Server (NTRS)

    Enright, Paul J.

    1993-01-01

    This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.

  19. Thrust vector control for the Space Shuttle Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Counter, D. N.; Brinton, B. C.

    1975-01-01

    Thrust vector control (TVC) for the Space Shuttle Solid Rocket Motor (SRM) is obtained by omniaxis vectoring of the nozzle. The development and integration of the system are under the cognizance of Marshall Space Flight Center (MSFC). The nozzle and flexible bearing have been designed and will be built by Thiokol Corporation/Wasatch Division. The vector requirements of the system, the impact of multiple reuse on the components, and the unique problems associated with a large flexible bearing are discussed. The design details of each of the major TVC subcomponents are delineated. The subscale bearing development program and the overall development schedule also are presented.

  20. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  1. Future thrusts in the U.S. planetary program

    NASA Technical Reports Server (NTRS)

    Friedman, L. D.

    1977-01-01

    The aim of the U.S. deep space program concept is to complete the reconnaissance of the solar system and to transfer to the era of space utilization. Such spacecraft as the Voyager Jupiter-Saturn and the Pioneer Venus will be used to visit all the planets and smaller bodies of the solar system by the year 2000. In the present paper, some missions, still in the early planning stage and requiring Congressional approval are discussed, and the enormous capabilities of Solar Electric Propulsion (SEP) and Solar Sailing are pointed out. The advantages of such low-thrust propulsion systems in performance, mission design, and operations flexibility are noted.

  2. Emergency Flight Control Using Computer-Controlled Thrust

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  3. Estimation of unmodeled forces on a low-thrust space vehicle. [trajectory analysis for Eros asteroid flyby

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Hagar, H.

    1975-01-01

    The application of a sequential estimation algorithm, which compensates for random errors in the dynamic model, to the problem of estimating the state of a continuously thrusting solar electric propulsion space vehicle is investigated. The dynamic model errors, due to random anomalies in the propulsion system, are approximated successfully by both first order and second order Gauss-Markov processes to obtain a more accurate and stable orbit determination algorithm. The importance of correct dynamic and measurement modeling in achieving accurate estimates is demonstrated.

  4. Antiformal closure in ductile and brittle-ductile in fold-and-thrust belt tranverse zones, Moine Thrust Belt, NW Scotland

    NASA Astrophysics Data System (ADS)

    Leslie, G.; Krabbendam, M.

    2009-04-01

    Abrupt lateral changes in thrust geometry occur in many mountain-building fold-and-thrust belts. Such changes in architecture are referred to as so-called transverse zones, and are commonly thought to be related to kinematic responses to irregularities generated across pre-existing, sometimes re-activated, basement faults. In many cases however the causative structure is concealed, either by distal parts of the thrust belt or the foreland basin. Sharp lateral changes in the structural geometry of ductile thrust stacks are less widely studied and reported. In NW Scotland, the classic Caledonian WNW-vergent Moine Thrust Belt exposes excellent examples of the structural architecture in such transverse zones, both in kilometre-scale thick monolithic (meta-)sandstone packages subject to ductile deformation, and in much thinner heterolithic packages subject to brittle-ductile deformation. In both cases the amplitude of the antiformal disturbance associated with the transverse zone is much greater than amplitude of any irregularity identified in the basement below. In Neoproterozoic Moine rocks in the hanging wall of the Moine Thrust, a large-scale lateral culmination wall forms a component part of the Oykel Transverse Zone (OTZ), a kilometre-scale thick constrictional ductile shear zone striking sub-parallel to the WNW-directed thrust transport direction. The OTZ forms the SW limit of the Cassley Culmination. ESE-plunging mullions are an integral part of the fabric of the transverse zone and were generated by constriction sub-parallel to the WNW-directed thrust transport direction. Main folds and fabrics in the transverse zone hanging-wall are folded by main folds and fabrics in the footwall, demonstrating the overall foreland-propagating record of ductile deformation as the Cassley Culmination grew. Constriction and mullion development are attributed to differential, transtensional movement across the transverse zone during the later stages of culmination development

  5. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension

    NASA Astrophysics Data System (ADS)

    Andreucci, B.; Castelluccio, A.; Jankowski, L.; Mazzoli, S.; Szaniawski, R.; Zattin, M.

    2013-11-01

    Several tectonic processes have been proposed to be important in the Alpine to the recent evolution of the Polish Outer Carpathians, i.e., Paleogene-Neogene thrusting, post-thrusting extension, Quaternary reactivation of compression. This work tests the effect of these processes on exhumation of the wedge, in order to verify their timing and relative role in shaping the Polish Outer Carpathians. AFT, AHe and ZHe analyses were performed on samples collected along the study region. This allowed the reconstruction of their post-depositional minimum heating, depth of burial and timing of cooling and exhumation. After deposition samples from the innermost units were heated up to temperatures of ca. 60-120 °C (ca. 4-9 km), whereas samples from the outer units were heated to temperatures lower than 60 °C (ca. 4 km). Cooling and exhumation occurred progressively later from west to east (between ca. 25 and 10 Ma in the western sector, between ca. 15 and 5 Ma in the eastern sector). These results have been put in relationship with single structural features to understand the relative role of thrusts and normal faults. In the eastern sector of the study region samples at the footwall of significant normal faults show a higher degree of reset and younger ages than samples located at the hangingwall. This implies that, in this sector, extensional tectonics played an important role in exhumation. However, proper tectonic exhumation only had a minor role, the major exhumation mechanism being erosion, which is enhanced in the footwalls and reduced in the hangingwalls. In the western sector of the Polish Outer Carpathians only in few cases evidence of enhanced erosion to the footwall of major normal faults could be observed based on the present data. In this region the wedge exhumed mainly as a response to thrusting and normal faulting only played a minor role, locally modifying the pattern of erosion. Finally no major exhumation events occurred after Miocene, pointing to a minor

  6. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  7. Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2003-01-01

    A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

  8. Thrust-breakthrough of asymmetric anticlines: Observational constraints from surveys in the Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Jadamec, Margarete A.; Wallace, Wesley K.

    2014-05-01

    To gain insights into the processes governing the thrust-truncation of anticlines, we conducted a field study of the thrust-truncated folds in the remote Brooks Range of northern Alaska, where there is a transition in fold style from symmetric detachment folds to thrust-truncated asymmetric folds. In order to document the detailed geometry of the km-scale folds exposed in cliff-forming, largely inaccessible outcrops, a new surveying technique was developed that combines data from a theodolite and laser range finder. The field observations, survey profiles, and cross section reconstructions, indicate that late-stage thrust breakthrough of the anticlines within the mechanically competent Lisburne Group carbonates accommodated continued shortening when other mechanisms became unfeasible, including fold tightening, forelimb rotation, and parasitic folding in the anticline forelimbs. These results provide constraints on the processes that govern the transition from buckle folding to thrust truncation in fold-and-thrust belts worldwide.

  9. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  10. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  11. Thrust and efficiency model for electron-driven magnetic nozzles

    SciTech Connect

    Little, Justin M.; Choueiri, Edgar Y.

    2013-10-15

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is found that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.

  12. Attitude control of a spinning rocket via thrust vectoring

    SciTech Connect

    White, J.E.

    1990-12-19

    Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

  13. Preliminary Assessment of Thrust Augmentation of NEP Based Missions

    NASA Technical Reports Server (NTRS)

    Chew, Gilbert; Pelaccio, Dennis G.; Chiroux, Robert; Pervan, Sherry; Rauwolf, Gerald A.; White, Charles

    2005-01-01

    Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, has conducted a preliminary study to compare options for augmenting the thrust of a conventional nuclear electric propulsion (NEP) system. These options include a novel nuclear propulsion system concept known as Hybrid Indirect Nuclear Propulsion (HINP) and conventional chemical propulsion. The utility and technical feasibility of the HINP concept are assessed, and features and potential of this new in-space propulsion system concept are identified. As part of the study, SAIC developed top-level design tools to model the size and performance of an HINP system, as well as for several chemical propulsion options, including liquid and gelled propellants. A mission trade study was performed to compare a representative HINP system with chemical propulsion options for thrust augmentation of NEP systems for a mission to Saturn's moon Titan. Details pertaining to the approach, features, initial demonstration results for HINP model development, and the mission trade study are presented. Key technology and design issues associated with the HINP concept and future work recommendations are also identified.

  14. Status and tendencies for low to medium thrust propulsion systems

    NASA Astrophysics Data System (ADS)

    Hopmann, Helmut; Pitt, Richard; Schwende, Manfred; Zewen, Helmut

    The previous use of space liquid propulsion systems in the low thrust range (up to approx. 400 N) has been almost entirely devoted to providing the attitude and orbit control of satellites, including apogee injection. The use of hydrazine peroxide gave way to monopropellant hydrazine in the late sixties whilst the advent of bipropellant systems came with the launch of the Symphonie satellite in 1974. In general, these propulsion systems, together with their feed system components, are more or less standardized with only minor changes required in terms of configuration or propellant mass (tank size) for each satellite. The future, however, promises much greater diversification for the low and medium thrust propulsion systems with increasing technical demands on the engines and their associated equipment. Space Station programs, like Columbus with its in-orbit servicing requirement, will require longer life components and increased modularity whilst manned launch vehicles, such as Ariane 5 with Hermes or Space Planes such as Sänger or Hotol, will demand much higher safety and reliability requirements together with maximum reusability.

  15. Computation of optimal low- and medium-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.; Goodson, Troy D.; Hanson, John

    1993-01-01

    This paper presents the formulation of the optimal low- and medium-thrust orbit transfer control problem, numerical methods for solution, and numerical solutions of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and 3D noncoplanar nonaligned elliptic terminal orbits. We set up examples to demonstrate the ability of two indirect methods to solve the resulting two point boundary value problems (TPBVP). The methods demonstrated are the multiple point shooting method as formulated in Oberle's (1987) subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are tradeoffs to using either method. We present numerical solutions of planar transfers in which both the initial orbit exit and final orbit entry points have been optimized. These solutions include two- and three-burn transfers. The methods used show an ability to handle thrust down to at least T/W(o) = O(10 exp -3). They also show similar convergence abilities with or without the oblateness and drag terms. We discuss the issue of maximizing with respect to the final time and provide evidence that implies a local optimum at a maximum final time for a given number of burns.

  16. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2015-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1 to ~10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  17. A robotic platform for studying sea lion thrust production

    NASA Astrophysics Data System (ADS)

    Leftwich, Megan; Patel, Rahi; Kulkarni, Aditya; Friedman, Chen

    California Sea Lions are agile swimmers and, uniquely, use their foreflippers (rather than hind flipper undulation) to generate thrust. Recently, a sea lion flipper from a deceased subject was externally scanned in high detail for fluid dynamics research. The flipper's geometry is used in this work to build an accurate scaled down flipper model (approximately 68% of the full size span). The flipper model is placed in a water flume to obtain lift and drag force measurements. The unique trailing edge features are then examined for their effect on the measured forces by comparing to similar flipper models with a smooth trailing edge, sinusoidal trailing edge, and a saw-tooth trailing edge. Additionally, a robotic flipper is being designed and built, replicating the sea lion foreflipper anatomical structure. The robot is actuated by a set of servo motors and replicates the sea lion flipper clap motion based on previously extracted kinematics. The flipper tip speed is designed to match typical full scale Reynolds numbers for an acceleration from rest maneuver. The model is tested in the water flume as well to obtain the forces and flow structures during the thrust production phase of the flipper motion.

  18. Erosion influence the seismicity of active thrust faults

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.

    2016-04-01

    Assessing seismic hazards remains one of the most challenging scientific issue in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show with a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ˜0.1 to 20 mm/yr, as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ˜0.1 to ˜10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to promote the rupture of deep continental earthquakes up to the surface or to trigger shallow seismicity. We illustrate this last point by identifying seismic events in Taiwan, by the mean of a coupled statistical and mechanical approach, that were induced by intense erosional events.

  19. Experimental performance of cascade thrust reversers at forward velocity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Luidens, R. W.

    1973-01-01

    A series of static and wind tunnel tests were performed on four cowl cascade thrust reverser configurations which had various reversed jet emission patterns applicable to an externally blown flap STOL aircraft. The work was performed using a model fan which was 14.0 cm in diameter and passed a fan mass flow of 2.49 kg/sec at an approximate fan pressure ratio of 1.22 and fan corrected rotational speed of 35,800 rpm. The tests demonstrated that the reingestion of fan flow significantly reduced the reverser efficiency and that the thrust reverser efficiency was improved by reducing the reversed jet azimuthal emmission angle. The reverser efficiency at STOL landing speeds was as high as 0.95; however, configurations with lateral emission were adversely affected by yawing the nacelle at forward velocity. Measurements of the internal static pressure at the stator exit showed significant increases in the local static pressure for configurations with reduced jet emission angles.

  20. Quantitative evaluation of a thrust vector controlled transport at the conceptual design phase

    NASA Astrophysics Data System (ADS)

    Ricketts, Vincent Patrick

    The impetus to innovate, to push the bounds and break the molds of evolutionary design trends, often comes from competition but sometimes requires catalytic political legislature. For this research endeavor, the 'catalyzing legislation' comes in response to the rise in cost of fossil fuels and the request put forth by NASA on aircraft manufacturers to show reduced aircraft fuel consumption of +60% within 30 years. This necessitates that novel technologies be considered to achieve these values of improved performance. One such technology is thrust vector control (TVC). The beneficial characteristic of thrust vector control technology applied to the traditional tail-aft configuration (TAC) commercial transport is its ability to retain the operational advantage of this highly evolved aircraft type like cabin evacuation, ground operation, safety, and certification. This study explores if the TVC transport concept offers improved flight performance due to synergistically reducing the traditional empennage size, overall resulting in reduced weight and drag, and therefore reduced aircraft fuel consumption. In particular, this study explores if the TVC technology in combination with the reduced empennage methodology enables the TAC aircraft to synergistically evolve while complying with current safety and certification regulation. This research utilizes the multi-disciplinary parametric sizing software, AVD Sizing, developed by the Aerospace Vehicle Design (AVD) Laboratory. The sizing software is responsible for visualizing the total system solution space via parametric trades and is capable of determining if the TVC technology can enable the TAC aircraft to synergistically evolve, showing marked improvements in performance and cost. This study indicates that the TVC plus reduced empennage methodology shows marked improvements in performance and cost.