Science.gov

Sample records for achieved classification accuracies

  1. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli.

    PubMed

    Mandelkow, Hendrik; de Zwart, Jacco A; Duyn, Jeff H

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  2. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  3. Evaluating LANDSAT wildland classification accuracies

    NASA Technical Reports Server (NTRS)

    Toll, D. L.

    1980-01-01

    Procedures to evaluate the accuracy of LANDSAT derived wildland cover classifications are described. The evaluation procedures include: (1) implementing a stratified random sample for obtaining unbiased verification data; (2) performing area by area comparisons between verification and LANDSAT data for both heterogeneous and homogeneous fields; (3) providing overall and individual classification accuracies with confidence limits; (4) displaying results within contingency tables for analysis of confusion between classes; and (5) quantifying the amount of information (bits/square kilometer) conveyed in the LANDSAT classification.

  4. Landsat classification accuracy assessment procedures

    USGS Publications Warehouse

    Mead, R. R.; Szajgin, John

    1982-01-01

    A working conference was held in Sioux Falls, South Dakota, 12-14 November, 1980 dealing with Landsat classification Accuracy Assessment Procedures. Thirteen formal presentations were made on three general topics: (1) sampling procedures, (2) statistical analysis techniques, and (3) examples of projects which included accuracy assessment and the associated costs, logistical problems, and value of the accuracy data to the remote sensing specialist and the resource manager. Nearly twenty conference attendees participated in two discussion sessions addressing various issues associated with accuracy assessment. This paper presents an account of the accomplishments of the conference.

  5. Classification Accuracy Increase Using Multisensor Data Fusion

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to

  6. Improving Accuracy of Image Classification Using GIS

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Prasad, T. S.; Bala Manikavelu, P. M.; Vijayan, D.

    The Remote Sensing signal which reaches sensor on-board the satellite is the complex aggregation of signals (in agriculture field for example) from soil (with all its variations such as colour, texture, particle size, clay content, organic and nutrition content, inorganic content, water content etc.), plant (height, architecture, leaf area index, mean canopy inclination etc.), canopy closure status and atmospheric effects, and from this we want to find say, characteristics of vegetation. If sensor on- board the satellite makes measurements in n-bands (n of n*1 dimension) and number of classes in an image are c (f of c*1 dimension), then considering linear mixture modeling the pixel classification problem could be written as n = m* f +, where m is the transformation matrix of (n*c) dimension and therepresents the error vector (noise). The problem is to estimate f by inverting the above equation and the possible solutions for such problem are many. Thus, getting back individual classes from satellite data is an ill-posed inverse problem for which unique solution is not feasible and this puts limit to the obtainable classification accuracy. Maximum Likelihood (ML) is the constraint mostly practiced in solving such a situation which suffers from the handicaps of assumed Gaussian distribution and random nature of pixels (in-fact there is high auto-correlation among the pixels of a specific class and further high auto-correlation among the pixels in sub- classes where the homogeneity would be high among pixels). Due to this, achieving of very high accuracy in the classification of remote sensing images is not a straight proposition. With the availability of the GIS for the area under study (i) a priori probability for different classes could be assigned to ML classifier in more realistic terms and (ii) the purity of training sets for different thematic classes could be better ascertained. To what extent this could improve the accuracy of classification in ML classifier

  7. Assessing Uncertainties in Accuracy of Landuse Classification Using Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Hsiao, L.-H.; Cheng, K.-S.

    2013-05-01

    Multispectral remote sensing images are widely used for landuse/landcover (LULC) classification. Performance of such classification practices is normally evaluated through the confusion matrix which summarizes the producer's and user's accuracies and the overall accuracy. However, the confusion matrix is based on the classification results of a set of multi-class training data. As a result, the classification accuracies are heavily dependent on the representativeness of the training data set and it is imperative for practitioners to assess the uncertainties of LULC classification in order for a full understanding of the classification results. In addition, the Gaussian-based maximum likelihood classifier (GMLC) is widely applied in many practices of LULC classification. The GMLC assumes the classification features jointly form a multivariate normal distribution, whereas as, in reality, many features of individual landcover classes have been found to be non-Gaussian. Direct application of GMLC will certainly affect the classification results. In a pilot study conducted in Taipei and its vicinity, we tackled these two problems by firstly transforming the original training data set to a corresponding data set which forms a multivariate normal distribution before conducting LULC classification using GMLC. We then applied the bootstrap resampling technique to generate a large set of multi-class resampled training data from the multivariate normal training data set. LULC classification was then implemented for each resampled training data set using the GMLC. Finally, the uncertainties of LULC classification accuracies were assessed by evaluating the means and standard deviations of the producer's and user's accuracies of individual LULC classes which were derived from a set of confusion matrices. Results of this study demonstrate that Gaussian-transformation of the original training data achieved better classification accuracies and the bootstrap resampling technique is

  8. Estimating Classification Consistency and Accuracy for Cognitive Diagnostic Assessment

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark J.; Chang, Hua-Hua

    2012-01-01

    This article introduces procedures for the computation and asymptotic statistical inference for classification consistency and accuracy indices specifically designed for cognitive diagnostic assessments. The new classification indices can be used as important indicators of the reliability and validity of classification results produced by…

  9. A Nonparametric Approach to Estimate Classification Accuracy and Consistency

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2014-01-01

    When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…

  10. Nationwide forestry applications program. Analysis of forest classification accuracy

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Mead, R. A.; Oderwald, R. G.; Heinen, J. (Principal Investigator)

    1981-01-01

    The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended.

  11. A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada

    NASA Astrophysics Data System (ADS)

    Champagne, Catherine; McNairn, Heather; Daneshfar, Bahram; Shang, Jiali

    2014-06-01

    Land cover and land use classifications from remote sensing are increasingly becoming institutionalized framework data sets for monitoring environmental change. As such, the need for robust statements of classification accuracy is critical. This paper describes a method to estimate confidence in classification model accuracy using a bootstrap approach. Using this method, it was found that classification accuracy and confidence, while closely related, can be used in complementary ways to provide additional information on map accuracy and define groups of classes and to inform the future reference sampling strategies. Overall classification accuracy increases with an increase in the number of fields surveyed, where the width of classification confidence bounds decreases. Individual class accuracies and confidence were non-linearly related to the number of fields surveyed. Results indicate that some classes can be estimated accurately and confidently with fewer numbers of samples, whereas others require larger reference data sets to achieve satisfactory results. This approach is an improvement over other approaches for estimating class accuracy and confidence as it uses repetitive sampling to produce a more realistic estimate of the range in classification accuracy and confidence that can be obtained with different reference data inputs.

  12. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  13. Use of collateral information to improve LANDSAT classification accuracies

    NASA Technical Reports Server (NTRS)

    Strahler, A. H. (Principal Investigator)

    1981-01-01

    Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.

  14. 100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox

    PubMed Central

    Valverde-Albacete, Francisco J.; Peláez-Moreno, Carmen

    2014-01-01

    The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA), a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT), a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to “cheat” using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers. PMID:24427282

  15. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    PubMed

    Valverde-Albacete, Francisco J; Peláez-Moreno, Carmen

    2014-01-01

    The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA), a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT), a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers. PMID:24427282

  16. A Visual mining based framework for classification accuracy estimation

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal Vijayakumar

    2013-12-01

    Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images. Techniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).

  17. An Evaluation of Item Response Theory Classification Accuracy and Consistency Indices

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Hao, Shiqi

    2012-01-01

    This article introduces two new classification consistency indices that can be used when item response theory (IRT) models have been applied. The new indices are shown to be related to Rudner's classification accuracy index and Guo's classification accuracy index. The Rudner- and Guo-based classification accuracy and consistency indices are…

  18. Impact of spatial resolution on correlation between segmentation evaluation metrics and forest classification accuracy

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Ritlop, Klemen; Äńurić, Nataša.; Čotar, Klemen; Oštir, Krištof

    2015-10-01

    Slovenia is one of the most forested countries in Europe. Its forest management authorities need information about the forest extent and state, as their responsibility lies in forest observation and preservation. Together with appropriate geographic information system mapping methods the remotely sensed data represent essential tool for an effective and sustainable forest management. Despite the large data availability, suitable mapping methods still present big challenge in terms of their speed which is often affected by the huge amount of data. The speed of the classification method could be maximised, if each of the steps in object-based classification was automated. However, automation is hard to achieve, since segmentation requires choosing optimum parameter values for optimal classification results. This paper focuses on the analysis of segmentation and classification performance and their correlation in a range of segmentation parameter values applied in the segmentation step. In order to find out which spatial resolution is still suitable for forest classification, forest classification accuracies obtained by using four images with different spatial resolutions were compared. Results of this study indicate that all high or very high spatial resolutions are suitable for optimal forest segmentation and classification, as long as appropriate scale and merge parameters combinations are used in the object-based classification. If computation interval includes all segmentation parameter combinations, all segmentation-classification correlations are spatial resolution independent and are generally high. If computation interval includes over- or optimal-segmentation parameter combinations, most segmentation-classification correlations are spatial resolution dependent.

  19. Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system.

    PubMed

    Chai, Rifai; Tran, Yvonne; Craig, Ashley; Ling, Sai Ho; Nguyen, Hung T

    2014-01-01

    A system using electroencephalography (EEG) signals could enhance the detection of mental fatigue while driving a vehicle. This paper examines the classification between fatigue and alert states using an autoregressive (AR) model-based power spectral density (PSD) as the features extraction method and fuzzy particle swarm optimization with cross mutated of artificial neural network (FPSOCM-ANN) as the classification method. Using 32-EEG channels, results indicated an improved overall specificity from 76.99% to 82.02%, an improved sensitivity from 74.92 to 78.99% and an improved accuracy from 75.95% to 80.51% when compared to previous studies. The classification using fewer EEG channels, with eleven frontal sites resulted in 77.52% for specificity, 73.78% for sensitivity and 75.65% accuracy being achieved. For ergonomic reasons, the configuration with fewer EEG channels will enhance capacity to monitor fatigue as there is less set-up time required. PMID:25570210

  20. Assessing the accuracy of prediction algorithms for classification: an overview.

    PubMed

    Baldi, P; Brunak, S; Chauvin, Y; Andersen, C A; Nielsen, H

    2000-05-01

    We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, and correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages of each approach. For classification tasks, we derive new learning algorithms for the design of prediction systems by directly optimising the correlation coefficient. We observe and prove several results relating sensitivity and specificity of optimal systems. While the principles are general, we illustrate the applicability on specific problems such as protein secondary structure and signal peptide prediction. PMID:10871264

  1. Accuracy assessment of contextual classification results for vegetation mapping

    NASA Astrophysics Data System (ADS)

    Thoonen, Guy; Hufkens, Koen; Borre, Jeroen Vanden; Spanhove, Toon; Scheunders, Paul

    2012-04-01

    A new procedure for quantitatively assessing the geometric accuracy of thematic maps, obtained from classifying hyperspectral remote sensing data, is presented. More specifically, the methodology is aimed at the comparison between results from any of the currently popular contextual classification strategies. The proposed procedure characterises the shapes of all objects in a classified image by defining an appropriate reference and a new quality measure. The results from the proposed procedure are represented in an intuitive way, by means of an error matrix, analogous to the confusion matrix used in traditional thematic accuracy representation. A suitable application for the methodology is vegetation mapping, where lots of closely related and spatially connected land cover types are to be distinguished. Consequently, the procedure is tested on a heathland vegetation mapping problem, related to Natura 2000 habitat monitoring. Object-based mapping and Markov Random Field classification results are compared, showing that the selected Markov Random Fields approach is more suitable for the fine-scale problem at hand, which is confirmed by the proposed procedure.

  2. Achieving seventh-order amplitude accuracy in leapfrog integrations

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2015-04-01

    The leapfrog time-stepping scheme is commonly used in general circulation models of weather and climate. The Robert-Asselin filter is used in conjunction with it, to damp the computational mode. Although the leapfrog scheme makes no amplitude errors when integrating linear oscillations, the Robert-Asselin filter introduces first-order amplitude errors. The RAW filter, which was recently proposed as an improvement, eliminates the first-order amplitude errors and yields third-order amplitude accuracy. This development has been shown to significantly increase the skill of medium-range weather forecasts. However, it has not previously been shown how to further improve the accuracy by eliminating the third- and higher-order amplitude errors. This presentation will show that leapfrogging over a suitably weighted blend of the filtered and unfiltered tendencies eliminates the third-order amplitude errors and yields fifth-order amplitude accuracy. It will also show that the use of a more discriminating (1,-4,6,-4,1) filter instead of a (1,-2,1) filter eliminates the fifth-order amplitude errors and yields seventh-order amplitude accuracy. Other related schemes are obtained by varying the values of the filter parameters, and it is found that several combinations offer an appealing compromise of stability and accuracy. The proposed new schemes are shown to yield substantial forecast improvements in a medium-complexity atmospheric general circulation model. They appear to be attractive alternatives to the filtered leapfrog schemes currently used in many weather and climate models. Reference Williams PD (2013) Achieving seventh-order amplitude accuracy in leapfrog integrations. Monthly Weather Review 141(9), pp 3037-3051. DOI: 10.1175/MWR-D-12-00303.1

  3. A Serial Risk Score Approach to Disease Classification that Accounts for Accuracy and Cost

    PubMed Central

    Huynh, Dat; Laeyendecker, Oliver; Brookmeyer, Ron

    2016-01-01

    Summary The performance of diagnostic tests for disease classification is often measured by accuracy (e.g. sensitivity or specificity); however, costs of the diagnostic test are a concern as well. Combinations of multiple diagnostic tests may improve accuracy, but incur additional costs. Here we consider serial testing approaches that maintain accuracy while controlling costs of the diagnostic tests. We present a serial risk score classification approach. The basic idea is to sequentially test with additional diagnostic tests just until persons are classified. In this way, it is not necessary to test all persons with all tests. The methods are studied in simulations and compared with logistic regression. We applied the methods to data from HIV cohort studies to identify HIV infected individuals who are recently infected (< 1 year) by testing with assays for multiple biomarkers. We find that the serial risk score classification approach can maintain accuracy while achieving a reduction in cost compared to testing all individuals with all assays. PMID:25156309

  4. Attribute-Level and Pattern-Level Classification Consistency and Accuracy Indices for Cognitive Diagnostic Assessment

    ERIC Educational Resources Information Center

    Wang, Wenyi; Song, Lihong; Chen, Ping; Meng, Yaru; Ding, Shuliang

    2015-01-01

    Classification consistency and accuracy are viewed as important indicators for evaluating the reliability and validity of classification results in cognitive diagnostic assessment (CDA). Pattern-level classification consistency and accuracy indices were introduced by Cui, Gierl, and Chang. However, the indices at the attribute level have not yet…

  5. Classification accuracy across multiple tests following item method directed forgetting.

    PubMed

    Goernert, Phillip N; Widner, Robert L; Otani, Hajime

    2007-09-01

    We investigated recall of line-drawing pictures paired at study with an instruction either to remember (TBR items) or to forget (TBF items). Across three 7-minute tests, net recall (items reported independent of accuracy in instructional designation) and correctly classified recall (recall conditional on correct instructional designation) showed directed forgetting. That is, for both measures, recall of TBR items always exceeded recall of TBF items. Net recall for both item types increased across tests at comparable levels showing hypermnesia. However, across tests, correct classification of both item types decreased at comparable levels. Collectively, hypermnesia as measured by net recall is possible for items from multiple sets, but at the cost of accurate source information. PMID:17676551

  6. Strategy to attain high spatial accuracy in Forest Cover Classification

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    Forest cover and its type have primary role in the processes associated with land and global change Not only the area statistics for the different type of forest covers but also the correctness of their spatial distribution matching of classified output with GIS overlay are important for process studies As maximum likelihood ML is widely practiced classification algorithm for extracting thematic information from satellite images critical evaluation was undertaken using IRS LISS-III image of Antilova tropical moist deciduous forest bounded by 17 r 50 to 17 r 56 N in latitude and 81 r 45 to 81 r 54 E in longitude for which 100 ground information in the from of GIS overlay was available GIS overlay has 9 thematic classes i e 27 13 dense DF 25 60 Semi-evergreen SE 29 38 mixed MF 0 25 bamboo BA 5 70 teak TK forests 5 88 grassland GL 4 83 podu blank PO 1 21 Settlements SET and water 0 026 WA ML classifier in general starts with equal a priori probability for all the classes method a Availability of information on cover under each thematic class enables assigning of a priori probability to each thematic class method b Method b always gave better results as compared to method a With the goal to improve classification accuracy CA the GL and MF classes that had high standard deviation of 10 29 and 11 29 in NIR band were divided into subclasses Inclusion of sub-classes in GR improved the area statistics and spatial

  7. IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    EPA Science Inventory

    Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
    Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...

  8. Growth in Mathematics Achievement: Analysis with Classification and Regression Trees

    ERIC Educational Resources Information Center

    Ma, Xin

    2005-01-01

    A recently developed statistical technique, often referred to as classification and regression trees (CART), holds great potential for researchers to discover how student-level (and school-level) characteristics interactively affect growth in mathematics achievement. CART is a host of advanced statistical methods that statistically cluster…

  9. Evaluation criteria for software classification inventories, accuracies, and maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.

  10. Classification Consistency and Accuracy for Complex Assessments under the Compound Multinomial Model

    ERIC Educational Resources Information Center

    Lee, Won-Chan; Brennan, Robert L.; Wan, Lei

    2009-01-01

    For a test that consists of dichotomously scored items, several approaches have been reported in the literature for estimating classification consistency and accuracy indices based on a single administration of a test. Classification consistency and accuracy have not been studied much, however, for "complex" assessments--for example, those that…

  11. Sampling issues affecting accuracy of likelihood-based classification using genetical data

    USGS Publications Warehouse

    Guinand, B.; Scribner, K.T.; Topchy, A.; Page, K.S.; Punch, W.; Burnham-Curtis, M. K.

    2004-01-01

    We demonstrate the effectiveness of a genetic algorithm for discovering multi-locus combinations that provide accurate individual assignment decisions and estimates of mixture composition based on likelihood classification. Using simulated data representing different levels of inter-population differentiation (Fst ~ 0.01 and 0.10), genetic diversities (four or eight alleles per locus), and population sizes (20, 40, 100 individuals in baseline populations), we show that subsets of loci can be identified that provide comparable levels of accuracy in classification decisions relative to entire multi-locus data sets, where 5, 10, or 20 loci were considered. Microsatellite data sets from hatchery strains of lake trout, Salvelinus namaycush, representing a comparable range of inter-population levels of differentiation in allele frequencies confirmed simulation results. For both simulated and empirical data sets, assignment accuracy was achieved using fewer loci (e.g., three or four loci out of eight for empirical lake trout studies). Simulation results were used to investigate properties of the 'leave-one-out' (L1O) method for estimating assignment error rates. Accuracy of population assignments based on L1O methods should be viewed with caution under certain conditions, particularly when baseline population sample sizes are low (<50).

  12. The Effects of Various Item Selection Methods on the Classification Accuracy and Classification Consistency of Criterion-Referenced Instruments.

    ERIC Educational Resources Information Center

    Smith, Douglas U.

    This study examined the effects of certain item selection methods on the classification accuracy and classification consistency of criterion-referenced instruments. Three item response data sets, representing varying situations of instructional effectiveness, were simulated. Five methods of item selection were then applied to each data set for the…

  13. ASSESSMENT OF LANDSCAPE CHARACTERISTICS ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    EPA Science Inventory

    Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of misclassifying pixels during thematic image classification. However, there has been a lack of empirical evidence, to support these hypotheses. This...

  14. Improving forest cover classification accuracy from Landsat by incorporating topographic information

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Logan, T. L.; Bryant, N. A.

    1978-01-01

    The paper shows that accuracies of computer classification of species-specific forest cover types from Landsat imagery can be improved by 27% or more through the incorporation of topographic information from digital terrain tapes registered to multidate Landsat imagery. The topographic information improves classification accuracies because many common forest tree species have preferred elevation ranges and slope aspects. These preferences allow the separation of forest cover types which have similar spectral signatures but different species compositions. It is noted that the development of a classification system which uses prior probabilities and sets of prior probabilities conditioned by one or two external variables represents a significant increase in classification power.

  15. Achieving Seventh-Order Amplitude Accuracy in Leapfrog Integrations

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The leapfrog time-stepping scheme is commonly used in general circulation models of the atmosphere and ocean. The Robert-Asselin filter is used in conjunction with it, to damp the computational mode. Although the leapfrog scheme makes no amplitude errors when integrating linear oscillations, the Robert-Asselin filter introduces first-order amplitude errors. The RAW filter, which was recently proposed as an improvement, eliminates the first-order amplitude errors and yields third-order amplitude accuracy. This development has been shown to significantly increase the skill of medium-range weather forecasts. However, it has not previously been shown how to further improve the accuracy by eliminating the third- and higher-order amplitude errors. This presentation will show that leapfrogging over a suitably weighted blend of the filtered and unfiltered tendencies eliminates the third-order amplitude errors and yields fifth-order amplitude accuracy. It will also show that the use of a more discriminating (1, -4, 6, -4, 1) filter instead of a (1, -2, 1) filter eliminates the fifth-order amplitude errors and yields seventh-order amplitude accuracy. Other related schemes are obtained by varying the values of the filter parameters, and it is found that several combinations offer an appealing compromise of stability and accuracy. The proposed new schemes are shown to yield substantial forecast improvements in a medium-complexity atmospheric general circulation model. They appear to be attractive alternatives to the filtered leapfrog schemes currently used in many weather and climate models.

  16. Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Amitai, Eyal; Wolff, David B.

    1995-01-01

    Application of the window probability matching method to radar and rain gauge data that have been objectively classified into different rain types resulted in distinctly different Z(sub e)-R relationships for the various classifications. These classification parameters, in addition to the range from the radar, are (a) the horizontal radial reflectivity gradients (dB/km); (b) the cloud depth, as scaled by the effective efficiency; (c) the brightband fraction within the radar field window; and (d) the height of the freezing level. Combining physical parameters to identify the type of precipitation and statistical relations most appropriate to the precipitation types results in considerable improvement of both point and areal rainfall measurements. A limiting factor in the assessment of the improved accuracy is the inherent variance between the true rain intensity at the radar measured volume and the rain intensity at the mouth of the rain guage. Therefore, a very dense rain gauge network is required to validate most of the suggested realized improvement. A rather small sample size is required to achieve a stable Z(sub e)-R relationship (standard deviation of 15% of R for a given Z(sub e)) -- about 200 mm of rainfall accumulated in all guages combined for each classification.

  17. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants

    PubMed Central

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection. PMID:27190509

  18. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    PubMed

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection. PMID:27190509

  19. Comparison of wheat classification accuracy using different classifiers of the image-100 system

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.

    1981-01-01

    Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.

  20. Does Maximizing Information at the Cut Score Always Maximize Classification Accuracy and Consistency?

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Babcock, Ben

    2016-01-01

    A common suggestion made in the psychometric literature for fixed-length classification tests is that one should design tests so that they have maximum information at the cut score. Designing tests in this way is believed to maximize the classification accuracy and consistency of the assessment. This article uses simulated examples to illustrate…

  1. Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.

    2015-01-01

    There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…

  2. Integration of classification methods for improvement of land-cover map accuracy

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Hua; Skidmore, A. K.; Van Oosten, H.

    Classifiers, which are used to recognize patterns in remotely sensing images, have complementary capabilities. This study tested whether integrating the results from individual classifiers improves classification accuracy. Two integrated approaches were undertaken. One approach used a consensus builder (CSB) to adjust classification output in the case of disagreement in classification between maximum likelihood classifier (MLC), expert system classifier (ESC) and neural network classifier (NNC). If the output classes for each individual pixel differed, the producer accuracies for each class were compared and the class with the highest producer accuracy was assigned to the pixel. The consensus builder approach resulted in a classification with a slightly lower accuracy (72%) when compared with the neural network classifier (74%), but it did significantly better than the maximum likelihood (62%) and expert system (59%) classifiers. The second approach integrated a rule-based expert system classifier and a neural network classifier. The output of the expert system classifier was used as one additional new input layer of the neural network classifier. A postprocessing using the producer accuracies and some additional expert rules was applied to improve the output of the integrated classifier. This is a relatively new approach in the field of image processing. This second approach produced the highest overall accuracy (80%). Thus, incorporating correct, complete and relevant expert knowledge in a neural network classifier leads to higher classification accuracy.

  3. A coefficient of agreement as a measure of thematic classification accuracy.

    USGS Publications Warehouse

    Rosenfield, G.H.; Fitzpatrick-Lins, K.

    1986-01-01

    The classification error matrix typically contains tabulated results of accuracy evaluation for a thematic classification, such as a land-use and land-cover map. Diagonal elements of the matrix represent counts correct. The usual designation of classification accuracy has been total percent correct. Nondiagonal elements of the matrix have usually been neglected. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each interpreted category. These coefficients utilize all cell values in the matrix.-from Authors

  4. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  5. Effect of Pansharpened Image on Some of Pixel Based and Object Based Classification Accuracy

    NASA Astrophysics Data System (ADS)

    Karakus, P.; Karabork, H.

    2016-06-01

    Classification is the most important method to determine type of crop contained in a region for agricultural planning. There are two types of the classification. First is pixel based and the other is object based classification method. While pixel based classification methods are based on the information in each pixel, object based classification method is based on objects or image objects that formed by the combination of information from a set of similar pixels. Multispectral image contains a higher degree of spectral resolution than a panchromatic image. Panchromatic image have a higher spatial resolution than a multispectral image. Pan sharpening is a process of merging high spatial resolution panchromatic and high spectral resolution multispectral imagery to create a single high resolution color image. The aim of the study was to compare the potential classification accuracy provided by pan sharpened image. In this study, SPOT 5 image was used dated April 2013. 5m panchromatic image and 10m multispectral image are pan sharpened. Four different classification methods were investigated: maximum likelihood, decision tree, support vector machine at the pixel level and object based classification methods. SPOT 5 pan sharpened image was used to classification sun flowers and corn in a study site located at Kadirli region on Osmaniye in Turkey. The effects of pan sharpened image on classification results were also examined. Accuracy assessment showed that the object based classification resulted in the better overall accuracy values than the others. The results that indicate that these classification methods can be used for identifying sun flower and corn and estimating crop areas.

  6. Seasonal variation of land cover classification accuracy of Landsat 8 images in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, J.; Heiskanen, J.; Aynekulu, E.; Pellikka, P. K. E.

    2015-04-01

    In the seasonal tropics, vegetation shows large reflectance variation because of phenology, which complicates land cover change monitoring. Ideally, multi-temporal images for change monitoring should be from the same season, but availability of cloud-free images is limited in wet season in comparison to dry season. Our aim was to investigate how land cover classification accuracy depends on the season in southern Burkina Faso by analyzing 14 Landsat 8 OLI images from April 2013 to April 2014. Because all the images were acquired within one year, we assumed that most of the observed variation between the images was due to phenology. All the images were cloud masked and atmospherically corrected. Field data was collected from 160 field plots located within a 10 km x 10 km study area between December 2013 and February 2014. The plots were classified to closed forest, open forest and cropland, and used as training and validation data. Random forest classifier was employed for classifications. According to the results, there is a tendency for higher classification accuracy towards the dry season. The highest classification accuracy was provided by an image from December, which corresponds to the dry season and minimum NDVI period. In contrast, an image from October, which corresponds to the wet season and maximum NDVI period provided the lowest accuracy. Furthermore, the multi-temporal classification based on dry and wet season images had higher accuracy than single image classifications, but the improvement was small because seasonal changes affect similarly to the different land cover classes.

  7. Is accuracy of serum free light chain measurement achievable?

    PubMed

    Jacobs, Joannes F M; Tate, Jillian R; Merlini, Giampaolo

    2016-06-01

    The serum free light chain (FLC) assay has proven to be an important complementary test in the management of patients with monoclonal gammopathies. The serum FLC assay has value for patients with plasma cell disorders in the context of screening and diagnosis, prognostic stratification, and quantitative monitoring. Nonetheless, serum FLC measurements have analytical limitations which give rise to differences in FLC reporting depending on which FLC assay and analytical platform is used. As the FLC measurements are incorporated in the International Myeloma Working Group guidelines for the evaluation and management of plasma cell dyscrasias, this may directly affect clinical decisions. As new certified methods for serum FLC assays emerge, the need to harmonise patient FLC results becomes increasingly important. In this opinion paper we provide an overview of the current lack of accuracy and harmonisation in serum FLC measurements. The clinical consequence of non-harmonized FLC measurements is that an individual patient may or may not meet certain diagnostic, prognostic, or response criteria, depending on which FLC assay and platform is used. We further discuss whether standardisation of serum FLC measurements is feasible and provide an overview of the steps needed to be taken towards harmonisation of FLC measurements. PMID:26641970

  8. Impacts of patch size and land-cover heterogeneity on thematic image classification accuracy

    USGS Publications Warehouse

    Smith, Jonathan H.; Wickham, James D.; Stehman, Stephen V.; Yang, Limin

    2002-01-01

    Landscape chamcteristics such as small patch size and landcover heterogeneity have been hypothesized to increase the likelihood of mis-classifying pixels during thematic image classification. However, there has been a lack of empirical evidence to support these hypotheses. This study utilizes data gathered as part of the accuracy assessment of the 1992 National Land Cover Data (NLCD) set to identify and quantify the impacts of land-cover heterogeneity and patch size on classification accuracy Logistic regression is employed to assess the impacts of these variables, as well as the impact of land-cover class information. The results reveal that accuracy decreases as landcover heterogeneity increases and as patch size decreases. These landscape variables remain significant factors in explaining classification accuracy even when adjusted for their confounding association with land-cover class information.

  9. Misregistration's effects on classification and proportion estimation accuracy

    NASA Technical Reports Server (NTRS)

    Juday, R. D.; Hall, F.

    1982-01-01

    The estimates of crop type and acreage are undertaken in the AgRISTARS program by registering multiple date acquisitions of small subareas of LANDSAT scenes (termed segments), and applying multispectral analysis to them. An important contribution to errors in classification and acreage estimates is misregistration between multiple acquisitions. The formula used to express this relationship is given and the operations applied are so shown in diagrams. The taking of a LANDSAT feature vector and the derivation of the brightness and greeness are illustrated. It is shown that for any given sensor IFOV geometry, typical populations of fields can be derived and histograms can be plotted of the number of fields against field size according to ground truth. As a function of the resolution element, the IFOV of the sensor can draw the proportion of pure pixels in a given crop. Because the thematic mapper has a smaller resolution, the proportion of pixels that are pure in any given area will be larger.

  10. The effect of spatial, spectral and radiometric factors on classification accuracy using thematic mapper data

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.

    1984-01-01

    An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.

  11. Evaluation of the contribution of LiDAR data and postclassification procedures to object-based classification accuracy

    NASA Astrophysics Data System (ADS)

    Styers, Diane M.; Moskal, L. Monika; Richardson, Jeffrey J.; Halabisky, Meghan A.

    2014-01-01

    Object-based image analysis (OBIA) is becoming an increasingly common method for producing land use/land cover (LULC) classifications in urban areas. In order to produce the most accurate LULC map, LiDAR data and postclassification procedures are often employed, but their relative contributions to accuracy are unclear. We examined the contribution of LiDAR data and postclassification procedures to increase classification accuracies over using imagery alone and assessed sources of error along an ecologically complex urban-to-rural gradient in Olympia, Washington. Overall classification accuracy and user's and producer's accuracies for individual classes were evaluated. The addition of LiDAR data to the OBIA classification resulted in an 8.34% increase in overall accuracy, while manual postclassification to the imagery+LiDAR classification improved accuracy only an additional 1%. Sources of error in this classification were largely due to edge effects, from which multiple different types of errors result.

  12. Assessing the accuracy of Landsat Thematic Mapper classification using double sampling

    USGS Publications Warehouse

    Kalkhan, M.A.; Reich, R.M.; Stohlgren, T.J.

    1998-01-01

    Double sampling was used to provide a cost efficient estimate of the accuracy of a Landsat Thematic Mapper (TM) classification map of a scene located in the Rocky Moutnain National Park, Colorado. In the first phase, 200 sample points were randomly selected to assess the accuracy between Landsat TM data and aerial photography. The overall accuracy and Kappa statistic were 49.5% and 32.5%, respectively. In the second phase, 25 sample points identified in the first phase were selected using stratified random sampling and located in the field. This information was used to correct for misclassification errors associated with the first phase samples. The overall accuracy and Kappa statistic increased to 59.6% and 45.6%, respectively.Double sampling was used to provide a cost efficient estimate of the accuracy of a Landsat Thematic Mapper (TM) classification map of a scene located in the Rocky Mountain National Park, Colorado. In the first phase, 200 sample points were randomly selected to assess the accuracy between Landsat TM data and aerial photography. The overall accuracy and Kappa statistic were 49.5 per cent and 32.5 per cent, respectively. In the second phase, 25 sample points identified in the first phase were selected using stratified random sampling and located in the field. This information was used to correct for misclassification errors associated with the first phase samples. The overall accuracy and Kappa statistic increased to 59.6 per cent and 45.6 per cent, respectively.

  13. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C., Jr.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, G.G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  14. The Potential Impact of Not Being Able to Create Parallel Tests on Expected Classification Accuracy

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2011-01-01

    In many practical testing situations, alternate test forms from the same testing program are not strictly parallel to each other and instead the test forms exhibit small psychometric differences. This article investigates the potential practical impact that these small psychometric differences can have on expected classification accuracy. Ten…

  15. Classification Accuracy of Nonword Repetition when Used with Preschool-Age Spanish-Speaking Children

    ERIC Educational Resources Information Center

    Guiberson, Mark; Rodriguez, Barbara L.

    2013-01-01

    Purpose: The purpose of the present study was to (a) describe and compare the nonword repetition (NWR) performance of preschool-age Spanish-speaking children (3- to 5-year-olds) with and without language impairment (LI) across 2 scoring approaches and (b) to contrast the classification accuracy of a Spanish NWR task when item-level and percentage…

  16. Classification Consistency and Accuracy for Complex Assessments Using Item Response Theory

    ERIC Educational Resources Information Center

    Lee, Won-Chan

    2010-01-01

    In this article, procedures are described for estimating single-administration classification consistency and accuracy indices for complex assessments using item response theory (IRT). This IRT approach was applied to real test data comprising dichotomous and polytomous items. Several different IRT model combinations were considered. Comparisons…

  17. Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2013-01-01

    Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…

  18. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    ERIC Educational Resources Information Center

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  19. Dynamic Assessment of School-Age Children's Narrative Ability: An Experimental Investigation of Classification Accuracy

    ERIC Educational Resources Information Center

    Pena, Elizabeth D.; Gillam, Ronald B.; Malek, Melynn; Ruiz-Felter, Roxanna; Resendiz, Maria; Fiestas, Christine; Sabel, Tracy

    2006-01-01

    Two experiments examined reliability and classification accuracy of a narration-based dynamic assessment task. Purpose: The first experiment evaluated whether parallel results were obtained from stories created in response to 2 different wordless picture books. If so, the tasks and measures would be appropriate for assessing pretest and posttest…

  20. Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Hong, Yuan; Deng, Weiling

    2010-01-01

    To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…

  1. Classification Accuracy of Brief Parent Report Measures of Language Development in Spanish-Speaking Toddlers

    ERIC Educational Resources Information Center

    Guiberson, Mark; Rodriguez, Barbara L.; Dale, Philip S.

    2011-01-01

    Purpose: The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Method: Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as…

  2. Examining the Classification Accuracy of a Vocabulary Screening Measure with Preschool Children

    ERIC Educational Resources Information Center

    Marcotte, Amanda M.; Clemens, Nathan H.; Parker, Christopher; Whitcomb, Sara A.

    2016-01-01

    This study investigated the classification accuracy of the "Dynamic Indicators of Vocabulary Skills" (DIVS) as a preschool vocabulary screening measure. With a sample of 240 preschoolers, fall and winter DIVS scores were used to predict year-end vocabulary risk using the 25th percentile on the "Peabody Picture Vocabulary Test--Third…

  3. Computer-based classification accuracy due to the spatial resolution using per-point versus per-field classification techniques. [for photomapping

    NASA Technical Reports Server (NTRS)

    Latty, R. S.; Hoffer, R. M.

    1981-01-01

    Data sets simulating three different spatial resolutions (SR's) are computed from data with a 15-m nominal SR that were obtained with NASA's Thermatic Mapper Simulator from an altitude of about 6 km. The classification accuracies (CA's) achieved with the data of each of the four different SR's using a per-point Gaussian maximum likelihood classifier (GMLC) are intercompared. The CA's obtained using simulated 30-m SR data with the per-point GMLC are compared with the CA's achieved with a per-field classifier. It is found that: (1) the use of successively higher SR data resulted in lower overall CA's for classifications with the per-point GMLC, especially in cover classes associated with relatively higher spectral variability across adjacent pixels; (2) higher CA's were achieved using the per-field classifier with 30-m SR data than were achieved with the per-point GMLC; and (3) the largest increases in CA's were achieved with the per-field classifier in cover classes associated with relatively high levels of spectral variability across adjacent pixels.

  4. Predictive Utility and Classification Accuracy of Oral Reading Fluency and the Measures of Academic Progress for the Wisconsin Knowledge and Concepts Exam

    ERIC Educational Resources Information Center

    Ball, Carrie R.; O'Connor, Edward

    2016-01-01

    This study examined the predictive validity and classification accuracy of two commonly used universal screening measures relative to a statewide achievement test. Results indicated that second-grade performance on oral reading fluency and the Measures of Academic Progress (MAP), together with special education status, explained 68% of the…

  5. Effects of autocorrelation upon LANDSAT classification accuracy. [Richmond, Virginia and Denver, Colorado

    NASA Technical Reports Server (NTRS)

    Craig, R. G. (Principal Investigator)

    1983-01-01

    Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.

  6. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  7. Assessment of Classification Accuracies of SENTINEL-2 and LANDSAT-8 Data for Land Cover / Use Mapping

    NASA Astrophysics Data System (ADS)

    Hale Topaloğlu, Raziye; Sertel, Elif; Musaoğlu, Nebiye

    2016-06-01

    This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport- industrial units and barren land- mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/ use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.

  8. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Löw, F.; Michel, U.; Dech, S.; Conrad, C.

    2013-11-01

    Crop mapping is one major component of agricultural resource monitoring using remote sensing. Yield or water demand modeling requires that both, the total surface that is cultivated and the accurate distribution of crops, respectively is known. Map quality is crucial and influences the model outputs. Although the use of multi-spectral time series data in crop mapping has been acknowledged, the potentially high dimensionality of the input data remains an issue. In this study Support Vector Machines (SVM) are used for crop classification in irrigated landscapes at the object-level. Input to the classifications is 71 multi-seasonal spectral and geostatistical features computed from RapidEye time series. The random forest (RF) feature importance score was used to select a subset of features that achieved optimal accuracies. The relationship between the hard result accuracy and the soft output from the SVM is investigated by employing two measures of uncertainty, the maximum a posteriori probability and the alpha quadratic entropy. Specifically the effect of feature selection on map uncertainty is investigated by looking at the soft outputs of the SVM, in addition to classical accuracy metrics. Overall the SVMs applied to the reduced feature subspaces that were composed of the most informative multi-seasonal features led to a clear increase in classification accuracy up to 4.3%, and to a significant decline in thematic uncertainty. SVM was shown to be affected by feature space size and could benefit from RF-based feature selection. Uncertainty measures from SVM are an informative source of information on the spatial distribution of error in the crop maps.

  9. Agricultural case studies of classification accuracy, spectral resolution, and model over-fitting.

    PubMed

    Nansen, Christian; Geremias, Leandro Delalibera; Xue, Yingen; Huang, Fangneng; Parra, Jose Roberto

    2013-11-01

    This paper describes the relationship between spectral resolution and classification accuracy in analyses of hyperspectral imaging data acquired from crop leaves. The main scope is to discuss and reduce the risk of model over-fitting. Over-fitting of a classification model occurs when too many and/or irrelevant model terms are included (i.e., a large number of spectral bands), and it may lead to low robustness/repeatability when the classification model is applied to independent validation data. We outline a simple way to quantify the level of model over-fitting by comparing the observed classification accuracies with those obtained from explanatory random data. Hyperspectral imaging data were acquired from two crop-insect pest systems: (1) potato psyllid (Bactericera cockerelli) infestations of individual bell pepper plants (Capsicum annuum) with the acquisition of hyperspectral imaging data under controlled-light conditions (data set 1), and (2) sugarcane borer (Diatraea saccharalis) infestations of individual maize plants (Zea mays) with the acquisition of hyperspectral imaging data from the same plants under two markedly different image-acquisition conditions (data sets 2a and b). For each data set, reflectance data were analyzed based on seven spectral resolutions by dividing 160 spectral bands from 405 to 907 nm into 4, 16, 32, 40, 53, 80, or 160 bands. In the two data sets, similar classification results were obtained with spectral resolutions ranging from 3.1 to 12.6 nm. Thus, the size of the initial input data could be reduced fourfold with only a negligible loss of classification accuracy. In the analysis of data set 1, several validation approaches all demonstrated consistently that insect-induced stress could be accurately detected and that therefore there was little indication of model over-fitting. In the analyses of data set 2, inconsistent validation results were obtained and the observed classification accuracy (81.06%) was only a few percentage

  10. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection

    NASA Astrophysics Data System (ADS)

    Erener, A.

    2013-04-01

    Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all

  11. Improving the accuracy of gene expression profile classification with Lorenz curves and Gini ratios.

    PubMed

    Tran, Quoc-Nam

    2011-01-01

    Microarrays are a new technology with great potential to provide accurate medical diagnostics, help to find the right treatment for many diseases such as cancers, and provide a detailed genome-wide molecular portrait of cellular states. In this chapter, we show how Lorenz Curves and Gini Ratios can be modified to improve the accuracy of gene expression profile classification. Experimental results with different classification algorithms using additional techniques and strategies for improving the accuracy such as the principal component analysis, the correlation-based feature subset selection, and the consistency subset evaluation technique for the task of classifying lung adenocarcinomas from gene expression show that our method find more optimal genes than SAM. PMID:21431549

  12. Improved reticle requalification accuracy and efficiency via simulation-powered automated defect classification

    NASA Astrophysics Data System (ADS)

    Paracha, Shazad; Eynon, Benjamin; Noyes, Ben F.; Nhiev, Anthony; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan; Ham, Young Mog; Uzzel, Doug; Green, Michael; MacDonald, Susan; Morgan, John

    2014-04-01

    Advanced IC fabs must inspect critical reticles on a frequent basis to ensure high wafer yields. These necessary requalification inspections have traditionally carried high risk and expense. Manually reviewing sometimes hundreds of potentially yield-limiting detections is a very high-risk activity due to the likelihood of human error; the worst of which is the accidental passing of a real, yield-limiting defect. Painfully high cost is incurred as a result, but high cost is also realized on a daily basis while reticles are being manually classified on inspection tools since these tools often remain in a non-productive state during classification. An automatic defect analysis system (ADAS) has been implemented at a 20nm node wafer fab to automate reticle defect classification by simulating each defect's printability under the intended illumination conditions. In this paper, we have studied and present results showing the positive impact that an automated reticle defect classification system has on the reticle requalification process; specifically to defect classification speed and accuracy. To verify accuracy, detected defects of interest were analyzed with lithographic simulation software and compared to the results of both AIMS™ optical simulation and to actual wafer prints.

  13. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions

    PubMed Central

    Noirhomme, Quentin; Lesenfants, Damien; Gomez, Francisco; Soddu, Andrea; Schrouff, Jessica; Garraux, Gaëtan; Luxen, André; Phillips, Christophe; Laureys, Steven

    2014-01-01

    Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain–computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation. PMID:24936420

  14. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions.

    PubMed

    Noirhomme, Quentin; Lesenfants, Damien; Gomez, Francisco; Soddu, Andrea; Schrouff, Jessica; Garraux, Gaëtan; Luxen, André; Phillips, Christophe; Laureys, Steven

    2014-01-01

    Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain-computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation. PMID:24936420

  15. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views?

    NASA Astrophysics Data System (ADS)

    Thwaites, David

    2013-06-01

    In this review of the accuracy required and achievable in radiotherapy dosimetry, older approaches and evidence-based estimates for 3DCRT have been reprised, summarising and drawing together the author's earlier evaluations where still relevant. Available evidence for IMRT uncertainties has been reviewed, selecting information from tolerances, QA, verification measurements, in vivo dosimetry and dose delivery audits, to consider whether achievable uncertainties increase or decrease for current advanced treatments and practice. Overall there is some evidence that they tend to increase, but that similar levels should be achievable. Thus it is concluded that those earlier estimates of achievable dosimetric accuracy are still applicable, despite the changes and advances in technology and techniques. The one exception is where there is significant lung involvement, where it is likely that uncertainties have now improved due to widespread use of more accurate heterogeneity models. Geometric uncertainties have improved with the wide availability of IGRT.

  16. The Influence of Overt Practice, Achievement Level, and Explanatory Style on Calibration Accuracy and Performance

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; O'Shea, Patrick; Allen, Dwight

    2005-01-01

    The authors measured the influence of overt calibration practice, achievement level, and explanatory style on calibration accuracy and exam performance. Students (N = 356) were randomly assigned to either an overt practice or no-practice condition. Students in the overt practice condition made predictions and postdictions about their performance…

  17. Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines

    NASA Astrophysics Data System (ADS)

    Sahadevan, Anand S.; Routray, Aurobinda; Das, Bhabani S.; Ahmad, Saquib

    2016-04-01

    Bilateral filter (BF) theory is applied to integrate spatial contextual information into the spectral domain for improving the accuracy of the support vector machine (SVM) classifier. The proposed classification framework is a two-stage process. First, an edge-preserved smoothing is carried out on a hyperspectral image (HSI). Then, the SVM multiclass classifier is applied on the smoothed HSI. One of the advantages of the BF-based implementation is that it considers the spatial as well as spectral closeness for smoothing the HSI. Therefore, the proposed method provides better smoothing in the homogeneous region and preserves the image details, which in turn improves the separability between the classes. The performance of the proposed method is tested using benchmark HSIs obtained from the airborne-visible-infrared-imaging-spectrometer (AVIRIS) and the reflective-optics-system-imaging-spectrometer (ROSIS) sensors. Experimental results demonstrate the effectiveness of the edge-preserved filtering in the classification of the HSI. Average accuracies (with 10% training samples) of the proposed classification framework are 99.04%, 98.11%, and 96.42% for AVIRIS-Salinas, ROSIS-Pavia University, and AVIRIS-Indian Pines images, respectively. Since the proposed method follows a combination of BF and the SVM formulations, it will be quite simple and practical to implement in real applications.

  18. The Accuracy of Body Mass Index and Gallagher’s Classification in Detecting Obesity among Iranians

    PubMed Central

    Jahanlou, Alireza Shahab; Kouzekanani, Kamiar

    2016-01-01

    Background: The study was conducted to examine the comparability of the BMI and Gallagher’s classification in diagnosing obesity based on the cutoff points of the gold standards and to estimate suitable cutoff points for detecting obesity among Iranians. Methods: The cross-sectional study was comparative in nature. The sample consisted of 20,163 adults. The bioelectrical impedance analysis (BIA) was used to measure the variables of interest. Sensitivity, specificity, positive predictive power (PPV), and negative predictive power (NPV) were used to evaluate the comparability of the two classification methods in detecting obesity. Results: The BMI wrongly classified 29% of the obese persons as overweight. In both classifications, as age increased, the accuracy of detecting obesity decreased. The Gallagher’s classification is better than MBI in detecting obesity in men with the exception of those older than 59 years. In females, the BMI was better in determining sensitivity. In both classifications, either female or male, an increase in age was associated with a decrease in sensitivity and NPV with the exception of the BMI for the 18 year olds. Gallagher can correctly classify males and females who are less than 40 and 19 years old, respectively. Conclusion: Gallagher’s classification is recommended for non-obese in both sexes and in obese males younger than 40 years old. The BMI is recommended for obese females. The suitable cutoff points for the BMI to detect obesity are 27.70 kg/m2 for females and males, 27.70 kg/m2 for females, and 27.30 kg/m2 for males. PMID:27365550

  19. Bloodstain pattern classification: Accuracy, effect of contextual information and the role of analyst characteristics.

    PubMed

    Osborne, Nikola K P; Taylor, Michael C; Healey, Matthew; Zajac, Rachel

    2016-03-01

    It is becoming increasingly apparent that contextual information can exert a considerable influence on decisions about forensic evidence. Here, we explored accuracy and contextual influence in bloodstain pattern classification, and how these variables might relate to analyst characteristics. Thirty-nine bloodstain pattern analysts with varying degrees of experience each completed measures of compliance, decision-making style, and need for closure. Analysts then examined a bloodstain pattern without any additional contextual information, and allocated votes to listed pattern types according to favoured and less favoured classifications. Next, if they believed it would assist with their classification, analysts could request items of contextual information - from commonly encountered sources of information in bloodstain pattern analysis - and update their vote allocation. We calculated a shift score for each item of contextual information based on vote reallocation. Almost all forms of contextual information influenced decision-making, with medical findings leading to the highest shift scores. Although there was a small positive association between shift scores and the degree to which analysts displayed an intuitive decision-making style, shift scores did not vary meaningfully as a function of experience or the other characteristics measured. Almost all of the erroneous classifications were made by novice analysts. PMID:26976471

  20. Classification Accuracy of Mixed Format Tests: A Bi-Factor Item Response Theory Approach

    PubMed Central

    Wang, Wei; Drasgow, Fritz; Liu, Liwen

    2016-01-01

    Mixed format tests (e.g., a test consisting of multiple-choice [MC] items and constructed response [CR] items) have become increasingly popular. However, the latent structure of item pools consisting of the two formats is still equivocal. Moreover, the implications of this latent structure are unclear: For example, do constructed response items tap reasoning skills that cannot be assessed with multiple choice items? This study explored the dimensionality of mixed format tests by applying bi-factor models to 10 tests of various subjects from the College Board's Advanced Placement (AP) Program and compared the accuracy of scores based on the bi-factor analysis with scores derived from a unidimensional analysis. More importantly, this study focused on a practical and important question—classification accuracy of the overall grade on a mixed format test. Our findings revealed that the degree of multidimensionality resulting from the mixed item format varied from subject to subject, depending on the disattenuated correlation between scores from MC and CR subtests. Moreover, remarkably small decrements in classification accuracy were found for the unidimensional analysis when the disattenuated correlations exceeded 0.90. PMID:26973568

  1. Effects of temporal variability in ground data collection on classification accuracy

    USGS Publications Warehouse

    Hoch, G.A.; Cully, J.F., Jr.

    1999-01-01

    This research tested whether the timing of ground data collection can significantly impact the accuracy of land cover classification. Ft. Riley Military Reservation, Kansas, USA was used to test this hypothesis. The U.S. Army's Land Condition Trend Analysis (LCTA) data annually collected at military bases was used to ground truth disturbance patterns. Ground data collected over an entire growing season and data collected one year after the imagery had a kappa statistic of 0.33. When using ground data from only within two weeks of image acquisition the kappa statistic improved to 0.55. Potential sources of this discrepancy are identified. These data demonstrate that there can be significant amounts of land cover change within a narrow time window on military reservations. To accurately conduct land cover classification at military reservations, ground data need to be collected in as narrow a window of time as possible and be closely synchronized with the date of the satellite imagery.

  2. Natural language processing with dynamic classification improves P300 speller accuracy and bit rate

    NASA Astrophysics Data System (ADS)

    Speier, William; Arnold, Corey; Lu, Jessica; Taira, Ricky K.; Pouratian, Nader

    2012-02-01

    The P300 speller is an example of a brain-computer interface that can restore functionality to victims of neuromuscular disorders. Although the most common application of this system has been communicating language, the properties and constraints of the linguistic domain have not to date been exploited when decoding brain signals that pertain to language. We hypothesized that combining the standard stepwise linear discriminant analysis with a Naive Bayes classifier and a trigram language model would increase the speed and accuracy of typing with the P300 speller. With integration of natural language processing, we observed significant improvements in accuracy and 40-60% increases in bit rate for all six subjects in a pilot study. This study suggests that integrating information about the linguistic domain can significantly improve signal classification.

  3. Accuracy assessment, using stratified plurality sampling, of portions of a LANDSAT classification of the Arctic National Wildlife Refuge Coastal Plain

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Strong, Laurence L.

    1989-01-01

    An application of a classification accuracy assessment procedure is described for a vegetation and land cover map prepared by digital image processing of LANDSAT multispectral scanner data. A statistical sampling procedure called Stratified Plurality Sampling was used to assess the accuracy of portions of a map of the Arctic National Wildlife Refuge coastal plain. Results are tabulated as percent correct classification overall as well as per category with associated confidence intervals. Although values of percent correct were disappointingly low for most categories, the study was useful in highlighting sources of classification error and demonstrating shortcomings of the plurality sampling method.

  4. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  5. Speed and accuracy of facial expression classification in avoidant personality disorder: a preliminary study.

    PubMed

    Rosenthal, M Zachary; Kim, Kwanguk; Herr, Nathaniel R; Smoski, Moria J; Cheavens, Jennifer S; Lynch, Thomas R; Kosson, David S

    2011-10-01

    The aim of this preliminary study was to examine whether individuals with avoidant personality disorder (APD) could be characterized by deficits in the classification of dynamically presented facial emotional expressions. Using a community sample of adults with APD (n = 17) and non-APD controls (n = 16), speed and accuracy of facial emotional expression recognition was investigated in a task that morphs facial expressions from neutral to prototypical expressions (Multi-Morph Facial Affect Recognition Task; Blair, Colledge, Murray, & Mitchell, 2001). Results indicated that individuals with APD were significantly more likely than controls to make errors when classifying fully expressed fear. However, no differences were found between groups in the speed to correctly classify facial emotional expressions. The findings are some of the first to investigate facial emotional processing in a sample of individuals with APD and point to an underlying deficit in processing social cues that may be involved in the maintenance of APD. PMID:22448805

  6. An improved multivariate analytical method to assess the accuracy of acoustic sediment classification maps.

    NASA Astrophysics Data System (ADS)

    Biondo, M.; Bartholomä, A.

    2014-12-01

    High resolution hydro acoustic methods have been successfully employed for the detailed classification of sedimentary habitats. The fine-scale mapping of very heterogeneous, patchy sedimentary facies, and the compound effect of multiple non-linear physical processes on the acoustic signal, cause the classification of backscatter images to be subject to a great level of uncertainty. Standard procedures for assessing the accuracy of acoustic classification maps are not yet established. This study applies different statistical techniques to automated classified acoustic images with the aim of i) quantifying the ability of backscatter to resolve grain size distributions ii) understanding complex patterns influenced by factors other than grain size variations iii) designing innovative repeatable statistical procedures to spatially assess classification uncertainties. A high-frequency (450 kHz) sidescan sonar survey, carried out in the year 2012 in the shallow upper-mesotidal inlet the Jade Bay (German North Sea), allowed to map 100 km2 of surficial sediment with a resolution and coverage never acquired before in the area. The backscatter mosaic was ground-truthed using a large dataset of sediment grab sample information (2009-2011). Multivariate procedures were employed for modelling the relationship between acoustic descriptors and granulometric variables in order to evaluate the correctness of acoustic classes allocation and sediment group separation. Complex patterns in the acoustic signal appeared to be controlled by the combined effect of surface roughness, sorting and mean grain size variations. The area is dominated by silt and fine sand in very mixed compositions; in this fine grained matrix, percentages of gravel resulted to be the prevailing factor affecting backscatter variability. In the absence of coarse material, sorting mostly affected the ability to detect gradual but significant changes in seabed types. Misclassification due to temporal discrepancies

  7. A Response to an Article Published in "Educational Research"'s Special Issue on Assessment (June 2009). What Can Be Inferred about Classification Accuracy from Classification Consistency?

    ERIC Educational Resources Information Center

    Bramley, Tom

    2010-01-01

    Background: A recent article published in "Educational Research" on the reliability of results in National Curriculum testing in England (Newton, "The reliability of results from national curriculum testing in England," "Educational Research" 51, no. 2: 181-212, 2009) suggested that: (1) classification accuracy can be calculated from…

  8. Reliability, Validity, and Classification Accuracy of the DSM-5 Diagnostic Criteria for Gambling Disorder and Comparison to DSM-IV.

    PubMed

    Stinchfield, Randy; McCready, John; Turner, Nigel E; Jimenez-Murcia, Susana; Petry, Nancy M; Grant, Jon; Welte, John; Chapman, Heather; Winters, Ken C

    2016-09-01

    The DSM-5 was published in 2013 and it included two substantive revisions for gambling disorder (GD). These changes are the reduction in the threshold from five to four criteria and elimination of the illegal activities criterion. The purpose of this study was to twofold. First, to assess the reliability, validity and classification accuracy of the DSM-5 diagnostic criteria for GD. Second, to compare the DSM-5-DSM-IV on reliability, validity, and classification accuracy, including an examination of the effect of the elimination of the illegal acts criterion on diagnostic accuracy. To compare DSM-5 and DSM-IV, eight datasets from three different countries (Canada, USA, and Spain; total N = 3247) were used. All datasets were based on similar research methods. Participants were recruited from outpatient gambling treatment services to represent the group with a GD and from the community to represent the group without a GD. All participants were administered a standardized measure of diagnostic criteria. The DSM-5 yielded satisfactory reliability, validity and classification accuracy. In comparing the DSM-5 to the DSM-IV, most comparisons of reliability, validity and classification accuracy showed more similarities than differences. There was evidence of modest improvements in classification accuracy for DSM-5 over DSM-IV, particularly in reduction of false negative errors. This reduction in false negative errors was largely a function of lowering the cut score from five to four and this revision is an improvement over DSM-IV. From a statistical standpoint, eliminating the illegal acts criterion did not make a significant impact on diagnostic accuracy. From a clinical standpoint, illegal acts can still be addressed in the context of the DSM-5 criterion of lying to others. PMID:26408026

  9. Comparation of Typical Wetlands Classification Accuracy in Yellow River Estuary Using Multi-Angle Proba CHRIS Hyperspectral Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Zhang, Jie; Ma, Yi; Ren, Guangbo

    2013-01-01

    In this paper, Multi-angle PROBA CHRIS hyperspectral remote sensing images were used to study on their imaging quality and the ability of classification of Typical Wetlands in Yellow River Estuary, by the cooperation of interpretation and automatic classification. Taking 5-angle (0°, ±36°, ±55°) CHRIS hyperspectral remote sensing images of mode 2 obtained in September 2006 as an example, this paper research results indicate that the 0° image has the best imaging quality, with the highest spatial resolution, the ±36° images come second, the ±55° images are last; 5 typical wetlands, such as reservoir, bulrush, watercourse, barren beach and swamp were selected as study objects, then a Support Vector Machine (SVM) algorithm is used to classify different-angle remote sensing images into these 5 typical wetlands using training samples in the same location, the results of classification were analyzed based on field survey data, which shows that (1) The classification accuracy differs along the viewing angle of images, the overall accuracy and Kappa factor of the 0° image is highest, and the -36° image is lowest. (2) The overall accuracy and Kappa factor of the positive-angle images is higher than which of minus-angle images. (3) The producer accuracy and user accuracy of swamp is the lowest among all 5 typical wetlands in all images. (4) The producer accuracy and user accuracy of reservoir, bulrush and barren beach are relatively stable in all 5-angle images, however, the accuracies of Watercourse and swamp are fluctuant in all 5-angle images, and highest in the 0° image.

  10. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy.

    PubMed

    Combrisson, Etienne; Jerbi, Karim

    2015-07-30

    Machine learning techniques are increasingly used in neuroscience to classify brain signals. Decoding performance is reflected by how much the classification results depart from the rate achieved by purely random classification. In a 2-class or 4-class classification problem, the chance levels are thus 50% or 25% respectively. However, such thresholds hold for an infinite number of data samples but not for small data sets. While this limitation is widely recognized in the machine learning field, it is unfortunately sometimes still overlooked or ignored in the emerging field of brain signal classification. Incidentally, this field is often faced with the difficulty of low sample size. In this study we demonstrate how applying signal classification to Gaussian random signals can yield decoding accuracies of up to 70% or higher in two-class decoding with small sample sets. Most importantly, we provide a thorough quantification of the severity and the parameters affecting this limitation using simulations in which we manipulate sample size, class number, cross-validation parameters (k-fold, leave-one-out and repetition number) and classifier type (Linear-Discriminant Analysis, Naïve Bayesian and Support Vector Machine). In addition to raising a red flag of caution, we illustrate the use of analytical and empirical solutions (binomial formula and permutation tests) that tackle the problem by providing statistical significance levels (p-values) for the decoding accuracy, taking sample size into account. Finally, we illustrate the relevance of our simulations and statistical tests on real brain data by assessing noise-level classifications in Magnetoencephalography (MEG) and intracranial EEG (iEEG) baseline recordings. PMID:25596422

  11. Improvement in accuracy of defect size measurement by automatic defect classification

    NASA Astrophysics Data System (ADS)

    Samir, Bhamidipati; Pereira, Mark; Paninjath, Sankaranarayanan; Jeon, Chan-Uk; Chung, Dong-Hoon; Yoon, Gi-Sung; Jung, Hong-Yul

    2015-10-01

    The blank mask defect review process involves detailed analysis of defects observed across a substrate's multiple preparation stages, such as cleaning and resist-coating. The detailed knowledge of these defects plays an important role in the eventual yield obtained by using the blank. Defect knowledge predominantly comprises of details such as the number of defects observed, and their accurate sizes. Mask usability assessment at the start of the preparation process, is crudely based on number of defects. Similarly, defect size gives an idea of eventual wafer defect printability. Furthermore, monitoring defect characteristics, specifically size and shape, aids in obtaining process related information such as cleaning or coating process efficiencies. Blank mask defect review process is largely manual in nature. However, the large number of defects, observed for latest technology nodes with reducing half-pitch sizes; and the associated amount of information, together make the process increasingly inefficient in terms of review time, accuracy and consistency. The usage of additional tools such as CDSEM may be required to further aid the review process resulting in increasing costs. Calibre® MDPAutoClassify™ provides an automated software alternative, in the form of a powerful analysis tool for fast, accurate, consistent and automatic classification of blank defects. Elaborate post-processing algorithms are applied on defect images generated by inspection machines, to extract and report significant defect information such as defect size, affecting defect printability and mask usability. The algorithm's capabilities are challenged by the variety and complexity of defects encountered, in terms of defect nature, size, shape and composition; and the optical phenomena occurring around the defect [1]. This paper mainly focuses on the results from the evaluation of Calibre® MDPAutoClassify™ product. The main objective of this evaluation is to assess the capability of

  12. The Wechsler Adult Intelligence Scale-III and Malingering in Traumatic Brain Injury: Classification Accuracy in Known Groups

    ERIC Educational Resources Information Center

    Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.

    2009-01-01

    A known-groups design was used to determine the classification accuracy of Wechsler Adult Intelligence Scale-III (WAIS-III) variables in detecting malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI). TBI patients were classified into the following groups: (a) mild TBI not-MND (n = 26), (b) mild TBI MND (n = 31), and (c)…

  13. Classification Accuracy of Oral Reading Fluency and Maze in Predicting Performance on Large-Scale Reading Assessments

    ERIC Educational Resources Information Center

    Decker, Dawn M.; Hixson, Michael D.; Shaw, Amber; Johnson, Gloria

    2014-01-01

    The purpose of this study was to examine whether using a multiple-measure framework yielded better classification accuracy than oral reading fluency (ORF) or maze alone in predicting pass/fail rates for middle-school students on a large-scale reading assessment. Participants were 178 students in Grades 7 and 8 from a Midwestern school district.…

  14. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors.

    PubMed

    Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio

    2015-01-01

    Inertial sensors are increasingly being used to recognize and classify physical activities in a variety of applications. For monitoring and fitness applications, it is crucial to develop methods able to segment each activity cycle, e.g., a gait cycle, so that the successive classification step may be more accurate. To increase detection accuracy, pre-processing is often used, with a concurrent increase in computational cost. In this paper, the effect of pre-processing operations on the detection and classification of locomotion activities was investigated, to check whether the presence of pre-processing significantly contributes to an increase in accuracy. The pre-processing stages evaluated in this study were inclination correction and de-noising. Level walking, step ascending, descending and running were monitored by using a shank-mounted inertial sensor. Raw and filtered segments, obtained from a modified version of a rule-based gait detection algorithm optimized for sequential processing, were processed to extract time and frequency-based features for physical activity classification through a support vector machine classifier. The proposed method accurately detected >99% gait cycles from raw data and produced >98% accuracy on these segmented gait cycles. Pre-processing did not substantially increase classification accuracy, thus highlighting the possibility of reducing the amount of pre-processing for real-time applications. PMID:26378544

  15. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors

    PubMed Central

    Fida, Benish; Bernabucci, Ivan; Bibbo, Daniele; Conforto, Silvia; Schmid, Maurizio

    2015-01-01

    Inertial sensors are increasingly being used to recognize and classify physical activities in a variety of applications. For monitoring and fitness applications, it is crucial to develop methods able to segment each activity cycle, e.g., a gait cycle, so that the successive classification step may be more accurate. To increase detection accuracy, pre-processing is often used, with a concurrent increase in computational cost. In this paper, the effect of pre-processing operations on the detection and classification of locomotion activities was investigated, to check whether the presence of pre-processing significantly contributes to an increase in accuracy. The pre-processing stages evaluated in this study were inclination correction and de-noising. Level walking, step ascending, descending and running were monitored by using a shank-mounted inertial sensor. Raw and filtered segments, obtained from a modified version of a rule-based gait detection algorithm optimized for sequential processing, were processed to extract time and frequency-based features for physical activity classification through a support vector machine classifier. The proposed method accurately detected >99% gait cycles from raw data and produced >98% accuracy on these segmented gait cycles. Pre-processing did not substantially increase classification accuracy, thus highlighting the possibility of reducing the amount of pre-processing for real-time applications. PMID:26378544

  16. Measurement Properties and Classification Accuracy of Two Spanish Parent Surveys of Language Development for Preschool-Age Children

    ERIC Educational Resources Information Center

    Guiberson, Mark; Rodriguez, Barbara L.

    2010-01-01

    Purpose: To describe the concurrent validity and classification accuracy of 2 Spanish parent surveys of language development, the Spanish Ages and Stages Questionnaire (ASQ; Squires, Potter, & Bricker, 1999) and the Pilot Inventario-III (Pilot INV-III; Guiberson, 2008a). Method: Forty-eight Spanish-speaking parents of preschool-age children…

  17. Time-dependent classification accuracy curve under marker-dependent sampling

    PubMed Central

    Zhu, Zhaoyin; Wang, Xiaofei; Saha-Chaudhuri, Paramita; Kosinski, Andrzej S.; George, Stephen L.

    2016-01-01

    Evaluating the classification accuracy of a candidate biomarker signaling the onset of disease or disease status is essential for medical decision making. A good biomarker would accurately identify the patients who are likely to progress or die at a particular time in the future or who are in urgent need for active treatments. To assess the performance of a candidate biomarker, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are commonly used. In many cases, the standard simple random sampling (SRS) design used for biomarker validation studies is costly and inefficient. In order to improve the efficiency and reduce the cost of biomarker validation, marker-dependent sampling (MDS) may be used. In a MDS design, the selection of patients to assess true survival time is dependent on the result of a biomarker assay. In this article, we introduce a nonparametric estimator for time-dependent AUC under a MDS design. The consistency and the asymptotic normality of the proposed estimator is established. Simulation shows the unbiasedness of the proposed estimator and a significant efficiency gain of the MDS design over the SRS design. PMID:27119599

  18. Pseudo-inverse linear discriminants for the improvement of overall classification accuracies.

    PubMed

    Daqi, Gao; Ahmed, Dastagir; Lili, Guo; Zejian, Wang; Zhe, Wang

    2016-09-01

    This paper studies the learning and generalization performances of pseudo-inverse linear discriminant (PILDs) based on the processing minimum sum-of-squared error (MS(2)E) and the targeting overall classification accuracy (OCA) criterion functions. There is little practicable significance to prove the equivalency between a PILD with the desired outputs in reverse proportion to the number of class samples and an FLD with the totally projected mean thresholds. When the desired outputs of each class are assigned a fixed value, a PILD is partly equal to an FLD. With the customarily desired outputs {1, -1}, a practicable threshold is acquired, which is only related to sample sizes. If the desired outputs of each sample are changeable, a PILD has nothing in common with an FLD. The optimal threshold may thus be singled out from multiple empirical ones related to sizes and distributed regions. Depending upon the processing MS(2)E criteria and the actually algebraic distances, an iterative learning strategy of PILD is proposed, the outstanding advantages of which are with limited epoch, without learning rate and divergent risk. Enormous experimental results for the benchmark datasets have verified that the iterative PILDs with optimal thresholds have good learning and generalization performances, and even reach the top OCAs for some datasets among the existing classifiers. PMID:27351107

  19. Time-dependent classification accuracy curve under marker-dependent sampling.

    PubMed

    Zhu, Zhaoyin; Wang, Xiaofei; Saha-Chaudhuri, Paramita; Kosinski, Andrzej S; George, Stephen L

    2016-07-01

    Evaluating the classification accuracy of a candidate biomarker signaling the onset of disease or disease status is essential for medical decision making. A good biomarker would accurately identify the patients who are likely to progress or die at a particular time in the future or who are in urgent need for active treatments. To assess the performance of a candidate biomarker, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are commonly used. In many cases, the standard simple random sampling (SRS) design used for biomarker validation studies is costly and inefficient. In order to improve the efficiency and reduce the cost of biomarker validation, marker-dependent sampling (MDS) may be used. In a MDS design, the selection of patients to assess true survival time is dependent on the result of a biomarker assay. In this article, we introduce a nonparametric estimator for time-dependent AUC under a MDS design. The consistency and the asymptotic normality of the proposed estimator is established. Simulation shows the unbiasedness of the proposed estimator and a significant efficiency gain of the MDS design over the SRS design. PMID:27119599

  20. Accuracy of Self-Reported College GPA: Gender-Moderated Differences by Achievement Level and Academic Self-Efficacy

    ERIC Educational Resources Information Center

    Caskie, Grace I. L.; Sutton, MaryAnn C.; Eckhardt, Amanda G.

    2014-01-01

    Assessments of college academic achievement tend to rely on self-reported GPA values, yet evidence is limited regarding the accuracy of those values. With a sample of 194 undergraduate college students, the present study examined whether accuracy of self-reported GPA differed based on level of academic performance or level of academic…

  1. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  2. Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine

    PubMed Central

    2013-01-01

    Background Brain computer interface (BCI) is an emerging technology for paralyzed patients to communicate with external environments. Among current BCIs, the steady-state visual evoked potential (SSVEP)-based BCI has drawn great attention due to its characteristics of easy preparation, high information transfer rate (ITR), high accuracy, and low cost. However, electroencephalogram (EEG) signals are electrophysiological responses reflecting the underlying neural activities which are dependent upon subject’s physiological states (e.g., emotion, attention, etc.) and usually variant among different individuals. The development of classification approaches to account for each individual’s difference in SSVEP is needed but was seldom reported. Methods This paper presents a multiclass support vector machine (SVM)-based classification approach for gaze-target detections in a phase-tagged SSVEP-based BCI. In the training steps, the amplitude and phase features of SSVEP from off-line recordings were used to train a multiclass SVM for each subject. In the on-line application study, effective epochs which contained sufficient SSVEP information of gaze targets were first determined using Kolmogorov-Smirnov (K-S) test, and the amplitude and phase features of effective epochs were subsequently inputted to the multiclass SVM to recognize user’s gaze targets. Results The on-line performance using the proposed approach has achieved high accuracy (89.88 ± 4.76%), fast responding time (effective epoch length = 1.13 ± 0.02 s), and the information transfer rate (ITR) was 50.91 ± 8.70 bits/min. Conclusions The multiclass SVM-based classification approach has been successfully implemented to improve the classification accuracy in a phase-tagged SSVEP-based BCI. The present study has shown the multiclass SVM can be effectively adapted to each subject’s SSVEPs to discriminate SSVEP phase information from gazing at different gazed targets. PMID:23692974

  3. The impact of sampling regime on the accuracy of water quality status classifications under the Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Wade, Andrew; Skeffington, Richard; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    By 2015, EU regulatory agencies have a statutory obligation to meet the EU Water Framework Directive (WFD) target of "good ecological status" in all relevant inland and coastal waters. A significant amount of work is being undertaken to refine and improve the UK WFD water quality targets so that they better relate to the ecological status of a system. In 2013 new phosphorus (P) targets have been set, stipulating required lower mean annual "reactive" P concentrations, and recommendations published for more stringent pH, dissolved oxygen and ammonia targets. Despite this work, there are no guidelines on the sampling regime which should be employed to ensure compliance as part of the WFD classification system. Without guidance on how WFD water quality assessments should be done, regulatory agencies are at risk of misclassifying a system and of failing to identify systems which are ecologically at risk. Water quality is normally evaluated using routine monitoring programmes which use water samples collected, typically, at monthly intervals. However, new technologies are now allowing the collection of high-frequency (sub-daily) measurements of a range of water quality parameters which are revolutionising our understanding of freshwater nutrient cycling dynamics and the processes which control them. High-frequency and weekly water quality datasets for two lowland UK catchments, the River Enborne and The Cut, have been analysed to assess the impact of sampling frequency on the accuracy of WFD status classification. The Enborne is a rural catchment, impacted by agricultural runoff and sewage treatment works (STWs) discharges, and The Cut is a highly urbanised system significantly affected by STW discharges. On the Enborne, total reactive P (TRP) was measured hourly and soluble reactive P (SRP) measured weekly. Under the new WFD targets, although the mean annual P concentrations were similar, 0.173 and 0.136 mg/l-P for TRP and SRP respectively, the two "reactive" P

  4. A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery

    NASA Astrophysics Data System (ADS)

    kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2013-12-01

    A Comparative Accuracy Analysis of Classification Methods in Determination of Cultivated Lands with Spot 5 Satellite Imagery Ugur ALGANCI1, Sinasi KAYA1,2, Elif SERTEL1,2,Berk USTUNDAG3 1 ITU, Center for Satellite Communication and Remote Sensing, 34469, Maslak-Istanbul,Turkey 2 ITU, Department of Geomatics, 34469, Maslak-Istanbul, Turkey 3 ITU, Agricultural and Environmental Informatics Research Center,34469, Maslak-Istanbul,Turkey alganci@itu.edu.tr, kayasina@itu.edu.tr, sertele@itu.edu.tr, berk@berk.tc ABSTRACT Cultivated land determination and their area estimation are important tasks for agricultural management. Derived information is mostly used in agricultural policies and precision agriculture, in specifically; yield estimation, irrigation and fertilization management and farmers declaration verification etc. The use of satellite image in crop type identification and area estimate is common for two decades due to its capability of monitoring large areas, rapid data acquisition and spectral response to crop properties. With launch of high and very high spatial resolution optical satellites in the last decade, such kind of analysis have gained importance as they provide information at big scale. With increasing spatial resolution of satellite images, image classification methods to derive the information form them have become important with increase of the spectral heterogeneity within land objects. In this research, pixel based classification with maximum likelihood algorithm and object based classification with nearest neighbor algorithm were applied to 2012 dated 2.5 m resolution SPOT 5 satellite images in order to investigate the accuracy of these methods in determination of cotton and corn planted lands and their area estimation. Study area was selected in Sanliurfa Province located on Southeastern Turkey that contributes to Turkey's agricultural production in a major way. Classification results were compared in terms of crop type identification using

  5. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    NASA Astrophysics Data System (ADS)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  6. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C

    PubMed Central

    2011-01-01

    Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5

  7. Methods for improving accuracy and extending results beyond periods covered by traditional ground-truth in remote sensing classification of a complex landscape

    NASA Astrophysics Data System (ADS)

    Mueller-Warrant, George W.; Whittaker, Gerald W.; Banowetz, Gary M.; Griffith, Stephen M.; Barnhart, Bradley L.

    2015-06-01

    Successful development of approaches to quantify impacts of diverse landuse and associated agricultural management practices on ecosystem services is frequently limited by lack of historical and contemporary landuse data. We hypothesized that ground truth data from one year could be used to extrapolate previous or future landuse in a complex landscape where cropping systems do not generally change greatly from year to year because the majority of crops are established perennials or the same annual crops grown on the same fields over multiple years. Prior to testing this hypothesis, it was first necessary to classify 57 major landuses in the Willamette Valley of western Oregon from 2005 to 2011 using normal same year ground-truth, elaborating on previously published work and traditional sources such as Cropland Data Layers (CDL) to more fully include minor crops grown in the region. Available remote sensing data included Landsat, MODIS 16-day composites, and National Aerial Imagery Program (NAIP) imagery, all of which were resampled to a common 30 m resolution. The frequent presence of clouds and Landsat7 scan line gaps forced us to conduct of series of separate classifications in each year, which were then merged by choosing whichever classification used the highest number of cloud- and gap-free bands at any given pixel. Procedures adopted to improve accuracy beyond that achieved by maximum likelihood pixel classification included majority-rule reclassification of pixels within 91,442 Common Land Unit (CLU) polygons, smoothing and aggregation of areas outside the CLU polygons, and majority-rule reclassification over time of forest and urban development areas. Final classifications in all seven years separated annually disturbed agriculture, established perennial crops, forest, and urban development from each other at 90 to 95% overall 4-class validation accuracy. In the most successful use of subsequent year ground-truth data to classify prior year landuse, an

  8. Star Classification Possibilities with the Gaia Spectrophotometers. III. The Classification Accuracy with Decontaminated BP/RP Spectra

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Lazauskaitė, R.

    A medium-band 12-color photometric system, based on the decontaminated Gaia BP/RP spectra, has been proposed in our Paper II. Here we analyze a possibility to apply some versions of this system for the determination of temperatures and gravities of stars both in the absence and the presence of interstellar reddening. The possibility to supplement this system with the broad BP and RP passbands is verified. We conclude that the system gives an acceptable accuracy of temperatures and luminosities if the accuracy of color indices is 0.02 mag or better and if the parallaxes of stars are known.

  9. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  10. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    ERIC Educational Resources Information Center

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  11. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  12. Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores

    ERIC Educational Resources Information Center

    Douglas, Karen M.; Mislevy, Robert J.

    2010-01-01

    Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…

  13. Accuracy of Teachers' Judgments of Students' Academic Achievement: A Meta-Analysis

    ERIC Educational Resources Information Center

    Sudkamp, Anna; Kaiser, Johanna; Moller, Jens

    2012-01-01

    This meta-analysis summarizes empirical results on the correspondence between teachers' judgments of students' academic achievement and students' actual academic achievement. The article further investigates theoretically and methodologically relevant moderators of the correlation between the two measures. Overall, 75 studies reporting…

  14. IMPACTS OF PATCH SIZE AND LAND COVER HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    EPA Science Inventory


    Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of miss-classifying pixels during thematic image classification. However, there has been a lack of empirical evidence to support these hypotheses,...

  15. Design considerations for achieving high accuracy with the SHOALS bathymetric lidar system

    NASA Astrophysics Data System (ADS)

    Guenther, Gary C.; Thomas, Robert W. L.; LaRocque, Paul E.

    1996-11-01

    The ultimate accuracy of depths from an airborne laser hydrography system depends both on careful hardware design aimed at producing the best possible accuracy and precision of recorded data, along with insensitivity to environmental effects, and on post-flight data processing software which corrects for a number of unavoidable biases and provides for flexible operator interaction to handle special cases. The generic procedure for obtaining a depth from an airborne lidar pulse involves measurement of the time between the surface return and the bottom return. In practice, because both of these return times are biased due to a number of environmental and hardware effects, it is necessary to apply various correctors in order to obtain depth estimates which are sufficiently accurate to meet International Hydrographic Office standards. Potential false targets, also of both environmental and hardware origin, must be discriminated, and wave heights must be removed. It is important to have a depth confidence value matched to accuracy and to have warnings about or automatic deletion of pulses with questionable characteristics. Techniques, procedures, and algorithms developed for the SHOALS systems are detailed here.

  16. Effects of change in FreeSurfer version on classification accuracy of patients with Alzheimer's disease and mild cognitive impairment.

    PubMed

    Chepkoech, Joy-Loi; Walhovd, Kristine B; Grydeland, Håkon; Fjell, Anders M

    2016-05-01

    Studies have found non-negligible differences in cortical thickness estimates across versions of software that are used for processing and quantifying MRI-based cortical measurements, and issues have arisen regarding these differences, as obtained estimates could potentially affect the validity of the results. However, more critical for diagnostic classification than absolute thickness estimates across versions is the inter-subject stability. We aimed to investigate the effect of change in software version on classification of older persons in groups of healthy, mild cognitive impairment and Alzheimer's Disease. Using MRI samples of 100 older normal controls, 100 with mild cognitive impairment and 100 Alzheimer's Disease patients obtained from the Alzheimer's Disease Neuroimaging Initiative database, we performed a standard reconstruction processing using the FreeSurfer image analysis suite versions 4.1.0, 4.5.0 and 5.1.0. Pair-wise comparisons of cortical thickness between FreeSurfer versions revealed significant differences, ranging from 1.6% (4.1.0 vs. 4.5.0) to 5.8% (4.1.0 vs. 5.1.0) across the cortical mantle. However, change of version had very little effect on detectable differences in cortical thickness between diagnostic groups, and there were little differences in accuracy between versions when using entorhinal thickness for diagnostic classification. This lead us to conclude that differences in absolute thickness estimates across software versions in this case did not imply lacking validity, that classification results appeared reliable across software versions, and that classification results obtained in studies using different FreeSurfer versions can be reliably compared. Hum Brain Mapp 37:1831-1841, 2016. © 2016 Wiley Periodicals, Inc. PMID:27018380

  17. Absolute radiometric calibration of Als intensity data: effects on accuracy and target classification.

    PubMed

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  18. Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification

    PubMed Central

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  19. Novel FBG interrogation technique for achieving < 100 nɛ accuracies at remote distances > 70 km

    NASA Astrophysics Data System (ADS)

    Farrell, Tom; O'Connor, Peter; Levins, John; McDonald, David

    2005-06-01

    Due to the development of Fibre Bragg Grating sensors for the measurement of temperature, strain and pressure many markets can benefit from optical technology. These markets are the oil and gas industry, structural and civil engineering, rail and aerospace to name a few. The advantages of using optical sensing technology are that high accuracy measurements can be performed with a passive optical system. By running one fibre along the structure or down the well, multiple points along the fibre can be tested to measure strain, temperature and pressure. Of importance with these systems is the reach that can be obtained while maintaining accuracy. A major problem with long reach system is the back reflection due to SBS and Rayleigh scattering processes which reflect part of the laser light back into the receiver which affect the sensitivity of system. This paper shows a technique to enable a reach of >70km by using a tunable laser and receiver. Techniques for the suppression of receiver noise from SBS and Raleigh scattering are implemented. In addition polarisation dependence of the FBG is considered and results of techniques to limit the effect of polarisation at long and short reaches are shown.

  20. You are so beautiful... to me: seeing beyond biases and achieving accuracy in romantic relationships.

    PubMed

    Solomon, Brittany C; Vazire, Simine

    2014-09-01

    Do romantic partners see each other realistically, or do they have overly positive perceptions of each other? Research has shown that realism and positivity co-exist in romantic partners' perceptions (Boyes & Fletcher, 2007). The current study takes a novel approach to explaining this seemingly paradoxical effect when it comes to physical attractiveness--a highly evaluative trait that is especially relevant to romantic relationships. Specifically, we argue that people are aware that others do not see their partners as positively as they do. Using both mean differences and correlational approaches, we test the hypothesis that despite their own biased and idiosyncratic perceptions, people have 2 types of partner-knowledge: insight into how their partners see themselves (i.e., identity accuracy) and insight into how others see their partners (i.e., reputation accuracy). Our results suggest that romantic partners have some awareness of each other's identity and reputation for physical attractiveness, supporting theories that couple members' perceptions are driven by motives to fulfill both esteem- and epistemic-related needs (i.e., to see their partners positively and realistically). PMID:25133729

  1. Multinomial tree models for assessing the status of the reference in studies of the accuracy of tools for binary classification

    PubMed Central

    Botella, Juan; Huang, Huiling; Suero, Manuel

    2013-01-01

    Studies that evaluate the accuracy of binary classification tools are needed. Such studies provide 2 × 2 cross-classifications of test outcomes and the categories according to an unquestionable reference (or gold standard). However, sometimes a suboptimal reliability reference is employed. Several methods have been proposed to deal with studies where the observations are cross-classified with an imperfect reference. These methods require that the status of the reference, as a gold standard or as an imperfect reference, is known. In this paper a procedure for determining whether it is appropriate to maintain the assumption that the reference is a gold standard or an imperfect reference, is proposed. This procedure fits two nested multinomial tree models, and assesses and compares their absolute and incremental fit. Its implementation requires the availability of the results of several independent studies. These should be carried out using similar designs to provide frequencies of cross-classification between a test and the reference under investigation. The procedure is applied in two examples with real data. PMID:24106484

  2. Classification Accuracy in Key Stage 2 National Curriculum Tests in England

    ERIC Educational Resources Information Center

    He, Qingping; Hayes, Malcolm; Wiliam, Dylan

    2013-01-01

    The accuracy of the results of the national tests in English, mathematics and science taken by 11-year olds in England has been a matter of much debate since their introduction in 1994, with estimates of the proportion of students incorrectly classified varying from 10 to 30%. Using live data from the 2009 and 2010 administration of the national…

  3. Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition

    PubMed Central

    Zhan, Liang; Liu, Yashu; Wang, Yalin; Zhou, Jiayu; Jahanshad, Neda; Ye, Jieping; Thompson, Paul M.

    2015-01-01

    Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease. PMID:26257601

  4. On achieving sufficient dual station range accuracy for deep space navigation at zero declination

    NASA Technical Reports Server (NTRS)

    Siegel, H. L.; Christensen, C. S.; Green, D. W.; Winn, F. B.

    1977-01-01

    Since the Voyager Mission will encounter Saturn at a time when the planet will be nearly in the earth's equatorial plane, earth-based orbit determination will be more difficult than usual because of the so-called zero-declination singularity associated with conventional radiometric observations. Simulation studies show that in order to meet the required delivery accuracy at Saturn, a relative range measurement between the Goldstone and Canberra Deep Space Stations must be accurate to 4.5 times the square root of two meters. Topics discussed include the nature of error sources, the methodology and technology required for calibration, the verification process concerning the nearly simultaneous range capability, a description of the ranging system, and tracking strategy.

  5. Predictive Efficiency of Direct, Repeated Measurement: An Analysis of Cost and Accuracy in Classification.

    ERIC Educational Resources Information Center

    Marston, Doug; And Others

    Two studies were conducted to examine the efficacy of direct measurement, standardized achievement tests, and aptitude-achievement discrepancy scores in distinguishing learning disabled (LD) and nonlearning disabled (NLD) students in grades 3 to 6. For both reading (Study I) and written expression (Study II), students' scores on direct and…

  6. Achieving sub-pixel geolocation accuracy in support of MODIS land science

    USGS Publications Warehouse

    Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands-29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1??) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1??) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications. ?? 2002 Elsevier Science Inc. All rights reserved.

  7. a Method to Achieve Large Volume, High Accuracy Photogrammetric Measurements Through the Use of AN Actively Deformable Sensor Mounting Platform

    NASA Astrophysics Data System (ADS)

    Sargeant, B.; Robson, S.; Szigeti, E.; Richardson, P.; El-Nounu, A.; Rafla, M.

    2016-06-01

    When using any optical measurement system one important factor to consider is the placement of the sensors in relation to the workpiece being measured. When making decisions on sensor placement compromises are necessary in selecting the best placement based on the shape and size of the object of interest and the desired resolution and accuracy. One such compromise is in the distance the sensors are placed from the measurement surface, where a smaller distance gives a higher spatial resolution and local accuracy and a greater distance reduces the number of measurements necessary to cover a large area reducing the build-up of errors between measurements and increasing global accuracy. This paper proposes a photogrammetric approach whereby a number of sensors on a continuously flexible mobile platform are used to obtain local measurements while the position of the sensors is determined by a 6DoF tracking solution and the results combined to give a single set of measurement data within a continuous global coordinate system. The ability of this approach to achieve both high accuracy measurement and give results over a large volume is then tested and areas of weakness to be improved upon are identified.

  8. IMPROVING THE ACCURACY OF HISTORIC SATELLITE IMAGE CLASSIFICATION BY COMBINING LOW-RESOLUTION MULTISPECTRAL DATA WITH HIGH-RESOLUTION PANCHROMATIC DATA

    SciTech Connect

    Getman, Daniel J

    2008-01-01

    Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic data (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.

  9. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine.

    PubMed

    Castaneda, Christian; Nalley, Kip; Mannion, Ciaran; Bhattacharyya, Pritish; Blake, Patrick; Pecora, Andrew; Goy, Andre; Suh, K Stephen

    2015-01-01

    As research laboratories and clinics collaborate to achieve precision medicine, both communities are required to understand mandated electronic health/medical record (EHR/EMR) initiatives that will be fully implemented in all clinics in the United States by 2015. Stakeholders will need to evaluate current record keeping practices and optimize and standardize methodologies to capture nearly all information in digital format. Collaborative efforts from academic and industry sectors are crucial to achieving higher efficacy in patient care while minimizing costs. Currently existing digitized data and information are present in multiple formats and are largely unstructured. In the absence of a universally accepted management system, departments and institutions continue to generate silos of information. As a result, invaluable and newly discovered knowledge is difficult to access. To accelerate biomedical research and reduce healthcare costs, clinical and bioinformatics systems must employ common data elements to create structured annotation forms enabling laboratories and clinics to capture sharable data in real time. Conversion of these datasets to knowable information should be a routine institutionalized process. New scientific knowledge and clinical discoveries can be shared via integrated knowledge environments defined by flexible data models and extensive use of standards, ontologies, vocabularies, and thesauri. In the clinical setting, aggregated knowledge must be displayed in user-friendly formats so that physicians, non-technical laboratory personnel, nurses, data/research coordinators, and end-users can enter data, access information, and understand the output. The effort to connect astronomical numbers of data points, including '-omics'-based molecular data, individual genome sequences, experimental data, patient clinical phenotypes, and follow-up data is a monumental task. Roadblocks to this vision of integration and interoperability include ethical, legal

  10. Assessing the accuracy of acoustic seabed classification for mapping coral reef environments in South Florida (Broward County, USA).

    PubMed

    Moyer, Ryan P; Riegl, Bernhard; Banks, Kenneth; Dodge, Richard E

    2005-05-01

    The Atlantic coast of Broward County, Florida (USA) is paralleled by a series of progressively deeper, shore-parallel coral reef communities. Two of these reef systems are drowned early Holocene coral reefs of 5 ky and 7 ky uncorrected radiocarbon age. Despite the case of access to these reefs, and their major contribution to the local economy, accurate benthic habitat maps of the area are not available. Ecological studies have shown that different benthic communities (i.e. communities composed of different biological taxa) exist along several spatial gradients on all reefs. Since these studies are limited by time and spatial extent, acoustic surveys with the QTCView V bottom classification system based on a 50 kHz transducer were used as an alternative method of producing habitat maps. From the acoustic data of a 3.1 km(2) survey area, spatial prediction maps were created for the area. These were compared with habitat maps interpreted from in situ data and Laser Airborne Depth Sounder (LADS) bathymetry, in order to ground-truth the remotely sensed data. An error matrix was used to quantitatively determine the accuracy of the acoustically derived spatial prediction model against the maps derived from the in situ and LADS data sets. Confusion analysis of 100 random points showed that the system was able to distinguish areas of reef from areas of rubble and sand with an overall accuracy of 61%. When asked to detect more subtle spatial differences, for example, those between distinct reef communities, the classification was only about 40% accurate. We discuss to what degree a synthesis of acoustic and in situ techniques can provide accurate habitat maps in coral reef environments, and conclude that acoustic methods were able to reflect the spatial extent and composition of at least three different biological communities. PMID:17465157

  11. Impact of the accuracy of automatic segmentation of cell nuclei clusters on classification of thyroid follicular lesions.

    PubMed

    Jung, Chanho; Kim, Changick

    2014-08-01

    Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. PMID:24677732

  12. From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition

    PubMed Central

    Liu, Kuan-Liang; Kuske, Cheryl R.

    2014-01-01

    We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5′ section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets. PMID:24242255

  13. Comparing Potential with Achievement: Rationale and Procedures for Objectively Analyzing Achievement-Aptitude Discrepancies in LD Classification.

    ERIC Educational Resources Information Center

    Hanna, Gerald S.; And Others

    A critical review of the literature dealing with quantification of achievement-aptitude differences for identifying learning disabled (LD) readers revealed that methods developed to date suffer from grave inadequacies. Among the methods considered were those of the following individuals: G. Bond and M. Tinker, M. Monroe, A. Harris and E. Sipay, H.…

  14. Classification

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  15. Peaks, plateaus, numerical instabilities, and achievable accuracy in Galerkin and norm minimizing procedures for solving Ax=b

    SciTech Connect

    Cullum, J.

    1994-12-31

    Plots of the residual norms generated by Galerkin procedures for solving Ax = b often exhibit strings of irregular peaks. At seemingly erratic stages in the iterations, peaks appear in the residual norm plot, intervals of iterations over which the norms initially increase and then decrease. Plots of the residual norms generated by related norm minimizing procedures often exhibit long plateaus, sequences of iterations over which reductions in the size of the residual norm are unacceptably small. In an earlier paper the author discussed and derived relationships between such peaks and plateaus within corresponding Galerkin/Norm Minimizing pairs of such methods. In this paper, through a set of numerical experiments, the author examines connections between peaks, plateaus, numerical instabilities, and the achievable accuracy for such pairs of iterative methods. Three pairs of methods, GMRES/Arnoldi, QMR/BCG, and two bidiagonalization methods are studied.

  16. Studying the Effect of Adaptive Momentum in Improving the Accuracy of Gradient Descent Back Propagation Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Zubair; Nawi, Nazri Mohd.

    Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.

  17. Development of methodology for the optimization of classification accuracy of Landsat TM/ETM+ imagery for supporting fast flood hydrological analysis

    NASA Astrophysics Data System (ADS)

    Alexakis, D. D.; Hadjimitsis, D. G.; Agapiou, A.; Retalis, A.; Themistocleous, K.; Michaelides, S.; Pashiardis, S.

    2012-04-01

    One of the important tools for detection and quantification of land-cover changes across catchment areas is the classification of multispectral satellite imagery. Land cover changes, may be used to describe dynamics of urban settlements and vegetation patterns as an important indicator of urban ecological environments. Several techniques have been reported to improve classification results in terms of land use discrimination and accuracy of resulting classes. The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus (Yialias river). This paper describes the results obtained by integrating remote sensing techniques such as classification analysis and contemporary statistical analysis (maximum entropy) for detecting urbanization activities in a catchment area in Cyprus. The final results were incorporated in an integrated flood risk management model. This study aims to test different material samples in the Yialias region in order to examine: a) their spectral behavior under different precipitation rates and b) to introduce an alternative methodology to optimize the classification results derived from single satellite imagery with the combined use of satellite, spectroradiometric and precipitation data. At the end, different classification algorithms and statistical analysis are used to verify and optimize the final results such as object based classification and maximum entropy. The main aim of the study is the verification of the hypothesis that the multispectral classification accuracy is improved if the land surface humidity is high. This hypothesis was tested against Landsat derived reflectance values and validated with in-situ reflectance observations with the use of high spectral resolution spectroradiometers. This study aspires to highlight the potential of medium resolution satellite images such as those of Landsat TM/ETM+ for Land Use / Land cover

  18. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses

    PubMed Central

    2011-01-01

    Background For high usability, myo-controlled devices require robust classification schemes during dynamic contractions. Therefore, this study investigates the impact of the training data set in the performance of several pattern recognition algorithms during dynamic contractions. Methods A 9 class experiment was designed involving both static and dynamic situations. The performance of various feature extraction methods and classifiers was evaluated in terms of classification accuracy. Results It is shown that, combined with a threshold to detect the onset of the contraction, current pattern recognition algorithms used on static conditions provide relatively high classification accuracy also on dynamic situations. Moreover, the performance of the pattern recognition algorithms tested significantly improved by optimizing the choice of the training set. Finally, the results also showed that rather simple approaches for classification of time domain features provide results comparable to more complex classification methods of wavelet features. Conclusions Non-stationary surface EMG signals recorded during dynamic contractions can be accurately classified for the control of multi-function prostheses. PMID:21554700

  19. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota

    USGS Publications Warehouse

    Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.

    2013-01-01

    Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.

  20. Cognitive Processing Profiles of School-Age Children Who Meet Low-Achievement, IQ-Discrepancy, or Dual Criteria for Underachievement in Oral Reading Accuracy

    ERIC Educational Resources Information Center

    Van Santen, Frank W.

    2012-01-01

    The purpose of this study was to compare the cognitive processing profiles of school-age children (ages 7 to 17) who met criteria for underachievement in oral reading accuracy based on three different methods: 1) use of a regression-based IQ-achievement discrepancy only (REGonly), 2) use of a low-achievement cutoff only (LAonly), and 3) use of a…

  1. Research on the classification result and accuracy of building windows in high resolution satellite images: take the typical rural buildings in Guangxi, China, as an example

    NASA Astrophysics Data System (ADS)

    Li, Baishou; Gao, Yujiu

    2015-12-01

    The information extracted from the high spatial resolution remote sensing images has become one of the important data sources of the GIS large scale spatial database updating. The realization of the building information monitoring using the high resolution remote sensing, building small scale information extracting and its quality analyzing has become an important precondition for the applying of the high-resolution satellite image information, because of the large amount of regional high spatial resolution satellite image data. In this paper, a clustering segmentation classification evaluation method for the high resolution satellite images of the typical rural buildings is proposed based on the traditional KMeans clustering algorithm. The factors of separability and building density were used for describing image classification characteristics of clustering window. The sensitivity of the factors influenced the clustering result was studied from the perspective of the separability between high image itself target and background spectrum. This study showed that the number of the sample contents is the important influencing factor to the clustering accuracy and performance, the pixel ratio of the objects in images and the separation factor can be used to determine the specific impact of cluster-window subsets on the clustering accuracy, and the count of window target pixels (Nw) does not alone affect clustering accuracy. The result can provide effective research reference for the quality assessment of the segmentation and classification of high spatial resolution remote sensing images.

  2. Classification

    NASA Astrophysics Data System (ADS)

    Oza, Nikunj

    2012-03-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. A set of training examples— examples with known output values—is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate’s measurements. The generalization performance of a learned model (how closely the target outputs and the model’s predicted outputs agree for patterns that have not been presented to the learning algorithm) would provide an indication of how well the model has learned the desired mapping. More formally, a classification learning algorithm L takes a training set T as its input. The training set consists of |T| examples or instances. It is assumed that there is a probability distribution D from which all training examples are drawn independently—that is, all the training examples are independently and identically distributed (i.i.d.). The ith training example is of the form (x_i, y_i), where x_i is a vector of values of several features and y_i represents the class to be predicted.* In the sunspot classification example given above, each training example

  3. Mapping Crop Patterns in Central US Agricultural Systems from 2000 to 2014 Based on Landsat Data: To What Degree Does Fusing MODIS Data Improve Classification Accuracies?

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.

    2015-12-01

    Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.

  4. Classification

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2011-01-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. In supervised learning, a set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate's measurements. This chapter discusses methods to perform machine learning, with examples involving astronomy.

  5. Evaluating IRT- and CTT-Based Methods of Estimating Classification Consistency and Accuracy Indices from Single Administrations

    ERIC Educational Resources Information Center

    Deng, Nina

    2011-01-01

    Three decision consistency and accuracy (DC/DA) methods, the Livingston and Lewis (LL) method, LEE method, and the Hambleton and Han (HH) method, were evaluated. The purposes of the study were: (1) to evaluate the accuracy and robustness of these methods, especially when their assumptions were not well satisfied, (2) to investigate the "true"…

  6. The Effects of Q-Matrix Design on Classification Accuracy in the Log-Linear Cognitive Diagnosis Model

    ERIC Educational Resources Information Center

    Madison, Matthew J.; Bradshaw, Laine P.

    2015-01-01

    Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other…

  7. Classification Accuracy of MMPI-2 Validity Scales in the Detection of Pain-Related Malingering: A Known-Groups Study

    ERIC Educational Resources Information Center

    Bianchini, Kevin J.; Etherton, Joseph L.; Greve, Kevin W.; Heinly, Matthew T.; Meyers, John E.

    2008-01-01

    The purpose of this study was to determine the accuracy of "Minnesota Multiphasic Personality Inventory" 2nd edition (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) validity indicators in the detection of malingering in clinical patients with chronic pain using a hybrid clinical-known groups/simulator design. The sample consisted…

  8. Comparison of Activity Type Classification Accuracy from Accelerometers Worn on the Hip, Wrists, and Thigh in Young, Apparently Healthy Adults

    ERIC Educational Resources Information Center

    Montoye, Alexander H. K.; Pivarnik, James M.; Mudd, Lanay M.; Biswas, Subir; Pfeiffer, Karin A.

    2016-01-01

    The purpose of this article is to compare accuracy of activity type prediction models for accelerometers worn on the hip, wrists, and thigh. Forty-four adults performed sedentary, ambulatory, lifestyle, and exercise activities (14 total, 10 categories) for 3-10 minutes each in a 90-minute semi-structured laboratory protocol. Artificial neural…

  9. Accuracy of reported flash point values on material safety data sheets and the impact on product classification.

    PubMed

    Radnoff, Diane

    2013-01-01

    Material Safety Data Sheets (MSDSs) are the foundation of worker right-to-know legislation for chemical hazards. Suppliers can use product test data to determine a product's classification. Alternatively, they may use evaluation and professional judgment based on test results for the product or a product, material, or substance with similar properties. While the criteria for classifying products under the new Globally Harmonized System of Classification and Labeling of Chemicals (GHS) are different, a similar process is followed. Neither the current Workplace Hazardous Materials Information System (WHMIS) nor GHS require suppliers to test their products to classify them. In this project 83 samples of products classified as flammable or combustible, representing a variety of industry sectors and product types, were collected. Flash points were measured and compared to the reported values on the MSDSs. The classifications of the products were then compared using the WHMIS and GHS criteria. The results of the study indicated that there were significant variations between the disclosed and measured flash point values. Overall, more than one-third of the products had flash points lower than that disclosed on the MSDS. In some cases, the measured values were more than 20°C lower than the disclosed values. This could potentially result in an underestimation regarding the flammability of the product so it is important for employers to understand the limitations in the information provided on MSDSs when developing safe work procedures and training programs in the workplace. Nearly one-fifth of the products were misclassified under the WHMIS system as combustible when the measured flash point indicated that they should be classified as flammable when laboratory measurement error was taken into account. While a similar number of products were misclassified using GHS criteria, the tendency appeared to be to "over-classify" (provide a hazard class that was more conservative

  10. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

  11. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  12. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research

    PubMed Central

    Janousova, Eva; Montana, Giovanni; Kasparek, Tomas; Schwarz, Daniel

    2016-01-01

    We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies. PMID:27610072

  13. Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research.

    PubMed

    Janousova, Eva; Montana, Giovanni; Kasparek, Tomas; Schwarz, Daniel

    2016-01-01

    We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies. PMID:27610072

  14. Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload

    PubMed Central

    Estepp, Justin R.; Christensen, James C.

    2015-01-01

    The passive brain-computer interface (pBCI) framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research laboratory environment to practical, everyday use. An interesting issue is what impact methodological variability may have on the ability to reliably identify (neuro)physiological patterns that are useful for state assessment. This work aimed at quantifying the effects of methodological variability in a pBCI design for detecting changes in cognitive workload. Specific focus was directed toward the effects of replacing electrodes over dual sessions (thus inducing changes in placement, electromechanical properties, and/or impedance between the electrode and skin surface) on the accuracy of several machine learning approaches in a binary classification problem. In investigating these methodological variables, it was determined that the removal and replacement of the electrode suite between sessions does not impact the accuracy of a number of learning approaches when trained on one session and tested on a second. This finding was confirmed by comparing to a control group for which the electrode suite was not replaced between sessions. This result suggests that sensors (both neurological and peripheral) may be removed and replaced over the course of many interactions with a pBCI system without affecting its performance. Future work on multi-session and multi-day pBCI system use should seek to replicate this (lack of) effect between sessions in other tasks, temporal time courses, and data analytic approaches while also focusing on non-stationarity and variable classification performance due to intrinsic factors. PMID:25805963

  15. Improving classification accuracy using multi-date IRS/LISS data and development of thermal stress index for Asiatic lion habitat

    NASA Astrophysics Data System (ADS)

    Gupta, Rajendra Kumar

    The increase in lion and leopard population in the GIR wild life sanctuary and National Park (Gir Protected Area) demands periodic and precision monitoring of habitat at close intervals using space based remote sensing data. Besides characterizing the different forest classes, remote sensing needs to support for the assessment of thermal stress zones and identification of possible corridors for lion dispersion to new home ranges. The study focuses on assessing the thematic forest classification accuracies in percentage terms(CA) attainable using single date post-monsoon (CA=60, kappa = 0.514) as well as leaf shedding (CA=48.4, kappa = 0.372) season data in visible and Near-IR spectral bands of IRS/LISS-III at 23.5 m spatial resolution; and improvement of CA by using joint two date (multi-temporal) data sets (CA=87.2, kappa = 0.843) in the classification. The 188 m spatial resolution IRS/WiFS and 23.5 m spatial resolution LISS-III data were used to study the possible corridors for dispersion of Lions from GIR protected areas (PA). A relative thermal stress index (RTSI) for Gir PA has been developed using NOAA/ AVHRR data sets of post-monsoon, leaf shedded and summer seasons. The paper discusses the role of RTSI as a tool to work out forest management plans using leaf shedded season data to combat the thermal stress in the habitat, by identifying locations for artificial water holes during the ensuing summer season.

  16. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  17. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized

  18. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    PubMed Central

    2011-01-01

    Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed

  19. Practical Classification Guidelines for Diabetes in patients treated with insulin: a cross-sectional study of the accuracy of diabetes diagnosis

    PubMed Central

    Hope, Suzy V; Wienand-Barnett, Sophie; Shepherd, Maggie; King, Sophie M; Fox, Charles; Khunti, Kamlesh; Oram, Richard A; Knight, Bea A; Hattersley, Andrew T; Jones, Angus G; Shields, Beverley M

    2016-01-01

    Background Differentiating between type 1 and type 2 diabetes is fundamental to ensuring appropriate management of patients, but can be challenging, especially when treating with insulin. The 2010 UK Practical Classification Guidelines for Diabetes were developed to help make the differentiation. Aim To assess diagnostic accuracy of the UK guidelines against ‘gold standard’ definitions of type 1 and type 2 diabetes based on measured C-peptide levels. Design and setting In total, 601 adults with insulin-treated diabetes and diabetes duration ≥5 years were recruited in Devon, Northamptonshire, and Leicestershire. Method Baseline information and home urine sample were collected. Urinary C-peptide creatinine ratio (UCPCR) measures endogenous insulin production. Gold standard type 1 diabetes was defined as continuous insulin treatment within 3 years of diagnosis and absolute insulin deficiency (UCPCR<0.2 nmol/mmol ≥5 years post-diagnosis); all others classed as having type 2 diabetes. Diagnostic performance of the clinical criteria was assessed and other criteria explored using receiver operating characteristic (ROC) curves. Results UK guidelines correctly classified 86% of participants. Most misclassifications occurred in patients classed as having type 1 diabetes who had significant endogenous insulin levels (57 out of 601; 9%); most in those diagnosed ≥35 years and treated with insulin from diagnosis, where 37 out of 66 (56%) were misclassified. Time to insulin and age at diagnosis performed best in predicting long-term endogenous insulin production (ROC AUC = 0.904 and 0.871); BMI was a less strong predictor of diabetes type (AUC = 0.824). Conclusion Current UK guidelines provide a pragmatic clinical approach to classification reflecting long-term endogenous insulin production; caution is needed in older patients commencing insulin from diagnosis, where misclassification rates are increased. PMID:27080317

  20. Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers.

    PubMed

    Wassenaar, Leonard I; Coplen, Tyler B; Aggarwal, Pradeep K

    2014-01-21

    The measurement of δ(2)H and δ(18)O in water samples by laser absorption spectroscopy (LAS) are adopted increasingly in hydrologic and environmental studies. Although LAS instrumentation is easy to use, its incorporation into laboratory operations is not as easy, owing to extensive offline data manipulation required for outlier detection, derivation and application of algorithms to correct for between-sample memory, correcting for linear and nonlinear instrumental drift, VSMOW-SLAP scale normalization, and in maintaining long-term QA/QC audits. Here we propose a series of standardized water-isotope LAS performance tests and routine sample analysis templates, recommended procedural guidelines, and new data processing software (LIMS for Lasers) that altogether enables new and current LAS users to achieve and sustain long-term δ(2)H and δ(18)O accuracy and precision for these important isotopic assays. PMID:24328223

  1. Further consideration of Advanced Clinical Solutions Word Choice: comparison to the Recognition Memory Test-words and classification accuracy in a clinical sample.

    PubMed

    Davis, Jeremy J

    2014-01-01

    Word Choice (WC), a test in the Advanced Clinical Solutions package for Wechsler measures, was examined in two studies. The first study compared WC to the Recognition Memory Test-Words (RMT-W) in a clinical sample (N = 46). WC scores were significantly higher than RMT-W scores overall and in sample subsets grouped by separate validity indicators. In item-level analyses, WC items demonstrated lower frequency, greater imageability, and higher concreteness than RMT-W items. The second study explored WC classification accuracy in a different clinical sample grouped by separate validity indicators into Pass (n = 54), Fail-1 (n = 17), and Fail-2 (n = 8) groups. WC scores were significantly higher in the Pass group (M = 49.1, SD = 1.9) than in the Fail-1 (M = 46.0, SD = 5.3) and Fail-2 (M = 44.1, SD = 4.8) groups. WC demonstrated area under the curve of .81 in classifying Pass and Fail-2 participants. Using the test manual cutoff associated with a 10% false positive rate, sensitivity was 38% and specificity was 96% in Pass and Fail-2 groups with 24% of Fail-1 participants scoring below cutoff. WC may be optimally used in combination with other measures given observed sensitivity. PMID:25372961

  2. Urban land cover classification using hyperspectral data

    NASA Astrophysics Data System (ADS)

    Hegde, G.; Ahamed, J. Mohammed; Hebbar, R.; Raj, U.

    2014-11-01

    Urban land cover classification using remote sensing data is quite challenging due to spectrally and spatially complex urban features. The present study describes the potential use of hyperspectral data for urban land cover classification and its comparison with multispectral data. EO-1 Hyperion data of October 05, 2012 covering parts of Bengaluru city was analyzed for land cover classification. The hyperspectral data was initially corrected for atmospheric effects using MODTRAN based FLAASH module and Minimum Noise Fraction (MNF) transformation was applied to reduce data dimensionality. The threshold Eigen value of 1.76 in VNIR region and 1.68 in the SWIR region was used for selection of 145 stable bands. Advanced per pixel classifiers viz., Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) were used for general urban land cover classification. Accuracy assessment of the classified data revealed that SVM was quite superior (82.4 per cent) for urban land cover classification as compared to SAM (67.1 per cent). Selecting training samples using end members significantly improved the classification accuracy by 20.1 per cent in SVM. The land cover classification using multispectral LISS-III data using SVM showed lower accuracy mainly due to limitation of spectral resolution. The study indicated the requirement of additional narrow bands for achieving reasonable classification accuracy of urban land cover. Future research is focused on generating hyperspectral library for different urban features.

  3. Self-Concept and Science Achievement: Investigating a Reciprocal Relation Model across the Gender Classification in a Crosscultural Context

    ERIC Educational Resources Information Center

    Wang, Jianjun; Oliver, J. Steve; Staver, John R.

    2008-01-01

    Science achievement and self-concept are articulated in this study to examine a model of reciprocal relationship during a crosscultural transition. Trend data have been gathered to assess changes of the perceived English importance before and after Hong Kong's sovereignty handover from Britain to China. The data analyses were conducted four times…

  4. Hydrometor classification from 2 dimensional videodisdrometer data

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Monhart, S.; Schneebeli, M.; Raupach, T.; Berne, A.

    2014-02-01

    This paper presents a hydrometeor classification technique based on two-dimensional video disdrometer (2DVD) data. The method provides an estimate of the dominant hydrometeor type falling over time intervals of 60 s during precipitation, using as input the statistical behavior of a set of particle descriptors, calculated for each particle image. The employed supervised algorithm is a support vector machine (SVM), trained over precipitation time steps labeled by visual inspection. In this way, 8 dominant hydrometeor classes could be discriminated. The algorithm achieves accurate classification performances, with median overall accuracies (Cohen's K) of 90% (0.88), and with accuracies higher than 84% for each hydrometeor class.

  5. Classification Accuracy of Serum Apo A-I and S100B for the Diagnosis of Mild Traumatic Brain Injury and Prediction of Abnormal Initial Head Computed Tomography Scan

    PubMed Central

    Blyth, Brian J.; He, Hua; Mookerjee, Sohug; Jones, Courtney; Kiechle, Karin; Moynihan, Ryan; Wojcik, Susan M.; Grant, William D.; Secreti, LaLainia M.; Triner, Wayne; Moscati, Ronald; Leinhart, August; Ellis, George L.; Khan, Jawwad

    2013-01-01

    Abstract The objective of the current study was to determine the classification accuracy of serum S100B and apolipoprotein (apoA-I) for mild traumatic brain injury (mTBI) and abnormal initial head computed tomography (CT) scan, and to identify ethnic, racial, age, and sex variation in classification accuracy. We performed a prospective, multi-centered study of 787 patients with mTBI who presented to the emergency department within 6 h of injury and 467 controls who presented to the outpatient laboratory for routine blood work. Serum was analyzed for S100B and apoA-I. The outcomes were disease status (mTBI or control) and initial head CT scan. At cutoff values defined by 90% of controls, the specificity for mTBI using S100B (0.899 [95% confidence interval (CI): 0.78–0.92]) was similar to that using apoA-I (0.902 [0.87–0.93]), and the sensitivity using S100B (0.252 [0.22–0.28]) was similar to that using apoA-I (0.249 [0.22–0.28]). The area under the receiver operating characteristic curve (AUC) for the combination of S100B and apoA-I (0.738, 95% CI: 0.71, 0.77), however, was significantly higher than the AUC for S100B alone (0.709, 95% CI: 0.68, 0.74, p=0.001) and higher than the AUC for apoA-I alone (0.645, 95% CI: 0.61, 0.68, p<0.0001). The AUC for prediction of abnormal initial head CT scan using S100B was 0.694 (95%CI: 0.62, 0.77) and not significant for apoA-I. At a S100B cutoff of <0.060 μg/L, the sensitivity for abnormal head CT was 98%, and 22.9% of CT scans could have been avoided. There was significant age and race-related variation in the accuracy of S100B for the diagnosis of mTBI. The combined use of serum S100B and apoA-I maximizes classification accuracy for mTBI, but only S100B is needed to classify abnormal head CT scan. Because of significant subgroup variation in classification accuracy, age and race need to be considered when using S100B to classify subjects for mTBI. PMID:23758329

  6. Video genre classification using multimodal features

    NASA Astrophysics Data System (ADS)

    Jin, Sung Ho; Bae, Tae Meon; Choo, Jin Ho; Ro, Yong Man

    2003-12-01

    We propose a video genre classification method using multimodal features. The proposed method is applied for the preprocessing of automatic video summarization or the retrieval and classification of broadcasting video contents. Through a statistical analysis of low-level and middle-level audio-visual features in video, the proposed method can achieve good performance in classifying several broadcasting genres such as cartoon, drama, music video, news, and sports. In this paper, we adopt MPEG-7 audio-visual descriptors as multimodal features of video contents and evaluate the performance of the classification by feeding the features into a decision tree-based classifier which is trained by CART. The experimental results show that the proposed method can recognize several broadcasting video genres with a high accuracy and the classification performance with multimodal features is superior to the one with unimodal features in the genre classification.

  7. The Effects of Contingent Praise Upon the Achievement of a Deficit Junior High School Student in Oral Reading Accuracy in Probes Above Her Functional Grade Level.

    ERIC Educational Resources Information Center

    Proe, Susan; Wade, David

    Evaluated was the effectiveness of three training procedures (imitation training, imitation training with praise, and imitation training with points for an art supply contingency) in improving the oral reading accuracy and reading comprehension of a 13-year-old girl whose functional reading was at the second grade level. The procedures were…

  8. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  9. Assessment of optimized Markov models in protein fold classification.

    PubMed

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  10. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  11. Identification of Children with Language Impairment: Investigating the Classification Accuracy of the MacArthur-Bates Communicative Development Inventories, Level III

    ERIC Educational Resources Information Center

    Skarakis-Doyle, Elizabeth; Campbell, Wenonah; Dempsey, Lynn

    2009-01-01

    Purpose: This study tested the accuracy with which the MacArthur-Bates Communicative Development Inventories, Level III (CDI-III), a parent report measure of language ability, discriminated children with language impairment from those developing language typically. Method: Parents of 58 children, 49 with typically developing language (age 30 to 42…

  12. Achievements in mental health outcome measurement in Australia: Reflections on progress made by the Australian Mental Health Outcomes and Classification Network (AMHOCN)

    PubMed Central

    2012-01-01

    Background Australia’s National Mental Health Strategy has emphasised the quality, effectiveness and efficiency of services, and has promoted the collection of outcomes and casemix data as a means of monitoring these. All public sector mental health services across Australia now routinely report outcomes and casemix data. Since late-2003, the Australian Mental Health Outcomes and Classification Network (AMHOCN) has received, processed, analysed and reported on outcome data at a national level, and played a training and service development role. This paper documents the history of AMHOCN’s activities and achievements, with a view to providing lessons for others embarking on similar exercises. Method We conducted a desktop review of relevant documents to summarise the history of AMHOCN. Results AMHOCN has operated within a framework that has provided an overarching structure to guide its activities but has been flexible enough to allow it to respond to changing priorities. With no precedents to draw upon, it has undertaken activities in an iterative fashion with an element of ‘trial and error’. It has taken a multi-pronged approach to ensuring that data are of high quality: developing innovative technical solutions; fostering ‘information literacy’; maximising the clinical utility of data at a local level; and producing reports that are meaningful to a range of audiences. Conclusion AMHOCN’s efforts have contributed to routine outcome measurement gaining a firm foothold in Australia’s public sector mental health services. PMID:22640939

  13. Wavelet-based asphalt concrete texture grading and classification

    NASA Astrophysics Data System (ADS)

    Almuntashri, Ali; Agaian, Sos

    2011-03-01

    In this Paper, we introduce a new method for evaluation, quality control, and automatic grading of texture images representing different textural classes of Asphalt Concrete (AC). Also, we present a new asphalt concrete texture grading, wavelet transform, fractal, and Support Vector Machine (SVM) based automatic classification and recognition system. Experimental results were simulated using different cross-validation techniques and achieved an average classification accuracy of 91.4.0 % in a set of 150 images belonging to five different texture grades.

  14. Compensatory neurofuzzy model for discrete data classification in biomedical

    NASA Astrophysics Data System (ADS)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  15. Classification accuracy of the Millon Clinical Multiaxial Inventory-III modifier indices in the detection of malingering in traumatic brain injury.

    PubMed

    Aguerrevere, Luis E; Greve, Kevin W; Bianchini, Kevin J; Ord, Jonathan S

    2011-06-01

    The present study used criterion groups validation to determine the ability of the Millon Clinical Multiaxial Inventory-III (MCMI-III) modifier indices to detect malingering in traumatic brain injury (TBI). Patients with TBI who met criteria for malingered neurocognitive dysfunction (MND) were compared to those who showed no indications of malingering. Data were collected from 108 TBI patients referred for neuropsychological evaluation. Base rate (BR) scores were used for MCMI-III modifier indices: Disclosure, Desirability, and Debasement. Malingering classification was based on the Slick, Sherman, and Iverson (1999) criteria for MND. TBI patients were placed in one of three groups: MND (n = 55), not-MND (n = 26), or Indeterminate (n = 26).The not-MND group had lower modifier index scores than the MND group. At scores associated with a 4% false-positive (FP) error rate, sensitivity was 47% for Disclosure, 51% for Desirability, and 55% for Debasement. Examination of joint classification analysis demonstrated 54% sensitivity at cutoffs associated with 0% FP error rate. Results suggested that scores from all MCMI-III modifier indices are useful for identifying intentional symptom exaggeration in TBI. Debasement was the most sensitive of the three indices. Clinical implications are discussed. PMID:21424973

  16. A neural network approach to cloud classification

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.

    1990-01-01

    It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.

  17. Effect of various binning methods and ROI sizes on the accuracy of the automatic classification system for differentiation between diffuse infiltrative lung diseases on the basis of texture features at HRCT

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Sung, Yu Sub; Park, Bum-Woo; Lee, Youngjoo; Park, Seong Hoon; Lee, Young Kyung; Kang, Suk-Ho

    2008-03-01

    To find optimal binning, variable binning size linear binning (LB) and non-linear binning (NLB) methods were tested. In case of small binning size (Q <= 10), NLB shows significant better accuracy than the LB. K-means NLB (Q = 26) is statistically significant better than every LB. To find optimal binning method and ROI size of the automatic classification system for differentiation between diffuse infiltrative lung diseases on the basis of textural analysis at HRCT Six-hundred circular regions of interest (ROI) with 10, 20, and 30 pixel diameter, comprising of each 100 ROIs representing six regional disease patterns (normal, NL; ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EMPH; and consolidation, CONS) were marked by an experienced radiologist from HRCT images. Histogram (mean) and co-occurrence matrix (mean and SD of angular second moment, contrast, correlation, entropy, and inverse difference momentum) features were employed to test binning and ROI effects. To find optimal binning, variable binning size LB (bin size Q: 4~30, 32, 64, 128, 144, 196, 256, 384) and NLB (Q: 4~30) methods (K-means, and Fuzzy C-means clustering) were tested. For automated classification, a SVM classifier was implemented. To assess cross-validation of the system, a five-folding method was used. Each test was repeatedly performed twenty times. Overall accuracies with every combination of variable ROIs, and binning sizes were statistically compared. In case of small binning size (Q <= 10), NLB shows significant better accuracy than the LB. K-means NLB (Q = 26) is statistically significant better than every LB. In case of 30x30 ROI size and most of binning size, the K-means method showed better than other NLB and LB methods. When optimal binning and other parameters were set, overall sensitivity of the classifier was 92.85%. The sensitivity and specificity of the system for each class were as follows: NL, 95%, 97.9%; GGO, 80%, 98.9%; RO 85%, 96.9%; HC, 94

  18. The coarse pointing assembly for SILEX program or how to achieve outstanding pointing accuracy with simple hardware associated with consistent control laws

    NASA Astrophysics Data System (ADS)

    Buvat, Daniel; Muller, Gerard; Peyrot, Patrick

    1991-06-01

    Attention is given to the coarse pointing assembly (CPA) for the SILEX program, designed on the basis of 10 years of MATRA experience in very accurate drive mechanisms successfully conducted by the SPOT 1 and 2 flights as well as EURECA IOC. The basic key design feature of the mechanism is a 1200-step stepper motor driven in microstepping with harmonic defects compensation. This allows very low torque noise associated with a high accuracy (0.01 deg). The direct drive principle avoids backlash and permits a linear control of the output shaft of each drive. The only parts susceptible to possible wear are the ball bearings, which have a design margin of greater than 1000 for 10 yr of service life. In order to meet the dynamic performances required by SILEX, a closed loop active damping system is added to each drive unit. Two accelerometers used in a differential way sense the hinge microvibrations and an active damping loop reduces their Q factor down to a few dB. All CPA electrical parts (including motor, optical encoder, and accelerometer) are redundant to avoid single point of failure.

  19. Injury narrative text classification using factorization model

    PubMed Central

    2015-01-01

    Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93. PMID:26043671

  20. Classification of ASKAP Vast Radio Light Curves

    NASA Technical Reports Server (NTRS)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  1. Hydrometeor classification from two-dimensional video disdrometer data

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Monhart, S.; Schneebeli, M.; Raupach, T.; Berne, A.

    2014-09-01

    The first hydrometeor classification technique based on two-dimensional video disdrometer (2DVD) data is presented. The method provides an estimate of the dominant hydrometeor type falling over time intervals of 60 s during precipitation, using the statistical behavior of a set of particle descriptors as input, calculated for each particle image. The employed supervised algorithm is a support vector machine (SVM), trained over 60 s precipitation time steps labeled by visual inspection. In this way, eight dominant hydrometeor classes can be discriminated. The algorithm achieved high classification performances, with median overall accuracies (Cohen's K) of 90% (0.88), and with accuracies higher than 84% for each hydrometeor class.

  2. Voice pathology classification based on High-Speed Videoendoscopy.

    PubMed

    Panek, D; Skalski, A; Zielinski, T; Deliyski, D D

    2015-08-01

    This work presents a method for automatical and objective classification of patients with healthy and pathological vocal fold vibration impairments using High-Speed Videoendoscopy of the larynx. We used an image segmentation and extraction of a novel set of numerical parameters describing the spatio-temporal dynamics of vocal folds to classification according to the normal and pathological cases and achieved 73,3% cross-validation classification accuracy. This approach is promising to develop an automatic diagnosis tool of voice disorders. PMID:26736367

  3. SVM based target classification using RCS feature vectors

    NASA Astrophysics Data System (ADS)

    Bufler, Travis D.; Narayanan, Ram M.; Dogaru, Traian

    2015-05-01

    This paper investigates the application of SVM (Support Vector Machines) for the classification of stationary human targets and indoor clutter via spectral features. Applying Finite Difference Time Domain (FDTD) techniques allows us to examine the radar cross section (RCS) of humans and indoor clutter objects by utilizing different types of computer models. FDTD allows for the spectral characteristics to be acquired over a wide range of frequencies, polarizations, aspect angles, and materials. The acquired target and clutter RCS spectral characteristics are then investigated in terms of their potential for target classification using SVMs. Based upon variables such as frequency and polarization, a SVM classifier can be trained to classify unknown targets as a human or clutter. Furthermore, the application of feature selection is applied to the spectral characteristics to determine the SVM classification accuracy of a reduced dataset. Classification accuracies of nearly 90% are achieved using radial and polynomial kernels.

  4. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography.

    PubMed

    Al-Timemy, Ali H; Bugmann, Guido; Escudero, Javier; Outram, Nicholas

    2013-05-01

    A method for the classification of finger movements for dexterous control of prosthetic hands is proposed. Previous research was mainly devoted to identify hand movements as these actions generate strong electromyography (EMG) signals recorded from the forearm. In contrast, in this paper, we assess the use of multichannel surface electromyography (sEMG) to classify individual and combined finger movements for dexterous prosthetic control. sEMG channels were recorded from ten intact-limbed and six below-elbow amputee persons. Offline processing was used to evaluate the classification performance. The results show that high classification accuracies can be achieved with a processing chain consisting of time domain-autoregression feature extraction, orthogonal fuzzy neighborhood discriminant analysis for feature reduction, and linear discriminant analysis for classification. We show that finger and thumb movements can be decoded accurately with high accuracy with latencies as short as 200 ms. Thumb abduction was decoded successfully with high accuracy for six amputee persons for the first time. We also found that subsets of six EMG channels provide accuracy values similar to those computed with the full set of EMG channels (98% accuracy over ten intact-limbed subjects for the classification of 15 classes of different finger movements and 90% accuracy over six amputee persons for the classification of 12 classes of individual finger movements). These accuracy values are higher than previous studies, whereas we typically employed half the number of EMG channels per identified movement. PMID:24592463

  5. a Gsa-Svm Hybrid System for Classification of Binary Problems

    NASA Astrophysics Data System (ADS)

    Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan

    2011-06-01

    This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.

  6. Agricultural Land Use classification from Envisat MERIS

    NASA Astrophysics Data System (ADS)

    Brodsky, L.; Kodesova, R.

    2009-04-01

    This study focuses on evaluation of a crop classification from middle-resolution images (Envisat MERIS) at national level. The main goal of such Land Use product is to provid spatial data for optimisation of monitoring of surface and groundwater pollution in the Czech Republic caused by pesticides use in agriculture. As there is a lack of spatial data on the pesticide use and their distribution, the localisation can be done according to the crop cover on arable land derived from the remote sensing images. Often high resolution data are used for agricultural Land Use classification but only at regional or local level. Envisat MERIS data, due to the wide satellite swath, can be used also at national level. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. Methodology of a pixel-based MERIS classification applying an artificial neural-network (ANN) technique was proposed and performed at a national level, the Czech Republic. Five crop groups were finally selected - winter crops, spring crops, summer crops and other crops to be classified. Classification models included a linear, radial basis function (RBF) and a multi-layer percepton (MLP) ANN with 50 networks tested in training. The training data set consisted of about 200 samples per class, on which bootstrap resampling was applied. Selection of a subset of independent variables (Meris spectral channels) was used in the procedure. The best selected ANN model (MLP: 3 in, 13 hidden, 3 out) resulted in very good performance (correct classification rate 0.974, error 0.103) applying three crop types data set. In the next step data set with five crop types was evaluated. The ANN model (MLP: 5 in, 12 hidden, 5 out) performance was also very good (correct classification rate 0.930, error 0.370). The study showed, that while accuracy of about 80 % was achieved at pixel level when classifying only three crops, accuracy of about 70 % was achieved for five crop

  7. Linear Classification Functions.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Smith, Jerry D.

    Linear classification functions (LCFs) arise in a predictive discriminant analysis for the purpose of classifying experimental units into criterion groups. The relative contribution of the response variables to classification accuracy may be based on LCF-variable correlations for each group. It is proved that, if the raw response measures are…

  8. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    PubMed Central

    Rassem, Taha H.

    2014-01-01

    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors. PMID:24977193

  9. Real-time, resource-constrained object classification on a micro-air vehicle

    NASA Astrophysics Data System (ADS)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  10. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  11. Geographic stacking: Decision fusion to increase global land cover map accuracy

    NASA Astrophysics Data System (ADS)

    Clinton, Nicholas; Yu, Le; Gong, Peng

    2015-05-01

    Techniques to combine multiple classifier outputs is an established sub-discipline in data mining, referred to as "stacking," "ensemble classification," or "meta-learning." Here we describe how stacking of geographically allocated classifications can create a map composite of higher accuracy than any of the individual classifiers. We used both voting algorithms and trainable classifiers with a set of validation data to combine individual land cover maps. We describe the generality of this setup in terms of existing algorithms and accuracy assessment procedures. This method has the advantage of not requiring posterior probabilities or level of support for predicted class labels. We demonstrate the technique using Landsat based, 30-meter land cover maps, the highest resolution, globally available product of this kind. We used globally distributed validation samples to composite the maps and compute accuracy. We show that geographic stacking can improve individual map accuracy by up to 6.6%. The voting methods can also achieve higher accuracy than the best of the input classifications. Accuracies from different classifiers, input data, and output type are compared. The results are illustrated on a Landsat scene in California, USA. The compositing technique described here has broad applicability in remote sensing based map production and geographic classification.

  12. Visual traffic surveillance framework: classification to event detection

    NASA Astrophysics Data System (ADS)

    Ambardekar, Amol; Nicolescu, Mircea; Bebis, George; Nicolescu, Monica

    2013-10-01

    Visual traffic surveillance using computer vision techniques can be noninvasive, automated, and cost effective. Traffic surveillance systems with the ability to detect, count, and classify vehicles can be employed in gathering traffic statistics and achieving better traffic control in intelligent transportation systems. However, vehicle classification poses a difficult problem as vehicles have high intraclass variation and relatively low interclass variation. Five different object recognition techniques are investigated: principal component analysis (PCA)+difference from vehicle space, PCA+difference in vehicle space, PCA+support vector machine, linear discriminant analysis, and constellation-based modeling applied to the problem of vehicle classification. Three of the techniques that performed well were incorporated into a unified traffic surveillance system for online classification of vehicles, which uses tracking results to improve the classification accuracy. To evaluate the accuracy of the system, 31 min of traffic video containing multilane traffic intersection was processed. It was possible to achieve classification accuracy as high as 90.49% while classifying correctly tracked vehicles into four classes: cars, SUVs/vans, pickup trucks, and buses/semis. While processing a video, our system also recorded important traffic parameters such as the appearance, speed, trajectory of a vehicle, etc. This information was later used in a search assistant tool to find interesting traffic events.

  13. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  14. Ground Truth Sampling and LANDSAT Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Gunther, F. J.; Campbell, W. J.

    1982-01-01

    It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.

  15. Urban Tree Classification Using Full-Waveform Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Koma, Zs.; Koenig, K.; Höfle, B.

    2016-06-01

    Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  16. Discoveries, Achievements, and Personalities of the Women Who Evolved the Harvard Classification of Stellar Spectra: Williamina Fleming, Antonia Maury, and Annie Jump Cannon.

    NASA Astrophysics Data System (ADS)

    Welther, Barbara L.

    2010-01-01

    In 1915, the year in which Cannon (1863-1941) completed her work of classifying stars for The Henry Draper Catalogue, she published a popular article entitled, "Pioneering in the Classification of Stellar Spectra.” In it she gave a historical overview of the field in nineteenth-century Europe. She also detailed the context for the structured and routine work she and her colleagues had been engaged in for several years in America. The motivators that kept Cannon and the other women working diligently were the exciting prospect of making new discoveries, the reward of publicity, and their own personal pride. Usually, the discoveries consisted of finding a peculiar type of spectrum and identifying the star as a nova or variable. Such a discovery often resulted in a newspaper headline about the star and a story about the discoverer. This paper will outline the contributions each woman made to the classification system, her style of working, the papers she wrote and published, and the rewards she reaped for her dedication to the field.

  17. Evaluation of space SAR as a land-cover classification

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Williams, T. H. L.

    1985-01-01

    The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories.

  18. Sub-pixel image classification for forest types in East Texas

    NASA Astrophysics Data System (ADS)

    Westbrook, Joey

    with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.

  19. EEG Classification of Different Imaginary Movements within the Same Limb

    PubMed Central

    Yong, Xinyi; Menon, Carlo

    2015-01-01

    The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increase the number of control dimensions of a brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discriminates EEG signals corresponding to rest, imaginary grasp movements, and imaginary elbow movements. Besides, the differences between simple motor imagery and goal-oriented motor imagery in terms of their topographical distributions and classification accuracies are also being investigated. To the best of our knowledge, both problems have not been explored in the literature. Based on the EEG data recorded from 12 able-bodied individuals, we have demonstrated that same-limb motor imagery classification is possible. For the binary classification of imaginary grasp and elbow (goal-oriented) movements, the average accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against imaginary grasp and elbow movements, the average classification accuracy achieved is 60.7%, which is greater than the random classification accuracy of 33.3%. Our results also show that goal-oriented imaginary elbow movements lead to a better classification performance compared to simple imaginary elbow movements. This proposed BCI system could potentially be used in controlling a robotic rehabilitation system, which can assist stroke patients in performing task-specific exercises. PMID:25830611

  20. Remote Sensing Data Binary Classification Using Boosting with Simple Classifiers

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur

    2015-10-01

    Boosting is a classification method which has been proven useful in non-satellite image processing while it is still new to satellite remote sensing. It is a meta-algorithm, which builds a strong classifier from many weak ones in iterative way. We adapt the AdaBoost.M1 boosting algorithm in a new land cover classification scenario based on utilization of very simple threshold classifiers employing spectral and contextual information. Thresholds for the classifiers are automatically calculated adaptively to data statistics. The proposed method is employed for the exemplary problem of artificial area identification. Classification of IKONOS multispectral data results in short computational time and overall accuracy of 94.4% comparing to 94.0% obtained by using AdaBoost.M1 with trees and 93.8% achieved using Random Forest. The influence of a manipulation of the final threshold of the strong classifier on classification results is reported.

  1. Rotation Invariant Texture Classification Using Binary Filter Response Pattern (BFRP)

    NASA Astrophysics Data System (ADS)

    Guo, Zhenhua; Zhang, Lei; Zhang, David

    Using statistical textons for texture classification has shown great success recently. The maximal response 8 (MR8) method, which extracts an 8-dimensional feature set from 38 filters, is one of state-of-the-art rotation invariant texture classification methods. However, this method has two limitations. First, it require a training stage to build a texton library, thus the accuracy depends on the training samples; second, during classification, each 8-dimensional feature is assigned to a texton by searching for the nearest texton in the library, which is time consuming especially when the library size is big. In this paper, we propose a novel texton feature, namely Binary Filter Response Pattern (BFRP). It can well address the above two issues by encoding the filter response directly into binary representation. The experimental results on the CUReT database show that the proposed BFRP method achieves better classification result than MR8, especially when the training dataset is limited and less comprehensive.

  2. Classification for breast cancer diagnosis with Raman spectroscopy

    PubMed Central

    Li, Qingbo; Gao, Qishuo; Zhang, Guangjun

    2014-01-01

    In order to promote the development of the portable, low-cost and in vivo cancer diagnosis instrument, a miniature laser Raman spectrometer was employed to acquire the conventional Raman spectra for breast cancer detection in this paper. But it is difficult to achieve high discrimination accuracy. Then a novel method of adaptive weight k-local hyperplane (AWKH) is proposed to increase the classification accuracy. AWKH is an extension and improvement of K-local hyperplane distance nearest-neighbor (HKNN). It considers the features weights of the training data in the nearest neighbor selection and local hyperplane construction stage, which resolve the basic shortcoming of HKNN works well only for small values of the nearest-neighbor. Experimental results on Raman spectra of breast tissues in vitro show the proposed method can realize high classification accuracy. PMID:25071976

  3. A Longitudinal Analysis of Torque and its Relationship to Achievement and Educational Classification among Normal, Disturbed, and Learning-Disabled Children.

    ERIC Educational Resources Information Center

    Alberts, Fred L.; Edwards, Ron P.

    1983-01-01

    Examined the effect of the presence of torque (clockwise circlings with either hand on a visual-motor task) on academic achievement variables among normal, disturbed, and learning-disabled children (N=948). Results indicated no clear relationship between torque and the various academic variables. (LLL)

  4. Hyperspectral Data Classification Using Factor Graphs

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Müller, R.; Palubinskas, G.; Reinartz, P.

    2012-07-01

    Accurate classification of hyperspectral data is still a competitive task and new classification methods are developed to achieve desired tasks of hyperspectral data use. The objective of this paper is to develop a new method for hyperspectral data classification ensuring the classification model properties like transferability, generalization, probabilistic interpretation, etc. While factor graphs (undirected graphical models) are unfortunately not widely employed in remote sensing tasks, these models possess important properties such as representation of complex systems to model estimation/decision making tasks. In this paper we present a new method for hyperspectral data classification using factor graphs. Factor graph (a bipartite graph consisting of variables and factor vertices) allows factorization of a more complex function leading to definition of variables (employed to store input data), latent variables (allow to bridge abstract class to data), and factors (defining prior probabilities for spectral features and abstract classes; input data mapping to spectral features mixture and further bridging of the mixture to an abstract class). Latent variables play an important role by defining two-level mapping of the input spectral features to a class. Configuration (learning) on training data of the model allows calculating a parameter set for the model to bridge the input data to a class. The classification algorithm is as follows. Spectral bands are separately pre-processed (unsupervised clustering is used) to be defined on a finite domain (alphabet) leading to a representation of the data on multinomial distribution. The represented hyperspectral data is used as input evidence (evidence vector is selected pixelwise) in a configured factor graph and an inference is run resulting in the posterior probability. Variational inference (Mean field) allows to obtain plausible results with a low calculation time. Calculating the posterior probability for each class

  5. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images.

    PubMed

    Cohen, Gregory K; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B; van Schaik, André

    2016-01-01

    The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646

  6. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    PubMed Central

    Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André

    2016-01-01

    The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646

  7. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data.

    PubMed

    Tan, Lee N; Alwan, Abeer; Kossan, George; Cody, Martin L; Taylor, Charles E

    2015-03-01

    Annotation of phrases in birdsongs can be helpful to behavioral and population studies. To reduce the need for manual annotation, an automated birdsong phrase classification algorithm for limited data is developed. Limited data occur because of limited recordings or the existence of rare phrases. In this paper, classification of up to 81 phrase classes of Cassin's Vireo is performed using one to five training samples per class. The algorithm involves dynamic time warping (DTW) and two passes of sparse representation (SR) classification. DTW improves the similarity between training and test phrases from the same class in the presence of individual bird differences and phrase segmentation inconsistencies. The SR classifier works by finding a sparse linear combination of training feature vectors from all classes that best approximates the test feature vector. When the class decisions from DTW and the first pass SR classification are different, SR classification is repeated using training samples from these two conflicting classes. Compared to DTW, support vector machines, and an SR classifier without DTW, the proposed classifier achieves the highest classification accuracies of 94% and 89% on manually segmented and automatically segmented phrases, respectively, from unseen Cassin's Vireo individuals, using five training samples per class. PMID:25786922

  8. Gene classification using codon usage and support vector machines.

    PubMed

    Ma, Jianmin; Nguyen, Minh N; Rajapakse, Jagath C

    2009-01-01

    A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules. PMID:19179707

  9. Semi-Supervised Morphosyntactic Classification of Old Icelandic

    PubMed Central

    Urban, Kryztof; Tangherlini, Timothy R.; Vijūnas, Aurelijus; Broadwell, Peter M.

    2014-01-01

    We present IceMorph, a semi-supervised morphosyntactic analyzer of Old Icelandic. In addition to machine-read corpora and dictionaries, it applies a small set of declension prototypes to map corpus words to dictionary entries. A web-based GUI allows expert users to modify and augment data through an online process. A machine learning module incorporates prototype data, edit-distance metrics, and expert feedback to continuously update part-of-speech and morphosyntactic classification. An advantage of the analyzer is its ability to achieve competitive classification accuracy with minimum training data. PMID:25029462

  10. Classification of Fricative Consonants for Speech Enhancement in Hearing Devices

    PubMed Central

    Kong, Ying-Yee; Mullangi, Ala; Kokkinakis, Kostas

    2014-01-01

    Objective To investigate a set of acoustic features and classification methods for the classification of three groups of fricative consonants differing in place of articulation. Method A support vector machine (SVM) algorithm was used to classify the fricatives extracted from the TIMIT database in quiet and also in speech babble noise at various signal-to-noise ratios (SNRs). Spectral features including four spectral moments, peak, slope, Mel-frequency cepstral coefficients (MFCC), Gammatone filters outputs, and magnitudes of fast Fourier Transform (FFT) spectrum were used for the classification. The analysis frame was restricted to only 8 msec. In addition, commonly-used linear and nonlinear principal component analysis dimensionality reduction techniques that project a high-dimensional feature vector onto a lower dimensional space were examined. Results With 13 MFCC coefficients, 14 or 24 Gammatone filter outputs, classification performance was greater than or equal to 85% in quiet and at +10 dB SNR. Using 14 Gammatone filter outputs above 1 kHz, classification accuracy remained high (greater than 80%) for a wide range of SNRs from +20 to +5 dB SNR. Conclusions High levels of classification accuracy for fricative consonants in quiet and in noise could be achieved using only spectral features extracted from a short time window. Results of this work have a direct impact on the development of speech enhancement algorithms for hearing devices. PMID:24747721

  11. Vehicle classification for road tunnel surveillance

    NASA Astrophysics Data System (ADS)

    Frías-Velázquez, Andrés.; Van Hese, Peter; Pižurica, Aleksandra; Philips, Wilfried

    2013-03-01

    Vehicle classification for tunnel surveillance aims to not only retrieve vehicle class statistics, but also prevent accidents by recognizing vehicles carrying dangerous goods. In this paper, we describe a method to classify vehicle images that experience different geometrical variations and challenging photometrical conditions such as those found in road tunnels. Unlike previous approaches, we propose a classification method that does not rely on the length and height estimation of the vehicles. Alternatively, we propose a novel descriptor based on trace transform signatures to extract salient and non-correlated information of the vehicle images. Also, we propose a metric that measures the complexity of the vehicles' shape based on corner point detection. As a result, these features describe the vehicle's appearance and shape complexity independently of the scale, pose, and illumination conditions. Experiments with vehicles captured from three different cameras confirm the saliency and robustness of the features proposed, achieving an overall accuracy of 97.5% for the classification of four different vehicle classes. For vehicles transporting dangerous goods, our classification scheme achieves an average recall of 97.6% at a precision of 98.6% for the combination of lorries and tankers, which is a very good result considering the scene conditions.

  12. Satellite image classification using convolutional learning

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Han, Jiho; Park, Dong-Chul

    2013-10-01

    A satellite image classification method using Convolutional Neural Network (CNN) architecture is proposed in this paper. As a special case of deep learning, CNN classifies classes of images without any feature extraction step while other existing classification methods utilize rather complex feature extraction processes. Experiments on a set of satellite image data and the preliminary results show that the proposed classification method can be a promising alternative over existing feature extraction-based schemes in terms of classification accuracy and classification speed.

  13. Crop classification using HJ satellite multispectral data in the North China Plain

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wu, Bingfang; Li, Qiangzi

    2013-01-01

    The HJ satellite constellation is designed for environment and disaster monitoring by the Chinese government. This paper investigates the performance of multitemporal multispectral charge-coupled device (CCD) data on board HJ-1-A and HJ-1-B for crop classification in the North China Plain. Support vector machine classifier is selected for the classification using different combinations of multitemporal HJ multispectral data. The results indicate that multitemporal HJ CCD data could effectively identify wheat fields with an overall classification accuracy of 91.7%. Considering only single temporal data, 88.2% is the best classification accuracy achieved using the data acquired at the flowering time of wheat. The performance of the combination of two temporal data acquired at the jointing and flowering times of wheat is almost as well as using all three temporal data, indicating that two appropriate temporal data are enough for wheat classification, and much more data have little effect on improving the classification accuracy. Moreover, two temporal data acquired over a larger time interval achieves better results than that over a smaller interval. However, the field borders and smaller cotton fields cannot be identified effectively by HJ multispectral data, and misclassification phenomenon exists because of the relatively coarse spatial resolution.

  14. A wavelet transform based feature extraction and classification of cardiac disorder.

    PubMed

    Sumathi, S; Beaulah, H Lilly; Vanithamani, R

    2014-09-01

    This paper approaches an intellectual diagnosis system using hybrid approach of Adaptive Neuro-Fuzzy Inference System (ANFIS) model for classification of Electrocardiogram (ECG) signals. This method is based on using Symlet Wavelet Transform for analyzing the ECG signals and extracting the parameters related to dangerous cardiac arrhythmias. In these particular parameters were used as input of ANFIS classifier, five most important types of ECG signals they are Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF), Pre-Ventricular Contraction (PVC), Ventricular Fibrillation (VF), and Ventricular Flutter (VFLU) Myocardial Ischemia. The inclusion of ANFIS in the complex investigating algorithms yields very interesting recognition and classification capabilities across a broad spectrum of biomedical engineering. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies. The results give importance to that the proposed ANFIS model illustrates potential advantage in classifying the ECG signals. The classification accuracy of 98.24 % is achieved. PMID:25023652

  15. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis.

    PubMed

    Bai, Xiaolong; Niwas, Swamidoss Issac; Lin, Weisi; Ju, Bing-Feng; Kwoh, Chee Keong; Wang, Lipo; Sng, Chelvin C; Aquino, Maria C; Chew, Paul T K

    2016-04-01

    Classification of different mechanisms of angle closure glaucoma (ACG) is important for medical diagnosis. Error-correcting output code (ECOC) is an effective approach for multiclass classification. In this study, we propose a new ensemble learning method based on ECOC with application to classification of four ACG mechanisms. The dichotomizers in ECOC are first optimized individually to increase their accuracy and diversity (or interdependence) which is beneficial to the ECOC framework. Specifically, the best feature set is determined for each possible dichotomizer and a wrapper approach is applied to evaluate the classification accuracy of each dichotomizer on the training dataset using cross-validation. The separability of the ECOC codes is maximized by selecting a set of competitive dichotomizers according to a new criterion, in which a regularization term is introduced in consideration of the binary classification performance of each selected dichotomizer. The proposed method is experimentally applied for classifying four ACG mechanisms. The eye images of 152 glaucoma patients are collected by using anterior segment optical coherence tomography (AS-OCT) and then segmented, from which 84 features are extracted. The weighted average classification accuracy of the proposed method is 87.65 % based on the results of leave-one-out cross-validation (LOOCV), which is much better than that of the other existing ECOC methods. The proposed method achieves accurate classification of four ACG mechanisms which is promising to be applied in diagnosis of glaucoma. PMID:26798075

  16. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  17. Methods of training set construction: Towards improving performance for automated mesozooplankton image classification systems

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yi; Ho, Pei-Chi; Sastri, Akash R.; Lee, Yu-Ching; Gong, Gwo-Ching; Hsieh, Chih-hao

    2012-03-01

    The correspondence between variation in the physico-chemical properties of the water column and the taxonomic composition of zooplankton communities represents an important indicator of long-term and broad-scale change in marine systems. Evaluating and relating compositional change to various forms of perturbation demand routine taxonomic identification methods that can be applied rapidly and accurately. Traditional identification by human experts is accurate but very time-consuming. The application of automated image classification systems for plankton communities has emerged as a potential resolution to this limitation. The objective of this study is to evaluate how specific aspects of training set construction for the ZooScan system influenced our ability to relate variation in zooplankton taxonomic composition to variation of hydrographic properties in the East China Sea. Specifically, we compared the relative utility of zooplankton classifiers trained with the following: (i) water mass-specific and global training sets; (ii) balanced versus imbalanced training sets. The classification performance (accuracy and precision) of water-mass specific classifiers tended to decline with environmental dissimilarity, suggesting water-mass specificity However, similar classification performance was also achieved by training our system with samples representing all hydrographic sub-regions (i.e. a global classifier). After examining category-specific accuracy, we found that equal performance arises because the accuracy was mainly determined by dominant taxa. This apparently high classification accuracy was at the expense of accurate classification of rare taxa. To explore the basis for such biased classification, we trained our global classifier with an equal amount of training data for each category (balanced training). We found that balanced training had higher accuracy at recognizing rare taxa but low accuracy at abundant taxa. The errors introduced in recognition still

  18. The method of narrow-band audio classification based on universal noise background model

    NASA Astrophysics Data System (ADS)

    Rui, Rui; Bao, Chang-chun

    2013-03-01

    Audio classification is the basis of content-based audio analysis and retrieval. The conventional classification methods mainly depend on feature extraction of audio clip, which certainly increase the time requirement for classification. An approach for classifying the narrow-band audio stream based on feature extraction of audio frame-level is presented in this paper. The audio signals are divided into speech, instrumental music, song with accompaniment and noise using the Gaussian mixture model (GMM). In order to satisfy the demand of actual environment changing, a universal noise background model (UNBM) for white noise, street noise, factory noise and car interior noise is built. In addition, three feature schemes are considered to optimize feature selection. The experimental results show that the proposed algorithm achieves a high accuracy for audio classification, especially under each noise background we used and keep the classification time less than one second.

  19. Dissimilarity representations in lung parenchyma classification

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; de Bruijne, Marleen

    2009-02-01

    A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).

  20. Minimum distance classification in remote sensing

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Landgrebe, D. A.

    1972-01-01

    The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.

  1. Galaxy Image Processing and Morphological Classification Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kates-Harbeck, Julian

    2012-03-01

    This work uses data from the Sloan Digital Sky Survey (SDSS) and the Galaxy Zoo Project for classification of galaxy morphologies via machine learning. SDSS imaging data together with reliable human classifications from Galaxy Zoo provide the training set and test set for the machine learning architectures. Classification is performed with hand-picked, pre-computed features from SDSS as well as with the raw imaging data from SDSS that was available to humans in the Galaxy Zoo project. With the hand-picked features and a logistic regression classifier, 95.21% classification accuracy and an area under the ROC curve of 0.986 are attained. In the case of the raw imaging data, the images are first processed to remove background noise, image artifacts, and celestial objects other than the galaxy of interest. They are then rotated onto their principle axis of variance to guarantee rotational invariance. The processed images are used to compute color information, up to 4^th order central normalized moments, and radial intensity profiles. These features are used to train a support vector machine with a 3^rd degree polynomial kernel, which achieves a classification accuracy of 95.89% with an ROC area of 0.943.

  2. 2-Stage Classification Modeling

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore » most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less

  3. Classification of Tumor Samples from Expression Data Using Decision Trunks

    PubMed Central

    Ulfenborg, Benjamin; Klinga-Levan, Karin; Olsson, Björn

    2013-01-01

    We present a novel machine learning approach for the classification of cancer samples using expression data. We refer to the method as “decision trunks,” since it is loosely based on decision trees, but contains several modifications designed to achieve an algorithm that: (1) produces smaller and more easily interpretable classifiers than decision trees; (2) is more robust in varying application scenarios; and (3) achieves higher classification accuracy. The decision trunk algorithm has been implemented and tested on 26 classification tasks, covering a wide range of cancer forms, experimental methods, and classification scenarios. This comprehensive evaluation indicates that the proposed algorithm performs at least as well as the current state of the art algorithms in terms of accuracy, while producing classifiers that include on average only 2–3 markers. We suggest that the resulting decision trunks have clear advantages over other classifiers due to their transparency, interpretability, and their correspondence with human decision-making and clinical testing practices. PMID:23467331

  4. Analyzing thematic maps and mapping for accuracy

    USGS Publications Warehouse

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by

  5. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  6. Semantic Shot Classification in Sports Video

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Xu, Min; Tian, Qi

    2003-01-01

    In this paper, we present a unified framework for semantic shot classification in sports videos. Unlike previous approaches, which focus on clustering by aggregating shots with similar low-level features, the proposed scheme makes use of domain knowledge of a specific sport to perform a top-down video shot classification, including identification of video shot classes for each sport, and supervised learning and classification of the given sports video with low-level and middle-level features extracted from the sports video. It is observed that for each sport we can predefine a small number of semantic shot classes, about 5~10, which covers 90~95% of sports broadcasting video. With the supervised learning method, we can map the low-level features to middle-level semantic video shot attributes such as dominant object motion (a player), camera motion patterns, and court shape, etc. On the basis of the appropriate fusion of those middle-level shot classes, we classify video shots into the predefined video shot classes, each of which has a clear semantic meaning. The proposed method has been tested over 4 types of sports videos: tennis, basketball, volleyball and soccer. Good classification accuracy of 85~95% has been achieved. With correctly classified sports video shots, further structural and temporal analysis, such as event detection, video skimming, table of content, etc, will be greatly facilitated.

  7. Data resolution versus forestry classification and modeling

    NASA Technical Reports Server (NTRS)

    Kan, E. P.; Ball, D. L.; Basu, J. P.; Smelser, R. L.

    1975-01-01

    This paper examines the effects on timber stand computer classification accuracies caused by changes in the resolution of remotely sensed multispectral data. This investigation is valuable, especially for determining optimal sensor and platform designs. Theoretical justification and experimental verification support the finding that classification accuracies for low resolution data could be better than the accuracies for data with higher resolution. The increase in accuracy is constructed as due to the reduction of scene inhomogeneity at lower resolution. The computer classification scheme was a maximum likelihood classifier.

  8. Schizophrenia classification using functional network features

    NASA Astrophysics Data System (ADS)

    Rish, Irina; Cecchi, Guillermo A.; Heuton, Kyle

    2012-03-01

    This paper focuses on discovering statistical biomarkers (features) that are predictive of schizophrenia, with a particular focus on topological properties of fMRI functional networks. We consider several network properties, such as node (voxel) strength, clustering coefficients, local efficiency, as well as just a subset of pairwise correlations. While all types of features demonstrate highly significant statistical differences in several brain areas, and close to 80% classification accuracy, the most remarkable results of 93% accuracy are achieved by using a small subset of only a dozen of most-informative (lowest p-value) correlation features. Our results suggest that voxel-level correlations and functional network features derived from them are highly informative about schizophrenia and can be used as statistical biomarkers for the disease.

  9. An approach for hyperspectral image classification utilization spatial-spectral combined kernel SVM

    NASA Astrophysics Data System (ADS)

    Wang, Hailei; Sun, Bingyun; Gui, Yuanmiao; Chen, Yanping; Zhou, Dongbo; Wu, Xuelian

    2015-12-01

    Hyperspectral images belong to high-dimensional data having a lot of redundancy information when they are directly used to classification. Support vector machine (SVM) can be employed to map hyperspectral data to high dimensional space effectively and make them linearly separable. In this paper, spectral and spatial information of hyperspectral images were used to construct SVM kernel function respectively. This paper proposed a hyperspectral image classification method utilization spatial-spectral combined kernel SVM in order to improve classification accuracy. The proposed method was used to classify AVIRIS hyperspectral images. The results demonstrated that the proposed SVM method can achieve 96.13% overall accuracy for the single category classification and 84.81% overall accuracy for multi-class classification only using ten percent of the total samples as the training samples. That is to say, the proposed method can make full use of the spectral information and spatial information of hyperspectral data, and effectively distinguish different categories compared with the traditional SVM for classification.

  10. An ellipse detection algorithm based on edge classification

    NASA Astrophysics Data System (ADS)

    Yu, Liu; Chen, Feng; Huang, Jianming; Wei, Xiangquan

    2015-12-01

    In order to enhance the speed and accuracy of ellipse detection, an ellipse detection algorithm based on edge classification is proposed. Too many edge points are removed by making edge into point in serialized form and the distance constraint between the edge points. It achieves effective classification by the criteria of the angle between the edge points. And it makes the probability of randomly selecting the edge points falling on the same ellipse greatly increased. Ellipse fitting accuracy is significantly improved by the optimization of the RED algorithm. It uses Euclidean distance to measure the distance from the edge point to the elliptical boundary. Experimental results show that: it can detect ellipse well in case of edge with interference or edges blocking each other. It has higher detecting precision and less time consuming than the RED algorithm.

  11. Artificial neural network classification of pharyngeal high-resolution manometry with impedance data

    PubMed Central

    Hoffman, Matthew R.; Mielens, Jason D.; Omari, Taher I.; Rommel, Nathalie; Jiang, Jack J.; McCulloch, Timothy M.

    2013-01-01

    Purpose To use classification algorithms to classify swallows as safe, penetration, or aspiration based on measurements obtained from pharyngeal high-resolution manometry (HRM) with impedance. Study design Case series evaluating new method of data analysis. Method Multilayer perceptron (MLP), an artificial neural network (ANN), was evaluated for its ability to classify swallows as safe, penetration, or aspiration. Data were collected from 25 disordered subjects swallowing 5 or 10 ml boluses. Following extraction of relevant parameters, a subset of the data was used to train the models and the remaining swallows were then independently classified by the ANN. Results A classification accuracy of 89.4±2.4% was achieved when including all parameters. Including only manometry-related parameters yielded a classification accuracy of 85.0±6.0% while including only impedance-related parameters yielded a classification accuracy of 76.0±4.9%. Receiver operating characteristic (ROC) analysis yielded areas under the curve (AUC) of 0.8912 for safe, 0.8187 for aspiration, and 0.8014 for penetration. Conclusions Classification models show high accuracy in classifying swallows from dysphagic patients as safe or unsafe. HRM-impedance with ANN represents one method which could be used clinically to screen for patients at risk for penetration or aspiration. PMID:23070810

  12. Spatio-spectral filters for low-density surface electromyographic signal classification.

    PubMed

    Huang, Gan; Zhang, Zhiguo; Zhang, Dingguo; Zhu, Xiangyang

    2013-05-01

    In this paper, we proposed to utilize a novel spatio-spectral filter, common spatio-spectral pattern (CSSP), to improve the classification accuracy in identifying intended motions based on low-density surface electromyography (EMG). Five able-bodied subjects and a transradial amputee participated in an experiment of eight-task wrist and hand motion recognition. Low-density (six channels) surface EMG signals were collected on forearms. Since surface EMG signals are contaminated by large amount of noises from various sources, the performance of the conventional time-domain feature extraction method is limited. The CSSP method is a classification-oriented optimal spatio-spectral filter, which is capable of separating discriminative information from noise and, thus, leads to better classification accuracy. The substantially improved classification accuracy of the CSSP method over the time-domain and other methods is observed in all five able-bodied subjects and verified via the cross-validation. The CSSP method can also achieve better classification accuracy in the amputee, which shows its potential use for functional prosthetic control. PMID:23385330

  13. Accuracy of deception judgments.

    PubMed

    Bond, Charles F; DePaulo, Bella M

    2006-01-01

    We analyze the accuracy of deception judgments, synthesizing research results from 206 documents and 24,483 judges. In relevant studies, people attempt to discriminate lies from truths in real time with no special aids or training. In these circumstances, people achieve an average of 54% correct lie-truth judgments, correctly classifying 47% of lies as deceptive and 61% of truths as nondeceptive. Relative to cross-judge differences in accuracy, mean lie-truth discrimination abilities are nontrivial, with a mean accuracy d of roughly .40. This produces an effect that is at roughly the 60th percentile in size, relative to others that have been meta-analyzed by social psychologists. Alternative indexes of lie-truth discrimination accuracy correlate highly with percentage correct, and rates of lie detection vary little from study to study. Our meta-analyses reveal that people are more accurate in judging audible than visible lies, that people appear deceptive when motivated to be believed, and that individuals regard their interaction partners as honest. We propose that people judge others' deceptions more harshly than their own and that this double standard in evaluating deceit can explain much of the accumulated literature. PMID:16859438

  14. Canonical analysis for increased classification speed and channel selection

    NASA Technical Reports Server (NTRS)

    Eppler, W.

    1976-01-01

    The quadratic form can be expressed as a monotonically increasing sum of squares when the inverse covariance matrix is represented in canonical form. This formulation has the advantage that, in testing a particular class hypothesis, computations can be discontinued when the partial sum exceeds the smallest value obtained for other classes already tested. A method for channel selection is presented which arranges the original input measurements in that order which minimizes the expected number of computations. The classification algorithm was tested on data from LARS Flight Line C1 and found to reduce the sum-of-products operations by a factor of 6.7 in comparison with the conventional approach. In effect, the accuracy of a twelve-channel classification was achieved using only that CPU time required for a conventional four-channel classification.

  15. The Classification of HEp-2 Cell Patterns Using Fractal Descriptor.

    PubMed

    Xu, Rudan; Sun, Yuanyuan; Yang, Zhihao; Song, Bo; Hu, Xiaopeng

    2015-07-01

    Indirect immunofluorescence (IIF) with HEp-2 cells is considered as a powerful, sensitive and comprehensive technique for analyzing antinuclear autoantibodies (ANAs). The automatic classification of the HEp-2 cell images from IIF has played an important role in diagnosis. Fractal dimension can be used on the analysis of image representing and also on the property quantification like texture complexity and spatial occupation. In this study, we apply the fractal theory in the application of HEp-2 cell staining pattern classification, utilizing fractal descriptor firstly in the HEp-2 cell pattern classification with the help of morphological descriptor and pixel difference descriptor. The method is applied to the data set of MIVIA and uses the support vector machine (SVM) classifier. Experimental results show that the fractal descriptor combining with morphological descriptor and pixel difference descriptor makes the precisions of six patterns more stable, all above 50%, achieving 67.17% overall accuracy at best with relatively simple feature vectors. PMID:26011888

  16. Reordering based integrative expression profiling for microarray classification

    PubMed Central

    2012-01-01

    Background Current network-based microarray analysis uses the information of interactions among concerned genes/gene products, but still considers each gene expression individually. We propose an organized knowledge-supervised approach - Integrative eXpression Profiling (IXP), to improve microarray classification accuracy, and help discover groups of genes that have been too weak to detect individually by traditional ways. To implement IXP, ant colony optimization reordering (ACOR) algorithm is used to group functionally related genes in an ordered way. Results Using Alzheimer's disease (AD) as an example, we demonstrate how to apply ACOR-based IXP approach into microarray classifications. Using a microarray dataset - GSE1297 with 31 samples as training set, the result for the blinded classification on another microarray dataset - GSE5281 with 151 samples, shows that our approach can improve accuracy from 74.83% to 82.78%. A recently-published 1372-probe signature for AD can only achieve 61.59% accuracy in the same condition. The ACOR-based IXP approach also has better performance than the IXP approach based on classic network ranking, graph clustering, and random-ordering methods in an overall classification performance comparison. Conclusions The ACOR-based IXP approach can serve as a knowledge-supervised feature transformation approach to increase classification accuracy dramatically, by transforming each gene expression profile to an integrated expression files as features inputting into standard classifiers. The IXP approach integrates both gene expression information and organized knowledge - disease gene/protein network topology information, which is represented as both network node weights (local topological properties) and network node orders (global topological characteristics). PMID:22536860

  17. An Analysis of Scale and Rotation Invariance in the Bag-of-Features Method for Histopathological Image Classification

    PubMed Central

    Raza, S. Hussain; Parry, R. Mitchell; Moffitt, Richard A.; Young, Andrew N.; Wang, May D.

    2016-01-01

    The bag-of-features method has emerged as a useful and flexible tool that can capture medically relevant image characteristics. In this paper, we study the effect of scale and rotation invariance in the bag-of-features framework for Renal Cell Carcinoma subtype classification. We estimated the performance of different features by linear support vector machine over 10 iterations of 3-fold cross validation. For a very heterogeneous dataset labeled by an expert pathologist, we achieve a classification accuracy of 88% with four subtypes. Our study shows that rotation invariance is more important than scale invariance but combining both properties gives better classification performance. PMID:22003685

  18. Classification Options

    ERIC Educational Resources Information Center

    Exceptional Children, 1978

    1978-01-01

    The interview presents opinions of Nicholas Hobbs on the classification of exceptional children, including topics such as ecologically oriented classification systems, the role of parents, and need for revision of teacher preparation programs. (IM)

  19. Gaussian maximum likelihood and contextual classification algorithms for multicrop classification experiments using thematic mapper and multispectral scanner sensor data

    NASA Technical Reports Server (NTRS)

    Di Zenzo, Silvano; Degloria, Stephen D.; Bernstein, R.; Kolsky, Harwood G.

    1987-01-01

    The paper presents the results of a four-factor two-level analysis of a variance experiment designed to evaluate the combined effect of the improved quality of remote-sensor data and the use of context by the classifier on classification accuracy. The improvement achievable by using the context via relaxation techniques is significantly smaller than that provided by an increase of the radiometric resolution of the sensor from 6 to 8 bits per sample (the relative increase in radiometric resolution of TM relative to MSS). It is almost equal to that achievable by an increase in the spectral coverage as provided by TM relative to MSS.

  20. Interferometric SAR coherence classification utility assessment

    SciTech Connect

    Yocky, D.A.

    1998-03-01

    The classification utility of a dual-antenna interferometric synthetic aperture radar (IFSAR) is explored by comparison of maximum likelihood classification results for synthetic aperture radar (SAR) intensity images and IPSAR intensity and coherence images. The addition of IFSAR coherence improves the overall classification accuracy for classes of trees, water, and fields. A threshold intensity-coherence classifier is also compared to the intensity-only classification results.

  1. Hybrid fNIRS-EEG based classification of auditory and visual perception processes

    PubMed Central

    Putze, Felix; Hesslinger, Sebastian; Tse, Chun-Yu; Huang, YunYing; Herff, Christian; Guan, Cuntai; Schultz, Tanja

    2014-01-01

    For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy. PMID:25477777

  2. Classification of LiDAR Data with Point Based Classification Methods

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2016-06-01

    LiDAR is one of the most effective systems for 3 dimensional (3D) data collection in wide areas. Nowadays, airborne LiDAR data is used frequently in various applications such as object extraction, 3D modelling, change detection and revision of maps with increasing point density and accuracy. The classification of the LiDAR points is the first step of LiDAR data processing chain and should be handled in proper way since the 3D city modelling, building extraction, DEM generation, etc. applications directly use the classified point clouds. The different classification methods can be seen in recent researches and most of researches work with the gridded LiDAR point cloud. In grid based data processing of the LiDAR data, the characteristic point loss in the LiDAR point cloud especially vegetation and buildings or losing height accuracy during the interpolation stage are inevitable. In this case, the possible solution is the use of the raw point cloud data for classification to avoid data and accuracy loss in gridding process. In this study, the point based classification possibilities of the LiDAR point cloud is investigated to obtain more accurate classes. The automatic point based approaches, which are based on hierarchical rules, have been proposed to achieve ground, building and vegetation classes using the raw LiDAR point cloud data. In proposed approaches, every single LiDAR point is analyzed according to their features such as height, multi-return, etc. then automatically assigned to the class which they belong to. The use of un-gridded point cloud in proposed point based classification process helped the determination of more realistic rule sets. The detailed parameter analyses have been performed to obtain the most appropriate parameters in the rule sets to achieve accurate classes. The hierarchical rule sets were created for proposed Approach 1 (using selected spatial-based and echo-based features) and Approach 2 (using only selected spatial-based features

  3. Remote Sensing Classification Uncertainty: Validating Probabilistic Pixel Level Classification

    NASA Astrophysics Data System (ADS)

    Vrettas, Michail; Cornford, Dan; Bastin, Lucy; Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Ninyerola, Miquel

    2013-04-01

    There already exists an extensive literature on classification of remotely sensed imagery, and indeed classification more widely, that considers a wide range of probabilistic and non-probabilistic classification methodologies. Although for many probabilistic classification methodologies posterior class probabilities are produced per pixel (observation) these are often not communicated at the pixel level, and typically not validated at the pixel level. Most often the probabilistic classification in converted into a hard classification (of the most probable class) and the accuracy of the resulting classification is reported in terms of a global confusion matrix, or some score derived from this. For applications where classification accuracy is spatially variable and where pixel level estimates of uncertainty can be meaningfully exploited in workflows that propagate uncertainty validating and communicating the pixel level uncertainty opens opportunities for more refined and accountable modelling. In this work we describe our recent work applying and validation of a range of probabilistic classifiers. Using a multi-temporal Landsat data set of the Ebro Delta in Catalonia, which has been carefully radiometrically and geometrically corrected, we present a range of Bayesian classifiers from simple Bayesian linear discriminant analysis to a complex variational Gaussian process based classifier. Field study derived labelled data, classified into 8 classes, which primarily consider land use and the degree of flooding in what is a rice growing region, are used to train the pixel level classifiers. Our focus is not so much on the classification accuracy, but rather the validation of the probabilistic classification made by all methods. We present a range of validation plots and scores, many of which are used for probabilistic weather forecast verification, but are new to remote sensing classification including of course the standard measures of misclassification, but also

  4. A study of land use/land cover information extraction classification technology based on DTC

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zheng, Yong-guo; Yang, Feng-jie; Jia, Wei-jie; Xiong, Chang-zhen

    2008-10-01

    Decision Tree Classification (DTC) is one organizational form of the multi-level recognition system, which changes the complicated classification into simple categories, and then gradually resolves it. The paper does LULC Decision Tree Classification research on some areas of Gansu Province in the west of China. With the mid-resolution remote sensing data as the main data resource, the authors adopt decision-making classification technology method, taking advantage of its character that it imitates the processing pattern of human judgment and thinking and its fault-tolerant character, and also build the decision tree LULC classical pattern. The research shows that the methods and techniques can increase the level of automation and accuracy of LULC information extraction, and better carry out LULC information extraction on the research areas. The main aspects of the research are as follows: 1. We collected training samples firstly, established a comprehensive database which is supported by remote sensing and ground data; 2. By utilizing CART system, and based on multiply sources and time phases remote sensing data and other assistance data, the DTC's technology effectively combined the unsupervised classification results with the experts' knowledge together. The method and procedure for distilling the decision tree information were specifically developed. 3. In designing the decision tree, based on the various object of types classification rules, we established and pruned DTC'S model for the purpose of achieving effective treatment of subdivision classification, and completed the land use and land cover classification of the research areas. The accuracy of evaluation showed that the classification accuracy reached upwards 80%.

  5. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    PubMed

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement. PMID:25420271

  6. Fast Model Adaptation for Automated Section Classification in Electronic Medical Records.

    PubMed

    Ni, Jian; Delaney, Brian; Florian, Radu

    2015-01-01

    Medical information extraction is the automatic extraction of structured information from electronic medical records, where such information can be used for improving healthcare processes and medical decision making. In this paper, we study one important medical information extraction task called section classification. The objective of section classification is to automatically identify sections in a medical document and classify them into one of the pre-defined section types. Training section classification models typically requires large amounts of human labeled training data to achieve high accuracy. Annotating institution-specific data, however, can be both expensive and time-consuming; which poses a big hurdle for adapting a section classification model to new medical institutions. In this paper, we apply two advanced machine learning techniques, active learning and distant supervision, to reduce annotation cost and achieve fast model adaptation for automated section classification in electronic medical records. Our experiment results show that active learning reduces the annotation cost and time by more than 50%, and distant supervision can achieve good model accuracy using weakly labeled training data only. PMID:26262005

  7. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    SciTech Connect

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-03

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-sample classification accuracy achieved by our feature pair with those reported previously.

  8. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    NASA Astrophysics Data System (ADS)

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-01

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp-bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Finally, we compare the out-of-sample classification accuracy achieved by our feature pair with those reported previously.

  9. Spaceborne SAR data for land-cover classification and change detection

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Dobson, M. C.

    1983-01-01

    Supervised maximum-likelihood classifications of Seasat, SIR-A, and Landsat pixel data demonstrated that SIR-A data provided the most accurate discrimination (72 percent) between five land-cover categories. Spatial averaging of the SAR data improved classification accuracy significantly due to a reduction in both fading and within-field variability. The best multichannel classification accuracy (97.5 percent) was achieved by combining the SIR-A data with two Seasat images (ascending and descending orbits). In addition, semiquantitative analysis of Seasat-A digital data shows that orbital SAR imagery can be successfully used for multitemporal detection of change related to hydrologic and agronomic conditions by using simple machine processing techniques.

  10. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    DOE PAGESBeta

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-03

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-samplemore » classification accuracy achieved by our feature pair with those reported previously.« less

  11. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    PubMed Central

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-01-01

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Finally, we compare the out-of-sample classification accuracy achieved by our feature pair with those reported previously. PMID:26631979

  12. Learning regular expressions for clinical text classification

    PubMed Central

    Bui, Duy Duc An; Zeng-Treitler, Qing

    2014-01-01

    Objectives Natural language processing (NLP) applications typically use regular expressions that have been developed manually by human experts. Our goal is to automate both the creation and utilization of regular expressions in text classification. Methods We designed a novel regular expression discovery (RED) algorithm and implemented two text classifiers based on RED. The RED+ALIGN classifier combines RED with an alignment algorithm, and RED+SVM combines RED with a support vector machine (SVM) classifier. Two clinical datasets were used for testing and evaluation: the SMOKE dataset, containing 1091 text snippets describing smoking status; and the PAIN dataset, containing 702 snippets describing pain status. We performed 10-fold cross-validation to calculate accuracy, precision, recall, and F-measure metrics. In the evaluation, an SVM classifier was trained as the control. Results The two RED classifiers achieved 80.9–83.0% in overall accuracy on the two datasets, which is 1.3–3% higher than SVM's accuracy (p<0.001). Similarly, small but consistent improvements have been observed in precision, recall, and F-measure when RED classifiers are compared with SVM alone. More significantly, RED+ALIGN correctly classified many instances that were misclassified by the SVM classifier (8.1–10.3% of the total instances and 43.8–53.0% of SVM's misclassifications). Conclusions Machine-generated regular expressions can be effectively used in clinical text classification. The regular expression-based classifier can be combined with other classifiers, like SVM, to improve classification performance. PMID:24578357

  13. Texture classification by a two-level hybrid scheme

    NASA Astrophysics Data System (ADS)

    Pok, Gouchol; Liu, Jyh-Charn S.

    1998-12-01

    In this paper, we propose a novel feature extraction scheme for texture classification, in which the texture features are extracted by a two-level hybrid scheme, by integrating two statistical techniques of texture analysis. In the first step, the low level features are extracted by the Gabor filters, and they are encoded with the feature map indices, using Kohonen's SOFM algorithm. In the next step, the encoded feature images are processed by the Gabor filters, Gaussian Markov random fields (GMRF), and Grey level co- occurrence matrix (GLCM) methods to extract the high level features. By integrating two methods of texture analysis in a cascaded manner, we obtained the texture features which achieved a high accuracy for the classification of texture patterns. The proposed schemes were tested on the real microtextures, and the Gabor-GMRF scheme achieved 10 percent increase of the recognition rate, compared to the result obtained by the simple Gabor filtering.

  14. Development of advanced global cloud classification schemes

    NASA Astrophysics Data System (ADS)

    Konvalin, Chris; Logar, Antonette M.; Lloyd, David; Corwin, Edward; Penaloza, Manuel; Feind, Rand E.; Welch, Ronald M.

    1997-01-01

    impact on the neural network classification were deleted. A new approach clusters the features and selects the members of the cluster with the highest information content. Features are still removed one at a time but clustering ensures that statistically different features are preserved and allows for parallelization of the feature selection process. In addition, a fuzzy expert system provides a much faster classification accuracy approximation. This technique was able to significantly reduce the size of the feature vectors without sacrificing classification accuracy. The switching mechanism used in this work employs a series of static and adaptive thresholds derived from statistical analysis of polar scenes. This technique is faster than the corresponding neural network switching mechanism and can be easily changed as additional data becomes available. The resulting system, then, uses the adaptive thresholds to select the appropriate neural network from a collection of multilayer perceptron networks each responsible for classifying a subset of the total number of classes. The inputs to these networks are selected by the fuzzy logic algorithm. The difficulty of finding these thresholds, a task performed by a human expert, motivated the use of a genetic algorithm to determine these values. This system was able to achieve 96.45% accuracy on the fundamental problem of distinguishing cloud from non-cloud classes. The time required to classify 468,750 pixels in a satellite image was 50 seconds.3220

  15. Improving image classification in a complex wetland ecosystem through image fusion techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Sinha, Priyakant; Taylor, Subhashni

    2014-01-01

    The aim of this study was to evaluate the impact of image fusion techniques on vegetation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN) and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram-Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of their mapping accuracy to a normal MS image using maximum-likelihood classification (MLC) and support vector machine (SVM) methods. Gram-Schmidt fusion technique yielded the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS, PC, and MS images, respectively. Visual and statistical analyses of the fused images showed that the Gram-Schmidt spectral sharpening technique preserved spectral quality much better than the principal component, Brovey, and HSV fused images. Other factors, such as the growth stage of species and the presence of extensive background water in many parts of the study area, had an impact on classification accuracies.

  16. Land Cover Classification from Full-Waveform LIDAR Data Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Li, C. R.; Ma, L.; Guan, H. C.

    2016-06-01

    In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.

  17. Synergistic combination technique for SAR image classification

    NASA Astrophysics Data System (ADS)

    Burman, Bhaskar

    1998-07-01

    Classification of earth terrain from satellite radar imagery represents an important and continually developing application of microwave remote sensing. The basic objective of this paper is to derive more information, through combining, than is present in any individual element of input data. Multispectral data has been used to provide complementary information so as to utilize a single SAR data for the purpose of land-cover classification. More recently neural networks have been applied to a number of image classification problems and have shown considerable success in exceeding the performance of conventional algorithms. In this work, a comparison study has been carried out between a conventional Maximum Likelihood (ML) classifier and a neural network (back-error-propagation) classifier in terms of classification accuracy. The results reveal that the combination of SAR and MSS data of the same scene produced better classification accuracy than either alone and the neural network classification has an edge over the conventional classification scheme.

  18. Optimal classification of standoff bioaerosol measurements using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Nyhavn, Ragnhild; Moen, Hans J. F.; Farsund, Øystein; Rustad, Gunnar

    2011-05-01

    Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These methods focus on application of selection, mutation and recombination on a population of competing solutions and optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in the search for optimal feature selection and signal processing parameters for classification of biological agents. The experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal component analysis, with significantly improved classification accuracy compared to the best classical method.

  19. Branch classification: A new mechanism for improving branch predictor performance

    SciTech Connect

    Chang, P.Y.; Hao, E.; Patt, Y.; Yeh, T.Y.

    1996-04-01

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows an individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.

  20. [The Classification of Wheat Varieties Based on Near Infrared Hyperspectral Imaging and Information Fusion].

    PubMed

    Dong, Gao; Guo, Jiani; Wang, Cheng; Chen, Zi-long; Zheng, Ling; Zhu, Da-zhou

    2015-12-01

    Hyperspectral imaging technology has great potential in the identification of crop varieties because it contains both image information and spectral information for the object. But so far most studies only used the spectral information, the image information has not been effectively utilized. In this study, hyperspectral images of single seed of three types including strong gluten wheat, medium gluten wheat, and weak gluten wheat were collected by near infrared hyperspectra imager, 12 morphological characteristics such as length, width, rectangularity, circularity and eccentricity were extracted, the average spectra of endosperm and embryo were acquired by the mask which was created by image segmentation. Partial least squares discriminant analysis (PLADA) and least squares support vector machine (LSSVM) were used to construct the classification model with image information, results showed that the binary classification accuracy between strong gluten wheat and weak gluten wheat could achieve 98%, for strong gluten wheat and medium gluten wheat, it was only 74.22%, which indicated that hyperspectral images could reflect the differences of varieties, but the accuracy might be poor when recognizing the varieties just by image information. Soft independent modeling of class analogy (SIMCA), PLSDA and LSSVM were used to established the classification model with spectral information, the classification effect of endosperm is slightly better than the embryo, it demonstrated that the grain shape could influence the classification accuracy. Then, we fused the spectral and image information, SIMCA, PLSDA and LSSVM were used to established the identification model, the fusion model showed better performance than the individual image model and spectral model, the classification accuracy which used the PLSDA raise from 96.67% to 98.89%, it showed that digging the morphological and spectral characteristics of the hyperspectral image could effectively improve the classification

  1. Towards automatic classification of all WISE sources

    NASA Astrophysics Data System (ADS)

    Kurcz, A.; Bilicki, M.; Solarz, A.; Krupa, M.; Pollo, A.; Małek, K.

    2016-07-01

    Context. The Wide-field Infrared Survey Explorer (WISE) has detected hundreds of millions of sources over the entire sky. Classifying them reliably is, however, a challenging task owing to degeneracies in WISE multicolour space and low levels of detection in its two longest-wavelength bandpasses. Simple colour cuts are often not sufficient; for satisfactory levels of completeness and purity, more sophisticated classification methods are needed. Aims: Here we aim to obtain comprehensive and reliable star, galaxy, and quasar catalogues based on automatic source classification in full-sky WISE data. This means that the final classification will employ only parameters available from WISE itself, in particular those which are reliably measured for the majority of sources. Methods: For the automatic classification we applied a supervised machine learning algorithm, support vector machines (SVM). It requires a training sample with relevant classes already identified, and we chose to use the SDSS spectroscopic dataset (DR10) for that purpose. We tested the performance of two kernels used by the classifier, and determined the minimum number of sources in the training set required to achieve stable classification, as well as the minimum dimension of the parameter space. We also tested SVM classification accuracy as a function of extinction and apparent magnitude. Thus, the calibrated classifier was finally applied to all-sky WISE data, flux-limited to 16 mag (Vega) in the 3.4 μm channel. Results: By calibrating on the test data drawn from SDSS, we first established that a polynomial kernel is preferred over a radial one for this particular dataset. Next, using three classification parameters (W1 magnitude, W1-W2 colour, and a differential aperture magnitude) we obtained very good classification efficiency in all the tests. At the bright end, the completeness for stars and galaxies reaches ~95%, deteriorating to ~80% at W1 = 16 mag, while for quasars it stays at a level of

  2. Evolving point-cloud features for gender classification

    NASA Astrophysics Data System (ADS)

    Keen, Brittany; Fouts, Aaron; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga L.

    2011-06-01

    In this paper we explore the use of histogram features extracted from 3D point clouds of human subjects for gender classification. Experiments are conducted using point clouds drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Features are extracted from each point cloud by embedding the cloud in series of cylindrical shapes and computing a point count for each cylinder that characterizes a region of the subject. These measurements define rotationally invariant histogram features that are processed by a classifier to label the gender of each subject. Preliminary results using cylinder sizes defined by human experts demonstrate that gender can be predicted with 98% accuracy for the type of high density point cloud found in the CAESAR database. When point cloud densities are reduced to levels that might be obtained using stand-off sensors; gender classification accuracy degrades. We introduce an evolutionary algorithm to optimize the number and size of the cylinders used to define histogram features. The objective of this optimization process is to identify a set of cylindrical features that reduces the error rate when predicting gender from low density point clouds. A wrapper approach is used to interleave feature selection with classifier evaluation to train the evolutionary algorithm. Results of classification accuracy achieved using the evolved features are compared to the baseline feature set defined by human experts.

  3. Range and velocity independent classification of humans and animals using a profiling sensor

    NASA Astrophysics Data System (ADS)

    Chari, Srikant; Smith, Forrest; Halford, Carl; Jacobs, Eddie; Brooks, Jason

    2010-04-01

    This paper presents object profile classification results using range and speed independent features from an infrared profiling sensor. The passive infrared profiling sensor was simulated using a LWIR camera. Field data collected near the US-Mexico border to yield profiles of humans and animals is reported. Range and speed independent features based on height and width of the objects were extracted from profiles. The profile features were then used to train and test three classification algorithms to classify objects as humans or animals. The performance of Naïve Bayesian (NB), K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) are compared based on their classification accuracy. Results indicate that for our data set all three algorithms achieve classification rates of over 98%. The field data is also used to validate our prior data collections from more controlled environments.

  4. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  5. A new texture and shape based technique for improving meningioma classification.

    PubMed

    Fatima, Kiran; Arooj, Arshia; Majeed, Hammad

    2014-11-01

    Over the past decade, computer-aided diagnosis is rapidly growing due to the availability of patient data, sophisticated image acquisition tools and advancement in image processing and machine learning algorithms. Meningiomas are the tumors of brain and spinal cord. They account for 20% of all the brain tumors. Meningioma subtype classification involves the classification of benign meningioma into four major subtypes: meningothelial, fibroblastic, transitional, and psammomatous. Under the microscope, the histology images of these four subtypes show a variety of textural and structural characteristics. High intraclass and low interclass variabilities in meningioma subtypes make it an extremely complex classification problem. A number of techniques have been proposed for meningioma subtype classification with varying performances on different subtypes. Most of these techniques employed wavelet packet transforms for textural features extraction and analysis of meningioma histology images. In this article, a hybrid classification technique based on texture and shape characteristics is proposed for the classification of meningioma subtypes. Meningothelial and fibroblastic subtypes are classified on the basis of nuclei shapes while grey-level co-occurrence matrix textural features are used to train a multilayer perceptron for the classification of transitional and psammomatous subtypes. On the whole, average classification accuracy of 92.50% is achieved through the proposed hybrid classifier; which to the best of our knowledge is the highest. PMID:25060536

  6. Target Decomposition Techniques & Role of Classification Methods for Landcover Classification

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra; Mittal, Gunjan

    Target decomposition techniques aims at analyzing the received scattering matrix from polari-metric data to extract information about the scattering processes. Incoherent techniques have been modeled in recent years for providing more general approach for decomposition of natural targets. Therefore, there is a need to study and critically analyze the developing models for their suitability in classification of land covers. Moreover, the classification methods used for the segmentation of various landcovers from the decomposition techniques need to be examined as the appropriate selection of these methods affect the performance of the decomposition tech-niques for landcover classification. Therefore in the present paper, it is attempted to check the performance of various model based and an eigen vector based decomposition techniques for decomposition of Polarimetric PALSAR (Phased array type L band SAR) data. Few generic supervised classifiers were used for classification of decomposed images into three broad classes of water, urban and agriculture lands. For the purpose, algorithms had been applied twice on pre-processed PALSAR raw data once on spatial averaged (mean filtering on 33 window) data and the other on data, multilooked in azimuth direction by six looks and then filtered using Wishart Gamma MAP on 55 window. Classification of the decomposed images from each of the methods had been done using four supervised classifiers (parallelepiped, minimum distance, Mahalanobis and maximum likelihood). Ground truth data generated with the help of ground survey points, topographic sheet and google earth was used for the computation of classification accuracy. Parallelepiped classifier gave better classification accuracy of water class for all the models excluding H/A/Alpha. Minimum distance classifier gave better classification results for urban class. Maximum likelihood classifier performed well as compared to other classifiers for classification of vegetation class

  7. Intelligent Classification of Heartbeats for Automated Real-Time ECG Monitoring

    PubMed Central

    Park, Juyoung

    2014-01-01

    Abstract Background: The automatic interpretation of electrocardiography (ECG) data can provide continuous analysis of heart activity, allowing the effective use of wireless devices such as the Holter monitor. Materials and Methods: We propose an intelligent heartbeat monitoring system to detect the possibility of arrhythmia in real time. We detected heartbeats and extracted features such as the QRS complex and P wave from ECG signals using the Pan–Tompkins algorithm, and the heartbeats were then classified into 16 types using a decision tree. Results: We tested the sensitivity, specificity, and accuracy of our system against data from the MIT-BIH Arrhythmia Database. Our system achieved an average accuracy of 97% in heartbeat detection and an average heartbeat classification accuracy of above 96%, which is comparable with the best competing schemes. Conclusions: This work provides a guide to the systematic design of an intelligent classification system for decision support in Holter ECG monitoring. PMID:25010717

  8. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  9. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  10. A System for Heart Sounds Classification

    PubMed Central

    Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander

    2014-01-01

    The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113

  11. A system for heart sounds classification.

    PubMed

    Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander

    2014-01-01

    The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113

  12. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    SciTech Connect

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.; Hoffman, Douglas I.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  13. Automated Classification of Periodic Variable Stars Detected by the Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Masci, Frank J.; Hoffman, Douglas I.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodic light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.

  14. Topological Graph Kernel on Multiple Thresholded Functional Connectivity Networks for Mild Cognitive Impairment Classification

    PubMed Central

    Jie, Biao; Zhang, Daoqiang; Wee, Chong-Yaw; Shen, Dinggang

    2014-01-01

    Recently, brain connectivity networks have been used for classification of Alzheimer’s disease and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based classification approaches, local measures of connectivity networks are first extracted from each region-of-interest as network features, which are then concatenated into a vector for subsequent feature selection and classification. However, some useful structural information of network, especially global topological information, may be lost in this type of approaches. To address this issue, in this article, we propose a connectivity-networks-based classification framework to identify accurately the MCI patients from NC. The core of the proposed method involves the use of a new graph-kernel-based approach to measure directly the topological similarity between connectivity networks. We evaluate our method on functional connectivity networks of 12 MCI and 25 NC subjects. The experimental results show that our proposed method achieves a classification accuracy of 91.9%, a sensitivity of 100.0%, a balanced accuracy of 94.0%, and an area under receiver operating characteristic curve of 0.94, demonstrating a great potential in MCI classification, based on connectivity networks. Further connectivity analysis indicates that the connectivity of the selected brain regions is different between MCI patients and NC, that is, MCI patients show reduced functional connectivity compared with NC, in line with the findings reported in the existing studies. PMID:24038749

  15. Effective Dimension Reduction Using Sequential Projection Pursuit On Gene Expression Data for Cancer Classification

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Havre, Susan L.

    2004-06-23

    Motiviation: Classification is a powerful tool for uncovering interesting phenomena, for example classes of cancer, in microarray data. Due to the small number of observations (n) in comparison to the number of variables (p), genes, classification on microarray data is challenging. Thus, multivariate dimension reduction techniques are commonly used as a precursor to classification of microarray data; typically this is principal component analysis (PCA) or singular value decomposition (SVD). Since PCA and SVD are concerned with explaining the variance-covariance structure of the data, they may not be the best choice when the between-cluster variance is smaller than the within-cluster variance. Recently an attractive alternative to PCA, sequential projection pursuit (SPP), has been introduced which is designed to elicit clustering tendencies in the data. Thus, in some cases SPP may be more appropriate when performing clustering or classification analysis. Results: We compare the performance of SPP to PCA on two cancer gene expression datasets related to leukemia and colon cancer. Using PCA and SPP to reduce the dimensionality of the data to m<classification accuracy of each method at various levels of . For both datasets SPP achieves higher classification accuracy at low values of m. For example, given m=1 on the two-class case for the leukemia dataset SPP correctly classifies 77% of the observations in comparison to 50% for PCA.

  16. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification.

    PubMed

    Jie, Biao; Zhang, Daoqiang; Wee, Chong-Yaw; Shen, Dinggang

    2014-07-01

    Recently, brain connectivity networks have been used for classification of Alzheimer's disease and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based classification approaches, local measures of connectivity networks are first extracted from each region-of-interest as network features, which are then concatenated into a vector for subsequent feature selection and classification. However, some useful structural information of network, especially global topological information, may be lost in this type of approaches. To address this issue, in this article, we propose a connectivity-networks-based classification framework to identify accurately the MCI patients from NC. The core of the proposed method involves the use of a new graph-kernel-based approach to measure directly the topological similarity between connectivity networks. We evaluate our method on functional connectivity networks of 12 MCI and 25 NC subjects. The experimental results show that our proposed method achieves a classification accuracy of 91.9%, a sensitivity of 100.0%, a balanced accuracy of 94.0%, and an area under receiver operating characteristic curve of 0.94, demonstrating a great potential in MCI classification, based on connectivity networks. Further connectivity analysis indicates that the connectivity of the selected brain regions is different between MCI patients and NC, that is, MCI patients show reduced functional connectivity compared with NC, in line with the findings reported in the existing studies. PMID:24038749

  17. A Kernel Classification Framework for Metric Learning.

    PubMed

    Wang, Faqiang; Zuo, Wangmeng; Zhang, Lei; Meng, Deyu; Zhang, David

    2015-09-01

    Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions is proposed for pairs of doublets or triplets. Then, a kernel classification framework is established to generalize many popular metric learning methods such as LMNN and ITML. The proposed framework can also suggest new metric learning methods, which can be efficiently implemented, interestingly, using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely, doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods but with significantly less training time. PMID:25347887

  18. Weapon identification using hierarchical classification of acoustic signatures

    NASA Astrophysics Data System (ADS)

    Khan, Saad; Divakaran, Ajay; Sawhney, Harpreet S.

    2009-05-01

    We apply a unique hierarchical audio classification technique to weapon identification using gunshot analysis. The Audio Classification classifies each audio segment as one of ten weapon classes (e.g., 9mm, 22, shotgun etc.) using lowcomplexity Gaussian Mixture Models (GMM). The first level of hierarchy consists of classification into broad weapons categories such as Rifle, Hand-Gun etc. and the second consists of classification into specific weapons such as 9mm, 357 etc. Our experiments have yielded over 90% classification accuracy at the coarse (rifle-handgun) level of the classification hierarchy and over 85% accuracy at the finer level (weapon category such as 9mm).

  19. An Efficient Ensemble Learning Method for Gene Microarray Classification

    PubMed Central

    Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost. PMID:24024194

  20. Endodontic classification.

    PubMed

    Morse, D R; Seltzer, S; Sinai, I; Biron, G

    1977-04-01

    Clinical and histopathologic findings are mixed in current endodontic classifications. A new system, based on symptomatology, may be more useful in clincial practice. The classifications are vital asymptomatic, hypersensitive dentin, inflamed-reversible, inflamed/dengenerating without area-irreversible, inflamed/degenerating with area-irreversible, necrotic without area, and necrotic with area. PMID:265327

  1. Experimental study on multi-sub-classifier for land cover classification: a case study in Shangri-La, China

    NASA Astrophysics Data System (ADS)

    Wang, Yan-ying; Wang, Jin-liang; Wang, Ping; Hu, Wen-yin; Su, Shao-hua

    2015-12-01

    High accuracy remote sensed image classification technology is a long-term and continuous pursuit goal of remote sensing applications. In order to evaluate single classification algorithm accuracy, take Landsat TM image as data source, Northwest Yunnan as study area, seven types of land cover classification like Maximum Likelihood Classification has been tested, the results show that: (1)the overall classification accuracy of Maximum Likelihood Classification(MLC), Artificial Neural Network Classification(ANN), Minimum Distance Classification(MinDC) is higher, which is 82.81% and 82.26% and 66.41% respectively; the overall classification accuracy of Parallel Hexahedron Classification(Para), Spectral Information Divergence Classification(SID), Spectral Angle Classification(SAM) is low, which is 37.29%, 38.37, 53.73%, respectively. (2) from each category classification accuracy: although the overall accuracy of the Para is the lowest, it is much higher on grasslands, wetlands, forests, airport land, which is 89.59%, 94.14%, and 89.04%, respectively; the SAM, SID are good at forests classification with higher overall classification accuracy, which is 89.8% and 87.98%, respectively. Although the overall classification accuracy of ANN is very high, the classification accuracy of road, rural residential land and airport land is very low, which is 10.59%, 11% and 11.59% respectively. Other classification methods have their advantages and disadvantages. These results show that, under the same conditions, the same images with different classification methods to classify, there will be a classifier to some features has higher classification accuracy, a classifier to other objects has high classification accuracy, and therefore, we may select multi sub-classifier integration to improve the classification accuracy.

  2. Accuracy assessment of land cover/land use classifiers in dry and humid areas of Iran.

    PubMed

    Yousefi, Saleh; Khatami, Reza; Mountrakis, Giorgos; Mirzaee, Somayeh; Pourghasemi, Hamid Reza; Tazeh, Mehdi

    2015-10-01

    Land cover/land use (LCLU) maps are essential inputs for environmental analysis. Remote sensing provides an opportunity to construct LCLU maps of large geographic areas in a timely fashion. Knowing the most accurate classification method to produce LCLU maps based on site characteristics is necessary for the environment managers. The aim of this research is to examine the performance of various classification algorithms for LCLU mapping in dry and humid climates (from June to August). Testing is performed in three case studies from each of the two climates in Iran. The reference dataset of each image was randomly selected from the entire images and was randomly divided into training and validation set. Training sets included 400 pixels, and validation sets included 200 pixels of each LCLU. Results indicate that the support vector machine (SVM) and neural network methods can achieve higher overall accuracy (86.7 and 86.6%) than other examined algorithms, with a slight advantage for the SVM. Dry areas exhibit higher classification difficulty as man-made features often have overlapping spectral responses to soil. A further observation is that spatial segregation and lower mixture of LCLU classes can increase classification overall accuracy. PMID:26403704

  3. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  4. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their parameters within each…

  5. Random Forest Classification for Surficial Material Mapping in Northern Canada

    NASA Astrophysics Data System (ADS)

    Parkinson, William

    There is a need at the Geological Survey of Canada to apply improved accuracy assessments of satellite image classification and to support remote predictive mapping techniques for geological map production and field operations. Most existing image classification algorithms, however, lack any robust capabilities for assessing classification accuracy and its variability throughout the landscape. In this study, a random forest classification workflow is introduced to improve understanding of overall image classification accuracy and to better describe its spatial variability across a heterogeneous landscape in Northern Canada. Random Forest model is a stochastic implementation of classification and regression trees, which is computationally efficient, effectively handles outlier bias can be used on non-parametric data sources. A variable selection methodology and stochastic accuracy assessment for Random Forest is introduced. Random forest provides an enhanced classification compared to the standard maximum likelihood algorithms improving predictive capacity of satellite imagery for surficial material mapping.

  6. Automatic Fault Characterization via Abnormality-Enhanced Classification

    SciTech Connect

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  7. MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network

    PubMed Central

    Sheejakumari, V.; Sankara Gomathi, B.

    2015-01-01

    The advantages of magnetic resonance imaging (MRI) over other diagnostic imaging modalities are its higher spatial resolution and its better discrimination of soft tissue. In the previous tissues classification method, the healthy and pathological tissues are classified from the MRI brain images using HGANN. But the method lacks sensitivity and accuracy measures. The classification method is inadequate in its performance in terms of these two parameters. So, to avoid these drawbacks, a new classification method is proposed in this paper. Here, new tissues classification method is proposed with improved particle swarm optimization (IPSO) technique to classify the healthy and pathological tissues from the given MRI images. Our proposed classification method includes the same four stages, namely, tissue segmentation, feature extraction, heuristic feature selection, and tissue classification. The method is implemented and the results are analyzed in terms of various statistical performance measures. The results show the effectiveness of the proposed classification method in classifying the tissues and the achieved improvement in sensitivity and accuracy measures. Furthermore, the performance of the proposed technique is evaluated by comparing it with the other segmentation methods. PMID:25977706

  8. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism

    PubMed Central

    Chen, Colleen P.; Keown, Christopher L.; Jahedi, Afrooz; Nair, Aarti; Pflieger, Mark E.; Bailey, Barbara A.; Müller, Ralph-Axel

    2015-01-01

    Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain abnormalities in ASD occur at the level of interconnected networks; however, previous attempts using functional connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE) including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was used for diagnostic classification, implementing several machine learning tools. While support vector machines in combination with particle swarm optimization and recursive feature elimination performed modestly (with accuracies for validation datasets <70%), diagnostic classification reached a high accuracy of 91% with random forest (RF), a nonparametric ensemble learning method. Among the 100 most informative features (connectivities), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and subcortical regions stood out. Whereas some of these findings were expected, given previous findings of default mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regions was remarkable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain biomarkers of ASD may be regionally complex and distributed, rather than localized. PMID:26106547

  9. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

    PubMed Central

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  10. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China.

    PubMed

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  11. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and

  12. A new classification scheme of plastic wastes based upon recycling labels

    SciTech Connect

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, İdil

    2015-01-15

    experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.

  13. Multisensor classification of sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    1988-01-01

    A comparison is made between linear discriminant analysis and supervised classification results based on signatures from the Landsat TM, the Thermal Infrared Multispectral Scanner (TIMS), and airborne SAR, alone and combined into extended spectral signatures for seven sedimentary rock units exposed on the margin of the Wind River Basin, Wyoming. Results from a linear discriminant analysis showed that training-area classification accuracies based on the multisensor data were improved an average of 15 percent over TM alone, 24 percent over TIMS alone, and 46 percent over SAR alone, with similar improvement resulting when supervised multisensor classification maps were compared to supervised, individual sensor classification maps. When training area signatures were used to map spectrally similar materials in an adjacent area, the average classification accuracy improved 19 percent using the multisensor data over TM alone, 2 percent over TIMS alone, and 11 percent over SAR alone. It is concluded that certain sedimentary lithologies may be accurately mapped using a single sensor, but classification of a variety of rock types can be improved using multisensor data sets that are sensitive to different characteristics such as mineralogy and surface roughness.

  14. Classification of radar clutter using neural networks.

    PubMed

    Haykin, S; Deng, C

    1991-01-01

    A classifier that incorporates both preprocessing and postprocessing procedures as well as a multilayer feedforward network (based on the back-propagation algorithm) in its design to distinguish between several major classes of radar returns including weather, birds, and aircraft is described. The classifier achieves an average classification accuracy of 89% on generalization for data collected during a single scan of the radar antenna. The procedures of feature selection for neural network training, the classifier design considerations, the learning algorithm development, the implementation, and the experimental results of the neural clutter classifier, which is simulated on a Warp systolic computer, are discussed. A comparative evaluation of the multilayer neural network with a traditional Bayes classifier is presented. PMID:18282874

  15. Feature analysis for indoor radar target classification

    NASA Astrophysics Data System (ADS)

    Bufler, Travis D.; Narayanan, Ram M.

    2016-05-01

    This paper analyzes the spectral features from human beings and indoor clutter for building and tuning Support Vector Machines (SVMs) classifiers for the purpose of classifying stationary human targets. The spectral characteristics were obtained through simulations using Finite Difference Time Domain (FDTD) techniques where the radar cross section (RCS) of humans and indoor clutter objects were captured over a wide range of frequencies, polarizations, aspect angles, and materials. Additionally, experimental data was obtained using a vector network analyzer. Two different feature sets for class discrimination are used from the acquired target and clutter RCS spectral data sets. The first feature vectors consist of the raw spectral characteristics, while the second set of feature vectors are statistical features extracted over a set frequency interval. Utilizing variables of frequency and polarization, a SVM classifier can be trained to classify unknown targets as a human or clutter. Classification accuracy over 80% can be effectively achieved given appropriate features.

  16. Walnut shell and meat classification using texture analysis and SVMs

    NASA Astrophysics Data System (ADS)

    Jin, Fenghua; Qin, Lei; Rao, Xiuqin; Tao, Yang

    2007-09-01

    The classification of walnuts shell and meat has a potential application in industry walnuts processing. A dark-field illumination method is proposed for the inspection of walnuts. Experiments show that the dark-field illuminated images of walnut shell and meat have distinct text patterns due to the differences in the light transmittance property of each. A number of rotation invariant feature analysis methods are used to characterize and discriminate the unique texture patterns. These methods include local binary pattern operator, wavelet analysis, circular Gabor filters, circularly symmetric gray level co-occurrence matrix and the histogram-related features. A recursive feature elimination method (SVM-RFE), is used to remove uncorrelated and redundant features and to train the SVM classifier at the same time. Experiments show that, by using only the top six ranked features, an average classification accuracy of 99.2% can be achieved.

  17. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images

    PubMed Central

    Fehr, Duc; Veeraraghavan, Harini; Wibmer, Andreas; Gondo, Tatsuo; Matsumoto, Kazuhiro; Vargas, Herbert Alberto; Sala, Evis; Hricak, Hedvig; Deasy, Joseph O.

    2015-01-01

    Noninvasive, radiological image-based detection and stratification of Gleason patterns can impact clinical outcomes, treatment selection, and the determination of disease status at diagnosis without subjecting patients to surgical biopsies. We present machine learning-based automatic classification of prostate cancer aggressiveness by combining apparent diffusion coefficient (ADC) and T2-weighted (T2-w) MRI-based texture features. Our approach achieved reasonably accurate classification of Gleason scores (GS) 6(3+3) vs. ≥7 and 7(3+4) vs. 7(4+3) despite the presence of highly unbalanced samples by using two different sample augmentation techniques followed by feature selection-based classification. Our method distinguished between GS 6(3+3) and ≥7 cancers with 93% accuracy for cancers occurring in both peripheral (PZ) and transition (TZ) zones and 92% for cancers occurring in the PZ alone. Our approach distinguished the GS 7(3+4) from GS 7(4+3) with 92% accuracy for cancers occurring in both the PZ and TZ and with 93% for cancers occurring in the PZ alone. In comparison, a classifier using only the ADC mean achieved a top accuracy of 58% for distinguishing GS 6(3+3) vs. GS ≥7 for cancers occurring in PZ and TZ and 63% for cancers occurring in PZ alone. The same classifier achieved an accuracy of 59% for distinguishing GS 7(3+4) from GS 7(4+3) occurring in the PZ and TZ and 60% for cancers occurring in PZ alone. Separate analysis of the cancers occurring in TZ alone was not performed owing to the limited number of samples. Our results suggest that texture features derived from ADC and T2-w MRI together with sample augmentation can help to obtain reasonably accurate classification of Gleason patterns. PMID:26578786

  18. Reduction of training costs using active classification in fused hyperspectral and LiDAR data

    NASA Astrophysics Data System (ADS)

    Wuttke, Sebastian; Schilling, Hendrik; Middelmann, Wolfgang

    2012-11-01

    This paper presents a novel approach for the reduction of training costs in classification with co-registered hyperspectral (HS) and Light Detection and Ranging (LiDAR) data using an active classification framework. Fully automatic classification can be achieved by unsupervised learning, which is not suited for adjustment to specific classes. On the other hand, supervised classification with predefined classes needs a lot of training examples, which need to be labeled with the ground truth, usually at a significant cost. The concept of active classification alleviates these problems by the use of a selection strategy: only selected samples are ground truth labeled and used as training data. One common selection strategy is to incorporate in a first step the current state of the classification algorithm and choose only the examples for which the expected information gain is maximized. In the second step a conventional classification algorithm is trained using this data. By alternating between these two steps the algorithm reaches high classification accuracy results with less training samples and therefore lower training costs. The approach presented in this paper involves the user in the active selection strategy and the k-NN algorithm is chosen for classification. The results further benefit from fusing the heterogeneous information of HS and LiDAR data within the classification algorithm. For this purpose, several HS features, such as vegetation indices, and LiDAR features, such as relative height and roughness, are extracted. This increases the separability between different classes and reduces the dimensionality of the HS data. The practicability and performance of this framework is shown for the detection and separation of different kinds of vegetation, e.g. trees and grass in an urban area of Berlin. The HS data was obtained by the SPECIM AISA Eagle 2 sensor, LiDAR data by Riegl LMS Q560.

  19. [Automatic classification method of star spectrum data based on classification pattern tree].

    PubMed

    Zhao, Xu-Jun; Cai, Jiang-Hui; Zhang, Ji-Fu; Yang, Hai-Feng; Ma, Yang

    2013-10-01

    Frequent pattern, frequently appearing in the data set, plays an important role in data mining. For the stellar spectrum classification tasks, a classification rule mining method based on classification pattern tree is presented on the basis of frequent pattern. The procedures can be shown as follows. Firstly, a new tree structure, i. e., classification pattern tree, is introduced based on the different frequencies of stellar spectral attributes in data base and its different importance used for classification. The related concepts and the construction method of classification pattern tree are also described in this paper. Then, the characteristics of the stellar spectrum are mapped to the classification pattern tree. Two modes of top-to-down and bottom-to-up are used to traverse the classification pattern tree and extract the classification rules. Meanwhile, the concept of pattern capability is introduced to adjust the number of classification rules and improve the construction efficiency of the classification pattern tree. Finally, the SDSS (the Sloan Digital Sky Survey) stellar spectral data provided by the National Astronomical Observatory are used to verify the accuracy of the method. The results show that a higher classification accuracy has been got. PMID:24409754

  20. An enhanced MIML algorithm for natural scene image classification

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhang, Hui; Yang, Suyan

    2015-12-01

    The multi-instance multi-label (MIML) learning is a learning framework where each example is described by a bag of instances and corresponding to a set of labels. In some studies, the algorithms are applied to natural scene image classification and have achieved satisfied performance. We design a MIML algorithm based on RBF neural network for the natural scene image classification. In the framework, we compare classification accuracy based on the existing definitions of bag distance: maximum Hausdorff, minimum Hausdorff and average Hausdorff. Although the accuracy of average Hausdorff bag distance is the highest, we find average Hausdorff bag distance to weaken the role of the minimum distance between the instances in the two bags. So we redefine the average Hausdorff bag distance by introducing an adaptive adjustment coefficient, and it can change according to the minimum distance between the instances in the two bags. Finally, the experimental results show that the enhanced algorithm has a better result than the original algorithm.

  1. Energy-Efficient Context Classification With Dynamic Sensor Control

    PubMed Central

    Au, Lawrence K.; Bui, Alex A. T.; Batalin, Maxim A.; Kaiser, William J.

    2016-01-01

    Energy efficiency has been a longstanding design challenge for wearable sensor systems. It is especially crucial in continuous subject state monitoring due to the ongoing need for compact sizes and better sensors. This paper presents an energy-efficient classification algorithm, based on partially observable Markov decision process (POMDP). In every time step, POMDP dynamically selects sensors for classification via a sensor selection policy. The sensor selection problem is formalized as an optimization problem, where the objective is to minimize misclassification cost given some energy budget. State transitions are modeled as a hidden Markov model (HMM), and the corresponding sensor selection policy is represented using a finite-state controller (FSC). To evaluate this framework, sensor data were collected from multiple subjects in their free-living conditions. Relative accuracies and energy reductions from the proposed method are compared against naïve Bayes (always-on) and simple random strategies to validate the relative performance of the algorithm. When the objective is to maintain the same classification accuracy, significant energy reduction is achieved. PMID:23852981

  2. Better physical activity classification using smartphone acceleration sensor.

    PubMed

    Arif, Muhammad; Bilal, Mohsin; Kattan, Ahmed; Ahamed, S Iqbal

    2014-09-01

    Obesity is becoming one of the serious problems for the health of worldwide population. Social interactions on mobile phones and computers via internet through social e-networks are one of the major causes of lack of physical activities. For the health specialist, it is important to track the record of physical activities of the obese or overweight patients to supervise weight loss control. In this study, acceleration sensor present in the smartphone is used to monitor the physical activity of the user. Physical activities including Walking, Jogging, Sitting, Standing, Walking upstairs and Walking downstairs are classified. Time domain features are extracted from the acceleration data recorded by smartphone during different physical activities. Time and space complexity of the whole framework is done by optimal feature subset selection and pruning of instances. Classification results of six physical activities are reported in this paper. Using simple time domain features, 99 % classification accuracy is achieved. Furthermore, attributes subset selection is used to remove the redundant features and to minimize the time complexity of the algorithm. A subset of 30 features produced more than 98 % classification accuracy for the six physical activities. PMID:25000988

  3. Sleep stage classification with ECG and respiratory effort.

    PubMed

    Fonseca, Pedro; Long, Xi; Radha, Mustafa; Haakma, Reinder; Aarts, Ronald M; Rolink, Jérôme

    2015-10-01

    Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 142 features were extracted from electrocardiogram and thoracic respiratory effort measured with respiratory inductance plethysmography. To improve the quality of these features, subject-specific Z-score normalization and spline smoothing were used to reduce between-subject and within-subject variability. A modified sequential forward selection feature selector procedure was applied, yielding 80 features while preventing the introduction of bias in the estimation of cross-validation performance. PSG data from 48 healthy adults were used to validate our methods. Using a linear discriminant classifier and a ten-fold cross-validation, we achieved a Cohen's kappa coefficient of 0.49 and an accuracy of 69% in the classification of wake, REM, light, and deep sleep. These values increased to kappa = 0.56 and accuracy = 80% when the classification problem was reduced to three classes, wake, REM sleep, and NREM sleep. PMID:26289580

  4. Comparison Between Spectral, Spatial and Polarimetric Classification of Urban and Periurban Landcover Using Temporal Sentinel - 1 Images

    NASA Astrophysics Data System (ADS)

    Roychowdhury, K.

    2016-06-01

    Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.

  5. Classification of convulsive psychogenic non-epileptic seizures using muscle transforms obtained from accelerometry signal.

    PubMed

    Kusmakar, Shitanshu; Gubbi, Jayavardhana; Yan, Bernard; O'Brien, Terence J; Palaniswami, Marimuthu

    2015-08-01

    Convulsive psychogenic non-epileptic seizure (PNES) can be characterized as events which mimics epileptic seizures but do not show any characteristic changes on electroencephalogram (EEG). Correct diagnosis requires video-electroencephalography monitoring (VEM) as the diagnosis of PNES is extremely difficult in primary health care. Recent work has demonstrated the usefulness of accelerometry signal taken during a seizure in classification of PNES. In this work, a new direction has been explored to understand the role of different muscles in PNES. This is achieved by modeling the muscle activity of ten different upper limb muscles as a resultant function of accelerometer signal. Using these models, the accelerometer signals recorded from convulsive epileptic patients were transformed into individual muscle components. Based on this, an automated algorithm for classification of convulsive PNES is proposed. The algorithm calculates four wavelet domain features based on signal power, approximate entropy, kurtosis and signal skewness. These features were then used to build a classification model using support vector machines (SVM) classifier. It was found that the transforms corresponding to anterior deltoid and brachioradialis results in good PNES classification accuracy. The algorithm showed a high sensitivity of 93.33% and an overall PNES classification accuracy of 89% with the transform corresponding to anterior deltoid. PMID:26736329

  6. Machine Learning Methods for Binary and Multiclass Classification of Melanoma Thickness From Dermoscopic Images.

    PubMed

    Saez, Aurora; Sanchez-Monedero, Javier; Gutierrez, Pedro Antonio; Hervas-Martinez, Cesar

    2016-04-01

    Thickness of the melanoma is the most important factor associated with survival in patients with melanoma. It is most commonly reported as a measurement of depth given in millimeters (mm) and computed by means of pathological examination after a biopsy of the suspected lesion. In order to avoid the use of an invasive method in the estimation of the thickness of melanoma before surgery, we propose a computational image analysis system from dermoscopic images. The proposed feature extraction is based on the clinical findings that correlate certain characteristics present in dermoscopic images and tumor depth. Two supervised classification schemes are proposed: a binary classification in which melanomas are classified into thin or thick, and a three-class scheme (thin, intermediate, and thick). The performance of several nominal classification methods, including a recent interpretable method combining logistic regression with artificial neural networks (Logistic regression using Initial variables and Product Units, LIPU), is compared. For the three-class problem, a set of ordinal classification methods (considering ordering relation between the three classes) is included. For the binary case, LIPU outperforms all the other methods with an accuracy of 77.6%, while, for the second scheme, although LIPU reports the highest overall accuracy, the ordinal classification methods achieve a better balance between the performances of all classes. PMID:26672031

  7. Vietnamese Document Representation and Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  8. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. PMID:25523795

  9. Assessment Of Accuracies Of Remote-Sensing Maps

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Strong, Laurence L.

    1992-01-01

    Report describes study of accuracies of classifications of picture elements in map derived by digital processing of Landsat-multispectral-scanner imagery of coastal plain of Arctic National Wildlife Refuge. Accuracies of portions of map analyzed with help of statistical sampling procedure called "stratified plurality sampling", in which all picture elements in given cluster classified in stratum to which plurality of them belong.

  10. EFFECTS OF LANDSCAPE CHARACTERISTICS ON LAND-COVER CLASS ACCURACY

    EPA Science Inventory



    Utilizing land-cover data gathered as part of the National Land-Cover Data (NLCD) set accuracy assessment, several logistic regression models were formulated to analyze the effects of patch size and land-cover heterogeneity on classification accuracy. Specific land-cover ...

  11. Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications

    PubMed Central

    Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304

  12. Classification based on pruning and double covered rule sets for the internet of things applications.

    PubMed

    Li, Shasha; Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304

  13. Form classification

    NASA Astrophysics Data System (ADS)

    Reddy, K. V. Umamaheswara; Govindaraju, Venu

    2008-01-01

    The problem of form classification is to assign a single-page form image to one of a set of predefined form types or classes. We classify the form images using low level pixel density information from the binary images of the documents. In this paper, we solve the form classification problem with a classifier based on the k-means algorithm, supported by adaptive boosting. Our classification method is tested on the NIST scanned tax forms data bases (special forms databases 2 and 6) which include machine-typed and handwritten documents. Our method improves the performance over published results on the same databases, while still using a simple set of image features.

  14. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  15. COMPARE: classification of morphological patterns using adaptive regional elements.

    PubMed

    Fan, Yong; Shen, Dinggang; Gur, Ruben C; Gur, Raquel E; Davatzikos, Christos

    2007-01-01

    This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods. A morphological representation of the anatomy of interest is first obtained using a high-dimensional mass-preserving template warping method, which results in tissue density maps that constitute local tissue volumetric measurements. Regions that display strong correlations between tissue volume and classification (clinical) variables are extracted using a watershed segmentation algorithm, taking into account the regional smoothness of the correlation map which is estimated by a cross-validation strategy to achieve robustness to outliers. A volume increment algorithm is then applied to these regions to extract regional volumetric features, from which a feature selection technique using support vector machine (SVM)-based criteria is used to select the most discriminative features, according to their effect on the upper bound of the leave-one-out generalization error. Finally, SVM-based classification is applied using the best set of features, and it is tested using a leave-one-out cross-validation strategy. The results on MR brain images of healthy controls and schizophrenia patients demonstrate not only high classification accuracy (91.8% for female subjects and 90.8% for male subjects), but also good stability with respect to the number of features selected and the size of SVM kernel used. PMID:17243588

  16. Real-Time Fault Classification for Plasma Processes

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001

  17. Gender classification in children based on speech characteristics: using fundamental and formant frequencies of Malay vowels.

    PubMed

    Zourmand, Alireza; Ting, Hua-Nong; Mirhassani, Seyed Mostafa

    2013-03-01

    Speech is one of the prevalent communication mediums for humans. Identifying the gender of a child speaker based on his/her speech is crucial in telecommunication and speech therapy. This article investigates the use of fundamental and formant frequencies from sustained vowel phonation to distinguish the gender of Malay children aged between 7 and 12 years. The Euclidean minimum distance and multilayer perceptron were used to classify the gender of 360 Malay children based on different combinations of fundamental and formant frequencies (F0, F1, F2, and F3). The Euclidean minimum distance with normalized frequency data achieved a classification accuracy of 79.44%, which was higher than that of the nonnormalized frequency data. Age-dependent modeling was used to improve the accuracy of gender classification. The Euclidean distance method obtained 84.17% based on the optimal classification accuracy for all age groups. The accuracy was further increased to 99.81% using multilayer perceptron based on mel-frequency cepstral coefficients. PMID:23473455

  18. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  19. Accuracy analysis of distributed simulation systems

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Guo, Jing

    2010-08-01

    Existed simulation works always emphasize on procedural verification, which put too much focus on the simulation models instead of simulation itself. As a result, researches on improving simulation accuracy are always limited in individual aspects. As accuracy is the key in simulation credibility assessment and fidelity study, it is important to give an all-round discussion of the accuracy of distributed simulation systems themselves. First, the major elements of distributed simulation systems are summarized, which can be used as the specific basis of definition, classification and description of accuracy of distributed simulation systems. In Part 2, the framework of accuracy of distributed simulation systems is presented in a comprehensive way, which makes it more sensible to analyze and assess the uncertainty of distributed simulation systems. The concept of accuracy of distributed simulation systems is divided into 4 other factors and analyzed respectively further more in Part 3. In Part 4, based on the formalized description of framework of accuracy analysis in distributed simulation systems, the practical approach are put forward, which can be applied to study unexpected or inaccurate simulation results. Following this, a real distributed simulation system based on HLA is taken as an example to verify the usefulness of the approach proposed. The results show that the method works well and is applicable in accuracy analysis of distributed simulation systems.

  20. Automatic music genres classification as a pattern recognition problem

    NASA Astrophysics Data System (ADS)

    Ul Haq, Ihtisham; Khan, Fauzia; Sharif, Sana; Shaukat, Arsalan

    2013-12-01

    Music genres are the simplest and effect descriptors for searching music libraries stores or catalogues. The paper compares the results of two automatic music genres classification systems implemented by using two different yet simple classifiers (K-Nearest Neighbor and Naïve Bayes). First a 10-12 second sample is selected and features are extracted from it, and then based on those features results of both classifiers are represented in the form of accuracy table and confusion matrix. An experiment carried out on test 60 taken from middle of a song represents the true essence of its genre as compared to the samples taken from beginning and ending of a song. The novel techniques have achieved an accuracy of 91% and 78% by using Naïve Bayes and KNN classifiers respectively.

  1. Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

    PubMed

    Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining

    2015-08-01

    In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%. PMID:26737144

  2. The influence of multispectral scanner spatial resolution on forest feature classification

    NASA Technical Reports Server (NTRS)

    Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.

    1977-01-01

    Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.

  3. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    PubMed

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  4. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification

    PubMed Central

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826

  5. Development of classification models to detect Salmonella Enteritidis and Salmonella Typhimurium found in poultry carcass rinses by visible-near infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Seo, Young Wook; Yoon, Seung Chul; Park, Bosoon; Hinton, Arthur; Windham, William R.; Lawrence, Kurt C.

    2013-05-01

    accuracy of all 10 models on a validation set of chicken carcass rinses spiked with SE or ST and incubated on BGS agar plates was 94.45% and 83.73%, without and with PCA for classification, respectively. The best performing classification model on the validation set was QDA without PCA by achieving the classification accuracy of 98.65% (Kappa coefficient=0.98). The overall best performing classification model regardless of using PCA was MD with the classification accuracy of 94.84% (Kappa coefficient=0.88) on the validation set.

  6. Global Land Cover Classification Using Modis Surface Reflectance Prosucts

    NASA Astrophysics Data System (ADS)

    Fukue, Kiyonari; Shimoda, Haruhisa

    2016-06-01

    The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year) SR(Surface Reflectance) and NBAR(Nadir BRDF-Adjusted Reflectance) products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  7. Relative accuracy evaluation.

    PubMed

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  8. Relative Accuracy Evaluation

    PubMed Central

    Zhang, Yan; Wang, Hongzhi; Yang, Zhongsheng; Li, Jianzhong

    2014-01-01

    The quality of data plays an important role in business analysis and decision making, and data accuracy is an important aspect in data quality. Thus one necessary task for data quality management is to evaluate the accuracy of the data. And in order to solve the problem that the accuracy of the whole data set is low while a useful part may be high, it is also necessary to evaluate the accuracy of the query results, called relative accuracy. However, as far as we know, neither measure nor effective methods for the accuracy evaluation methods are proposed. Motivated by this, for relative accuracy evaluation, we propose a systematic method. We design a relative accuracy evaluation framework for relational databases based on a new metric to measure the accuracy using statistics. We apply the methods to evaluate the precision and recall of basic queries, which show the result's relative accuracy. We also propose the method to handle data update and to improve accuracy evaluation using functional dependencies. Extensive experimental results show the effectiveness and efficiency of our proposed framework and algorithms. PMID:25133752

  9. A novel approach to probabilistic biomarker-based classification using functional near-infrared spectroscopy.

    PubMed

    Hahn, Tim; Marquand, Andre F; Plichta, Michael M; Ehlis, Ann-Christine; Schecklmann, Martin W; Dresler, Thomas; Jarczok, Tomasz A; Eirich, Elisa; Leonhard, Christine; Reif, Andreas; Lesch, Klaus-Peter; Brammer, Michael J; Mourao-Miranda, Janaina; Fallgatter, Andreas J

    2013-05-01

    Pattern recognition approaches to the analysis of neuroimaging data have brought new applications such as the classification of patients and healthy controls within reach. In our view, the reliance on expensive neuroimaging techniques which are not well tolerated by many patient groups and the inability of most current biomarker algorithms to accommodate information about prior class frequencies (such as a disorder's prevalence in the general population) are key factors limiting practical application. To overcome both limitations, we propose a probabilistic pattern recognition approach based on cheap and easy-to-use multi-channel near-infrared spectroscopy (fNIRS) measurements. We show the validity of our method by applying it to data from healthy controls (n = 14) enabling differentiation between the conditions of a visual checkerboard task. Second, we show that high-accuracy single subject classification of patients with schizophrenia (n = 40) and healthy controls (n = 40) is possible based on temporal patterns of fNIRS data measured during a working memory task. For classification, we integrate spatial and temporal information at each channel to estimate overall classification accuracy. This yields an overall accuracy of 76% which is comparable to the highest ever achieved in biomarker-based classification of patients with schizophrenia. In summary, the proposed algorithm in combination with fNIRS measurements enables the analysis of sub-second, multivariate temporal patterns of BOLD responses and high-accuracy predictions based on low-cost, easy-to-use fNIRS patterns. In addition, our approach can easily compensate for variable class priors, which is highly advantageous in making predictions in a wide range of clinical neuroimaging applications. PMID:22965654

  10. Classifying Classification

    ERIC Educational Resources Information Center

    Novakowski, Janice

    2009-01-01

    This article describes the experience of a group of first-grade teachers as they tackled the science process of classification, a targeted learning objective for the first grade. While the two-year process was not easy and required teachers to teach in a new, more investigation-oriented way, the benefits were great. The project helped teachers and…

  11. Asymptotic accuracy of two-class discrimination

    SciTech Connect

    Ho, T.K.; Baird, H.S.

    1994-12-31

    Poor quality-e.g. sparse or unrepresentative-training data is widely suspected to be one cause of disappointing accuracy of isolated-character classification in modern OCR machines. We conjecture that, for many trainable classification techniques, it is in fact the dominant factor affecting accuracy. To test this, we have carried out a study of the asymptotic accuracy of three dissimilar classifiers on a difficult two-character recognition problem. We state this problem precisely in terms of high-quality prototype images and an explicit model of the distribution of image defects. So stated, the problem can be represented as a stochastic source of an indefinitely long sequence of simulated images labeled with ground truth. Using this sequence, we were able to train all three classifiers to high and statistically indistinguishable asymptotic accuracies (99.9%). This result suggests that the quality of training data was the dominant factor affecting accuracy. The speed of convergence during training, as well as time/space trade-offs during recognition, differed among the classifiers.

  12. Learning Interpretable SVMs for Biological Sequence Classification

    PubMed Central

    Rätsch, Gunnar; Sonnenburg, Sören; Schäfer, Christin

    2006-01-01

    Background Support Vector Machines (SVMs) – using a variety of string kernels – have been successfully applied to biological sequence classification problems. While SVMs achieve high classification accuracy they lack interpretability. In many applications, it does not suffice that an algorithm just detects a biological signal in the sequence, but it should also provide means to interpret its solution in order to gain biological insight. Results We propose novel and efficient algorithms for solving the so-called Support Vector Multiple Kernel Learning problem. The developed techniques can be used to understand the obtained support vector decision function in order to extract biologically relevant knowledge about the sequence analysis problem at hand. We apply the proposed methods to the task of acceptor splice site prediction and to the problem of recognizing alternatively spliced exons. Our algorithms compute sparse weightings of substring locations, highlighting which parts of the sequence are important for discrimination. Conclusion The proposed method is able to deal with thousands of examples while combining hundreds of kernels within reasonable time, and reliably identifies a few statistically significant positions. PMID:16723012

  13. Ebolavirus classification based on natural vectors.

    PubMed

    Zheng, Hui; Yin, Changchuan; Hoang, Tung; He, Rong Lucy; Yang, Jie; Yau, Stephen S-T

    2015-06-01

    According to the WHO, ebolaviruses have resulted in 8818 human deaths in West Africa as of January 2015. To better understand the evolutionary relationship of the ebolaviruses and infer virulence from the relationship, we applied the alignment-free natural vector method to classify the newest ebolaviruses. The dataset includes three new Guinea viruses as well as 99 viruses from Sierra Leone. For the viruses of the family of Filoviridae, both genus label classification and species label classification achieve an accuracy rate of 100%. We represented the relationships among Filoviridae viruses by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic trees and found that the filoviruses can be separated well by three genera. We performed the phylogenetic analysis on the relationship among different species of Ebolavirus by their coding-complete genomes and seven viral protein genes (glycoprotein [GP], nucleoprotein [NP], VP24, VP30, VP35, VP40, and RNA polymerase [L]). The topology of the phylogenetic tree by the viral protein VP24 shows consistency with the variations of virulence of ebolaviruses. The result suggests that VP24 be a pharmaceutical target for treating or preventing ebolaviruses. PMID:25803489

  14. Semantic classification of business images

    NASA Astrophysics Data System (ADS)

    Erol, Berna; Hull, Jonathan J.

    2006-01-01

    Digital cameras are becoming increasingly common for capturing information in business settings. In this paper, we describe a novel method for classifying images into the following semantic classes: document, whiteboard, business card, slide, and regular images. Our method is based on combining low-level image features, such as text color, layout, and handwriting features with high-level OCR output analysis. Several Support Vector Machine Classifiers are combined for multi-class classification of input images. The system yields 95% accuracy in classification.

  15. Towards Arbitrary Accuracy Inviscid Surface Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Hixon, Ray

    2002-01-01

    Inviscid nonlinear surface boundary conditions are currently limited to third order accuracy in time for non-moving surfaces and actually reduce to first order in time when the surfaces move. For steady-state calculations it may be possible to achieve higher accuracy in space, but high accuracy in time is required for efficient simulation of multiscale unsteady phenomena. A surprisingly simple technique is shown here that can be used to correct the normal pressure derivatives of the flow at a surface on a Cartesian grid so that arbitrarily high order time accuracy is achieved in idealized cases. This work demonstrates that nonlinear high order time accuracy at a solid surface is possible and desirable, but it also shows that the current practice of only correcting the pressure is inadequate.

  16. A new adaptive GMRES algorithm for achieving high accuracy

    SciTech Connect

    Sosonkina, M.; Watson, L.T.; Kapania, R.K.; Walker, H.F.

    1996-12-31

    GMRES(k) is widely used for solving nonsymmetric linear systems. However, it is inadequate either when it converges only for k close to the problem size or when numerical error in the modified Gram-Schmidt process used in the GMRES orthogonalization phase dramatically affects the algorithm performance. An adaptive version of GMRES (k) which tunes the restart value k based on criteria estimating the GMRES convergence rate for the given problem is proposed here. The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order k. With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the variable storage requirements implied by varying k is not too difficult. The parameter k can be both increased and decreased-an increase-only strategy is described next followed by pseudocode.

  17. Automated Breast Image Classification Using Features from Its Discrete Cosine Transform

    PubMed Central

    Kendall, Edward J.; Flynn, Matthew T.

    2014-01-01

    Purpose This work aimed to improve breast screening program accuracy using automated classification. The goal was to determine if whole image features represented in the discrete cosine transform would provide a basis for classification. Priority was placed on avoiding false negative findings. Methods Online datasets were used for this work. No informed consent was required. Programs were developed in Mathematica and, where necessary to improve computational performance ported to C++. The use of a discrete cosine transform to separate normal from cancerous breast tissue was tested. Features (moments of the mean) were calculated in square sections of the transform centered on the origin. K-nearest neighbor and naive Bayesian classifiers were tested. Results Forty-one features were generated and tested singly, and in combination of two or three. Using a k-nearest neighbor classifier, sensitivities as high as 98% with a specificity of 66% were achieved. With a naive Bayesian classifier, sensitivities as high as 100% were achieved with a specificity of 64%. Conclusion Whole image classification based on discrete cosine transform (DCT) features was effectively implemented with a high level of sensitivity and specificity achieved. The high sensitivity attained using the DCT generated feature set implied that these classifiers could be used in series with other methods to increase specificity. Using a classifier with near 100% sensitivity, such as the one developed in this project, before applying a second classifier could only boost the accuracy of that classifier. PMID:24632807

  18. Optimisation of multisource data analysis: an example using evidential reasoning for GIS data classification

    NASA Astrophysics Data System (ADS)

    Peddle, Derek R.; Ferguson, David T.

    2002-02-01

    The classification of integrated data from multiple sources represents a powerful and synergistic approach to deriving important geoscience information from diverse data sets. These data often reside on Geographical Information Systems (GIS) and encompass a variety of sources and properties such as thematic data, remote sensing imagery, topographic data, or environmental map information in raster or vector formats in point, line or polygon representations. Multisource data classification algorithms often require the specification of user-defined parameters to guide data processing, however, these inputs can be numerous or difficult to determine, resulting in less than optimal results. This paper presents three methods for optimising the specification of user-defined inputs based on different levels of empirical testing and computational efficiency: (i) Exhaustive search by recursion, (ii) isolated independent search, and (iii) sequential dependent search. These methods have been implemented in an optimisation software program which is suitable for use with any data classification or analysis algorithm for which user specified inputs are required. In an example application of classifying sub-Arctic mountain permafrost in the Yukon Territory of northern Canada, these optimisation methods were compared in terms of classification accuracy, memory resources and run-time performance using a multisource evidential reasoning classifier, which has been shown to provide improved classification of multisource data compared to neural network, linear discriminant analysis, and maximum likelihood approaches. Using the optimisation software, higher evidential reasoning classification accuracies were achieved without excessive additional computing time. A two-stage approach was recommended for general use to ensure maximum efficiency. It was concluded that these methods are applicable to a wide variety of classification and data analysis algorithms and represent a useful approach

  19. Empirical comparison of color normalization methods for epithelial-stromal classification in H and E images

    PubMed Central

    Sethi, Amit; Sha, Lingdao; Vahadane, Abhishek Ramnath; Deaton, Ryan J.; Kumar, Neeraj; Macias, Virgilia; Gann, Peter H.

    2016-01-01

    Context: Color normalization techniques for histology have not been empirically tested for their utility for computational pathology pipelines. Aims: We compared two contemporary techniques for achieving a common intermediate goal – epithelial-stromal classification. Settings and Design: Expert-annotated regions of epithelium and stroma were treated as ground truth for comparing classifiers on original and color-normalized images. Materials and Methods: Epithelial and stromal regions were annotated on thirty diverse-appearing H and E stained prostate cancer tissue microarray cores. Corresponding sets of thirty images each were generated using the two color normalization techniques. Color metrics were compared for original and color-normalized images. Separate epithelial-stromal classifiers were trained and compared on test images. Main analyses were conducted using a multiresolution segmentation (MRS) approach; comparative analyses using two other classification approaches (convolutional neural network [CNN], Wndchrm) were also performed. Statistical Analysis: For the main MRS method, which relied on classification of super-pixels, the number of variables used was reduced using backward elimination without compromising accuracy, and test - area under the curves (AUCs) were compared for original and normalized images. For CNN and Wndchrm, pixel classification test-AUCs were compared. Results: Khan method reduced color saturation while Vahadane reduced hue variance. Super-pixel-level test-AUC for MRS was 0.010–0.025 (95% confidence interval limits ± 0.004) higher for the two normalized image sets compared to the original in the 10–80 variable range. Improvement in pixel classification accuracy was also observed for CNN and Wndchrm for color-normalized images. Conclusions: Color normalization can give a small incremental benefit when a super-pixel-based classification method is used with features that perform implicit color normalization while the gain is

  20. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  1. Gender classification under extended operating conditions

    NASA Astrophysics Data System (ADS)

    Rude, Howard N.; Rizki, Mateen

    2014-06-01

    Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.

  2. ALHAMBRA survey: morphological classification

    NASA Astrophysics Data System (ADS)

    Pović, M.; Huertas-Company, M.; Márquez, I.; Masegosa, J.; Aguerri, J. A. López; Husillos, C.; Molino, A.; Cristóbal-Hornillos, D.

    2015-03-01

    The Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey is a photometric survey designed to study systematically cosmic evolution and cosmic variance (Moles et al. 2008). It employs 20 continuous medium-band filters (3500 - 9700 Å), plus JHK near-infrared (NIR) bands, which enable measurements of photometric redshifts with good accuracy. ALHAMBRA covers > 4 deg2 in eight discontinuous regions (~ 0.5 deg2 per region), of theseseven fields overlap with other extragalactic, multiwavelength surveys (DEEP2, SDSS, COSMOS, HDF-N, Groth, ELAIS-N1). We detect > 600.000 sources, reaching the depth of R(AB) ~ 25.0, and photometric accuracy of 2-4% (Husillos et al., in prep.). Photometric redshifts are measured using the Bayesian Photometric Redshift (BPZ) code (Benítez et al. 2000), reaching one of the best accuracies up to date of δz/z <= 1.2% (Molino et al., in prep.). To deal with the morphological classification of galaxies in the ALHAMBRA survey (Pović et al., in prep.), we used the galaxy Support Vector Machine code (galSVM; Huertas-Company 2008, 2009), one of the new non-parametric methods for morphological classification, specially useful when dealing with low resolution and high-redshift data. To test the accuracy of our morphological classification we used a sample of 3000 local, visually classified galaxies (Nair & Abraham 2010), moving them to conditions typical of our ALHAMBRA data (taking into account the background, redshift and magnitude distributions, etc.), and measuring their morphology using galSVM. Finally, we measured the morphology of ALHAMBRA galaxies, obtaining for each source seven morphological parameters (two concentration indexes, asymmetry, Gini, M20 moment of light, smoothness, and elongation), probability if the source belongs to early- or late-type, and its error. Comparing ALHAMBRA morph COSMOS/ACS morphology (obtained with the same method) we expect to have qualitative separation in two main morphological

  3. Predictive Discriminant Analysis Versus Logistic Regression in Two-Group Classification Problems.

    ERIC Educational Resources Information Center

    Meshbane, Alice; Morris, John D.

    A method for comparing the cross-validated classification accuracies of predictive discriminant analysis and logistic regression classification models is presented under varying data conditions for the two-group classification problem. With this method, separate-group, as well as total-sample proportions of the correct classifications, can be…

  4. Effects of landscape characteristics on land-cover class accuracy

    USGS Publications Warehouse

    Smith, Jonathan H.; Stehman, Stephen V.; Wickham, James D.; Yang, Limin

    2003-01-01

    The effects of patch size and land-cover heterogeneity on classification accuracy were evaluated using reference data collected for the National Land-Cover Data (NLCD) set accuracy assessment. Logistic regression models quantified the relationship between classification accuracy and these landscape variables for each land-cover class at both the Anderson Levels I and II classification schemes employed in the NLCD. The general relationships were consistent, with the odds of correctly classifying a pixel increasing as patch size increased and decreasing as heterogeneity increased. Specific characteristics of these relationships, however, showed considerable diversity among the various classes. Odds ratios are reported to document these relationships. Interaction between the two landscape variables was not a significant influence on classification accuracy, indicating that the effect of heterogeneity was not impacted by the sample being in a small or large patch. Landscape variables remained significant predictors of class-specific accuracy even when adjusted for regional differences in the mapping and assessment processes or landscape characteristics. The land-cover class-specific analyses provide insight into sources of classification error and a capacity for predicting error based on a pixel's mapped land-cover class, patch size and surrounding land-cover heterogeneity.

  5. Context-driven, prescription-based personal activity classification: methodology, architecture, and end-to-end implementation.

    PubMed

    Xu, James Y; Chang, Hua-I; Chien, Chieh; Kaiser, William J; Pottie, Gregory J

    2014-05-01

    Enabling large-scale monitoring and classification of a range of motion activities is of primary importance due to the need by healthcare and fitness professionals to monitor exercises for quality and compliance. Past work has not fully addressed the unique challenges that arise from scaling. This paper presents a novel end-to-end system solution to some of these challenges. The system is built on the prescription-based context-driven activity classification methodology. First, we show that by refining the definition of context, and introducing the concept of scenarios, a prescription model can provide personalized activity monitoring. Second, through a flexible architecture constructed from interface models, we demonstrate the concept of a context-driven classifier. Context classification is achieved through a classification committee approach, and activity classification follows by means of context specific activity models. Then, the architecture is implemented in an end-to-end system featuring an Android application running on a mobile device, and a number of classifiers as core classification components. Finally, we use a series of experimental field evaluations to confirm the expected benefits of the proposed system in terms of classification accuracy, rate, and sensor operating life. PMID:24107984

  6. Advanced fractal approach for unsupervised classification of SAR images

    NASA Astrophysics Data System (ADS)

    Pant, Triloki; Singh, Dharmendra; Srivastava, Tanuja

    2010-06-01

    Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran's I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.

  7. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier

    SciTech Connect

    Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug; Seo, Joon Beom; Lynch, David A.

    2013-05-15

    Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessed using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For

  8. Generalized and Heuristic-Free Feature Construction for Improved Accuracy

    PubMed Central

    Fan, Wei; Zhong, Erheng; Peng, Jing; Verscheure, Olivier; Zhang, Kun; Ren, Jiangtao; Yan, Rong; Yang, Qiang

    2010-01-01

    State-of-the-art learning algorithms accept data in feature vector format as input. Examples belonging to different classes may not always be easy to separate in the original feature space. One may ask: can transformation of existing features into new space reveal significant discriminative information not obvious in the original space? Since there can be infinite number of ways to extend features, it is impractical to first enumerate and then perform feature selection. Second, evaluation of discriminative power on the complete dataset is not always optimal. This is because features highly discriminative on subset of examples may not necessarily be significant when evaluated on the entire dataset. Third, feature construction ought to be automated and general, such that, it doesn't require domain knowledge and its improved accuracy maintains over a large number of classification algorithms. In this paper, we propose a framework to address these problems through the following steps: (1) divide-conquer to avoid exhaustive enumeration; (2) local feature construction and evaluation within subspaces of examples where local error is still high and constructed features thus far still do not predict well; (3) weighting rules based search that is domain knowledge free and has provable performance guarantee. Empirical studies indicate that significant improvement (as much as 9% in accuracy and 28% in AUC) is achieved using the newly constructed features over a variety of inductive learners evaluated against a number of balanced, skewed and high-dimensional datasets. Software and datasets are available from the authors. PMID:21544257

  9. Automatic lung nodule classification with radiomics approach

    NASA Astrophysics Data System (ADS)

    Ma, Jingchen; Wang, Qian; Ren, Yacheng; Hu, Haibo; Zhao, Jun

    2016-03-01

    Lung cancer is the first killer among the cancer deaths. Malignant lung nodules have extremely high mortality while some of the benign nodules don't need any treatment .Thus, the accuracy of diagnosis between benign or malignant nodules diagnosis is necessary. Notably, although currently additional invasive biopsy or second CT scan in 3 months later may help radiologists to make judgments, easier diagnosis approaches are imminently needed. In this paper, we propose a novel CAD method to distinguish the benign and malignant lung cancer from CT images directly, which can not only improve the efficiency of rumor diagnosis but also greatly decrease the pain and risk of patients in biopsy collecting process. Briefly, according to the state-of-the-art radiomics approach, 583 features were used at the first step for measurement of nodules' intensity, shape, heterogeneity and information in multi-frequencies. Further, with Random Forest method, we distinguish the benign nodules from malignant nodules by analyzing all these features. Notably, our proposed scheme was tested on all 79 CT scans with diagnosis data available in The Cancer Imaging Archive (TCIA) which contain 127 nodules and each nodule is annotated by at least one of four radiologists participating in the project. Satisfactorily, this method achieved 82.7% accuracy in classification of malignant primary lung nodules and benign nodules. We believe it would bring much value for routine lung cancer diagnosis in CT imaging and provide improvement in decision-support with much lower cost.

  10. Measuring Diagnoses: ICD Code Accuracy

    PubMed Central

    O'Malley, Kimberly J; Cook, Karon F; Price, Matt D; Wildes, Kimberly Raiford; Hurdle, John F; Ashton, Carol M

    2005-01-01

    Objective To examine potential sources of errors at each step of the described inpatient International Classification of Diseases (ICD) coding process. Data Sources/Study Setting The use of disease codes from the ICD has expanded from classifying morbidity and mortality information for statistical purposes to diverse sets of applications in research, health care policy, and health care finance. By describing a brief history of ICD coding, detailing the process for assigning codes, identifying where errors can be introduced into the process, and reviewing methods for examining code accuracy, we help code users more systematically evaluate code accuracy for their particular applications. Study Design/Methods We summarize the inpatient ICD diagnostic coding process from patient admission to diagnostic code assignment. We examine potential sources of errors at each step and offer code users a tool for systematically evaluating code accuracy. Principle Findings Main error sources along the “patient trajectory” include amount and quality of information at admission, communication among patients and providers, the clinician's knowledge and experience with the illness, and the clinician's attention to detail. Main error sources along the “paper trail” include variance in the electronic and written records, coder training and experience, facility quality-control efforts, and unintentional and intentional coder errors, such as misspecification, unbundling, and upcoding. Conclusions By clearly specifying the code assignment process and heightening their awareness of potential error sources, code users can better evaluate the applicability and limitations of codes for their particular situations. ICD codes can then be used in the most appropriate ways. PMID:16178999

  11. Hydrometeor classification from a 2 dimensional video disdrometer

    NASA Astrophysics Data System (ADS)

    Grazioli, Jacopo; Tuia, Devis; Berne, Alexis

    2014-05-01

    Hydrometeor classification techniques aim at identifying the dominant hydrometeor type in a given observation volume or at a given time step, during precipitation. Such techniques are employed to interpret measurements from polarimetric weather radars, cloud lidars, and airborne particle imagers and their output is applied to risk assessment, air traffic control, and parametrization of numerical weather models. In the present work we develop a hydrometeor classification approach designed for data collected by a ground instrument: the 2 dimensional video disdrometer (2DVD). The 2DVD provides fall velocity and 2D views of each particle falling in its sampling area, by means of two orthogonally oriented line scanning cameras. We summarize this large amount of information over time steps of 60 seconds by characterizing the statistical behavior of a set of shape, size and velocity descriptors calculated for each falling hydrometeor. This summarized information is the input for the classification algorithm, that therefore provides the dominant hydrometeor type during a given time step of precipitation. 8 dominant hydrometeor classes have been identified by visual inspection of data collected in different climatologies (Switzerland, France and Canada), namely: small particles, dendrites, columns, graupel, rimed particles, aggregates, melting snow and rain. 400 representative time steps have been manually selected and classified in one of these classes in order to build a training set for the classification algorithm. The employed classifier is a support vector machine (SVM), a supervised linear classification method trained and evaluated on subsets of the 400 time steps. The algorithm achieves accurate performances, with overall accuracy higher than 90% in global terms and higher than 84% in median for each of the 8 hydrometeor classes available. This is confirmed by the Cohen's Kappa score (or HSS), that takes into account the prediction by chance and is higher than 0

  12. Class Extraction and Classification Accuracy in Latent Class Models

    ERIC Educational Resources Information Center

    Wu, Qiong

    2009-01-01

    Despite the increasing popularity of latent class models (LCM) in educational research, methodological studies have not yet accumulated much information on the appropriate application of this modeling technique, especially with regard to requirement on sample size and number of indicators. This dissertation study represented an initial attempt to…

  13. Object categories specific brain activity classification with simultaneous EEG-fMRI.

    PubMed

    Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque

    2015-08-01

    Any kind of visual information is encoded in terms of patterns of neural activity occurring inside the brain. Decoding neural patterns or its classification is a challenging task. Functional magnetic resonance imaging (fMRI) and Electroencephalography (EEG) are non-invasive neuroimaging modalities to capture the brain activity pattern in term of images and electric potential respectively. To get higher spatiotemporal resolution of human brain from these two complementary neuroimaging modalities, simultaneous EEG-fMRI can be helpful. In this paper, we proposed a framework for classifying the brain activity patterns with simultaneous EEG-fMRI. We have acquired five human participants' data with simultaneous EEG-fMRI by showing different object categories. Further, combined analysis of EEG and fMRI data was carried out. Extracted information through combine analysis is passed to support vector machine (SVM) classifier for classification purpose. We have achieved better classification accuracy using simultaneous EEG-fMRI i.e., 81.8% as compared to fMRI data standalone. This shows that multimodal neuroimaging can improve the classification accuracy of brain activity patterns as compared to individual modalities reported in literature. PMID:26736635

  14. Unsupervised classification of operator workload from brain signals

    NASA Astrophysics Data System (ADS)

    Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin

    2016-06-01

    Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.

  15. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    PubMed

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-01

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material. PMID:24048158

  16. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture

    PubMed Central

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C.; Punyasena, Surangi W.

    2013-01-01

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material. PMID:24048158

  17. Transportation Modes Classification Using Sensors on Smartphones.

    PubMed

    Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu

    2016-01-01

    This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user's transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes. PMID:27548182

  18. Mapping vegetation of a wetland ecosystem by fuzzy classification of optical and microwave satellite images supported by various ancillary data

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Krystyna; Dabrowska-Zielinska, Katarzyna; Gruszczynska, Maryla; Hoscilo, Agata

    2003-03-01

    An approach to classification of satellite images aimed at vegetation mapping in a wetland ecosystem has been presented. The wetlands of the Biebrza Valley located in the NE part of Poland has been chosen as a site of interest. The difficulty of using satellite images for the classification of a wetland land cover lies in the strong variability of the hydration state of such ecosystem in time. Satellite images acquired by optical or microwave sensors depend heavily on the current water level which often masks the most interesting long-time scale features of vegetation. Therefore the images have to be interpreted in the context of various ancillary data related to the investigated site. In the case of Biebrza Valley the most useful information was obtained from the soil and hydration maps as well as from the old vegetation maps. The object oriented classification approach applied in eCognition software enabled simultaneous use of satellite images together with the additional thematic data. Some supplementary knowledge concerning possible plant cover changes was also introduced into the process of classification. The accuracy of the classification was assessed versus ground-truth data and results of visual interpretation of aerial photos. The achieved accuracy depends on the type of vegetation community in question and is better for forest or shrubs than for meadows.

  19. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong

    2013-01-01

    Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.

  20. Automated patient-specific classification of long-term Electroencephalography.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Zabihi, Morteza; Ince, Dilek

    2014-06-01

    This paper presents a novel systematic approach for patient-specific classification of long-term Electroencephalography (EEG). The goal is to extract the seizure sections with a high accuracy to ease the Neurologist's burden of inspecting such long-term EEG data. We aim to achieve this using the minimum feedback from the Neurologist. To accomplish this, we use the majority of the state-of-the-art features proposed in this domain for evolving a collective network of binary classifiers (CNBC) using multi-dimensional particle swarm optimization (MD PSO). Multiple CNBCs are then used to form a CNBC ensemble (CNBC-E), which aggregates epileptic seizure frames from the classification map of each CNBC in order to maximize the sensitivity rate. Finally, a morphological filter forms the final epileptic segments while filtering out the outliers in the form of classification noise. The proposed system is fully generic, which does not require any a priori information about the patient such as the list of relevant EEG channels. The results of the classification experiments, which are performed over the benchmark CHB-MIT scalp long-term EEG database show that the proposed system can achieve all the aforementioned objectives and exhibits a significantly superior performance compared to several other state-of-the-art methods. Using a limited training dataset that is formed by less than 2 min of seizure and 24 min of non-seizure data on the average taken from the early 25% section of the EEG record of each patient, the proposed system establishes an average sensitivity rate above 89% along with an average specificity rate above 93% over the test set. PMID:24566194

  1. Integration of Network Topological and Connectivity Properties for Neuroimaging Classification

    PubMed Central

    Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw

    2014-01-01

    Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID

  2. Wavelet features in motion data classification

    NASA Astrophysics Data System (ADS)

    Szczesna, Agnieszka; Świtoński, Adam; Słupik, Janusz; Josiński, Henryk; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of motion data classification based on result of multiresolution analysis implemented in form of quaternion lifting scheme. Scheme processes directly on time series of rotations coded in form of unit quaternion signal. In the work new features derived from wavelet energy and entropy are proposed. To validate the approach gait database containing data of 30 different humans is used. The obtained results are satisfactory. The classification has over than 91% accuracy.

  3. Accuracy potentials for large space antenna structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1980-01-01

    The relationships among materials selection, truss design, and manufacturing techniques in the interest of surface accuracies for large space antennas are discussed. Among the antenna configurations considered are: tetrahedral truss, pretensioned truss, and geodesic dome and radial rib structures. Comparisons are made of the accuracy achievable by truss and dome structure types for a wide variety of diameters, focal lengths, and wavelength of radiated signal, taking into account such deforming influences as solar heating-caused thermal transients and thermal gradients.

  4. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Martin, Alex

    2014-01-01

    Objectives Autism spectrum disorders (ASD) are diagnosed based on early-manifesting clinical symptoms, including markedly impaired social communication. We assessed the viability of resting-state functional MRI (rs-fMRI) connectivity measures as diagnostic biomarkers for ASD and investigated which connectivity features are predictive of a diagnosis. Methods Rs-fMRI scans from 59 high functioning males with ASD and 59 age- and IQ-matched typically developing (TD) males were used to build a series of machine learning classifiers. Classification features were obtained using 3 sets of brain regions. Another set of classifiers was built from participants' scores on behavioral metrics. An additional age and IQ-matched cohort of 178 individuals (89 ASD; 89 TD) from the Autism Brain Imaging Data Exchange (ABIDE) open-access dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) were included for replication. Results High classification accuracy was achieved through several rs-fMRI methods (peak accuracy 76.67%). However, classification via behavioral measures consistently surpassed rs-fMRI classifiers (peak accuracy 95.19%). The class probability estimates, P(ASD|fMRI data), from brain-based classifiers significantly correlated with scores on a measure of social functioning, the Social Responsiveness Scale (SRS), as did the most informative features from 2 of the 3 sets of brain-based features. The most informative connections predominantly originated from regions strongly associated with social functioning. Conclusions While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing. PMID:25685703

  5. GEOSPATIAL DATA ACCURACY ASSESSMENT

    EPA Science Inventory

    The development of robust accuracy assessment methods for the validation of spatial data represent's a difficult scientific challenge for the geospatial science community. The importance and timeliness of this issue is related directly to the dramatic escalation in the developmen...

  6. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  7. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  8. Ground-level spectroscopy analyses and classification of coral reefs using a hyperspectral camera

    NASA Astrophysics Data System (ADS)

    Caras, T.; Karnieli, A.

    2013-09-01

    With the general aim of classification and mapping of coral reefs, remote sensing has traditionally been more difficult to implement in comparison with terrestrial equivalents. Images used for the marine environment suffer from environmental limitation (water absorption, scattering, and glint); sensor-related limitations (spectral and spatial resolution); and habitat limitation (substrate spectral similarity). Presented here is an advanced approach for ground-level surveying of a coral reef using a hyperspectral camera (400-1,000 nm) that is able to address all of these limitations. Used from the surface, the image includes a white reference plate that offers a solution for correcting the water column effect. The imaging system produces millimeter size pixels and 80 relevant bands. The data collected have the advantages of both a field point spectrometer (hyperspectral resolution) and a digital camera (spatial resolution). Finally, the availability of pure pixel imagery significantly improves the potential for substrate recognition in comparison with traditionally used remote sensing mixed pixels. In this study, an image of a coral reef table in the Gulf of Aqaba, Red Sea, was classified, demonstrating the benefits of this technology for the first time. Preprocessing includes testing of two normalization approaches, three spectral resolutions, and two spectral ranges. Trained classification was performed using support vector machine that was manually trained and tested against a digital image that provided empirical verification. For the classification of 5 core classes, the best results were achieved using a combination of a 450-660 nm spectral range, 5 nm wide bands, and the employment of red-band normalization. Overall classification accuracy was improved from 86 % for the original image to 99 % for the normalized image. Spectral resolution and spectral ranges seemed to have a limited effect on the classification accuracy. The proposed methodology and the use of

  9. Classification in Australia.

    ERIC Educational Resources Information Center

    McKinlay, John

    Despite some inroads by the Library of Congress Classification and short-lived experimentation with Universal Decimal Classification and Bliss Classification, Dewey Decimal Classification, with its ability in recent editions to be hospitable to local needs, remains the most widely used classification system in Australia. Although supplemented at…

  10. Robust Vertex Classification.

    PubMed

    Chen, Li; Shen, Cencheng; Vogelstein, Joshua T; Priebe, Carey E

    2016-03-01

    For random graphs distributed according to stochastic blockmodels, a special case of latent position graphs, adjacency spectral embedding followed by appropriate vertex classification is asymptotically Bayes optimal; but this approach requires knowledge of and critically depends on the model dimension. In this paper, we propose a sparse representation vertex classifier which does not require information about the model dimension. This classifier represents a test vertex as a sparse combination of the vertices in the training set and uses the recovered coefficients to classify the test vertex. We prove consistency of our proposed classifier for stochastic blockmodels, and demonstrate that the sparse representation classifier can predict vertex labels with higher accuracy than adjacency spectral embedding approaches via both simulation studies and real data experiments. Our results demonstrate the robustness and effectiveness of our proposed vertex classifier when the model dimension is unknown. PMID:26340770

  11. Computer-aided classification for remote sensing in agriculture and forestry in Northern Italy

    NASA Technical Reports Server (NTRS)

    Dejace, J.; Megier, J.; Mehl, W.

    1977-01-01

    A set of results concerning the processing and analysis of data from LANDSAT satellite and airborne scanner is presented. The possibility of performing inventories of irrigated crops-rice, planted groves-poplars, and natural forests in the mountians-beeches and chestnuts, is investigated in the Po valley and in an alphine site of Northern Italy. Accuracies around 95% or better, 70% and 60% respectively are achieved by using LANDSAT data and supervised classification. Discrimination of rice varieties is proved with 8 channels data from airborne scanner, processed after correction of the atmospheric effect due to the scanning angle, with and without linear feature selection of the data. The accuracies achieved range from 65% to more than 80%. The best results are obtained with the maximum likelihood classifier for normal parameters but rather close results are derived by using a modified version of the weighted euclidian distance between points, with consequent decrease in computing time around a factor 3.

  12. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  13. Harmonization of description and classification of fetal observations: achievements and problems still unresolved: report of the 7th Workshop on the Terminology in Developmental Toxicology Berlin, 4-6 May 2011.

    PubMed

    Solecki, Roland; Barbellion, Stephane; Bergmann, Brigitte; Bürgin, Heinrich; Buschmann, Jochen; Clark, Ruth; Comotto, Laura; Fuchs, Antje; Faqi, Ali Said; Gerspach, Ralph; Grote, Konstanze; Hakansson, Helen; Heinrich, Verena; Heinrich-Hirsch, Barbara; Hofmann, Thomas; Hübel, Ulrich; Inazaki, Thelma Helena; Khalil, Samia; Knudsen, Thomas B; Kudicke, Sabine; Lingk, Wolfgang; Makris, Susan; Müller, Simone; Paumgartten, Francisco; Pfeil, Rudolf; Rama, Elkiane Macedo; Schneider, Steffen; Shiota, Kohei; Tamborini, Eva; Tegelenbosch, Mariska; Ulbrich, Beate; van Duijnhoven, E A J; Wise, David; Chahoud, Ibrahim

    2013-01-01

    This article summarizes the 7th Workshop on the Terminology in Developmental Toxicology held in Berlin, May 4-6, 2011. The series of Berlin Workshops has been mainly concerned with the harmonization of terminology and classification of fetal anomalies in developmental toxicity studies. The main topics of the 7th Workshop were knowledge on the fate of anomalies after birth, use of Version 2 terminology for maternal-fetal observations and non-routinely used species, reclassification of "grey zone" anomalies and categorization of fetal observations for human health risk assessment. The paucity of data on health consequences of the postnatal permanence of fetal anomalies is relevant and further studies are needed. The Version 2 terminology is an important step forward and the terms listed in this glossary are considered also to be appropriate for most observations in non-routinely used species. Continuation of the Berlin Workshops was recommended. Topics suggested for the next Workshop were grouping of fetal observations for reporting and statistical analysis. PMID:22781580

  14. Multiple instance learning for classification of dementia in brain MRI.

    PubMed

    Tong, Tong; Wolz, Robin; Gao, Qinquan; Hajnal, Joseph V; Rueckert, Daniel

    2013-01-01

    Machine learning techniques have been widely used to support the diagnosis of neurological diseases such as dementia. Recent approaches utilize local intensity patterns within patches to derive voxelwise grading measures of disease. However, the relationships among these patches are usually ignored. In addition, there is some ambiguity in assigning disease labels to the extracted patches. Not all of the patches extracted from patients with dementia are characteristic of morphology associated with disease. In this paper, we propose to use a multiple instance learning method to address the problem of assigning training labels to the patches. In addition, a graph is built for each image to exploit the relationships among these patches, which aids the classification work. We illustrate the proposed approach in an application for the detection of Alzheimer's disease (AD): Using the baseline MR images of 834 subjects from the ADNI study, the proposed method can achieve a classification accuracy of 88.8% between AD patients and healthy controls, and 69.6% between patients with stable Mild Cognitive Impairment (MCI) and progressive MCI. These results compare favourably with state-of-the-art classification methods. PMID:24579190

  15. Consensus of classification trees for skin sensitisation hazard prediction.

    PubMed

    Asturiol, D; Casati, S; Worth, A

    2016-10-01

    Since March 2013, it is no longer possible to market in the European Union (EU) cosmetics containing new ingredients tested on animals. Although several in silico alternatives are available and achievements have been made in the development and regulatory adoption of skin sensitisation non-animal tests, there is not yet a generally accepted approach for skin sensitisation assessment that would fully substitute the need for animal testing. The aim of this work was to build a defined approach (i.e. a predictive model based on readouts from various information sources that uses a fixed procedure for generating a prediction) for skin sensitisation hazard prediction (sensitiser/non-sensitiser) using Local Lymph Node Assay (LLNA) results as reference classifications. To derive the model, we built a dataset with high quality data from in chemico (DPRA) and in vitro (KeratinoSens™ and h-CLAT) methods, and it was complemented with predictions from several software packages. The modelling exercise showed that skin sensitisation hazard was better predicted by classification trees based on in silico predictions. The defined approach consists of a consensus of two classification trees that are based on descriptors that account for protein reactivity and structural features. The model showed an accuracy of 0.93, sensitivity of 0.98, and specificity of 0.85 for 269 chemicals. In addition, the defined approach provides a measure of confidence associated to the prediction. PMID:27458072

  16. Deep Learning in Label-free Cell Classification

    DOE PAGESBeta

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  17. Classification Algorithms for Big Data Analysis, a Map Reduce Approach

    NASA Astrophysics Data System (ADS)

    Ayma, V. A.; Ferreira, R. S.; Happ, P.; Oliveira, D.; Feitosa, R.; Costa, G.; Plaza, A.; Gamba, P.

    2015-03-01

    Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP), which is an open-source, distributed framework for automatic image interpretation, is presented. The tool, named ICP: Data Mining Package, is able to perform supervised classification procedures on huge amounts of data, usually referred as big data, on a distributed infrastructure using Hadoop MapReduce. The tool has four classification algorithms implemented, taken from WEKA's machine learning library, namely: Decision Trees, Naïve Bayes, Random Forest and Support Vector Machines (SVM). The results of an experimental analysis using a SVM classifier on data sets of different sizes for different cluster configurations demonstrates the potential of the tool, as well as aspects that affect its performance.

  18. Deep Learning in Label-free Cell Classification.

    PubMed

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  19. Hyperspectral image classification for mapping agricultural tillage practices

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Li, Wei; Du, Qian; Yang, Chenghai

    2015-01-01

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal from large-scale remote sensing images. It includes a local region filter [i.e., Gaussian low-pass filter (GLF)] to extract spatial-spectral features, a dimensionality reduction process [i.e., local fisher's discriminate analysis (LFDA)], and the traditional k-nearest neighbor (KNN) classifier, and is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter and adaptive weighted filter, the GLF also considers spatial features in a small neighborhood, but it emphasizes the central pixel itself and is data-independent; therefore, it can achieve the balance between classification accuracy and computational complexity. The KNN classifier has a lower computational complexity compared to the traditional support vector machine (SVM). After classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform SVM and the overall computational cost remains lower. The proposed framework can also outperform the SVM with composite kernel (SVM-CK) that uses spatial-spectral features.

  20. Regularized reestimation of stochastic duration models for phone-classification

    NASA Astrophysics Data System (ADS)

    Russell, Martin J.; Jackson, Philip J. B.

    2001-05-01

    Recent research has compared the performance of various distributions (uniform, boxcar, exponential, gamma, discrete) for modeling segment (state) durations in hidden semi-Markov models used for phone classification on the TIMIT database. These experiments have shown that a gamma distribution is more appropriate than exponential (which is implicit in first-order Markov models), and achieved a 3% relative reduction in phone-classification errors [Jackson, Proc. ICPhS, pp. 1349-1352 (2003)]. The parameters of these duration distributions were estimated once for each model from initial statistics of state occupation (offline), and remained unchanged during subsequent iterations of training. The present work investigates the effect of reestimating the duration models in training (online) with respect to the phone-classification scores. First, tests were conducted on duration models reestimated directly from statistics gathered in the previous iteration of training. It was found that the boxcar and gamma models were unstable, meanwhile the performance of the other models also tended to degrade. Secondary tests, using a scheme of annealed regularization, demonstrated that the losses could be recouped and a further 1% improvement was obtained. The results from this pilot study imply that similar gains in recognition accuracy deserve investigation, along with further optimization of the duration model reestimation procedure.

  1. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  2. Land cover classification with MODIS data in China

    NASA Astrophysics Data System (ADS)

    Wang, Changyao; Zhao, Degang; Zhan, Yulin; Zhang, Qingyuan

    2009-06-01

    In this paper, Moderate Resolution Image Spectroradiometer (MODIS) data with high spectral and temporal resolutions were used as input parameters for Chinese regional scale land cover classification. Firstly, Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Normalized Difference Soil Index (NDSI) were calculated as input spectral features relies on an annual time series of twelve MODIS 8-day composite reflectance images (MOD09) acquired during the year of 2007. The monthly EVI was produced by the maximum value composite; the three indices were added in the image to form a 10-spectral-bands image. In order to reduce the input feature space dimension, we resort to the mean Jeffries-Matusita distance as a statistical separability criterion to select the best spectral feature combination according to their ability of separating the land cover classes. Once we achieved, the monthly best combination spectral bands were dealt with Principal Component Analysis (PCA) method and their first three principal components were used as input parameters for decision tree classification. The result showed that the best combination of spectral bands added temporal information as input parameters can reach a certain high classification accuracy (81.16%) at moderate spatial scales without other accessorial data.

  3. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  4. Accuracy and consistency of modern elastomeric pumps.

    PubMed

    Weisman, Robyn S; Missair, Andres; Pham, Phung; Gutierrez, Juan F; Gebhard, Ralf E

    2014-01-01

    Continuous peripheral nerve blockade has become a popular method of achieving postoperative analgesia for many surgical procedures. The safety and reliability of infusion pumps are dependent on their flow rate accuracy and consistency. Knowledge of pump rate profiles can help physicians determine which infusion pump is best suited for their clinical applications and specific patient population. Several studies have investigated the accuracy of portable infusion pumps. Using methodology similar to that used by Ilfeld et al, we investigated the accuracy and consistency of several current elastomeric pumps. PMID:25140510

  5. Aggregate features in multisample classification problems.

    PubMed

    Varga, Robert; Matheson, S Marie; Hamilton-Wright, Andrew

    2015-03-01

    This paper evaluates the classification of multisample problems, such as electromyographic (EMG) data, by making aggregate features available to a per-sample classifier. It is found that the accuracy of this approach is superior to that of traditional methods such as majority vote for this problem. The classification improvements of this method, in conjunction with a confidence measure expressing the per-sample probability of classification failure (i.e., a hazard function) is described and measured. Results are expected to be of interest in clinical decision support system development. PMID:24710836

  6. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  7. A Note on Document Classification with Small Training Data

    NASA Astrophysics Data System (ADS)

    Maeda, Yasunari; Yoshida, Hideki; Suzuki, Masakiyo; Matsushima, Toshiyasu

    Document classification is one of important topics in the field of NLP (Natural Language Processing). In the previous research a document classification method has been proposed which minimizes an error rate with reference to a Bayes criterion. But when the number of documents in training data is small, the accuracy of the previous method is low. So in this research we use estimating data in order to estimate prior distributions. When the training data is small the accuracy using estimating data is higher than the accuracy of the previous method. But when the training data is big the accuracy using estimating data is lower than the accuracy of the previous method. So in this research we also propose another technique whose accuracy is higher than the accuracy of the previous method when the training data is small, and is almost the same as the accuracy of the previous method when the training data is big.

  8. Spike Sorting Paradigm for Classification of Multi-channel Recorded Fasciculation Potentials

    PubMed Central

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Zev; Zhou, Ping

    2014-01-01

    Background Fasciculation potentials (FPs) are important in supporting the electrodiagnosis of Amyotrophic Lateral Sclerosis (ALS). If classified by shape, FPs can also be very informative for laboratory-based neurophysiological investigations of the motor units. Methods This study describes a Matlab program for classification of FPs recorded by multichannel surface electromyogram (EMG) electrodes. The program applies Principal Component Analysis on a set of features recorded from all channels. Then, it registers unsupervised and supervised classification algorithms to sort the FP samples. Qualitative and quantitative evaluation of the results is provided for the operator to assess the outcome. The algorithm facilitates manual interactive modification of the results. Classification accuracy can be improved progressively until the user is satisfied. The program makes no assumptions regarding the occurrence times of the action potentials, in keeping with the rather sporadic and irregular nature of FP firings. Results Ten sets of experimental data recorded from subjects with ALS using a 20-channel surface electrode array were tested. A total of 11891 FPs were detected and classified into a total of 235 prototype template waveforms. Evaluation and correction of classification outcome of such a dataset with over 6000 FPs can be achieved within 1–2 days. Facilitated interactive evaluation and modification could expedite the process of gaining accurate final results. Conclusion The developed Matlab program is an efficient toolbox for classification of FPs. PMID:25450215

  9. Interpretable exemplar-based shape classification using constrained sparse linear models

    NASA Astrophysics Data System (ADS)

    Sigurdsson, Gunnar A.; Yang, Zhen; Tran, Trac D.; Prince, Jerry L.

    2015-03-01

    Many types of diseases manifest themselves as observable changes in the shape of the affected organs. Using shape classification, we can look for signs of disease and discover relationships between diseases. We formulate the problem of shape classification in a holistic framework that utilizes a lossless scalar field representation and a non-parametric classification based on sparse recovery. This framework generalizes over certain classes of unseen shapes while using the full information of the shape, bypassing feature extraction. The output of the method is the class whose combination of exemplars most closely approximates the shape, and furthermore, the algorithm returns the most similar exemplars along with their similarity to the shape, which makes the result simple to interpret. Our results show that the method offers accurate classification between three cerebellar diseases and controls in a database of cerebellar ataxia patients. For reproducible comparison, promising results are presented on publicly available 2D datasets, including the ETH-80 dataset where the method achieves 88.4% classification accuracy.

  10. A novel sparse coding algorithm for classification of tumors based on gene expression data.

    PubMed

    Kolali Khormuji, Morteza; Bazrafkan, Mehrnoosh

    2016-06-01

    High-dimensional genomic and proteomic data play an important role in many applications in medicine such as prognosis of diseases, diagnosis, prevention and molecular biology, to name a few. Classifying such data is a challenging task due to the various issues such as curse of dimensionality, noise and redundancy. Recently, some researchers have used the sparse representation (SR) techniques to analyze high-dimensional biological data in various applications in classification of cancer patients based on gene expression datasets. A common problem with all SR-based biological data classification methods is that they cannot utilize the topological (geometrical) structure of data. More precisely, these methods transfer the data into sparse feature space without preserving the local structure of data points. In this paper, we proposed a novel SR-based cancer classification algorithm based on gene expression data that takes into account the geometrical information of all data. Precisely speaking, we incorporate the local linear embedding algorithm into the sparse coding framework, by which we can preserve the geometrical structure of all data. For performance comparison, we applied our algorithm on six tumor gene expression datasets, by which we demonstrate that the proposed method achieves higher classification accuracy than state-of-the-art SR-based tumor classification algorithms. PMID:26337064

  11. A novel multi-manifold classification model via path-based clustering for image retrieval

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Yuan, Zhijun; Xuan, Junying

    2011-12-01

    Nowadays, with digital cameras and mass storage devices becoming increasingly affordable, each day thousands of pictures are taken and images on the Internet are emerged at an astonishing rate. Image retrieval is a process of searching valuable information that user demanded from huge images. However, it is hard to find satisfied results due to the well known "semantic gap". Image classification plays an essential role in retrieval process. But traditional methods will encounter problems when dealing with high-dimensional and large-scale image sets in applications. Here, we propose a novel multi-manifold classification model for image retrieval. Firstly, we simplify the classification of images from high-dimensional space into the one on low-dimensional manifolds, largely reducing the complexity of classification process. Secondly, considering that traditional distance measures often fail to find correct visual semantics of manifolds, especially when dealing with the images having complex data distribution, we also define two new distance measures based on path-based clustering, and further applied to the construction of a multi-class image manifold. One experiment was conducted on 2890 Web images. The comparison results between three methods show that the proposed method achieves the highest classification accuracy.

  12. Neural network diagnostic system for dengue patients risk classification.

    PubMed

    Faisal, Tarig; Taib, Mohd Nasir; Ibrahim, Fatimah

    2012-04-01

    With the dramatic increase of the worldwide threat of dengue disease, it has been very crucial to correctly diagnose the dengue patients in order to decrease the disease severity. However, it has been a great challenge for the physicians to identify the level of risk in dengue patients due to overlapping of the medical classification criteria. Therefore, this study aims to construct a noninvasive diagnostic system to assist the physicians for classifying the risk in dengue patients. Systematic producers have been followed to develop the system. Firstly, the assessment of the significant predictors associated with the level of risk in dengue patients was carried out utilizing the statistical analyses technique. Secondly, Multilayer perceptron neural network models trained via Levenberg-Marquardt and Scaled Conjugate Gradient algorithms was employed for constructing the diagnostic system. Finally, precise tuning for the models' parameters was conducted in order to achieve the optimal performance. As a result, 9 noninvasive predictors were found to be significantly associated with the level of risk in dengue patients. By employing those predictors, 75% prediction accuracy has been achieved for classifying the risk in dengue patients using Scaled Conjugate Gradient algorithm while 70.7% prediction accuracy were achieved by using Levenberg-Marquardt algorithm. PMID:20703665

  13. Neighborhood Rough Set Reduction-Based Gene Selection and Prioritization for Gene Expression Profile Analysis and Molecular Cancer Classification

    PubMed Central

    Hou, Mei-Ling; Wang, Shu-Lin; Li, Xue-Ling; Lei, Ying-Ke

    2010-01-01

    Selection of reliable cancer biomarkers is crucial for gene expression profile-based precise diagnosis of cancer type and successful treatment. However, current studies are confronted with overfitting and dimensionality curse in tumor classification and false positives in the identification of cancer biomarkers. Here, we developed a novel gene-ranking method based on neighborhood rough set reduction for molecular cancer classification based on gene expression profile. Comparison with other methods such as PAM, ClaNC, Kruskal-Wallis rank sum test, and Relief-F, our method shows that only few top-ranked genes could achieve higher tumor classification accuracy. Moreover, although the selected genes are not typical of known oncogenes, they are found to play a crucial role in the occurrence of tumor through searching the scientific literature and analyzing protein interaction partners, which may be used as candidate cancer biomarkers. PMID:20625410

  14. RAPID COMMUNICATION: Asynchronous data-driven classification of weapon systems

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Mukherjee, Kushal; Gupta, Shalabh; Ray, Asok; Phoha, Shashi; Damarla, Thyagaraju

    2009-12-01

    This communication addresses real-time weapon classification by analysis of asynchronous acoustic data, collected from microphones on a sensor network. The weapon classification algorithm consists of two parts: (i) feature extraction from time-series data using symbolic dynamic filtering (SDF), and (ii) pattern classification based on the extracted features using the language measure (LM) and support vector machine (SVM). The proposed algorithm has been tested on field data, generated by firing of two types of rifles. The results of analysis demonstrate high accuracy and fast execution of the pattern classification algorithm with low memory requirements. Potential applications include simultaneous shooter localization and weapon classification with soldier-wearable networked sensors.

  15. Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Wagner, W.; Naeimi, V.; Cao, S.

    2015-04-01

    Recent studies have shown the potential of Synthetic Aperture Radars (SAR) for mapping of rice fields and some other vegetation types. For rice field classification, conventional classification techniques have been mostly used including manual threshold-based and supervised classification approaches. The challenge of the threshold-based approach is to find acceptable thresholds to be used for each individual SAR scene. Furthermore, the influence of local incidence angle on backscatter hinders using a single threshold for the entire scene. Similarly, the supervised classification approach requires different training samples for different output classes. In case of rice crop, supervised classification using temporal data requires different training datasets to perform classification procedure which might lead to inconsistent mapping results. In this study we present an automatic method to identify rice crop areas by extracting phonological parameters after performing an empirical regression-based normalization of the backscatter to a reference incidence angle. The method is evaluated in the Red River Delta (RRD), Vietnam using the time series of ENVISAT Advanced SAR (ASAR) Wide Swath (WS) mode data. The results of rice mapping algorithm compared to the reference data indicate the Completeness (User accuracy), Correctness (Producer accuracy) and Quality (Overall accuracies) of 88.8%, 92.5 % and 83.9 % respectively. The total area of the classified rice fields corresponds to the total rice cultivation areas given by the official statistics in Vietnam (R2  0.96). The results indicates that applying a phenology-based classification approach using backscatter time series in optimal incidence angle normalization can achieve high classification accuracies. In addition, the method is not only useful for large scale early mapping of rice fields in the Red River Delta using the current and future C-band Sentinal-1A&B backscatter data but also might be applied for other rice

  16. Classification and knowledge

    NASA Technical Reports Server (NTRS)

    Kurtz, Michael J.

    1989-01-01

    Automated procedures to classify objects are discussed. The classification problem is reviewed, and the relation of epistemology and classification is considered. The classification of stellar spectra and of resolved images of galaxies is addressed.

  17. Remote Sensing Information Classification

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas L.

    2008-01-01

    This viewgraph presentation reviews the classification of Remote Sensing data in relation to epidemiology. Classification is a way to reduce the dimensionality and precision to something a human can understand. Classification changes SCALAR data into NOMINAL data.

  18. Radar and multispectral image fusion options for improved land cover classification

    NASA Astrophysics Data System (ADS)

    Villiger, Erwin J.

    cover classification process applied to the dry season and wet season MSI data achieved a total classification accuracy of 80.6% and 80.7% respectively. When combined into a single multiseason dataset the MSI data resulted in a total classification accuracy of 87.3%. SAR proved to be a valuable source of information especially when processed as a time series and with a speckle suppression algorithm applied. A 21-scene multitemporal SAR dataset achieved a total classification accuracy of 65.8%. When a classification was applied to the multitemporal dataset following speckle suppression, the resulting total classification accuracy was as high as 83.8% depending on the speckle algorithm and kernel applied. While texture measures have been successfully utilized for integrating SAR and MSI data, in this study speckle suppression proved to be significantly more valuable. SAR collection parameters such as look direction (ascending or descending orbit) and incident angle did not prove to contain uniquely valuable characteristics. The highest total classification accuracy achieved involved a combination of two MSI datasets and a multitemporal SAR dataset processed to suppress speckle using a Gamma-Maximum A Posteriori (MAP) filter with a 9x9 kernel. This study sought to investigate processing alternatives when fusing SAR and MSI data. While not all of the results met with expectations, this study does determine that SAR and MSI are complementary data sources. A combination of SAR and MSI provide unique and valuable results that can not be achieved by each variable used independently.

  19. Automatic retinal vessel classification using a Least Square-Support Vector Machine in VAMPIRE.

    PubMed

    Relan, D; MacGillivray, T; Ballerini, L; Trucco, E

    2014-01-01

    It is important to classify retinal blood vessels into arterioles and venules for computerised analysis of the vasculature and to aid discovery of disease biomarkers. For instance, zone B is the standardised region of a retinal image utilised for the measurement of the arteriole to venule width ratio (AVR), a parameter indicative of microvascular health and systemic disease. We introduce a Least Square-Support Vector Machine (LS-SVM) classifier for the first time (to the best of our knowledge) to label automatically arterioles and venules. We use only 4 image features and consider vessels inside zone B (802 vessels from 70 fundus camera images) and in an extended zone (1,207 vessels, 70 fundus camera images). We achieve an accuracy of 94.88% and 93.96% in zone B and the extended zone, respectively, with a training set of 10 images and a testing set of 60 images. With a smaller training set of only 5 images and the same testing set we achieve an accuracy of 94.16% and 93.95%, respectively. This experiment was repeated five times by randomly choosing 10 and 5 images for the training set. Mean classification accuracy are close to the above mentioned result. We conclude that the performance of our system is very promising and outperforms most recently reported systems. Our approach requires smaller training data sets compared to others but still results in a similar or higher classification rate. PMID:25569917

  20. Study of wavelet packet energy entropy for emotion classification in speech and glottal signals

    NASA Astrophysics Data System (ADS)

    He, Ling; Lech, Margaret; Zhang, Jing; Ren, Xiaomei; Deng, Lihua

    2013-07-01

    The automatic speech emotion recognition has important applications in human-machine communication. Majority of current research in this area is focused on finding optimal feature parameters. In recent studies, several glottal features were examined as potential cues for emotion differentiation. In this study, a new type of feature parameter is proposed, which calculates energy entropy on values within selected Wavelet Packet frequency bands. The modeling and classification tasks are conducted using the classical GMM algorithm. The experiments use two data sets: the Speech Under Simulated Emotion (SUSE) data set annotated with three different emotions (angry, neutral and soft) and Berlin Emotional Speech (BES) database annotated with seven different emotions (angry, bored, disgust, fear, happy, sad and neutral). The average classification accuracy achieved for the SUSE data (74%-76%) is significantly higher than the accuracy achieved for the BES data (51%-54%). In both cases, the accuracy was significantly higher than the respective random guessing levels (33% for SUSE and 14.3% for BES).

  1. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Ahmad, Rana Fayyaz; Badruddin, Nasreen; Kamel, Nidal; Hussain, Muhammad; Chooi, Weng-Tink

    2015-03-01

    This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate. PMID:25649845

  2. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  3. Automatic approach to solve the morphological galaxy classification problem using the sparse representation technique and dictionary learning

    NASA Astrophysics Data System (ADS)

    Diaz-Hernandez, R.; Ortiz-Esquivel, A.; Peregrina-Barreto, H.; Altamirano-Robles, L.; Gonzalez-Bernal, J.

    2016-04-01

    The observation of celestial objects in the sky is a practice that helps astronomers to understand the way in which the Universe is structured. However, due to the large number of observed objects with modern telescopes, the analysis of these by hand is a difficult task. An important part in galaxy research is the morphological structure classification based on the Hubble sequence. In this research, we present an approach to solve the morphological galaxy classification problem in an automatic way by using the Sparse Representation technique and dictionary learning with K-SVD. For the tests in this work, we use a database of galaxies extracted from the Principal Galaxy Catalog (PGC) and the APM Equatorial Catalogue of Galaxies obtaining a total of 2403 useful galaxies. In order to represent each galaxy frame, we propose to calculate a set of 20 features such as Hu's invariant moments, galaxy nucleus eccentricity, gabor galaxy ratio and some other features commonly used in galaxy classification. A stage of feature relevance analysis was performed using Relief-f in order to determine which are the best parameters for the classification tests using 2, 3, 4, 5, 6 and 7 galaxy classes making signal vectors of different length values with the most important features. For the classification task, we use a 20-random cross-validation technique to evaluate classification accuracy with all signal sets achieving a score of 82.27 % for 2 galaxy classes and up to 44.27 % for 7 galaxy classes.

  4. Automatic approach to solve the morphological galaxy classification problem using the sparse representation technique and dictionary learning

    NASA Astrophysics Data System (ADS)

    Diaz-Hernandez, R.; Ortiz-Esquivel, A.; Peregrina-Barreto, H.; Altamirano-Robles, L.; Gonzalez-Bernal, J.

    2016-06-01

    The observation of celestial objects in the sky is a practice that helps astronomers to understand the way in which the Universe is structured. However, due to the large number of observed objects with modern telescopes, the analysis of these by hand is a difficult task. An important part in galaxy research is the morphological structure classification based on the Hubble sequence. In this research, we present an approach to solve the morphological galaxy classification problem in an automatic way by using the Sparse Representation technique and dictionary learning with K-SVD. For the tests in this work, we use a database of galaxies extracted from the Principal Galaxy Catalog (PGC) and the APM Equatorial Catalogue of Galaxies obtaining a total of 2403 useful galaxies. In order to represent each galaxy frame, we propose to calculate a set of 20 features such as Hu's invariant moments, galaxy nucleus eccentricity, gabor galaxy ratio and some other features commonly used in galaxy classification. A stage of feature relevance analysis was performed using Relief-f in order to determine which are the best parameters for the classification tests using 2, 3, 4, 5, 6 and 7 galaxy classes making signal vectors of different length values with the most important features. For the classification task, we use a 20-random cross-validation technique to evaluate classification accuracy with all signal sets achieving a score of 82.27 % for 2 galaxy classes and up to 44.27 % for 7 galaxy classes.

  5. AVHRR channel selection for land cover classification

    USGS Publications Warehouse

    Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.

    2002-01-01

    Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized inter-annual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more

  6. Interoceptive accuracy and panic.

    PubMed

    Zoellner, L A; Craske, M G

    1999-12-01

    Psychophysiological models of panic hypothesize that panickers focus attention on and become anxious about the physical sensations associated with panic. Attention on internal somatic cues has been labeled interoception. The present study examined the role of physiological arousal and subjective anxiety on interoceptive accuracy. Infrequent panickers and nonanxious participants participated in an initial baseline to examine overall interoceptive accuracy. Next, participants ingested caffeine, about which they received either safety or no safety information. Using a mental heartbeat tracking paradigm, participants' count of their heartbeats during specific time intervals were coded based on polygraph measures. Infrequent panickers were more accurate in the perception of their heartbeats than nonanxious participants. Changes in physiological arousal were not associated with increased accuracy on the heartbeat perception task. However, higher levels of self-reported anxiety were associated with superior performance. PMID:10596462

  7. Classification effects of real and imaginary movement selective attention tasks on a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Salvaris, Mathew; Sepulveda, Francisco

    2010-10-01

    Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).

  8. Hierarchical classification of protein folds using a novel ensemble classifier.

    PubMed

    Lin, Chen; Zou, Ying; Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp. PMID:23437146

  9. Hierarchical Classification of Protein Folds Using a Novel Ensemble Classifier

    PubMed Central

    Qin, Ji; Liu, Xiangrong; Jiang, Yi; Ke, Caihuan; Zou, Quan

    2013-01-01

    The analysis of biological information from protein sequences is important for the study of cellular functions and interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.edu.cn/software/hpfp. PMID:23437146

  10. Membrane positioning for high- and low-resolution protein structures through a binary classification approach.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Guiraud, Vincent; Gelly, Jean-Christophe

    2016-03-01

    The critical importance of algorithms for orienting proteins in the lipid bilayer stems from the extreme difficulty in obtaining experimental data about the membrane boundaries. Here, we present a computational method for positioning protein structures in the membrane, based on the sole alpha carbon coordinates and, therefore, compatible with both high and low structural resolutions. Our algorithm follows a new and simple approach, by treating the membrane assignment problem as a binary classification. Compared with the state-of-the-art algorithms, our method achieves similar accuracy, while being faster. Finally, our open-source software is also capable of processing coarse-grained models of protein structures. PMID:26685702

  11. Automatic classification of DMSA scans using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice.

  12. An adaptive unsupervised hyperspectral classification method based on Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Yue, Jiang; Wu, Jing-wei; Zhang, Yi; Bai, Lian-fa

    2014-11-01

    In order to achieve adaptive unsupervised clustering in the high precision, a method using Gaussian distribution to fit the similarity of the inter-class and the noise distribution is proposed in this paper, and then the automatic segmentation threshold is determined by the fitting result. First, according with the similarity measure of the spectral curve, this method assumes that the target and the background both in Gaussian distribution, the distribution characteristics is obtained through fitting the similarity measure of minimum related windows and center pixels with Gaussian function, and then the adaptive threshold is achieved. Second, make use of the pixel minimum related windows to merge adjacent similar pixels into a picture-block, then the dimensionality reduction is completed and the non-supervised classification is realized. AVIRIS data and a set of hyperspectral data we caught are used to evaluate the performance of the proposed method. Experimental results show that the proposed algorithm not only realizes the adaptive but also outperforms K-MEANS and ISODATA on the classification accuracy, edge recognition and robustness.

  13. Texture-Based Automated Lithological Classification Using Aeromagenetic Anomaly Images

    USGS Publications Warehouse

    Shankar, Vivek

    2009-01-01

    This report consists of a thesis submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Master of Science, Graduate College, The University of Arizona, 2004 Aeromagnetic anomaly images are geophysical prospecting tools frequently used in the exploration of metalliferous minerals and hydrocarbons. The amplitude and texture content of these images provide a wealth of information to geophysicists who attempt to delineate the nature of the Earth's upper crust. These images prove to be extremely useful in remote areas and locations where the minerals of interest are concealed by basin fill. Typically, geophysicists compile a suite of aeromagnetic anomaly images, derived from amplitude and texture measurement operations, in order to obtain a qualitative interpretation of the lithological (rock) structure. Texture measures have proven to be especially capable of capturing the magnetic anomaly signature of unique lithological units. We performed a quantitative study to explore the possibility of using texture measures as input to a machine vision system in order to achieve automated classification of lithological units. This work demonstrated a significant improvement in classification accuracy over random guessing based on a priori probabilities. Additionally, a quantitative comparison between the performances of five classes of texture measures in their ability to discriminate lithological units was achieved.

  14. A New Direction of Cancer Classification: Positive Effect of Low-Ranking MicroRNAs

    PubMed Central

    Li, Feifei; Piao, Minghao; Piao, Yongjun; Li, Meijing; Ryu, Keun Ho

    2014-01-01

    Objectives Many studies based on microRNA (miRNA) expression profiles showed a new aspect of cancer classification. Because one characteristic of miRNA expression data is the high dimensionality, feature selection methods have been used to facilitate dimensionality reduction. The feature selection methods have one shortcoming thus far: they just consider the problem of where feature to class is 1:1 or n:1. However, because one miRNA may influence more than one type of cancer, human miRNA is considered to be ranked low in traditional feature selection methods and are removed most of the time. In view of the limitation of the miRNA number, low-ranking miRNAs are also important to cancer classification. Methods We considered both high- and low-ranking features to cover all problems (1:1, n:1, 1:n, and m:n) in cancer classification. First, we used the correlation-based feature selection method to select the high-ranking miRNAs, and chose the support vector machine, Bayes network, decision tree, k-nearest-neighbor, and logistic classifier to construct cancer classification. Then, we chose Chi-square test, information gain, gain ratio, and Pearson's correlation feature selection methods to build the m:n feature subset, and used the selected miRNAs to determine cancer classification. Results The low-ranking miRNA expression profiles achieved higher classification accuracy compared with just using high-ranking miRNAs in traditional feature selection methods. Conclusion Our results demonstrate that the m:n feature subset made a positive impression of low-ranking miRNAs in cancer classification. PMID:25389514

  15. Robust Automated Detection of Microstructural White Matter Degeneration in Alzheimer’s Disease Using Machine Learning Classification of Multicenter DTI Data

    PubMed Central

    Dyrba, Martin; Ewers, Michael; Wegrzyn, Martin; Kilimann, Ingo; Plant, Claudia; Oswald, Annahita; Meindl, Thomas; Pievani, Michela; Bokde, Arun L. W.; Fellgiebel, Andreas; Filippi, Massimo; Hampel, Harald; Klöppel, Stefan; Hauenstein, Karlheinz; Kirste, Thomas; Teipel, Stefan J.

    2013-01-01

    Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was

  16. On evaluating clustering procedures for use in classification

    NASA Technical Reports Server (NTRS)

    Pore, M. D.; Moritz, T. E.; Register, D. T.; Yao, S. S.; Eppler, W. G. (Principal Investigator)

    1979-01-01

    The problem of evaluating clustering algorithms and their respective computer programs for use in a preprocessing step for classification is addressed. In clustering for classification the probability of correct classification is suggested as the ultimate measure of accuracy on training data. A means of implementing this criterion and a measure of cluster purity are discussed. Examples are given. A procedure for cluster labeling that is based on cluster purity and sample size is presented.

  17. Classification of hyperspectral imagery for identifying fecal and ingesta contaminants

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Windham, William R.; Lawrence, Kurt C.; Smith, Douglas P.

    2004-03-01

    This paper presents the research results of the performance of classification methods for hyperspectral poultry imagery to identify fecal and ingesta contaminants on the surface of broiler carcasses. A pushbroom line-scan hyperspectral imager was used to acquire hyperspectral data with 512 narrow bands covered from 400 to 900 nm wavelengths. Three different feces from digestive tracts (duodenum, ceca, colon), and ingesta were used as contaminants. These contaminants were collected from the broiler carcasses fed by corn, milo, and wheat with soybean meals. For the selection of optimum classifier, various widely used supervised classification methods (parallelepiped, minimum distance, Mahalanobis distance, maximum likelihood, spectral angle mapper, and binary coding) were investigated. The classification accuracies ranged from 62.94% to 92.27%. The highest classification accuracy for identifying contaminants for corn fed carcasses was 92.27% with spectral angle mapper classifier. While, the classification accuracy was 82.02% with maximum likelihood method for milo fed carcasses and 91.16% accuracy was obtained for wheat fed carcasses when same classification method was used. The mean classification accuracy obtained in this study for classifying fecal and ingesta contaminants was 90.21%.

  18. Item Selection Criteria with Practical Constraints for Computerized Classification Testing

    ERIC Educational Resources Information Center

    Lin, Chuan-Ju

    2011-01-01

    This study compares four item selection criteria for a two-category computerized classification testing: (1) Fisher information (FI), (2) Kullback-Leibler information (KLI), (3) weighted log-odds ratio (WLOR), and (4) mutual information (MI), with respect to the efficiency and accuracy of classification decision using the sequential probability…

  19. A Method for Selecting between Fisher's Linear Classification Functions and Least Absolute Deviation in Predictive Discriminant Analysis.

    ERIC Educational Resources Information Center

    Meshbane, Alice; Morris, John D.

    A method for comparing the cross-validated classification accuracy of Fisher's linear classification functions (FLCFs) and the least absolute deviation is presented under varying data conditions for the two-group classification problem. With this method, separate-group as well as total-sample proportions of current classifications can be compared…

  20. Potentials of RapidEye time series for improved classification of crop rotations in heterogeneous agricultural landscapes: experiences from irrigation systems in Central Asia

    NASA Astrophysics Data System (ADS)

    Conrad, Christopher; Machwitz, Miriam; Schorcht, Gunther; Löw, Fabian; Fritsch, Sebastian; Dech, Stefan

    2011-11-01

    In Central Asia, more than eight Million ha of agricultural land are under irrigation. But severe degradation problems and unreliable water distribution have caused declining yields during the past decades. Reliable and area-wide information about crops can be seen as important step to elaborate options for sustainable land and water management. Experiences from RapidEye classifications of crop in Central Asia are exemplarily shown during a classification of eight crop classes including three rotations with winter wheat, cotton, rice, and fallow land in the Khorezm region of Uzbekistan covering 230,000 ha of irrigated land. A random forest generated by using 1215 field samples was applied to multitemporal RapidEye data acquired during the vegetation period 2010. But RapidEye coverage varied and did not allow for generating temporally consistent mosaics covering the entire region. To classify all 55,188 agricultural parcels in the region three classification zones were classified separately. The zoning allowed for including at least three observation periods into classification. Overall accuracy exceeded 85 % for all classification zones. Highest accuracies of 87.4 % were achieved by including five spatiotemporal composites of RapidEye. Class-wise accuracy assessments showed the usefulness of selecting time steps which represent relevant phenological phases of the vegetation period. The presented approach can support regional crop inventory. Accurate classification results in early stages of the cropping season permit recalculation of crop water demands and reallocation of irrigation water. The high temporal and spatial resolution of RapidEye can be concluded highly beneficial for agricultural land use classifications in entire Central Asia.

  1. Analysis of the classification of US and Canadian intensive test sites using the Image 100 hybrid classification system

    NASA Technical Reports Server (NTRS)

    Hocutt, W. T. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Labeling of wheat rather than total grains, particularly with only one acquisition, led to significant overestimates in some segments. The Image-100 software and procedures were written to facilitate classification of the LACIE segments but were not designed to record data for later accuracy assessment. A much better evaluation would have been possible if accuracy assessment data had been collected following each satisfactory classification.

  2. Retinal vasculature classification using novel multifractal features

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.

    2015-11-01

    Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.

  3. Random forests for classification in ecology

    USGS Publications Warehouse

    Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  4. [Identification and classification of rice leaf blast based on multi-spectral imaging sensor].

    PubMed

    Feng, Lei; Chai, Rong-Yao; Sun, Guang-Ming; Wu, Di; Lou, Bing-Gan; He, Yong

    2009-10-01

    Site-specific variable pesticide application is one of the major precision crop production management operations. Rice blast is a severe threat for rice production. Traditional chemistry methods can do the accurate crop disease identification, however they are time-consuming, require being executed by professionals and are of high cost. Crop disease identification and classification by human sight need special crop protection knowledge, and is low efficient. To obtain fast, reliable, accurate rice blast disease information is essential for achieving effective site-specific pesticide applications and crop management. The present paper describes a multi-spectral leaf blast identification and classification image sensor, which uses three channels of crop leaf and canopy images. The objective of this work was to develop and evaluate an algorithm under simplified lighting conditions for identifying damaged rice plants by the leaf blast using digital color images. Based on the results obtained from this study, the seed blast identification accuracy can be achieved at 95%, and the leaf blast identification accuracy can be achieved at 90% during the rice growing season. Thus it can be concluded that multi-spectral camera can provide sufficient information to perform reasonable rice leaf blast estimation. PMID:20038048

  5. Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias.

    PubMed

    Reta, Carolina; Altamirano, Leopoldo; Gonzalez, Jesus A; Diaz-Hernandez, Raquel; Peregrina, Hayde; Olmos, Ivan; Alonso, Jose E; Lobato, Ruben

    2015-01-01

    Morphological identification of acute leukemia is a powerful tool used by hematologists to determine the family of such a disease. In some cases, experienced physicians are even able to determine the leukemia subtype of the sample. However, the identification process may have error rates up to 40% (when classifying acute leukemia subtypes) depending on the physician's experience and the sample quality. This problem raises the need to create automatic tools that provide hematologists with a second opinion during the classification process. Our research presents a contextual analysis methodology for the detection of acute leukemia subtypes from bone marrow cells images. We propose a cells separation algorithm to break up overlapped regions. In this phase, we achieved an average accuracy of 95% in the evaluation of the segmentation process. In a second phase, we extract descriptive features to the nucleus and cytoplasm obtained in the segmentation phase in order to classify leukemia families and subtypes. We finally created a decision algorithm that provides an automatic diagnosis for a patient. In our experiments, we achieved an overall accuracy of 92% in the supervised classification of acute leukemia families, 84% for the lymphoblastic subtypes, and 92% for the myeloblastic subtypes. Finally, we achieved accuracies of 95% in the diagnosis of leukemia families and 90% in the diagnosis of leukemia subtypes. PMID:26107374

  6. Automatic classification of small bowel mucosa alterations in celiac disease for confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Boschetto, Davide; Di Claudio, Gianluca; Mirzaei, Hadis; Leong, Rupert; Grisan, Enrico

    2016-03-01

    Celiac disease (CD) is an immune-mediated enteropathy triggered by exposure to gluten and similar proteins, affecting genetically susceptible persons, increasing their risk of different complications. Small bowels mucosa damage due to CD involves various degrees of endoscopically relevant lesions, which are not easily recognized: their overall sensitivity and positive predictive values are poor even when zoom-endoscopy is used. Confocal Laser Endomicroscopy (CLE) allows skilled and trained experts to qualitative evaluate mucosa alteration such as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a method for automatically classifying CLE images into three different classes: normal regions, villous atrophy and crypt hypertrophy. This classification is performed after a features selection process, in which four features are extracted from each image, through the application of homomorphic filtering and border identification through Canny and Sobel operators. Three different classifiers have been tested on a dataset of 67 different images labeled by experts in three classes (normal, VA and CH): linear approach, Naive-Bayes quadratic approach and a standard quadratic analysis, all validated with a ten-fold cross validation. Linear classification achieves 82.09% accuracy (class accuracies: 90.32% for normal villi, 82.35% for VA and 68.42% for CH, sensitivity: 0.68, specificity 1.00), Naive Bayes analysis returns 83.58% accuracy (90.32% for normal villi, 70.59% for VA and 84.21% for CH, sensitivity: 0.84 specificity: 0.92), while the quadratic analysis achieves a final accuracy of 94.03% (96.77% accuracy for normal villi, 94.12% for VA and 89.47% for CH, sensitivity: 0.89, specificity: 0.98).

  7. Optimal design of robot accuracy compensators

    SciTech Connect

    Zhuang, H.; Roth, Z.S. . Robotics Center and Electrical Engineering Dept.); Hamano, Fumio . Dept. of Electrical Engineering)

    1993-12-01

    The problem of optimal design of robot accuracy compensators is addressed. Robot accuracy compensation requires that actual kinematic parameters of a robot be previously identified. Additive corrections of joint commands, including those at singular configurations, can be computed without solving the inverse kinematics problem for the actual robot. This is done by either the damped least-squares (DLS) algorithm or the linear quadratic regulator (LQR) algorithm, which is a recursive version of the DLS algorithm. The weight matrix in the performance index can be selected to achieve specific objectives, such as emphasizing end-effector's positioning accuracy over orientation accuracy or vice versa, or taking into account proximity to robot joint travel limits and singularity zones. The paper also compares the LQR and the DLS algorithms in terms of computational complexity, storage requirement, and programming convenience. Simulation results are provided to show the effectiveness of the algorithms.

  8. Accuracy analysis of automatic distortion correction

    NASA Astrophysics Data System (ADS)

    Kolecki, Jakub; Rzonca, Antoni

    2015-06-01

    The paper addresses the problem of the automatic distortion removal from images acquired with non-metric SLR camera equipped with prime lenses. From the photogrammetric point of view the following question arises: is the accuracy of distortion control data provided by the manufacturer for a certain lens model (not item) sufficient in order to achieve demanded accuracy? In order to obtain the reliable answer to the aforementioned problem the two kinds of tests were carried out for three lens models. Firstly the multi-variant camera calibration was conducted using the software providing full accuracy analysis. Secondly the accuracy analysis using check points took place. The check points were measured in the images resampled based on estimated distortion model or in distortion-free images simply acquired in the automatic distortion removal mode. The extensive conclusions regarding application of each calibration approach in practice are given. Finally the rules of applying automatic distortion removal in photogrammetric measurements are suggested.

  9. Arizona Vegetation Resource Inventory (AVRI) accuracy assessment

    USGS Publications Warehouse

    Szajgin, John; Pettinger, L.R.; Linden, D.S.; Ohlen, D.O.

    1982-01-01

    A quantitative accuracy assessment was performed for the vegetation classification map produced as part of the Arizona Vegetation Resource Inventory (AVRI) project. This project was a cooperative effort between the Bureau of Land Management (BLM) and the Earth Resources Observation Systems (EROS) Data Center. The objective of the accuracy assessment was to estimate (with a precision of ?10 percent at the 90 percent confidence level) the comission error in each of the eight level II hierarchical vegetation cover types. A stratified two-phase (double) cluster sample was used. Phase I consisted of 160 photointerpreted plots representing clusters of Landsat pixels, and phase II consisted of ground data collection at 80 of the phase I cluster sites. Ground data were used to refine the phase I error estimates by means of a linear regression model. The classified image was stratified by assigning each 15-pixel cluster to the stratum corresponding to the dominant cover type within each cluster. This method is known as stratified plurality sampling. Overall error was estimated to be 36 percent with a standard error of 2 percent. Estimated error for individual vegetation classes ranged from a low of 10 percent ?6 percent for evergreen woodland to 81 percent ?7 percent for cropland and pasture. Total cost of the accuracy assessment was $106,950 for the one-million-hectare study area. The combination of the stratified plurality sampling (SPS) method of sample allocation with double sampling provided the desired estimates within the required precision levels. The overall accuracy results confirmed that highly accurate digital classification of vegetation is difficult to perform in semiarid environments, due largely to the sparse vegetation cover. Nevertheless, these techniques show promise for providing more accurate information than is presently available for many BLM-administered lands.

  10. Hierarchical image classification in the bioscience literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2009-01-01

    Our previous work has shown that images appearing in bioscience articles can be classified into five types: Gel-Image, Image-of-Thing, Graph, Model, and Mix. For this paper, we explored and analyzed features strongly associated with each image type and developed a hierarchical image classification approach for classifying an image into one of the five types. First, we applied texture features to separate images into two groups: 1) a texture group comprising Gel Image, Image-of-Thing, and Mix, and 2) a non-texture group comprising Graph and Model. We then applied entropy, skewness, and uniformity for the first group, and edge difference, uniformity, and smoothness for the second group to classify images into specific types. Our results show that hierarchical image classification accurately divided images into the two groups during the initial classification and that the overall accuracy of the image classification was higher than that of our previous approach. In particular, the recall of hierarchical image classification was greatly improved due to the high accuracy of the initial classification. PMID:20351874

  11. Automated Classification of Renal Cell Carcinoma Subtypes Using Bag-of Features

    PubMed Central

    Raza, Hussain; Parry, R. Mitchell; Sharma, Yachna; Chaudry, Qaiser; Moffitt, Richard A.; Young, A. N.; Wang, May D.

    2016-01-01

    The task of analyzing tissue biopsies performed by a pathologist is challenging and time consuming. It suffers from intra- and inter-user variability. Computer assisted diagnosis (CAD) helps to reduce such variations and speed up the diagnostic process. In this paper, we propose an automatic computer assisted diagnostic system for renal cell carcinoma subtype classification using scale invariant features. We capture the morphological distinctness of various subtypes and we have used them to classify a heterogeneous data set of renal cell carcinoma biopsy images. Our technique does not require color segmentation and minimizes human intervention. We circumvent user subjectivity using automated analysis and cater for intra-class heterogeneities using multiple class templates. We achieve a classification accuracy of 83% using a Bayesian classifier. PMID:19964707

  12. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  13. Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1975-01-01

    The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.

  14. Incremental E-Mail Classification and Rule Suggestion Using Simple Term Statistics

    NASA Astrophysics Data System (ADS)

    Krzywicki, Alfred; Wobcke, Wayne

    In this paper, we present and use a method for e-mail categorization based on simple term statistics updated incrementally. We apply simple term statistics to two different tasks. The first task is to predict folders for classification of e-mails when large numbers of messages are required to remain unclassified. The second task is to support users who define rule bases for the same classification task, by suggesting suitable keywords for constructing Ripple Down Rule bases in this scenario. For both tasks, the results are compared with a number of standard machine learning algorithms. The comparison shows that the simple term statistics method achieves a higher level of accuracy than other machine learning methods when taking computation time into account.

  15. A novel classification method based on ICA and ELM: a case study in lie detection.

    PubMed

    Xiong, Yijun; Luo, Yu; Huang, Wentao; Zhang, Wenjia; Yang, Yong; Gao, Junfeng

    2014-01-01

    The classification of EEG tasks has drawn much attention in recent years. In this paper, a novel classification model based on independent component analysis (ICA) and Extreme learning machine (ELM) is proposed to detect lying. Firstly, ICA and its topography information were used to automatically identify the P300 ICs. Then, time and frequency-domain features were extracted from the reconstructed P3 waveforms. Finally, two classes of feature samples were used to train ELM, Back-propagation network (BPNN) and support vector machine (SVM) classifiers for comparison. The optimal number of P3 ICs and the values of classifier parameter were optimized by the cross-validation procedures. Experimental results show that the presented method (ICA_ELM) achieves the highest training accuracy of 95.40% with extremely less training and testing time on detecting P3 components for the guilty and the innocent subjects. The results indicate that the proposed method can be applied in lie detection. PMID:24211917

  16. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    SciTech Connect

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.

  17. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-01

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crosshole tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it's never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes "line up" in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.

  18. A new classification scheme of plastic wastes based upon recycling labels.

    PubMed

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil

    2015-01-01

    Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification

  19. Computers vs. Humans in Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    54% for spirals and 80% for ellipticals, the agreement is over 98%. [Kuminski et al. 2016]In addition, the classifier calculates a certainty level for each classification, with the certainties adding to 100%: a galaxy categorized as spiral at 85% certainty is categorized as elliptical at 15% certainty. This provides a quantity/quality tradeoff, allowing for the creation of subcatalogs by cutting at specific certainty levels. Selecting for a high level of certainty decreases the sample size, but increases the samples classification accuracy.Comparing the OutcomeTo evaluate the accuracy of the algorithms findings, the authors examined SDSS galaxies that had also been classified by Galaxy Zoo. In particular, they used a 45,000-galaxy subset that consists only of superclean Galaxy Zoo galaxies meaning the human volunteers who categorized them were in agreement at a level of 95% or higher.Number of spiral and elliptical galaxies classified above different certainty levels. Cutting at the 54% certainty level for spirals and 80% for ellipticals leaves ~900,000 and ~600,000 spiral and elliptical galaxies, respectively. [Kuminski et al. 2016]In this set, Kuminski and Shamir found that if they draw a cut-off at the 54% certainty level for spiral galaxies and the 80% certainty level for ellipticals, they find 98% agreement between the computer classification of the galaxies and the human classification via Galaxy Zoo. Applying these cuts to the entire sample resulted in the identification of ~900,000 spiral galaxies and ~600,000 ellipticals, representing the largest catalog of its kind.The authors acknowledge that completeness is a problem; half the data had to be cut to achieve this level of accuracy. Sacrificing some data can still result in very large catalogs, however and as surveys become more powerful and large databases become more prevalent, algorithms such as this one will likely become critical to the scientific process.CitationEvan Kuminski and Lior Shamir 2016 Ap

  20. Accuracy of Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Guille, M.; Sullivan, J. P.

    2001-01-01

    Uncertainty in pressure sensitive paint (PSP) measurement is investigated from a standpoint of system modeling. A functional relation between the imaging system output and luminescent emission from PSP is obtained based on studies of radiative energy transports in PSP and photodetector response to luminescence. This relation provides insights into physical origins of various elemental error sources and allows estimate of the total PSP measurement uncertainty contributed by the elemental errors. The elemental errors and their sensitivity coefficients in the error propagation equation are evaluated. Useful formulas are given for the minimum pressure uncertainty that PSP can possibly achieve and the upper bounds of the elemental errors to meet required pressure accuracy. An instructive example of a Joukowsky airfoil in subsonic flows is given to illustrate uncertainty estimates in PSP measurements.

  1. Classification of Photogrammetric Point Clouds of Scaffolds for Construction Site Monitoring Using Subspace Clustering and PCA

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tuttas, S.; Heogner, L.; Stilla, U.

    2016-06-01

    This paper presents an approach for the classification of photogrammetric point clouds of scaffolding components in a construction site, aiming at making a preparation for the automatic monitoring of construction site by reconstructing an as-built Building Information Model (as-built BIM). The points belonging to tubes and toeboards of scaffolds will be distinguished via subspace clustering process and principal components analysis (PCA) algorithm. The overall workflow includes four essential processing steps. Initially, the spherical support region of each point is selected. In the second step, the normalized cut algorithm based on spectral clustering theory is introduced for the subspace clustering, so as to select suitable subspace clusters of points and avoid outliers. Then, in the third step, the feature of each point is calculated by measuring distances between points and the plane of local reference frame defined by PCA in cluster. Finally, the types of points are distinguished and labelled through a supervised classification method, with random forest algorithm used. The effectiveness and applicability of the proposed steps are investigated in both simulated test data and real scenario. The results obtained by the two experiments reveal that the proposed approaches are qualified to the classification of points belonging to linear shape objects having different shapes of sections. For the tests using synthetic point cloud, the classification accuracy can reach 80%, with the condition contaminated by noise and outliers. For the application in real scenario, our method can also achieve a classification accuracy of better than 63%, without using any information about the normal vector of local surface.

  2. Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2010-01-01

    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.

  3. Comparative performance of ALOS PALSAR polarization bands and its combination with ALOS AVNIR-2 data for land cover classification

    NASA Astrophysics Data System (ADS)

    Sim, C. K.; Abdullah, K.; MatJafri, M. Z.; Lim, H. S.

    2014-02-01

    Microwave Remote Sensing data have been widely used for land cover classification in our environment. In this study, ALOS PALSAR polarization bands were used to identify land cover features in three study areas in Malaysia. The study area consists of Penang, Perak and Kedah. The aims of this research are to investigate the performance of ALOS PALSAR datasets which are assessed independently and combination of these data with ALOS AVNIR-2 for land cover classification. Standard supervised classification method Maximum Likelihood Classifier (MLC) was applied. Various land cover classes were identified and assessed using the Transformed Divergence (TD) separability measures. The PALSAR data training areas were chosen based on the information obtained from ALOS AVNIR-2 datasets. The original data gave very poor results in identifying land cover classes due to the presence of immense speckle. The extraction and use of mean texture measures was found to be very advantageous when evaluating the separability among the different land covers. Hence, mean texture was capable to provide higher classification accuracies as compared to the original radar. The highest overall accuracy was achieved by combining the radar mean texture with ALOS AVNIR-2 data. This study proved that the land cover of Penang, Perak, and Kedah can be mapped accurately using combination of optical and radar data.

  4. Investigating machine learning techniques for MRI-based classification of brain neoplasms

    PubMed Central

    Kanas, Vasileios G.; Davatzikos, Christos

    2015-01-01

    Purpose Diagnosis and characterization of brain neoplasms appears of utmost importance for therapeutic management. The emerging of imaging techniques, such as Magnetic Resonance (MR) imaging, gives insight into pathology, while the combination of several sequences from conventional and advanced protocols (such as perfusion imaging) increases the diagnostic information. To optimally combine the multiple sources and summarize the information into a distinctive set of variables however remains difficult. The purpose of this study is to investigate machine learning algorithms that automatically identify the relevant attributes and are optimal for brain tumor differentiation. Methods Different machine learning techniques are studied for brain tumor classification based on attributes extracted from conventional and perfusion MRI. The attributes, calculated from neoplastic, necrotic, and edematous regions of interest, include shape and intensity characteristics. Attributes subset selection is performed aiming to remove redundant attributes using two filtering methods and a wrapper approach, in combination with three different search algorithms (Best First, Greedy Stepwise and Scatter). The classification frameworks are implemented using the WEKA software. Results The highest average classification accuracy assessed by leave-one-out (LOO) cross-validation on 101 brain neoplasms was achieved using the wrapper evaluator in combination with the Best First search algorithm and the KNN classifier and reached 96.9% when discriminating metastases from gliomas and 94.5% when discriminating high-grade from low-grade neoplasms. Conclusions A computer-assisted classification framework is developed and used for differential diagnosis of brain neoplasms based on MRI. The framework can achieve higher accuracy than most reported studies using MRI. PMID:21516321

  5. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    PubMed Central

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other

  6. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity.

    PubMed

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best "k" out of "d" inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike

  7. Segmentation and classification of bright lesions to diagnose diabetic retinopathy in retinal images.

    PubMed

    Santhi, D; Manimegalai, D; Parvathi, S; Karkuzhali, S

    2016-08-01

    In view of predicting bright lesions such as hard exudates, cotton wool spots, and drusen in retinal images, three different segmentation techniques have been proposed and their effectiveness is compared with existing segmentation techniques. The benchmark images with annotations present in the structured analysis of the retina (STARE) database is considered for testing the proposed techniques. The proposed segmentation techniques such as region growing (RG), region growing with background correction (RGWBC), and adaptive region growing with background correction (ARGWBC) have been used, and the effectiveness of the algorithms is compared with existing fuzzy-based techniques. Images of eight categories of various annotations and 10 images in each category have been used to test the consistency of the proposed algorithms. Among the proposed techniques, ARGWBC has been identified to be the best method for segmenting the bright lesions based on its sensitivity, specificity, and accuracy. Fifteen different features are extracted from retinal images for the purpose of identification and classification of bright lesions. Feedforward backpropagation neural network (FFBPNN) and pattern recognition neural network (PRNN) are used for the classification of normal/abnormal images. Probabilistic neural network (PNN), radial basis exact fit (RBE), radial basis fewer neurons (RB), and FFBPNN are used for further bright lesion classification and achieve 100% accuracy. PMID:27060730

  8. Detection of abnormalities in ultrasound lung image using multi-level RVM classification.

    PubMed

    Veeramani, Senthil Kumar; Muthusamy, Ezhilarasi

    2016-06-01

    The classification of abnormalities in ultrasound images is the monitoring tool of fluid to air passage in the lung. In this study, the adaptive median filtering technique is employed for the preprocessing step. The preprocessed image is then extracted the features by the convoluted local tetra pattern, histogram of oriented gradient, Haralick feature extraction and the complete local binary pattern. The extracted features are selected by applying particle swarm optimization and differential evolution feature selection. In the final stage, classifiers namely relevance vector machine (RVM), and multi-level RVM are employed to perform classification of the lung diseases. The diseases respiratory distress syndrome (RDS), transient tachypnea of the new born, meconium aspiration syndrome, pneumothorax, bronchiolitis, pneumonia, and lung cancer are used for training and testing. The experimental analysis exhibits better accuracy, sensitivity, specificity, pixel count and fitness value than the other existing methods. The classification accuracy of above 90% is accomplished by multi-level RVM classifier. The system has been tested with a number of ultrasound lung images and has achieved satisfactory results in classifying the lung diseases. PMID:26135771

  9. Multivariate classification of smokers and nonsmokers using SVM-RFE on structural MRI images.

    PubMed

    Ding, Xiaoyu; Yang, Yihong; Stein, Elliot A; Ross, Thomas J

    2015-12-01

    Voxel-based morphometry (VBM) studies have revealed gray matter alterations in smokers, but this type of analysis has poor predictive value for individual cases, which limits its applicability in clinical diagnoses and treatment. A predictive model would essentially embody a complex biomarker that could be used to evaluate treatment efficacy. In this study, we applied VBM along with a multivariate classification method consisting of a support vector machine with recursive feature elimination to discriminate smokers from nonsmokers using their structural MRI data. Mean gray matter volumes in 1,024 cerebral cortical regions of interest created using a subparcellated version of the Automated Anatomical Labeling template were calculated from 60 smokers and 60 nonsmokers, and served as input features to the classification procedure. The classifier achieved the highest accuracy of 69.6% when taking the 139 highest ranked features via 10-fold cross-validation. Critically, these features were later validated on an independent testing set that consisted of 28 smokers and 28 nonsmokers, yielding a 64.04% accuracy level (binomial P = 0.01). Following classification, exploratory post hoc regression analyses were performed, which revealed that gray matter volumes in the putamen, hippocampus, prefrontal cortex, cingulate cortex, caudate, thalamus, pre-/postcentral gyrus, precuneus, and the parahippocampal gyrus, were inversely related to smoking behavioral characteristics. These results not only indicate that smoking related gray matter alterations can provide predictive power for group membership, but also suggest that machine learning techniques can reveal underlying smoking-related neurobiology. PMID:26497657

  10. Multichannel weighted speech classification system for prediction of major depression in adolescents.

    PubMed

    Ooi, Kuan Ee Brian; Lech, Margaret; Allen, Nicholas B

    2013-02-01

    Early identification of adolescents at high imminent risk for clinical depression could significantly reduce the burden of the disease. This study demonstrated that acoustic speech analysis and classification can be used to determine early signs of major depression in adolescents, up to two years before they meet clinical diagnostic criteria for the full-blown disorder. Individual contributions of four different types of acoustic parameters [prosodic, glottal, Teager's energy operator (TEO), and spectral] to depression-related changes of speech characteristics were examined. A new computational methodology for the early prediction of depression in adolescents was developed and tested. The novel aspect of this methodology is in the introduction of multichannel classification with a weighted decision procedure. It was observed that single-channel classification was effective in predicting depression with a desirable specificity-to-sensitivity ratio and accuracy higher than chance level only when using glottal or prosodic features. The best prediction performance was achieved with the new multichannel method, which used four features (prosodic, glottal, TEO, and spectral). In the case of the person-based approach with two sets of weights, the new multichannel method provided a high accuracy level of 73% and the sensitivity-to-specificity ratio of 79%/67% for predicting future depression. PMID:23192475

  11. Classification Consistency when Scores Are Converted to Grades: Examination Marks versus Moderated School Assessments

    ERIC Educational Resources Information Center

    MacCann, Robert G.; Stanley, Gordon

    2010-01-01

    In educational systems, concern has been expressed about the accuracy of classification when marks are aligned to grades or levels. In particular, it has been claimed that a school assessment-based grading would have much greater levels of accuracy than one based on examination scores. This paper investigates classification consistency by…

  12. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application

    PubMed Central

    Naseer, Noman; Noori, Farzan M.; Qureshi, Nauman K.; Hong, Keum-Shik

    2016-01-01

    In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic signals are acquired from the prefrontal cortex of seven healthy subjects. After removing physiological noises, six oxygenated and deoxygenated hemoglobin (HbO and HbR) features—mean, slope, variance, peak, skewness and kurtosis—are calculated. All possible 2- and 3-feature combinations of the calculated features are then used to classify mental arithmetic vs. rest using linear discriminant analysis (LDA). It is found that the combinations containing mean and peak values yielded significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did all of the other combinations, across all of the subjects. These results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI. PMID:27252637

  13. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.

    PubMed

    Naseer, Noman; Noori, Farzan M; Qureshi, Nauman K; Hong, Keum-Shik

    2016-01-01

    In this study, we determine the optimal feature-combination for classification of functional near-infrared spectroscopy (fNIRS) signals with the best accuracies for development of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave imaging system, mental arithmetic signals are acquired from the prefrontal cortex of seven healthy subjects. After removing physiological noises, six oxygenated and deoxygenated hemoglobin (HbO and HbR) features-mean, slope, variance, peak, skewness and kurtosis-are calculated. All possible 2- and 3-feature combinations of the calculated features are then used to classify mental arithmetic vs. rest using linear discriminant analysis (LDA). It is found that the combinations containing mean and peak values yielded significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did all of the other combinations, across all of the subjects. These results demonstrate the feasibility of achieving high classification accuracies using mean and peak values of HbO and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI. PMID:27252637

  14. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  15. Multi-temporal airborne synthetic aperture radar data for crop classification

    NASA Technical Reports Server (NTRS)

    Foody, G. M.; Curran, P. J.; Groom, G. B.; Munro, D. C.

    1989-01-01

    This paper presents an approach to the classification of crop type using multitemporal airborne SAR data. Following radiometric correction of the data, the accuracy of a per-field crop classification reached 90 percent for three classes using data acquired on four dates. A comparable accuracy of 88 percent could be obtained for a classification of the same classes using data acquired on only two dates. Increasing the number of classes from three to seven reduced the classification accuracies to 55 percent and 69 percent when using data from two and four dates respectively.

  16. Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery

    SciTech Connect

    Warner, Timothy; Steinmaus, Karen L.

    2005-02-01

    New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.

  17. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  18. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study

    PubMed Central

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  19. Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study.

    PubMed

    Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom

    2016-01-01

    The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640

  20. A comparison of different chemometrics approaches for the robust classification of electronic nose data.

    PubMed

    Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston

    2014-11-01

    Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data. PMID:25286877

  1. Algorithms for Hyperspectral Endmember Extraction and Signature Classification with Morphological Dendritic Networks

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.

    Accurate multispectral or hyperspectral signature classification is key to the nonimaging detection and recognition of space objects. Additionally, signature classification accuracy depends on accurate spectral endmember determination [1]. Previous approaches to endmember computation and signature classification were based on linear operators or neural networks (NNs) expressed in terms of the algebra (R, +, x) [1,2]. Unfortunately, class separation in these methods tends to be suboptimal, and the number of signatures that can be accurately classified often depends linearly on the number of NN inputs. This can lead to poor endmember distinction, as well as potentially significant classification errors in the presence of noise or densely interleaved signatures. In contrast to traditional CNNs, autoassociative morphological memories (AMM) are a construct similar to Hopfield autoassociatived memories defined on the (R, +, ?,?) lattice algebra [3]. Unlimited storage and perfect recall of noiseless real valued patterns has been proven for AMMs [4]. However, AMMs suffer from sensitivity to specific noise models, that can be characterized as erosive and dilative noise. On the other hand, the prior definition of a set of endmembers corresponds to material spectra lying on vertices of the minimum convex region covering the image data. These vertices can be characterized as morphologically independent patterns. It has further been shown that AMMs can be based on dendritic computation [3,6]. These techniques yield improved accuracy and class segmentation/separation ability in the presence of highly interleaved signature data. In this paper, we present a procedure for endmember determination based on AMM noise sensitivity, which employs morphological dendritic computation. We show that detected endmembers can be exploited by AMM based classification techniques, to achieve accurate signature classification in the presence of noise, closely spaced or interleaved signatures, and

  2. Classification and designation of emissions

    NASA Astrophysics Data System (ADS)

    Luther, W. A.

    1981-08-01

    The world's community of frequency administrators has been able to reach agreement on a modern, useful method of designating emissions (transmissions) according to their necessary bandwidth and their classification. The method will become effective on January 1, 1982. With the new system 480 times as many emissions can be accurately classified than with the old. It is believed that now the optimum method has been found. The new method should be the easiest for all administrations to adopt, while providing the accuracy of designation needed in today's state of the technology.

  3. Multiple-entity based classification of airborne laser scanning data in urban areas

    NASA Astrophysics Data System (ADS)

    Xu, S.; Vosselman, G.; Oude Elberink, S.

    2014-02-01

    There are two main challenges when it comes to classifying airborne laser scanning (ALS) data. The first challenge is to find suitable attributes to distinguish classes of interest. The second is to define proper entities to calculate the attributes. In most cases, efforts are made to find suitable attributes and less attention is paid to defining an entity. It is our hypothesis that, with the same defined attributes and classifier, accuracy will improve if multiple entities are used for classification. To verify this hypothesis, we propose a multiple-entity based classification method to classify seven classes: ground, water, vegetation, roof, wall, roof element, and undefined object. We also compared the performance of the multiple-entity based method to the single-entity based method. Features have been extracted, in most previous work, from a single entity in ALS data; either from a point or from grouped points. In our method, we extract features from three different entities: points, planar segments, and segments derived by mean shift. Features extracted from these entities are inputted into a four-step classification strategy. After ALS data are filtered into ground and non-ground points. Features generalised from planar segments are used to classify points into the following: water, ground, roof, vegetation, and undefined objects. This is followed by point-wise identification of the walls and roof elements using the contextual information of a building. During the contextual reasoning, the portion of the vegetation extending above the roofs is classified as a roof element. This portion of points is eventually re-segmented by the mean shift method and then reclassified. Five supervised classifiers are applied to classify the features extracted from planar segments and mean shift segments. The experiments demonstrate that a multiple-entity strategy achieves slightly higher overall accuracy and achieves much higher accuracy for vegetation, in comparison to the

  4. Improved Algorithms for the Classification of Rough Rice Using a Bionic Electronic Nose Based on PCA and the Wilks Distribution

    PubMed Central

    Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin

    2014-01-01

    Principal Component Analysis (PCA) is one of the main methods used for electronic nose pattern recognition. However, poor classification performance is common in classification and recognition when using regular PCA. This paper aims to improve the classification performance of regular PCA based on the existing Wilks Λ-statistic (i.e., combined PCA with the Wilks distribution). The improved algorithms, which combine regular PCA with the Wilks Λ-statistic, were developed after analysing the functionality and defects of PCA. Verification tests were conducted using a PEN3 electronic nose. The collected samples consisted of the volatiles of six varieties of rough rice (Zhongxiang1, Xiangwan13, Yaopingxiang, WufengyouT025, Pin 36, and Youyou122), grown in same area and season. The first two principal components used as analysis vectors cannot perform the rough rice varieties classification task based on a regular PCA. Using the improved algorithms, which combine the regular PCA with the Wilks Λ-statistic, many different principal components were selected as analysis vectors. The set of data points of the Mahalanobis distance between each of the varieties of rough rice was selected to estimate the performance of the classification. The result illustrates that the rough rice varieties classification task is achieved well using the improved algorithm. A Probabilistic Neural Networks (PNN) was also established to test the effectiveness of the improved algorithms. The first two principal components (namely PC1 and PC2) and the first and fifth principal component (namely PC1 and PC5) were selected as the inputs of PNN for the classification of the six rough rice varieties. The results indicate that the classification accuracy based on the improved algorithm was improved by 6.67% compared to the results of the regular method. These results prove the effectiveness of using the Wilks Λ-statistic to improve the classification accuracy of the regular PCA approach. The results

  5. Toward automated classification of consumers' cancer-related questions with a new taxonomy of expected answer types.

    PubMed

    McRoy, Susan; Jones, Sean; Kurmally, Adam

    2016-09-01

    This article examines methods for automated question classification applied to cancer-related questions that people have asked on the web. This work is part of a broader effort to provide automated question answering for health education. We created a new corpus of consumer-health questions related to cancer and a new taxonomy for those questions. We then compared the effectiveness of different statistical methods for developing classifiers, including weighted classification and resampling. Basic methods for building classifiers were limited by the high variability in the natural distribution of questions and typical refinement approaches of feature selection and merging categories achieved only small improvements to classifier accuracy. Best performance was achieved using weighted classification and resampling methods, the latter yielding an accuracy of F1 = 0.963. Thus, it would appear that statistical classifiers can be trained on natural data, but only if natural distributions of classes are smoothed. Such classifiers would be useful for automated question answering, for enriching web-based content, or assisting clinical professionals to answer questions. PMID:25759063

  6. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    NASA Astrophysics Data System (ADS)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  7. High accuracy OMEGA timekeeping

    NASA Technical Reports Server (NTRS)

    Imbier, E. A.

    1982-01-01

    The Smithsonian Astrophysical Observatory (SAO) operates a worldwide satellite tracking network which uses a combination of OMEGA as a frequency reference, dual timing channels, and portable clock comparisons to maintain accurate epoch time. Propagational charts from the U.S. Coast Guard OMEGA monitor program minimize diurnal and seasonal effects. Daily phase value publications of the U.S. Naval Observatory provide corrections to the field collected timing data to produce an averaged time line comprised of straight line segments called a time history file (station clock minus UTC). Depending upon clock location, reduced time data accuracies of between two and eight microseconds are typical.

  8. Automated classification of quilt photographs into crazy and non-crazy

    NASA Astrophysics Data System (ADS)

    Gokhale, Alhaad; Bajcsy, Peter

    2011-03-01

    This work addresses the problem of automatic classification and labeling of 19th- and 20th-century quilts from photographs. The photographs are classified according to the quilt patterns into crazy and non - crazy categories. Based on the classification labels, humanists try to understand the distinct characteristics of an individual quilt-maker or relevant quilt-making groups in terms of their choices of pattern selection, color choices, layout, and original deviations from traditional patterns. While manual assignment of crazy and non-crazy labels can be achieved by visual inspection, there does not currently exist a clear definition of the level of crazy-ness, nor an automated method for classifying patterns as crazy and non-crazy. We approach the problem by modeling the level of crazy-ness by the distribution of clusters of color-homogeneous connected image segments of similar shapes. First, we extract signatures (a set of features) of quilt images that represent our model of crazy-ness. Next, we use a supervised classification method, such as the Support Vector Machine (SVM) with the radial basis function, to train and test the SVM model. Finally, the SVM model is optimized using N-fold cross validation and the classification accuracy is reported over a set of 39 quilt images.

  9. Sparse coding based dense feature representation model for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Oguslu, Ender; Zhou, Guoqing; Zheng, Zezhong; Iftekharuddin, Khan; Li, Jiang

    2015-11-01

    We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) to discriminate different types of land cover. We evaluated the proposed algorithm on three well-known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit, and image fusion and recursive filtering. Experimental results show that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification.

  10. A texture classification method for diffused liver diseases using Gabor wavelets.

    PubMed

    Ahmadian, A; Mostafa, A; Abolhassani, M; Salimpour, Y

    2005-01-01

    We proposed an efficient method for classification of diffused liver diseases based on Gabor wavelet. It is well known that Gabor wavelets attain maximum joint space-frequency resolution which is highly significant in the process of texture extraction and presentation. This property has been explored here as the proposed method outperforms the classification rate obtained by using dyadic wavelets and methods based on statistical properties of textures. The feature vector is relatively small compared to other methods. This has a significant impact on the speed of retrieval process. In addition, the proposed algorithm is not sensitive to shift of the image contents. Since shifting the contents of an image will cause a circular shift of the Gabor filter coefficients in each sub-band. The proposed algorithm applied to discriminate ultrasonic liver images into three disease states that are normal liver, liver hepatitis and cirrhosis. In our experiment 45 liver sample images from each three disease states which already proven by needle biopsy were used. We achieved the sensitivity 85% in the distinction between normal and hepatitis liver images and 86% in the distinction between normal and cirrhosis liver images. Based on our experiments, the Gabor wavelet is more appropriate than dyadic wavelets and statistical based methods for texture classification as it leads to higher classification accuracy. PMID:17282503

  11. Automatic classification of schizophrenia using resting-state functional language network via an adaptive learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi

    2014-03-01

    A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.

  12. A class-oriented model for hyperspectral image classification through hierarchy-tree-based selection

    NASA Astrophysics Data System (ADS)

    Tang, Zhongqi; Fu, Guangyuan; Zhao, XiaoLin; Chen, Jin; Zhang, Li

    2016-03-01

    With the development of hyperspectral sensors over the last few decades, hyperspectral images (HSIs) face new challenges in the field of data analysis. Due to those high-dimensional data, the most challenging issue is to select an effective yet minimal subset from a mass of bands. This paper proposes a class-oriented model to solve the task of classification by incorporating spectral prior of the target, since different targets have different characteristics in spectral correlation. This model operates feature selection after a partition of hyperspectral data into groups along the spectral dimension. In the process of spectral partition, we group the raw data into several subsets by a hierarchy tree structure. In each group, band selection is performed via a recursive support vector machine (R-SVM) learning, which reduces the computational cost as well as preserves the accuracy of classification. To ensure the robustness of the result, we also present a weight-voting strategy for result merging, in which the spectral independency and the classification effectivity are both considered. Extensive experiments show that our model achieves better performance than the existing methods in task-dependent classifications, such as target detection and identification.

  13. A contour-based shape descriptor for biomedical image classification and retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Contours, object blobs, and specific feature points are utilized to represent object shapes and extract shape descriptors that can then be used for object detection or image classification. In this research we develop a shape descriptor for biomedical image type (or, modality) classification. We adapt a feature extraction method used in optical character recognition (OCR) for character shape representation, and apply various image preprocessing methods to successfully adapt the method to our application. The proposed shape descriptor is applied to radiology images (e.g., MRI, CT, ultrasound, X-ray, etc.) to assess its usefulness for modality classification. In our experiment we compare our method with other visual descriptors such as CEDD, CLD, Tamura, and PHOG that extract color, texture, or shape information from images. The proposed method achieved the highest classification accuracy of 74.1% among all other individual descriptors in the test, and when combined with CSD (color structure descriptor) showed better performance (78.9%) than using the shape descriptor alone.

  14. Classification of various land features using RISAT-1 dual polarimetric data

    NASA Astrophysics Data System (ADS)

    Mishra, V. N.; Kumar, P.; Gupta, D. K.; Prasad, R.

    2014-11-01

    Land use land cover classification is one of the widely used applications in the field of remote sensing. Accurate land use land cover maps derived from remotely sensed data is a requirement for analyzing many socio-ecological concerns. The present study investigates the capabilities of dual polarimetric C-band SAR data for land use land cover classification. The MRS mode level 1 product of RISAT-1 with dual polarization (HH & HV) covering a part of Varanasi district, Uttar Pradesh, India is analyzed for classifying various land features. In order to increase the amount of information in dual-polarized SAR data, a band HH + HV is introduced to make use of the original two polarizations. Transformed Divergence (TD) procedure for class separability analysis is performed to evaluate the quality of the statistics prior to image classification. For most of the class pairs the TD values are greater than 1.9 which indicates that the classes have good separability. Non-parametric classifier Support Vector Machine (SVM) is used to classify RISAT-1 data with optimized polarization combination into five land use land cover classes like urban land, agricultural land, fallow land, vegetation and water bodies. The overall classification accuracy achieved by SVM is 95.23 % with Kappa coefficient 0.9350.

  15. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification

    PubMed Central

    Yang, Xiaoling; Hong, Hanmei; You, Zhaohong; Cheng, Fang

    2015-01-01

    The purity of waxy corn seed is a very important index of seed quality. A novel procedure for the classification of corn seed varieties was developed based on the combined spectral, morphological, and texture features extracted from visible and near-infrared (VIS/NIR) hyperspectral images. For the purpose of exploration and comparison, images of both sides of corn kernels (150 kernels of each variety) were captured and analyzed. The raw spectra were preprocessed with Savitzky-Golay (SG) smoothing and derivation. To reduce the dimension of spectral data, the spectral feature vectors were constructed using the successive projections algorithm (SPA). Five morphological features (area, circularity, aspect ratio, roundness, and solidity) and eight texture features (energy, contrast, correlation, entropy, and their standard deviations) were extracted as appearance character from every corn kernel. Support vector machines (SVM) and a partial least squares–discriminant analysis (PLS-DA) model were employed to build the classification models for seed varieties classification based on different groups of features. The results demonstrate that combining spectral and appearance characteristic could obtain better classification results. The recognition accuracy achieved in the SVM model (98.2% and 96.3% for germ side and endosperm side, respectively) was more satisfactory than in the PLS-DA model. This procedure has the potential for use as a new method for seed purity testing. PMID:26140347

  16. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.

    PubMed

    Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali

    2015-08-01

    In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier. PMID:26736619

  17. Selection of Spectral Data for Classification of Steels Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kong, Haiyang; Sun, Lanxiang; Hu, Jingtao; Xin, Yong; Cong, Zhibo

    2015-11-01

    Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the influence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selected spectral partitions can obtain the best results. A perfect result with 100% classification accuracy can be achieved using the intensive spectral partitions ranging of 357-367 nm. supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA040608), National Natural Science Foundation of China (Nos. 61473279, 61004131) and the Development of Scientific Research Equipment Program of Chinese Academy of Sciences (No. YZ201247)

  18. Towards Experimental Accuracy from the First Principles

    NASA Astrophysics Data System (ADS)

    Polyansky, O. L.; Lodi, L.; Tennyson, J.; Zobov, N. F.

    2013-06-01

    Producing ab initio ro-vibrational energy levels of small, gas-phase molecules with an accuracy of 0.10 cm^{-1} would constitute a significant step forward in theoretical spectroscopy and would place calculated line positions considerably closer to typical experimental accuracy. Such an accuracy has been recently achieved for the H_3^+ molecular ion for line positions up to 17 000 cm ^{-1}. However, since H_3^+ is a two-electron system, the electronic structure methods used in this study are not applicable to larger molecules. A major breakthrough was reported in ref., where an accuracy of 0.10 cm^{-1} was achieved ab initio for seven water isotopologues. Calculated vibrational and rotational energy levels up to 15 000 cm^{-1} and J=25 resulted in a standard deviation of 0.08 cm^{-1} with respect to accurate reference data. As far as line intensities are concerned, we have already achieved for water a typical accuracy of 1% which supersedes average experimental accuracy. Our results are being actively extended along two major directions. First, there are clear indications that our results for water can be improved to an accuracy of the order of 0.01 cm^{-1} by further, detailed ab initio studies. Such level of accuracy would already be competitive with experimental results in some situations. A second, major, direction of study is the extension of such a 0.1 cm^{-1} accuracy to molecules containg more electrons or more than one non-hydrogen atom, or both. As examples of such developments we will present new results for CO, HCN and H_2S, as well as preliminary results for NH_3 and CH_4. O.L. Polyansky, A. Alijah, N.F. Zobov, I.I. Mizus, R. Ovsyannikov, J. Tennyson, L. Lodi, T. Szidarovszky and A.G. Csaszar, Phil. Trans. Royal Soc. London A, {370}, 5014-5027 (2012). O.L. Polyansky, R.I. Ovsyannikov, A.A. Kyuberis, L. Lodi, J. Tennyson and N.F. Zobov, J. Phys. Chem. A, (in press). L. Lodi, J. Tennyson and O.L. Polyansky, J. Chem. Phys. {135}, 034113 (2011).

  19. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  20. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  1. The Attribute Accuracy Assessment of Land Cover Data in the National Geographic Conditions Survey

    NASA Astrophysics Data System (ADS)

    Ji, X.; Niu, X.

    2014-04-01

    With the widespread national survey of geographic conditions, object-based data has already became the most common data organization pattern in the area of land cover research. Assessing the accuracy of object-based land cover data is related to lots of processes of data production, such like the efficiency of inside production and the quality of final land cover data. Therefore,there are a great deal of requirements of accuracy assessment of object-based classification map. Traditional approaches for accuracy assessment in surveying and mapping are not aimed at land cover data. It is necessary to employ the accuracy assessment in imagery classification. However traditional pixel-based accuracy assessing methods are inadequate for the requirements. The measures we improved are based on error matrix and using objects as sample units, because the pixel sample units are not suitable for assessing the accuracy of object-based classification result. Compared to pixel samples, we realize that the uniformity of object samples has changed. In order to make the indexes generating from error matrix reliable, we using the areas of object samples as the weight to establish the error matrix of object-based image classification map. We compare the result of two error matrixes setting up by the number of object samples and the sum of area of object samples. The error matrix using the sum of area of object sample is proved to be an intuitive, useful technique for reflecting the actual accuracy of object-based imagery classification result.

  2. a Dimension Reduction-Based Method for Classification of Hyperspectral and LIDAR Data

    NASA Astrophysics Data System (ADS)

    Abbasi, B.; Arefi, H.; Bigdeli, B.

    2015-12-01

    The existence of various natural objects such as grass, trees, and rivers along with artificial manmade features such as buildings and roads, make it difficult to classify ground objects. Consequently using single data or simple classification approach cannot improve classification results in object identification. Also, using of a variety of data from different sensors; increase the accuracy of spatial and spectral information. In this paper, we proposed a classification algorithm on joint use of hyperspectral and Lidar (Light Detection and Ranging) data based on dimension reduction. First, some feature extraction techniques are applied to achieve more information from Lidar and hyperspectral data. Also Principal component analysis (PCA) and Minimum Noise Fraction (MNF) have been utilized to reduce the dimension of spectral features. The number of 30 features containing the most information of the hyperspectral images is considered for both PCA and MNF. In addition, Normalized Difference Vegetation Index (NDVI) has been measured to highlight the vegetation. Furthermore, the extracted features from Lidar data calculated based on relation between every pixel of data and surrounding pixels in local neighbourhood windows. The extracted features are based on the Grey Level Co-occurrence Matrix (GLCM) matrix. In second step, classification is operated in all features which obtained by MNF, PCA, NDVI and GLCM and trained by class samples. After this step, two classification maps are obtained by SVM classifier with MNF+NDVI+GLCM features and PCA+NDVI+GLCM features, respectively. Finally, the classified images are fused together to create final classification map by decision fusion based majority voting strategy.

  3. Increasing Accuracy in Computed Inviscid Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Roger

    2004-01-01

    A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number

  4. Multiclass relevance vector machines: sparsity and accuracy.

    PubMed

    Psorakis, Ioannis; Damoulas, Theodoros; Girolami, Mark A

    2010-10-01

    In this paper, we investigate the sparsity and recognition capabilities of two approximate Bayesian classification algorithms, the multiclass multi-kernel relevance vector machines (mRVMs) that have been recently proposed. We provide an insight into the behavior of the mRVM models by performing a wide experimentation on a large range of real-world datasets. Furthermore, we monitor various model fitting characteristics that identify the predictive nature of the proposed methods and compare against existing classification techniques. By introducing novel convergence measures, sample selection strategies and model improvements, it is demonstrated that mRVMs can produce state-of-the-art results on multiclass discrimination problems. In addition, this is achieved by utilizing only a very small fraction of the available observation data. PMID:20805053

  5. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  6. Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.

    PubMed

    Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan

    2016-08-10

    In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD. PMID:27567818

  7. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  8. Accuracy in Judgments of Aggressiveness

    PubMed Central

    Kenny, David A.; West, Tessa V.; Cillessen, Antonius H. N.; Coie, John D.; Dodge, Kenneth A.; Hubbard, Julie A.; Schwartz, David

    2009-01-01

    Perceivers are both accurate and biased in their understanding of others. Past research has distinguished between three types of accuracy: generalized accuracy, a perceiver’s accuracy about how a target interacts with others in general; perceiver accuracy, a perceiver’s view of others corresponding with how the perceiver is treated by others in general; and dyadic accuracy, a perceiver’s accuracy about a target when interacting with that target. Researchers have proposed that there should be more dyadic than other forms of accuracy among well-acquainted individuals because of the pragmatic utility of forecasting the behavior of interaction partners. We examined behavioral aggression among well-acquainted peers. A total of 116 9-year-old boys rated how aggressive their classmates were toward other classmates. Subsequently, 11 groups of 6 boys each interacted in play groups, during which observations of aggression were made. Analyses indicated strong generalized accuracy yet little dyadic and perceiver accuracy. PMID:17575243

  9. Classification systems for natural resource management

    USGS Publications Warehouse

    Kleckner, Richard L.

    1981-01-01

    Resource managers employ various types of resource classification systems in their management activities such as inventory, mapping, and data analysis. Classification is the ordering or arranging of objects into groups or sets on the basis of their relationships, and as such, provide the resource managers with a structure for organizing their needed information. In addition of conforming to certain logical principles, resource classifications should be flexible, widely applicable to a variety of environmental conditions, and useable with minimal training. The process of classification may be approached from the bottom up (aggregation) or the top down (subdivision) or a combination of both, depending on the purpose of the classification. Most resource classification systems in use today focus on a single resource and are used for a single, limited purpose. However, resource managers now must employ the concept of multiple use in their management activities. What they need is an integrated, ecologically based approach to resource classification which would fulfill multiple-use mandates. In an effort to achieve resource-data compatibility and data sharing among Federal agencies, and interagency agreement has been signed by five Federal agencies to coordinate and cooperate in the area of resource classification and inventory.

  10. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  11. Enhancement of galaxy images for improved classification

    NASA Astrophysics Data System (ADS)

    Jenkinson, John; Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, the classification accuracy of galaxy images is demonstrated to be improved by enhancing the galaxy images. Galaxy images often contain faint regions that are of similar intensity to stars and the image background, resulting in data loss during background subtraction and galaxy segmentation. Enhancement darkens these faint regions, enabling them to be distinguished from other objects in the image and the image background, relative to their original intensities. The heap transform is employed for the purpose of enhancement. Segmentation then produces a galaxy image which closely resembles the structure of the original galaxy image, and one that is suitable for further processing and classification. 6 Morphological feature descriptors are applied to the segmented images after a preprocessing stage and used to extract the galaxy image structure for use in training the classifier. The support vector machine learning algorithm performs training and validation of the original and enhanced data, and a comparison between the classification accuracy of each data set is included. Principal component analysis is used to compress the data sets for the purpose of classification visualization and a comparison between the reduced and original feature spaces. Future directions for this research include galaxy image enhancement by various methods, and classification performed with the use of a sparse dictionary. Both future directions are introduced.

  12. Automatic classification framework for ventricular septal defects: a pilot study on high-throughput mouse embryo cardiac phenotyping.

    PubMed

    Xie, Zhongliu; Liang, Xi; Guo, Liucheng; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Gillies, Duncan

    2015-10-01

    Intensive international efforts are underway toward phenotyping the entire mouse genome by modifying all its [Formula: see text] genes one-by-one for comparative studies. A workload of this scale has triggered numerous studies harnessing image informatics for the identification of morphological defects. However, existing work in this line primarily rests on abnormality detection via structural volumetrics between wild-type and gene-modified mice, which generally fails when the pathology involves no severe volume changes, such as ventricular septal defects (VSDs) in the heart. Furthermore, in embryo cardiac phenotyping, the lack of relevant work in embryonic heart segmentation, the limited availability of public atlases, and the general requirement of manual labor for the actual phenotype classification after abnormality detection, along with other limitations, have collectively restricted existing practices from meeting the high-throughput demands. This study proposes, to the best of our knowledge, the first fully automatic VSD classification framework in mouse embryo imaging. Our approach leverages a combination of atlas-based segmentation and snake evolution techniques to derive the segmentation of heart ventricles, where VSD classification is achieved by checking whether the left and right ventricles border or overlap with each other. A pilot study has validated our approach at a proof-of-concept level and achieved a classification accuracy of 100% through a series of empirical experiments on a database of 15 images. PMID:26835488

  13. Preliminary Research on Grassland Fine-classification Based on MODIS

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Zhang, S.; Yu, X. Y.; Wang, X. S.

    2014-03-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved.

  14. Accuracy of migrant landbird habitat maps produced from LANDSAT TM data: Two case studies in