Science.gov

Sample records for achieved simulation results

  1. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    SciTech Connect

    Horsey, Henry; Fleming, Katherine; Ball, Brian; Long, Nicholas

    2016-08-26

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is called metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.

  2. Goal Setting to Achieve Results

    ERIC Educational Resources Information Center

    Newman, Rich

    2012-01-01

    Both districts and individual schools have a very clear set of goals and skills for their students to achieve and master. In fact, except in rare cases, districts and schools develop very detailed goals they wish to pursue. In most cases, unfortunately, only the teachers and staff at a particular school or district-level office are aware of the…

  3. ICAAS piloted simulation results

    NASA Astrophysics Data System (ADS)

    Landy, R. J.; Halski, P. J.; Meyer, R. P.

    1994-05-01

    This paper reports piloted simulation results from the Integrated Control and Avionics for Air Superiority (ICAAS) piloted simulation evaluations. The program was to develop, integrate, and demonstrate critical technologies which will enable United States Air Force tactical fighter 'blue' aircraft to achieve superiority and survive when outnumbered by as much as four to one by enemy aircraft during air combat engagements. Primary emphasis was placed on beyond visual range (BVR) combat with provisions for effective transition to close-in combat. The ICAAS system was developed and tested in two stages. The first stage, called low risk ICAAS, was defined as employing aircraft and avionics technology with an initial operational date no later than 1995. The second stage, called medium risk ICAAS, was defined as employing aircraft and avionics technology with an initial operational date no later than 1998. Descriptions of the low risk and medium risk simulation configurations are given. Normalized (unclassified) results from both the low risk and medium risk ICAAS simulations are discussed. The results show the ICAAS system provided a significant improvement in air combat performance when compared to a current weapon system. Data are presented for both current generation and advanced fighter aircraft. The ICAAS technologies which are ready for flight testing in order to transition to the fighter fleet are described along with technologies needing additional development.

  4. Getting to Results. Closing the Achievement Gap

    ERIC Educational Resources Information Center

    Read, Tory

    2008-01-01

    The "Closing the Achievement Gap" series explores the Casey Foundation's education investments and presents stories, results, and lessons learned. This publication describes efforts to develop a flexible but rigorous results measurements system that enables the Foundation and its grantees to reflect on practice and course-correct as…

  5. Electrodialysis simulation to achieve optimum current density

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.

    1993-01-01

    Electrodialysis is used to remove salts from waste or other water streams, to yield a concentrated brine and a substatially deionized product water. During the electrodialysis process, the boundary layer adjacent to the ion selective membrane can become depleted of ions, resulting in severe pH changes sometimes accompanied by precipitation, and power losses, by a process known as water splitting. In order to optimize the applied electric current density, to achieve maximum deionization without exceeding the limiting current at any point along the path, a simulation program has been created to plot ion concentrations and fluxes, and cell current densities and voltages along the electrodialysis path. A means for tapering the current density along the path is recommended.

  6. Sharing Leadership Responsibilities Results in Achievement Gains

    ERIC Educational Resources Information Center

    Armistead, Lew

    2010-01-01

    Collective, not individual, leadership in schools has a greater impact on student achievement; when principals and teachers share leadership responsibilities, student achievement is higher; and schools having high student achievement also display a vision for student achievement and teacher growth. Those are just a few of the insights into school…

  7. Exemplar pediatric collaborative improvement networks: achieving results.

    PubMed

    Billett, Amy L; Colletti, Richard B; Mandel, Keith E; Miller, Marlene; Muething, Stephen E; Sharek, Paul J; Lannon, Carole M

    2013-06-01

    A number of pediatric collaborative improvement networks have demonstrated improved care and outcomes for children. Regionally, Cincinnati Children's Hospital Medical Center Physician Hospital Organization has sustained key asthma processes, substantially increased the percentage of their asthma population receiving "perfect care," and implemented an innovative pay-for-performance program with a large commercial payor based on asthma performance measures. The California Perinatal Quality Care Collaborative uses its outcomes database to improve care for infants in California NICUs. It has achieved reductions in central line-associated blood stream infections (CLABSI), increased breast-milk feeding rates at hospital discharge, and is now working to improve delivery room management. Solutions for Patient Safety (SPS) has achieved significant improvements in adverse drug events and surgical site infections across all 8 Ohio children's hospitals, with 7700 fewer children harmed and >$11.8 million in avoided costs. SPS is now expanding nationally, aiming to eliminate all events of serious harm at children's hospitals. National collaborative networks include ImproveCareNow, which aims to improve care and outcomes for children with inflammatory bowel disease. Reliable adherence to Model Care Guidelines has produced improved remission rates without using new medications and a significant increase in the proportion of Crohn disease patients not taking prednisone. Data-driven collaboratives of the Children's Hospital Association Quality Transformation Network initially focused on CLABSI in PICUs. By September 2011, they had prevented an estimated 2964 CLABSI, saving 355 lives and $103,722,423. Subsequent improvement efforts include CLABSI reductions in additional settings and populations.

  8. Gallbladder cancer: results achieved and future challenges.

    PubMed

    Di Carlo, Isidoro; Toro, Adriana

    2017-02-01

    26th World Congress of International Association of Surgeons Gastroenterologists and Oncologists, Seoul, South Korea, 8-10 September 2016 This year, the 26th World Congress of the International Association of Surgeons, Gastroenterologists, and Oncologists (IASGO) was hosted by Seoul in South Korea. The congress was extremely well organized, and the quality of the submissions and the relevance of the speakers were excellent. This report highlights the newest and most interesting results regarding the treatment of gallbladder tumors from the conference.

  9. Initial results of SEPAC scientific achievement

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Sasaki, S.; Yanagisawa, M.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Roberts, W. T.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    Electron beam injection of 5 keV, 300 mA (1.5 kW) and MPD arcjet plasma injection of 2 kJ/shot were successfully performed together with various kinds of diagnostic instruments including a high sensitivity TV camera observation in the Spacelab 1. Major scientific results obtained are studies of: (1) vehicle charge-up due to the electron beam emission and its neutralization by the MPD arcjet plasma; (2) beam-plasma interaction including the plasma wave excitation; (3) beam-atmosphere interaction such as the verification of critical velocity ionization effect; and (4) anomalous enhancement of ionization associated with a neutral gas injection into space.

  10. Open cherry picker simulation results

    NASA Technical Reports Server (NTRS)

    Nathan, C. A.

    1982-01-01

    The simulation program associated with a key piece of support equipment to be used to service satellites directly from the Shuttle is assessed. The Open Cherry Picker (OCP) is a manned platform mounted at the end of the remote manipulator system (RMS) and is used to enhance extra vehicular activities (EVA). The results of simulations performed on the Grumman Large Amplitude Space Simulator (LASS) and at the JSC Water Immersion Facility are summarized.

  11. Notification: Review of Science to Achieve Results (STAR) Grant Program

    EPA Pesticide Factsheets

    Project #OA-FY12-0606, July 16, 2012. EPA’s Office of Inspector General (OIG) plans to begin preliminary research for an audit of grants awarded under EPA’s Science to Achieve Results (STAR) program.

  12. Fast Plasma Instrument for MMS: Simulation Results

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the

  13. The Value of Full Correction: Achieving Excellent and Affordable Results.

    PubMed

    Kaplan, Julie Bass

    2016-01-01

    Patients often come to medical aesthetic offices with hopes to fully correct lost facial volume and achieve a natural appearance. Unfortunately, the cost per syringe of dermal filler can be a barrier to desired outcomes. Many aesthetic practitioners do the best they can with the amount of product the patient can afford, often falling short of the "wow" effect for the patient. This article describes what one office implemented to solve the conundrum of affordability while still allowing offices to cover its own financial realities. This tool can help patients achieve beautiful, natural, and affordable outcomes while helping offices advance in manufacturer's tiers, improve word-of-mouth advertising, and increase job satisfaction.

  14. Busted Butte: Achieving the Objectives and Numerical Modeling Results

    SciTech Connect

    W.E. Soll; M. Kearney; P. Stauffer; P. Tseng; H.J. Turin; Z. Lu

    2002-10-07

    The Unsaturated Zone Transport Test (UZTT) at Busted Butte is a mesoscale field/laboratory/modeling investigation designed to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain. The UZTT test facility is located approximately 8 km southeast of the potential Yucca Mountain repository area. The UZTT was designed in two phases, to address five specific objectives in the UZ: the effect of heterogeneities, flow and transport (F&T) behavior at permeability contrast boundaries, migration of colloids , transport models of sorbing tracers, and scaling issues in moving from laboratory scale to field scale. Phase 1A was designed to assess the influence of permeability contrast boundaries in the hydrologic Calico Hills. Visualization of fluorescein movement , mineback rock analyses, and comparison with numerical models demonstrated that F&T are capillary dominated with permeability contrast boundaries distorting the capillary flow. Phase 1B was designed to assess the influence of fractures on F&T and colloid movement. The injector in Phase 1B was located at a fracture, while the collector, 30 cm below, was placed at what was assumed to be the same fracture. Numerical simulations of nonreactive (Br) and reactive (Li) tracers show the experimental data are best explained by a combination of molecular diffusion and advective flux. For Phase 2, a numerical model with homogeneous unit descriptions was able to qualitatively capture the general characteristics of the system. Numerical simulations and field observations revealed a capillary dominated flow field. Although the tracers showed heterogeneity in the test block, simulation using heterogeneous fields did not significantly improve the data fit over homogeneous field simulations. In terms of scaling, simulations of field tracer data indicate a hydraulic conductivity two orders of magnitude higher than measured in the laboratory. Simulations of Li, a weakly sorbing tracer

  15. Higher Education Counts: Achieving Results, 2008. Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  16. Higher Education Counts: Achieving Results. 2009 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  17. Higher Education Counts: Achieving Results. 2006 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the principle vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  18. Higher Education Counts: Achieving Results. 2007 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2007

    2007-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  19. Effective Teaching Results in Increased Science Achievement for All Students

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.

    2007-01-01

    This study of teacher effectiveness and student achievement in science demonstrated that effective teachers positively impact student learning. A general linear mixed model was used to assess change in student scores on the Discovery Inquiry Test as a function of time, race, teacher effectiveness, gender, and impact of teacher effectiveness in…

  20. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  1. Results achieved in the treatment of patients with vestibular schwannoma.

    PubMed

    Freigang, Bernd; Rudolf, Jan

    2004-01-01

    Personal experience gathered with the treatment of 264 vestibular schwannoma (VS) at the Magdeburg University ENT Hospital is analysed. ABR Audiometry is useful as a screening, even though it yielded false-negative values in 12.7% (n = 33) for intrameatal VS and 16.9% for all VS, despite accurate evaluation. Latency increases of Waves I, III and V and their intraaural comparison exhibited a statistically significant difference for the VS levels proposed by TOS. The mean of intrameatal VS too was found to have longer latencies compared with the normal-hearing ears of the patients. In the individual case, with threshold hearing normal, anamnestic findings as well as otoneurological evidence provide an early indication for enhanced MRI, CISS imaging, or individual 3D reconstruction of the pontocerebellar cisterna. Adopting intraoperative monitoring of the facial nerve and the cochlea as well as the Pars acustica by means of far-field and near-field electrodes, a good facial 'mobility' was achieved in 95.3%, and a useful audition (AAO-HNS Types A and B) in 60%. Monitoring is beneficial as it enhances the reliability and improves the subtle preparation during surgery. The power of hearing improved postoperatively within six months and remained at a good level over two years. From our perspective, otorhinolaryngologists are the right specialists to attend to VS.

  2. The UNISAT program: Lessons learned and achieved results

    NASA Astrophysics Data System (ADS)

    Santoni, Fabio; Piergentili, Fabrizio; Graziani, Filippo

    2009-07-01

    More than ten years experience in hands-on space education has been achieved at Scuola di Ingegneria Aerospaziale of Università di Roma "la Sapienza", where the UNISAT program was established in the early nineties. The students participating in this program are involved in a microsatellite design, manufacturing, test, launch and operation in orbit activity, from initial mission concept to operation in orbit. The microsatellite program develops in a two years timeline, fitting with the graduate student program curricular activity at Scuola di Ingegneria Aerospaziale. Four microsatellites have been launched every other year since 2000 from the Baikonour Cosmodrome by the DNEPR LV. In this way there was the opportunity to exploit the UNISAT platform to perform small scientific and technological experiments in orbit. Besides education, a main goal of the UNISAT program is testing in orbit commercial off-the-shelf components, which allow to keep the program cost low and compatible with the University research budget. The main spacecraft subsystems, including the in orbit technological and scientific experiments, and the ground station operations are briefly described in the paper, focussing on the education and research aspects.

  3. DOD Role in Counterdrug Operations -- Can We Achieve Better Results?

    DTIC Science & Technology

    1999-04-01

    ORGANIZATION REPORT NUMBER 9 . SPONSORING/MONITORING AGENCY NAME AND ADDRESS , 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12... 9 THE UNITED STATES DRUG PROBLEM ................................................................... 11 Cost to...national counterdrug strategy, is fiscally possible and would provide better results. 9 Chapter 1 Introduction Our specific mission is to protect national

  4. Student Achievement in Science: A Comparison of National Assessment Results.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; And Others

    1984-01-01

    Students' understanding of basic science concepts (with particular emphasis on the interaction of science and society) was measured during a 1981-82 national assessment. These results are compared to those obtained from the Third Science Assessment (1977) to determine how students' knowledge has changed during the past five years. (JN)

  5. Thermodynamics of supersaturated steam: Molecular simulation results

    NASA Astrophysics Data System (ADS)

    Moučka, Filip; Nezbeda, Ivo

    2016-12-01

    Supersaturated steam modeled by the Gaussian charge polarizable model [P. Paricaud, M. Předota, and A. A. Chialvo, J. Chem. Phys. 122, 244511 (2005)] and BK3 model [P. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)] has been simulated at conditions occurring in steam turbines using the multiple-particle-move Monte Carlo for both the homogeneous phase and also implemented for the Gibbs ensemble Monte Carlo molecular simulation methods. Because of these thermodynamic conditions, a specific simulation algorithm has been developed to bypass common simulation problems resulting from very low densities of steam and cluster formation therein. In addition to pressure-temperature-density and orthobaric data, the distribution of clusters has also been evaluated. The obtained extensive data of high precision should serve as a basis for development of reliable molecular-based equations for properties of metastable steam.

  6. Ventricular Fibrillation in Mammalian Hearts: Simulation Results

    NASA Astrophysics Data System (ADS)

    Fenton, Flavio H.

    2002-03-01

    The computational approach to understanding the initiation and evolution of cardiac arrhythmias forms a necessary link between experiment and theory. Numerical simulations combine useful mathematical models and complex geometry while offering clean and comprehensive data acquisition, reproducible results that can be compared to experiments, and the flexibility of exploring parameter space systematically. However, because cardiac dynamics occurs on many scales (on the order of 10^9 cells of size 10-100 microns with more than 40 ionic currents and time scales as fast as 0.01ms), roughly 10^17 operations are required to simulate just one second of real time. These intense computational requirements lead to significant implementation challenges even on existing supercomputers. Nevertheless, progress over the last decade in understanding the effects of some spatial scales and spatio-temporal dynamics on cardiac cell and tissue behavior justifies the use of certain simplifications which, along with improved models for cellular dynamics and detailed digital models of cardiac anatomy, are allowing simulation studies of full-size ventricles and atria. We describe this simulation problem from a combined numerical, physical and biological point of view, with an emphasis on the dynamics and stability of scroll waves of electrical activity in mammalian hearts and their relation to tachycardia, fibrillation and sudden death. Detailed simulations of electrical activity in ventricles including complex anatomy, anisotropic fiber structure, and electrophysiological effects of two drugs (DAM and CytoD) are presented and compared with experimental results.

  7. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  8. Teaching Business Simulation Games: Comparing Achievements Frontal Teaching vs. eLearning

    NASA Astrophysics Data System (ADS)

    Bregman, David; Keinan, Gila; Korman, Arik; Raanan, Yossi

    This paper addresses the issue of comparing results achieved by students taught the same course but in two drastically different - a regular, frontal method and an eLearning method. The subject taught required intensive communications among the students, thus making the eLearning students, a priori, less likely to do well in it. The research, comparing the achievements of students in a business simulation game over three semesters, shows that the use of eLearning method did not result in any differences in performance, grades or cooperation, thus strengthening the case for using eLearning in this type of course.

  9. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  10. Photovoltaic-electrolyzer system transient simulation results

    SciTech Connect

    Leigh, R.W.; Metz, P.D.; Michalek, K.

    1986-05-01

    Brookhaven National Laboratory has developed a Hydrogen Technology Evaluation Center to illustrate advanced hydrogen technology. The first phase of this effort investigated the use of solar energy to produce hydrogen from water via photovoltaic-powered electrolysis. A coordinated program of system testing, computer simulation, and economic analysis has been adopted to characterize and optimize the photovoltaic-electrolyzer system. This paper presents the initial transient simulation results. Innovative features of the modeling include the use of real weather data, detailed hourly modeling of thermal characteristics of the PV array and of system control strategies, and examination of systems over a wide range of power and voltage ratings. The transient simulation system TRNSYS was used, incorporating existing, modified or new component subroutines as required. For directly coupled systems, the authors found the PV array voltage which maximizes hydrogen production to be quite near the nominal electrolyzer voltage for a wide range of PV array powers. The array voltage which maximizes excess electricity production is slightly higher. The use of an ideal (100 percent efficient) maximum power tracking system provides only a six percent increase in annual hydrogen production. An examination of the effect of the PV array tilt indicates, as expected, that annual hydrogen production is insensitive to tilt angle within +-20 deg of latitude. Summer production greatly exceeds winter generation. Tilting the array, even to 90 deg, produces no significant increase in winter hydrogen production.

  11. Simulation Results Related to Stochastic Electrodynamics

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.

    2006-01-01

    Stochastic electrodynamics (SED) is a classical theory of nature advanced significantly in the 1960s by Trevor Marshall and Timothy Boyer. Since then, SED has continued to be investigated by a very small group of physicists. Early investigations seemed promising, as SED was shown to agree with quantum mechanics (QM) and quantum electrodynamics (QED) for a few linear systems. In particular, agreement was found for the simple harmonic electric dipole oscillator, physical systems composed of such oscillators and interacting electromagnetically, and free electromagnetic fields with boundary conditions imposed such as would enter into Casimir-type force calculations. These results were found to hold for both zero-point and non-zero temperature conditions. However, by the late 1970s and then into the early 1980s, researchers found that when investigating nonlinear systems, SED did not appear to provide agreement with the predictions of QM and QED. A proposed reason for this disagreement was advocated by Boyer and Cole that such nonlinear systems are not sufficiently realistic for describing atomic and molecular physical systems, which should be fundamentally based on the Coulombic binding potential. Analytic attempts on these systems have proven to be most difficult. Consequently, in recent years more attention has been placed on numerically simulating the interaction of a classical electron in a Coulombic binding potential, with classical electromagnetic radiation acting on the classical electron. Good agreement was found for this numerical simulation work as compared with predictions from QM. Here this worked is reviewed and possible directions are discussed. Recent simulation work involving subharmonic resonances for the classical hydrogen atom is also discussed; some of the properties of these subharmonic resonances seem quite interesting and unusual.

  12. Taking advantage of ground data systems attributes to achieve quality results in testing software

    NASA Technical Reports Server (NTRS)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  13. Medical Simulation Practices 2010 Survey Results

    NASA Technical Reports Server (NTRS)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  14. Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.

    2000-01-01

    The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.

  15. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    NASA Astrophysics Data System (ADS)

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-08-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from use of such a tool: students are often taught a list of concepts and a separate list of parameters for mathematical equations. The link between the two can be elusive. While wet-lab experimentation is the proven approach to developing this link, in silico simulation can provide a means of acquiring important insight and understanding within a time frame and at a cost that cannot be achieved otherwise. We suggest that simulations and their representation of laboratory experiments in the classroom can become a key component in student achievement by helping to develop a student's positive attitude towards science and his or her creativity in scientific inquiry. We present results of two simulation experiments that validate against data taken from current literature. We follow with a classroom example demonstrating how this tool can be seamlessly integrated within the traditional pharmacology learning experience.

  16. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  17. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    SciTech Connect

    Langton, C.

    2009-07-30

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is

  18. Exploring Space Physics Concepts Using Simulation Results

    NASA Astrophysics Data System (ADS)

    Gross, N. A.

    2008-05-01

    The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.

  19. Windblown sand on Venus - Preliminary results of laboratory simulations

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J.; Leach, R.; Marshall, J.; Williams, S.; White, B.

    1984-01-01

    Small particles and winds of sufficient strength to move them have been detected from Venera and Pioneer-Venus data and suggest the existence of aeolian processes on Venus. The Venus wind tunnel (VWT) was fabricated in order to investigate the behavior of windblown particles in a simulated Venusian environment. Preliminary results show that sand-size material is readily entrained at the wind speeds detected on Venus and that saltating grains achieve velocities closely matching those of the wind. Measurements of saltation threshold and particle flux for various particle sizes have been compared with theoretical models which were developed by extrapolation of findings from Martian and terrestrial simulations. Results are in general agreement with theory, although certain discrepancies are apparent which may be attributed to experimental and/or theoretical-modeling procedures. Present findings enable a better understanding of Venusian surface processes and suggest that aeolian processes are important in the geological evolution of Venus.

  20. ENTROPY PRODUCTION IN COLLISIONLESS SYSTEMS. III. RESULTS FROM SIMULATIONS

    SciTech Connect

    Barnes, Eric I.; Egerer, Colin P. E-mail: egerer.coli@uwlax.edu

    2015-05-20

    The equilibria formed by the self-gravitating, collisionless collapse of simple initial conditions have been investigated for decades. We present the results of our attempts to describe the equilibria formed in N-body simulations using thermodynamically motivated models. Previous work has suggested that it is possible to define distribution functions for such systems that describe maximum entropy states. These distribution functions are used to create radial density and velocity distributions for comparison to those from simulations. A wide variety of N-body code conditions are used to reduce the chance that results are biased by numerical issues. We find that a subset of initial conditions studied lead to equilibria that can be accurately described by these models, and that direct calculation of the entropy shows maximum values being achieved.

  1. The Effects of CSCOPE on Student Achievement as Measured by Both TAKS and STAAR Test Results

    ERIC Educational Resources Information Center

    Helm, Maricela Robledo

    2013-01-01

    The purpose of this study was to examine the effects of CSCOPE curriculum on student achievement. CSCOPE is a curriculum management system used in 750 of the 1,039 school districts in the state of Texas. Student achievement is based on the results acquired from the Texas Assessment of Knowledge and Skills (TAKS) and the new version of the state…

  2. Kindergarten Screening Results as Predictors of Academic Achievement, Potential, and Placement in Second Grade.

    ERIC Educational Resources Information Center

    Schmidt, Sheldon; Perino, Joseph

    1985-01-01

    Compared beginning kindergarten subtest scores on Vane Test of Language and Vane Kindergarten Test to Metropolitan Achievement Test Scores in reading and math, Otis-Lennon School Ability Test Index, and placement into special education or high achievement programs following second grade. Results revealed effective predictability of the screening…

  3. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    NASA Technical Reports Server (NTRS)

    Key, David L.; Heffley, Robert K.

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.

  4. The Effect of Ability, Achievement, and Number of Plays on Learning from a Simulation Game. Report Number 115.

    ERIC Educational Resources Information Center

    Edwards, Keith J.

    This study examines the effect on learning of repeated plays of the simulation game "Trade and Develop" (T/D). It also examines the effects of students' ability, using a general measure (determined by school tracking procedures) and a specific measure (achievement test in the specific class). The results of the study indicate that, after playing…

  5. Modeling and simulation of protein-surface interactions: achievements and challenges.

    PubMed

    Ozboyaci, Musa; Kokh, Daria B; Corni, Stefano; Wade, Rebecca C

    2016-01-01

    Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse

  6. Influence of the Simulation Method on 7th Grade Students' Achievements in Science and Technology Lessons

    ERIC Educational Resources Information Center

    Teke, Huseyin; Dogan, Bekir; Duran, Ahmet

    2015-01-01

    This study aimed to make a comparative analysis of seventh-grade (the second level of the primary education) students' achievement in "Systems of The Human Body" unit in Science and Technology lesson which was taught using both the simulation method and the traditional method along with the influence of these methods on students'…

  7. Effects of a Haptic Augmented Simulation on K-12 Students' Achievement and Their Attitudes Towards Physics

    ERIC Educational Resources Information Center

    Civelek, Turhan; Ucar, Erdem; Ustunel, Hakan; Aydin, Mehmet Kemal

    2014-01-01

    The current research aims to explore the effects of a haptic augmented simulation on students' achievement and their attitudes towards Physics in an immersive virtual reality environment (VRE). A quasi-experimental post-test design was employed utilizing experiment and control groups. The participants were 215 students from a K-12 school in…

  8. Summarizing Simulation Results using Causally-relevant States

    PubMed Central

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  9. New simulation and measurement results on gateable DEPFET devices

    NASA Astrophysics Data System (ADS)

    Bähr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2012-07-01

    To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

  10. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  11. Langmuir Wave Decay in Inhomogeneous Solar Wind Plasmas: Simulation Results

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-01

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  12. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    SciTech Connect

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  13. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation.

    PubMed

    Lee, Eungkyu; Zhang, Teng; Hu, Ming; Luo, Tengfei

    2016-06-22

    Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics.

  14. Effects of simulated interventions to improve school entry academic skills on socioeconomic inequalities in educational achievement.

    PubMed

    Chittleborough, Catherine R; Mittinty, Murthy N; Lawlor, Debbie A; Lynch, John W

    2014-01-01

    Randomized controlled trial evidence shows that interventions before age 5 can improve skills necessary for educational success; the effect of these interventions on socioeconomic inequalities is unknown. Using trial effect estimates, and marginal structural models with data from the Avon Longitudinal Study of Parents and Children (n = 11,764, imputed), simulated effects of plausible interventions to improve school entry academic skills on socioeconomic inequality in educational achievement at age 16 were examined. Progressive universal interventions (i.e., more intense intervention for those with greater need) to improve school entry academic skills could raise population levels of educational achievement by 5% and reduce absolute socioeconomic inequality in poor educational achievement by 15%.

  15. Effects of Simulated Interventions to Improve School Entry Academic Skills on Socioeconomic Inequalities in Educational Achievement

    PubMed Central

    Chittleborough, Catherine R; Mittinty, Murthy N; Lawlor, Debbie A; Lynch, John W

    2014-01-01

    Randomized controlled trial evidence shows that interventions before age 5 can improve skills necessary for educational success; the effect of these interventions on socioeconomic inequalities is unknown. Using trial effect estimates, and marginal structural models with data from the Avon Longitudinal Study of Parents and Children (n = 11,764, imputed), simulated effects of plausible interventions to improve school entry academic skills on socioeconomic inequality in educational achievement at age 16 were examined. Progressive universal interventions (i.e., more intense intervention for those with greater need) to improve school entry academic skills could raise population levels of educational achievement by 5% and reduce absolute socioeconomic inequality in poor educational achievement by 15%. PMID:25327718

  16. Measurement and Simulation Results of Ti Coated Microwave Absorber

    SciTech Connect

    Sun, Ding; McGinnis, Dave; /Fermilab

    1998-11-01

    When microwave absorbers are put in a waveguide, a layer of resistive coating can change the distribution of the E-M fields and affect the attenuation of the signal within the microwave absorbers. In order to study such effect, microwave absorbers (TT2-111) were coated with titanium thin film. This report is a document on the coating process and measurement results. The measurement results have been used to check the simulation results from commercial software HFSS (High Frequency Structure Simulator.)

  17. Electron-cloud simulation results for the SPS and recent results for the LHC

    SciTech Connect

    Furman, M.A.; Pivi, M.T.F.

    2002-06-19

    We present an update of computer simulation results for some features of the electron cloud at the Large Hadron Collider (LHC) and recent simulation results for the Super Proton Synchrotron (SPS). We focus on the sensitivity of the power deposition on the LHC beam screen to the emitted electron spectrum, which we study by means of a refined secondary electron (SE) emission model recently included in our simulation code.

  18. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  19. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  20. Electron-cloud simulation results for the PSR and SNS

    SciTech Connect

    Pivi, M.; Furman, M.A.

    2002-07-08

    We present recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos. In particular, a complete refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has been included in the simulation code.

  1. Durability of bleaching results achieved with 15% carbamide peroxide and 38% hydrogen peroxide in vitro.

    PubMed

    Knösel, Michael; Reus, Monika; Rosenberger, Albert; Attin, Thomas; Ziebolz, Dirk

    2011-01-01

    The aim of this study was to assess the durability of bleaching results achieved with (1) 15% carbamide peroxide home bleaching and (2) 38% hydrogen peroxide in-office bleaching. A total of 231 extracted anterior teeth were randomly divided into three groups (n = 77 in each group) with comparable mean baseline L*-values (68.24 ± 0.8): a non-bleached control group A, a 15% carbamide peroxide group B (5 bleaching intervals of 8 hours), and a 38% hydrogen peroxide group C (3 intervals of 15 minutes). Durability of bleaching was assessed by comparing CIE-L*a*b* data after intervals of 2, 4, 12, and 26 weeks from baseline. Both bleaching regimes initially produced a highly significant increase in lightness parameter L*, with no significant difference between the respective bleaching regimes (B: 68.23 / 72.48; C: 68.32 / 73.25). Six months after starting the trial, L*-values for group B yielded no significant differences compared to baseline (69.55), whereas L*-values for group C were still significantly raised (69.91), despite a highly significant decrease when compared to initial bleaching results. In both treatment groups, there was a lasting response to bleaching in terms of CIE-a* and -b* value decreases. Results for both home- and in-practice regimes were found to be similar for about 12 weeks. However, in-office results were longer lasting, despite the shorter treatment intervals. Summarized bleaching effects, in terms of delta E values, revealed no significant differences between treatment groups and the control group after 6 months, indicating an abatement of the bleaching results achieved.

  2. MIA computer simulation test results report. [space shuttle avionics

    NASA Technical Reports Server (NTRS)

    Unger, G. E.

    1974-01-01

    Results of the first noise susceptibility computer simulation tests of the complete MIA receiver analytical model are presented. Computer simulation tests were conducted with both Gaussian and pulse noise inputs. The results of the Gaussian noise tests were compared to results predicted previously and were found to be in substantial agreement. The results of the pulse noise tests will be compared to the results of planned analogous tests in the Data Bus Evaluation Laboratory at a later time. The MIA computer model is considered to be fully operational at this time.

  3. Cooperative learning using simulation to achieve mastery of nasogastric tube insertion.

    PubMed

    Cason, Melanie Leigh; Gilbert, Gregory E; Schmoll, Heidi H; Dolinar, Susan M; Anderson, Jane; Nickles, Barbara Marshburn; Pufpaff, Laurie A; Henderson, Ruth; Lee, Frances Wickham; Schaefer, John J

    2015-03-01

    Traditionally, psychomotor skills training for nursing students involves didactic instruction followed by procedural review and practice with a task trainer, manikin, or classmates. This article describes a novel method of teaching psychomotor skills to associate degree and baccalaureate nursing students, Cooperative Learning Simulation Skills Training (CLSST), in the context of nasogastric tube insertion using a deliberate practice-to-mastery learning model. Student dyads served as operator and student learner. Automatic scoring was recorded in the debriefing log. Student pairs alternated roles until they achieved mastery, after which they were assessed individually. Median checklist scores of 100% were achieved by students in both programs after one practice session and through evaluation. Students and faculty provided positive feedback regarding this educational innovation. CLSST in a deliberate practice-to-mastery learning paradigm offers a novel way to teach psychomotor skills in nursing curricula and decreases the instructor-to-student ratio.

  4. Multimodal treatment of unresectable hepatocellular carcinoma to achieve complete response results in improved survival

    PubMed Central

    Newell, Pippa H; Wu, YingXing; Hoen, Helena; Uppal, Richa; Thiesing, John Tyler; Sasadeusz, Kevin; Cassera, Maria A; Wolf, Ronald F; Hansen, Paul; Hammill, Chet W

    2015-01-01

    Introduction With technological advances, questions arise regarding how to best fit newer treatment modalities, such as transarterial therapies, into the treatment algorithm for patients with hepatocellular carcinoma (HCC). Methods Between 2005 and 2011, 128 patients initially treated with transarterial radioembolization or chemoembolization using drug-eluting beads were identified. The response was graded retrospectively. Toxicity was measured 1, 3, and 6 months after the first and last treatments. Results Sixty-five patients (53%) were advanced stage. Twenty patients (16%) had an initial complete response, but with additional treatments, this was increased to 46 (36%). Patients with a complete response as their best response to treatment had a median survival [95% confidence interval (CI)] of 5.77 (2.58, upper limit not yet reached) years, significantly longer than those whose best response was a partial response, 1.22 (0.84, 2.06) years and those with stable disease as their best response, 0.34 (0.29, 0.67) years. Repeated treatments did not increase toxicity. Discussion This retrospective review of patients treated for intermediate and advanced stage HCC revealed a significant survival advantage in patients who achieved a complete response. These data support use of a multi-modality approach to intermediate and advanced stage HCC, combining liver-directed treatments as necessary to achieve a complete response. PMID:25580988

  5. Results from D-T Experiments on TFTR and Implications for Achieving an Ignited Plasma

    SciTech Connect

    Hawryluk, R.J. and the TFTR Group

    1998-07-14

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain for achieving a magnetic fusion energy reactor. In this paper, the implications of the TFTR experiments for overcoming these remaining issues will be discussed.

  6. "STEPS" Avionics for Exploration Systems the Achieved Results and the Next "STEPS-2"

    NASA Astrophysics Data System (ADS)

    Martelli, Andrea; Perino, Maria Antonietta; Gaia, Enrico; Paccagnini, Carlo

    2013-08-01

    This paper presents the STEPS project reached results in the avionics domains like: vision-based GNC for Mars Descent & Landing, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on perception, 3D map reconstruction and path planning; Mobility & Mechanisms providing an Integrated Ground Mobility System, Rendezvous & Docking equipment, and protection from Environment effects; Human-machine interface features of a predictive Command and Control System;; novel Design & Development Tools, such as a Rover S/W simulator and prototypes of the DEM viewer and of a S/W Rock Creator/visualizator. This paper presents also the STEPS 2 project that started January 2013 and is aimed at improving the development of the most promising technologies, selected from the results of the first STEP phase, and addressing the needs of the exploration missions as defined in the 2012 ministerial conference, with the ultimate goal of an in-flight validation within next five years.

  7. Experimental and simulational result multipactors in 112 MHz QWR injector

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Brutus, J. C.; Skaritka, J.; Wu, Q.; Xiao, B.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsed mode after several round of conditioning processes.

  8. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  9. Cardiovascular system and microgravity simulation and inflight results

    NASA Astrophysics Data System (ADS)

    Pottier, J. M.; Patat, F.; Arbeille, P.; Pourcelot, L.; Massabuau, P.; Guell, A.; Gharib, C.

    Main results of cardiovascular investigation, performed with ultrasound methods during the common French/Soviet flight aboard Salyut VII in June 1982, are compared to variations of the same parameters studied during ground-based simulations on the same subject or observed by other investigators during various ground-based experiences. The antiorthostatic bed rest simulation partly reproduces microgravity conditions and seems to be better adaptated to cardiac hemodynamics, despite some differences, and to the cerebral circulation, than to the inferior limb circulation.

  10. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  11. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  12. First Year Results of the Student Achievement Guarantee in Education Program. Executive Summary.

    ERIC Educational Resources Information Center

    Maier, Peter; Molnar, Alex; Percy, Stephen; Smith, Phillip; Zahorik, John

    The Student Achievement Guarantee in Education (SAGE) program is a statewide effort in Wisconsin to increase the academic achievement of children living in poverty by eventually reducing the student-teacher ratio in kindergarten through grade 3 to 15:1. During 1995-1996, the Sage program was implemented in 30 schools in 21 school districts. Over…

  13. Achievement Goal Validation among African American High School Students: CFA and Rasch Results

    ERIC Educational Resources Information Center

    Hart, Caroline O.; Mueller, Christian E.; Royal, Kenneth D.; Jones, Martin H.

    2013-01-01

    Achievement goal theory helps describe how and why students engage in various academic behaviors. Historically, achievement goals have been examined almost exclusively with undergraduate, nonminority samples, and predominately with factor analytic techniques. The present study adds to a growing literature by providing initial validation of a…

  14. Evaluation Results of the Student Achievement Guarantee in Education (SAGE) Program, 1998-99.

    ERIC Educational Resources Information Center

    Molnar, Alex; Smith, Philip; Zahorik, John

    The Student Achievement Guarantee in Education (SAGE) is a statewide effort in Wisconsin to increase the academic achievement of children living in poverty by reducing the student-teacher ratio in kindergarten through third grade to 15:1. Schools participating in SAGE are also required to implement a rigorous curriculum, provide before- and…

  15. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  16. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  17. Relationships between driving simulator performance and driving test results.

    PubMed

    de Winter, J C F; de Groot, S; Mulder, M; Wieringa, P A; Dankelman, J; Mulder, J A

    2009-02-01

    This article is considered relevant because: 1) car driving is an everyday and safety-critical task; 2) simulators are used to an increasing extent for driver training (related topics: training, virtual reality, human-machine interaction); 3) the article addresses relationships between performance in the simulator and driving test results--a relevant topic for those involved in driver training and the virtual reality industries; 4) this article provides new insights about individual differences in young drivers' behaviour. Simulators are being used to an increasing extent for driver training, allowing for the possibility of collecting objective data on driver proficiency under standardised conditions. However, relatively little is known about how learner drivers' simulator measures relate to on-road driving. This study proposes a theoretical framework that quantifies driver proficiency in terms of speed of task execution, violations and errors. This study investigated the relationships between these three measures of learner drivers' (n=804) proficiency during initial simulation-based training and the result of the driving test on the road, occurring an average of 6 months later. A higher chance of passing the driving test the first time was associated with making fewer steering errors on the simulator and could be predicted in regression analysis with a correlation of 0.18. Additionally, in accordance with the theoretical framework, a shorter duration of on-road training corresponded with faster task execution, fewer violations and fewer steering errors (predictive correlation 0.45). It is recommended that researchers conduct more large-scale studies into the reliability and validity of simulator measures and on-road driving tests.

  18. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  19. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  20. Younger poor ovarian response women achieved better pregnancy results in the first three IVF cycles.

    PubMed

    Yang, Yajuan; Sun, Xiuhua; Cui, Linlin; Sheng, Yan; Tang, Rong; Wei, Daimin; Qin, Yingying; Li, Weiping; Chen, Zi-Jiang

    2016-05-01

    This retrospective cohort study observed the live birth rates as well as cumulative live birth rates in women with poor ovarian response (POR) undergoing IVF-embryo transfer treatment, stratified for age and cycle number. Four hundred and one patients with POR diagnosed according to the Bologna criteria were enrolled and 700 IVF-ET cycles were analysed. The overall live-birth rate per cycle was 18.3%. From cycle 1 up to cycle 3, the live-birth rates decreased significantly from 22.2% to 11.1%. The live-birth rate fell to 2.4% in cycles 4 and over. When age advanced, the live birth rates decreased obviously (P < 0.01): 30.0% for women < 35 years old, 17.0% for those 35-40 years old, and 9.0% for women older than 40 years. Similarly, the cumulative live birth rates dropped from 48.0% (< 35 years) to 16.9% (≥ 40 years) accordingly. Younger patients (< 35 years old) with POR achieved better pregnancy results compared with patients of advanced age. Extremely low live-birth rates could be anticipated after three unsuccessful cycles; therefore it may not be appropriate to suggest more IVF cycles in POR women.

  1. Life insurance and genetic test results: a mutation carrier's fight to achieve full cover.

    PubMed

    Keogh, Louise A; Otlowski, Margaret F A

    2013-09-02

    Currently, there is debate about life insurance companies' use of genetic information for assessing applicants. In his early 20s, James (pseudonym) was denied full life insurance cover because he revealed that he had discussed genetic testing with a genetic counsellor. He was later tested and found to carry a mutation in the MSH6 gene; after disclosing this, he was denied cover for cancer by two other life insurance companies. Unsatisfied with the insurance companies' risk assessments, and based on his understanding that regular colonoscopy significantly reduced his risk of cancer, James made a complaint to the Australian Human Rights Commission. After informing the third insurance company that he had done so, he was offered full coverage, which suggests that the company did not have actuarial data to justify its decision. This case provides evidence of the high level of initiative and proactivity required for a consumer to achieve a fair result. Few Australians would be in a position to pursue the level of research and advocacy undertaken by James (a professional with scientific training). We call on a collaborative approach between industry, government and researchers to address the issues that James's case raises about genetic testing and life insurance.

  2. Results from D-T experiments on TFTR and implications for achieving an ignited plasma

    SciTech Connect

    Hawryluk, R.J.; Blanchard, W.; Batha, S.

    1998-07-01

    Progress in the performance of tokamak devices has enable not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain. In this paper, the implications for the TFTR experiments for overcoming these remaining issues will be discussed.

  3. Simulation results for the electron-cloud at the PSR

    SciTech Connect

    Furman, M.A.; Pivi, M.

    2001-06-26

    We present a first set of computer simulations for the main features of the electron cloud at the Proton Storage Ring (PSR), particularly its energy spectrum. We compare our results with recent measurements, which have been obtained by means of dedicated probes.

  4. ANOVA parameters influence in LCF experimental data and simulation results

    NASA Astrophysics Data System (ADS)

    Delprete, C.; Sesanaa, R.; Vercelli, A.

    2010-06-01

    The virtual design of components undergoing thermo mechanical fatigue (TMF) and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation) and the damage and life model (for life assessment). The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF) tests, low cycle fatigue (LCF) tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo structural FEM

  5. First results of coupled IPS/NIMROD/GENRAY simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.

    2010-11-01

    The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.

  6. Mathematics beliefs and achievement of adolescent students in Japan: results from the TIMSS 1999 assessment.

    PubMed

    House, J Daniel

    2005-12-01

    A recent study (1) of undergraduate students in a precalculus course indicated that they expressed slightly positive attitudes toward mathematics. It is important, however, to examine relationships between students' initial attitudes and achievement outcomes. The present purpose was to assess the relationship between self-beliefs and mathematics achievement for a large national sample of students from the TIMSS 1999 international sample (eighth graders) from Japan. Several significant relationships between mathematics beliefs and test scores were noted. In addition, the overall multiple regression equation that assessed the joint significance of the complete set of self-belief variables was significant (F7.65 = 159.48, p < .001) and explained 20.6% of the variance in mathematics achievement test scores.

  7. Minnesota Developmental Achievement Centers: 1987 Survey Results. Policy Analysis Series, No. 28.

    ERIC Educational Resources Information Center

    Minnesota Governor's Planning Council on Developmental Disabilities, St. Paul.

    This paper presents data collected from rehabilitation centers serving individuals with developmental disabilities in Minnesota, called Developmental Achievement Centers (DACs). The data focus on finances, programs, and clients, and are compared with data from previous years. All 97 providers of adult services in Minnesota completed the survey,…

  8. Improving Achievement in Low-Performing Schools: Key Results for School Leaders

    ERIC Educational Resources Information Center

    Ward, Randolph E.; Burke, Mary Ann

    2004-01-01

    As accountability in schools becomes more crucial, educators are looking for comprehensive and innovative management practices that respond to challenges and realities of student academic achievement. In order to improve academic performance and the quality of instruction, the entire school community needs to be involved. This book provides six…

  9. School Climate, Peer Victimization, and Academic Achievement: Results from a Multi-Informant Study

    ERIC Educational Resources Information Center

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L.; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E.; Haltigan, J. D.; Hymel, Shelley

    2014-01-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling,…

  10. Connecting Mentoring to Student Achievement in Alaska: Results and Policy Implications

    ERIC Educational Resources Information Center

    Adams, Barbara L.

    2010-01-01

    Using hierarchical linear modeling, student standardized test scores are analyzed to determine the impact of mentoring first- and second-year teachers on their students' achievement. The contrasting group used for comparison consists of experienced teachers in matched schools, grade level, and content area. The study contains data from 300…

  11. Reading Achievement and Social Selection in Independent Schools in Sweden: Results from IEA PIRLS 2001

    ERIC Educational Resources Information Center

    Myrberg, Eva; Rosen, Monica

    2006-01-01

    The study investigates the mean difference in reading achievement between third-graders in public and independent schools in Sweden. The data come from the Swedish participation in PIRLS 2001 conducted by IEA. Variables from the home questionnaire mainly indicating possession of cultural capital are used as independent variables. A total IRT score…

  12. Some Results and Comments on Using Latent Structure Models to Measure Achievement.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1980-01-01

    Technical problems in achievement testing associated with using latent structure models to estimate the probability of guessing correct responses by examinees is studied; also the lack of problems associated with using Wilcox's formula score. Maximum likelihood estimates are derived which may be applied when items are hierarchically related.…

  13. Student Achievement in Edison Schools: Mixed Results in an Ongoing Enterprise. Research Report.

    ERIC Educational Resources Information Center

    American Federation of Teachers, Washington, DC.

    A study examined student achievement in selected Edison schools through an analysis of test-score data. To qualify for the study, each school had to be in operation for more than 1 year and had to have solid student testing data from a solid evaluation design. Eight schools were selected, and their reading data were compared with those of…

  14. Computer Simulations in the High School: Students' Cognitive Stages, Science Process Skills and Academic Achievement in Microbiology.

    ERIC Educational Resources Information Center

    Huppert, J.; Lomask, S. Michal; Lazarowitz, R.

    2002-01-01

    Investigates the impact of computer simulation on students' academic achievement and their mastery of science process skills with regard to their cognitive stages. Based on the computer simulation program "The Growth Curve of Microorganisms" which requires 10th grade biology students to use problem solving skills while simultaneously…

  15. Key results from SB8 simulant flowsheet studies

    SciTech Connect

    Koopman, D. C.

    2013-04-26

    Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density.

  16. Comprehensive simulation of the middle atmospheric climate: some recent results

    NASA Astrophysics Data System (ADS)

    Hamilton, Kevin

    1995-05-01

    This study discusses the results of comprehensive time-dependent, three-dimensional numerical modelling of the circulation in the middle atmosphere obtained with the GFDL “SKYHI” troposphere-stratosphere-mesosphere general circulation model (GCM). The climate in a long control simulation with an intermediate resolution version (≈3° in horizontal) is briefly reviewed. While many aspects of the simulation are quite realistic, the focus in this study is on remaining first-order problems with the modelled middle atmospheric general circulation, notably the very cold high latitude temperatures in the Southern Hemisphere (SH) winter/spring, and the virtual absence of a quasi-biennial oscillation (QBO) in the tropical stratosphere. These problems are shared by other extant GCMs. It was noted that the SH cold pole problem is somewhat ameliorated with increasing horizontal resolution in the model. This suggests that improved resolution increases the vertical momentum fluxes from the explicitly resolved gravity waves in the model, a point confirmed by detailed analysis of the spectrum of vertical eddy momentum flux in the winter SH extratropics. This result inspired a series of experiments with the 3° SKYHI model modified by adding a prescribed zonally-symmetric zonal drag on the SH winter westerlies. The form of the imposed momentum source was based on the simple assumption that the mean flow drag produced by unresolved waves has a spatial distribution similar to that of the Eliassen-Palm flux divergence associated with explicitly resolved gravity waves. It was found that an appropriately-chosen drag confined to the top six model levels (above 0.35 mb) can lead to quite realistic simulations of the SH winter flow (including even the stationary wave fields) through August, but that problems still remain in the late-winter/springtime simulation. While the imposed momentum source was largely confined to the extratropics, it produced considerable improvement in the

  17. On the near space population from simulation results

    NASA Astrophysics Data System (ADS)

    Tischenko, V. I.

    A new computer technology module for studying meteoroid complexes is proposed. Space structure is represented by orbital fragments with their visualization from simulated cometary nucleus disintegration. The modelled section in the ecliptic is shown which presents the complex form and its inner structure. This representation can be used for analysing space filling to establish potentially dangerous regions near the complex and the concrete planet's orbits or other object routes. Main results for specific comets are given.

  18. Continuum Level Results from Particle Simulations of Active Suspensions

    NASA Astrophysics Data System (ADS)

    Delmotte, Blaise; Climent, Eric; Plouraboue, Franck; Keaveny, Eric

    2014-11-01

    Accurately simulating active suspensions on the lab scale is a technical challenge. It requires considering large numbers of interacting swimmers with well described hydrodynamics in order to obtain representative and reliable statistics of suspension properties. We have developed a computationally scalable model based on an extension of the Force Coupling Method (FCM) to active particles. This tool can handle the many-body hydrodynamic interactions between O (105) swimmers while also accounting for finite-size effects, steady or time-dependent strokes, or variable swimmer aspect ratio. Results from our simulations of steady-stroke microswimmer suspensions coincide with those given by continuum models, but, in certain cases, we observe collective dynamics that these models do not predict. We provide robust statistics of resulting distributions and accurately characterize the growth rates of these instabilities. In addition, we explore the effect of the time-dependent stroke on the suspension properties, comparing with those from the steady-stroke simulations. Authors acknowledge the ANR project Motimo for funding and the Calmip computing centre for technical support.

  19. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  20. Mathematics Instruction and Achievement of Eighth-Grade Students in Korea: Results from the TIMSS 2007 Assessment

    ERIC Educational Resources Information Center

    House, J, Daniel; Telese, James A.

    2013-01-01

    Effective teaching practice for improving student achievement in mathematics is a critical area for instructional design. Further, results from international assessments of mathematics achievement have indicated that students in Korea typically earned test scores higher then international averages. The purpose of this study was to investigate the…

  1. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    SciTech Connect

    Pivi, M.; Furman, M.A.

    2002-05-29

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  2. Modeling results for a linear simulator of a divertor

    SciTech Connect

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  3. Study of a Simulation Tool to Determine Achievable Control Dynamics and Control Power Requirements with Perfect Tracking

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.

  4. Earth resources mission performance studies. Volume 2: Simulation results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Simulations were made at three month intervals to investigate the EOS mission performance over the four seasons of the year. The basic objectives of the study were: (1) to evaluate the ability of an EOS type system to meet a representative set of specific collection requirements, and (2) to understand the capabilities and limitations of the EOS that influence the system's ability to satisfy certain collection objectives. Although the results were obtained from a consideration of a two sensor EOS system, the analysis can be applied to any remote sensing system having similar optical and operational characteristics. While the category related results are applicable only to the specified requirement configuration, the results relating to general capability and limitations of the sensors can be applied in extrapolating to other U.S. based EOS collection requirements. The TRW general purpose mission simulator and analytic techniques discussed in this report can be applied to a wide range of collection and planning problems of earth orbiting imaging systems.

  5. Techniques for mass resolution improvement achieved by typical plasma mass analyzers: Modeling and simulations

    NASA Astrophysics Data System (ADS)

    Nicolaou, Georgios; Yamauchi, Masatoshi; Wieser, Martin; Barabash, Stas; Fedorov, Andrei

    2016-04-01

    Mass separation and particularly distinction between atomic ions and molecular ions are essential in understanding a wide range of plasma environments, with each consisted of different species with various properties. In this study we present the optimization results of light-weight (about 2 kg) magnetic mass analyzers with high g-factor for Rosetta (Ion Composition Analyser: ICA) and for Mars Express and Venus Express (Ion Mass Analyser: IMA). For the instrument's optimization we use SIMION, a 3D ion tracing software in which we can trace particle beams of several energies and directions, passing through the instrument's units. We first reproduced ICA and IMA results, which turned out to be different from simple models for low energy (< 100 eV). We then change the mechanical structure of several units of the instrument and we quantify the new mass resolution achieved with each change. Our goal is to find the optimal instrument's structure, which will allow us to achieve a proper mass resolution to distinguish atomic nitrogen from atomic oxygen for the purposes of a future magnetospheric mission.

  6. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  7. Ultrasonic noninvasive temperature estimation using echoshift gradient maps: simulation results.

    PubMed

    Techavipoo, Udomchai; Chen, Quan; Varghese, Tomy

    2005-07-01

    Percutaneous ultrasound-image-guided radiofrequency (rf) ablation is an effective treatment for patients with hepatic malignancies that are excluded from surgical resection due to other complications. However, ablated regions are not clearly differentiated from normal untreated regions using conventional ultrasound imaging due to similar echogenic tissue properties. In this paper, we investigate the statistics that govern the relationship between temperature elevation and the corresponding temperature map obtained from the gradient of the echoshifts obtained using consecutive ultrasound radiofrequency signals. A relationship derived using experimental data on the sound speed and tissue expansion variations measured on canine liver tissue samples at different elevated temperatures is utilized to generate ultrasound radiofrequency simulated data. The simulated data set is then utilized to statistically estimate the accuracy and precision of the temperature distributions obtained. The results show that temperature increases between 37 and 67 degrees C can be estimated with standard deviations of +/- 3 degrees C. Our results also indicate that the correlation coefficient between consecutive radiofrequency signals should be greater than 0.85 to obtain accurate temperature estimates.

  8. Achieving Remission in Gulf War Illness: A Simulation-Based Approach to Treatment Design.

    PubMed

    Craddock, Travis J A; Del Rosario, Ryan R; Rice, Mark; Zysman, Joel P; Fletcher, Mary Ann; Klimas, Nancy G; Broderick, Gordon

    2015-01-01

    Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting up to one-third of the 700,000 returning veterans of the 1991 Persian Gulf War and for which there is no known cure. GWI symptoms span several of the body's principal regulatory systems and include debilitating fatigue, severe musculoskeletal pain, cognitive and neurological problems. Using computational models, our group reported previously that GWI might be perpetuated at least in part by natural homeostatic regulation of the neuroendocrine-immune network. In this work, we attempt to harness these regulatory dynamics to identify treatment courses that might produce lasting remission. Towards this we apply a combinatorial optimization scheme to the Monte Carlo simulation of a discrete ternary logic model that represents combined hypothalamic-pituitary-adrenal (HPA), gonadal (HPG), and immune system regulation in males. In this work we found that no single intervention target allowed a robust return to normal homeostatic control. All combined interventions leading to a predicted remission involved an initial inhibition of Th1 inflammatory cytokines (Th1Cyt) followed by a subsequent inhibition of glucocorticoid receptor function (GR). These first two intervention events alone ended in stable and lasting return to the normal regulatory control in 40% of the simulated cases. Applying a second cycle of this combined treatment improved this predicted remission rate to 2 out of 3 simulated subjects (63%). These results suggest that in a complex illness such as GWI, a multi-tiered intervention strategy that formally accounts for regulatory dynamics may be required to reset neuroendocrine-immune homeostasis and support extended remission.

  9. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  10. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  11. Dynamic damping control: Implementation issues and simulation results

    SciTech Connect

    Anderson, R.J.

    1989-01-01

    Computed torque algorithms are used to compensate for the changing dynamics of robot manipulators in order to ensure that a constant level of damping is maintained for all configurations. Unfortunately, there are three significant problems with existing computed torque algorithms. First, they are nonpassive and can lead to unstable behavior; second, they make inefficient use of actuator capability; and third, they cannot be used to maintain a constant end-effector stiffness for force control tasks. Recently, we introduced a new control algorithm for robots which, like computed torque, uses a model of the manipulator's dynamics to maintain a constant level of damping in the system, but does so passively. This new class of passive control algorithms has guaranteed stability properties, utilizes actuators more effectively, and can also be used to maintain constant end-effector stiffness. In this paper, this approach is described in detail, implementation issues are discussed, and simulation results are given. 15 refs., 6 figs., 2 tabs.

  12. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  13. SLAC E144 Plots, Simulation Results, and Data

    DOE Data Explorer

    The 1997 E144 experiments at the Stanford Linear Accelerator Center (SLAC) utilitized extremely high laser intensities and collided huge groups of photons together so violently that positron-electron pairs were briefly created, actual particles of matter and antimatter. Instead of matter exploding into heat and light, light actually become matter. That accomplishment opened a new path into the exploration of the interactions of electrons and photons or quantum electrodynamics (QED). The E144 information at this website includes Feynmann Diagrams, simulation results, and data files. See also aseries of frames showing the E144 laser colliding with a beam electron and producing an electron-positron pair at http://www.slac.stanford.edu/exp/e144/focpic/focpic.html and lists of collaborators' papers, theses, and a page of press articles.

  14. Governance of complex systems: results of a sociological simulation experiment.

    PubMed

    Adelt, Fabian; Weyer, Johannes; Fink, Robin D

    2014-01-01

    Social sciences have discussed the governance of complex systems for a long time. The following paper tackles the issue by means of experimental sociology, in order to investigate the performance of different modes of governance empirically. The simulation framework developed is based on Esser's model of sociological explanation as well as on Kroneberg's model of frame selection. The performance of governance has been measured by means of three macro and two micro indicators. Surprisingly, central control mostly performs better than decentralised coordination. However, results not only depend on the mode of governance, but there is also a relation between performance and the composition of actor populations, which has yet not been investigated sufficiently. Practitioner Summary: Practitioners can gain insights into the functioning of complex systems and learn how to better manage them. Additionally, they are provided with indicators to measure the performance of complex systems.

  15. Are New Technologies Influencing the Academic Results Achieved by Students? An Exploratory Study

    ERIC Educational Resources Information Center

    Gargallo-Castel, Ana; Esteban-Salvador, Luisa; Marzo-Navarro, Mercedes

    2010-01-01

    The purpose of this study is to analyze the application of Information Communication Technologies (ICTs) within tertiary education in a Spanish University. We analyze the results of a new initiative developed by the University of Zaragoza through an innovative project for a virtual campus called "Anillo Digital Docente." Data relating to…

  16. Is the Presence of a Results-Oriented Professional Learning Community Predictive of Student Achievement?

    ERIC Educational Resources Information Center

    Sullivan, Michael E.

    2013-01-01

    This study investigated the relationships between teacher collaboration practices known as working as a professional learning community (PLC) and student performance. Through a review of the current literature, an operational framework of PLCs was developed that distinguished results-oriented from inquiry-oriented PLCs. The study considered the…

  17. So What's Different? Student Achievement and Attitude Results from Instructional Development Projects.

    ERIC Educational Resources Information Center

    Eastmond, J. Nicholls; Van Horn, Kathleen L.

    Reported are the results of instructional development projects at Utah State University, funded under mini grants, faculty development grants, or developmental grants to departments. These projects involve redesign of courses in media production, library resources, pattern design and fitting, counselling psychology, quantitative methods,…

  18. Statistical monitoring and dynamic simulation of a wastewater treatment plant: A combined approach to achieve model predictive control.

    PubMed

    Wang, Xiaodong; Ratnaweera, Harsha; Holm, Johan Abdullah; Olsbu, Vibeke

    2017-02-07

    The on-line monitoring of Chemical oxygen demand (COD) and total phosphorus (TP) restrains wastewater treatment plants to achieve better control of aeration and chemical dosing. In this study, we applied principal components analysis (PCA) to find out significant variables for COD and TP prediction. Multiple regression method applied the variables suggested by PCA to predict influent COD and TP. Moreover, a model of full-scale wastewater treatment plant with moving bed bioreactor (MBBR) and ballasted separation process was developed to simulate the performance of wastewater treatment. The predicted COD and TP data by multiple regression served as model input for dynamic simulation. Besides, the wastewater characteristic of the wastewater treatment plant and MBBR model parameters were given for model calibration. As a result, R(2) of predicted COD and TP versus measured data are 81.6% and 77.2%, respectively. The model output in terms of sludge production and effluent COD based on predicted input data fitted measured data well, which provides possibility to enabled model predictive control of aeration and coagulant dosing in practice. This study provide a feasible and economical approach to overcome monitoring and modelling restrictions that limits model predictive control of wastewater treatment plant.

  19. The Effect of Simulation-Games Environment on Students Achievement in and Attitudes to Mathematics in Secondary Schools

    ERIC Educational Resources Information Center

    Akinsola, M. K.; Animasahun, I. A.

    2007-01-01

    This study sought to determine the effect of simulation-games environment on students' achievement in attitudes to mathematics in secondary school. Data was collected from a sample of 147 students in senior secondary school in Osun-State, Nigeria. t-test and analysis of variance was used to analyze the data collected for the study. The finding…

  20. The Effect of Simulation-Games Environment on Students' Achievement in and Attitudes to Mathematics in Secondary Schools

    ERIC Educational Resources Information Center

    Akinsola, M. K.; Animasahun, I. A.

    2007-01-01

    This study sought to determine the effect of simulation-games environment on students' achievement in attitudes to mathematics in secondary school. Data was collected from a sample of 147 students in senior secondary school in Osun-State, Nigeria. t-test and analysis of variance was used to analyze the data collected for the study. The finding…

  1. Biosocial Influences on Sex Differences for Ability and Achievement Test Results as Well as Marks at School.

    ERIC Educational Resources Information Center

    Fischbein, Siv

    1990-01-01

    A comparison was made of ability and achievement test results and school grades for 323 pairs of Swedish male and female twins and 740 controls in relation to social background. An interaction effect of sex and social background was found for verbal ability and mathematics test results. (SLD)

  2. Electrical machines with bulk HTS elements.. The achieved results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Koneev, S. M.-A.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Oswald, B.

    2001-09-01

    Novel types of electric HTS motors with the rotor containing bulk YBCO and Bi-Ag elements are presented. Different schematics of hysteresis, reluctance “trapped field” and composed HTS motors are discussed. Two-dimensional mathematical models describing the processes in these types of HTS machines were developed on the basis of a theoretical analysis of the electrodynamic and hysteresis processes in multi-domain and single-domain HTS ceramic samples. The test results of these HTS motors with output power 1-37 kW and current frequencies 50 and 400 Hz are given. The results show that in liquid nitrogen the specific output power per one weight unit is 4-5 times better then for conventional electric machines. The design of a new high power HTS motor operating in the liquid nitrogen with output power 200 kW (and more) is discussed. Future applications of new types of HTS motors for airspace and on-land industry and transport systems are discussed.

  3. Waste Minimization Improvements Achieved Through Six Sigma Analysis Result In Significant Cost Savings

    SciTech Connect

    Mousseau, Jeffrey, D.; Jansen, John, R.; Janke, David, H.; Plowman, Catherine, M.

    2003-02-26

    Improved waste minimization practices at the Department of Energy's (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) are leading to a 15% reduction in the generation of hazardous and radioactive waste. Bechtel, BWXT Idaho, LLC (BBWI), the prime management and operations contractor at the INEEL, applied the Six Sigma improvement process to the INEEL Waste Minimization Program to review existing processes and define opportunities for improvement. Our Six Sigma analysis team: composed of an executive champion, process owner, a black belt and yellow belt, and technical and business team members used this statistical based process approach to analyze work processes and produced ten recommendations for improvement. Recommendations ranged from waste generator financial accountability for newly generated waste to enhanced employee recognition programs for waste minimization efforts. These improvements have now been implemented to reduce waste generation rates and are producing positive results.

  4. Achieving the NOAA Arctic Action Plan: The Missing Permafrost Element - Permafrost Forecasting Listening Session Results

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Thoman, R.; Romanovsky, V. E.

    2015-12-01

    Permafrost is ground at or below freezing for at least two consecutive years. It currently occupies 80% of Alaska. Permafrost temperature and active layer thickness (ALT) are key climatic variables for monitoring permafrost conditions. Active layer thickness is the depth that the top layer of ground above the permafrost thaws each summer season and permafrost temperature is the temperature of the frozen permafrost under this active layer. Knowing permafrost conditions is key for those individuals working and living in Alaska and the Arctic. The results of climate models predict vast changes and potential permafrost degradation across Alaska and the Arctic. NOAA is working to implement its 2014 Arctic Action Plan and permafrost forecasting is a missing piece of this plan. The Alaska Center for Climate Assessment and Policy (ACCAP), using our webinar software and our diverse network of statewide stakeholder contacts, hosted a listening session to bring together a select group of key stakeholders. During this listening session the National Weather Service (NWS) and key permafrost researchers explained what is possible in the realm of permafrost forecasting and participants had the opportunity to discuss and share with the group (NWS, researchers, other stakeholders) what is needed for usable permafrost forecasting. This listening session aimed to answer the questions: Is permafrost forecasting needed? If so, what spatial scale is needed by stakeholders? What temporal scales do stakeholders need/want? Are there key times (winter, fall freeze-up, etc.) or locations (North Slope, key oil development areas, etc.) where forecasting would be most applicable and useful? Are there other considerations or priority needs we haven't thought of regarding permafrost forecasting? This presentation will present the results of that listening session.

  5. Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio

    SciTech Connect

    Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D; D'Amico, G; Yager, R; Hosea, J; Wilson, J R; Ryan, P

    2009-05-26

    Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.

  6. Realism, Authenticity, and Learning in Healthcare Simulations: Rules of Relevance and Irrelevance as Interactive Achievements

    ERIC Educational Resources Information Center

    Rystedt, Hans; Sjoblom, Bjorn

    2012-01-01

    Because simulators offer the possibility of functioning as authentic representations of real-world tasks, these tools are regarded as efficient for developing expertise. The users' experience of realism is recognised as crucial, and is often regarded as an effect of the similarity between reality and the simulator itself. In this study, it is…

  7. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  8. AGGREGATES: Finding structures in simulation results of solutions.

    PubMed

    Bernardes, Carlos E S

    2017-04-15

    Molecular Dynamic and Monte-Carlo simulations are widely used to investigate the structure and physical properties of solids and liquids at a molecular level. Tools to extract the most relevant information from the obtained results are, however, in considerable demand. One such tool, the program AGGREGATES, is described in this work. Based on distance criteria, the program searches trajectory files for the presence of molecular clusters and computes several statistical and shape properties for these structures. Tools designed to investigate the local organization and the molecular conformations in the clusters are also available. Among these, it is introduced a new approach to perform a First Shell Analysis, by looking for the presence of atomic contacts between molecules. These elements are particularly useful to obtain information on molecular assembly processes (such as the nucleation of crystals or colloidal particles) or to investigate polymorphism in organic compounds. The program features are illustrated here through the investigation of the 4'-hydroxyacetophenone + ethanol system. © 2017 Wiley Periodicals, Inc.

  9. Simulation and testing of new control methods for achieving low emissions in gas turbine engines

    SciTech Connect

    Boyce, P.M.

    1995-09-01

    In the past few years, development of clean burning land-based industrial gas turbines have been the focus for many manufacturers. This effort lead to the development of the LM6000 dry low emission engine. As a part of the control system, a real time mathematical model of the engine was included. This model is used to control the air and fuel low paths to the engine`s new combustor. A real time simulator was needed to simulate the control system hardware and engine. A brief discussion and some basic concepts of the combustor, along with a full discussion on the development of the real time simulator, follows in this paper.

  10. Nebraska STARS: Achieving Results

    ERIC Educational Resources Information Center

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  11. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  12. Learning Microbiology with Computer Simulations: Students' Academic Achievement by Method and Gender.

    ERIC Educational Resources Information Center

    Huppert, Jehuda; Yaakobi, Judith; Lazarowitz, Reuven

    1998-01-01

    Studies the use of a computer-assisted learning simulation episode during a unit on the growth curve of microorganisms in grade ten. Finds no significant gender differences in either the experimental or control groups. Contains 25 references. (DDR)

  13. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  14. Using Performance Management To Achieve Quality Program Results. A Technical Assistance Guide. Research Report 89-03.

    ERIC Educational Resources Information Center

    Laventhol & Horwath, Philadelphia, PA.

    This guide provides assistance in using two primary management tools--the performance standards and performance-based, fixed unit price contracts--to achieve satisfactory results in Job Training Partnership Act (JTPA) programs. The guide is organized in six chapters. Chapter 1 reviews the original purpose of the JTPA and introduces the investment…

  15. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M.; Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery, Shelly; Carstenson, Larry; Dugan, James; Farritor, Shane; Joyce, James; Rebrovich, Barb

    2003-01-01

    Condensing five years of significant work into a brief narrative fitting PPR requirements gave the affiliates of the Nebraska Space Grant a valuable chance for reflection. Achievements of Space Grant in Nebraska were judiciously chosen for this document that best illustrate the resultant synergism of this consortium, keeping in mind that these examples are only a representation of greater activity throughout the state. Following are highlights of many of the finer and personal achievements for Nebraska Space Grant. The Consortium welcomes inquiries to elaborate on any of these accomplishments.

  16. Aeolian Simulations: A Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Mathews, O.; Burr, D. M.; Bridges, N. T.; Lyne, J. E.; Marshall, J. R.; Greeley, R.; White, B. R.; Hills, J.; Smith, K.; Prissel, T. C.; Aliaga-Caro, J. F.

    2010-12-01

    Aeolian processes are a major geomorphic agent on solid planetary bodies with atmospheres (Earth, Mars, Venus, and Titan). This paper describes preliminary efforts to model aeolian saltation using computational fluid dynamics (CFD) and to compare the results with those obtained in wind tunnel testing conducted in the Planetary Aeolian Laboratory at NASA Ames Research Center at ambient pressure. The end goal of the project is to develop an experimentally validated CFD approach for modeling aeolian sediment transport on Titan and other planetary bodies. The MARSWIT open-circuit tunnel in this work was specifically designed for atmospheric boundary layer studies. It is a variable-speed, continuous flow tunnel with a test section 1.0 m by 1.2 m in size; the tunnel is able to operate at pressures from 10 millibar to one atmosphere. Flow trips near the tunnel inlet ensure a fully developed, turbulent boundary layer in the test section. Wind speed and axial velocity profiles can be measured with a traversing pitot tube. In this study, sieved walnut shell particles (Greeley et al. 1976) with a density of ~1.1 g/cm3 were used to correlate the low gravity conditions and low sediment density on a body of interest to that of Earth. This sediment was placed in the tunnel, and the freestream airspeed raised to 5.4 m/s. A Phantom v12 camera imaged the resulting particle motion at 1000 frames per second, which was analyzed with ImageJ open-source software (Fig. 1). Airflow in the tunnel was modeled with FLUENT, a commercial CFD program. The turbulent scheme used in FLUENT to obtain closed-form solutions to the Navier-Stokes equations was a 1st Order, k-epsilon model. These methods produced computational velocity profiles that agree with experimental data to within 5-10%. Once modeling of the flow field had been achieved, a Euler-Lagrangian scheme was employed, treating the particles as spheres and tracking each particle at its center. The particles are assumed to interact with

  17. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  18. The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results

    NASA Astrophysics Data System (ADS)

    Pawlik, Andreas H.; Rahmati, Alireza; Schaye, Joop; Jeon, Myoungwon; Dalla Vecchia, Claudio

    2017-04-01

    We introduce a new suite of radiation-hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small-scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 × 5123 dark matter and gas particles in a box of size 25 h-1 comoving Mpc with a force softening scale of at most 0.28 h-1 kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 × 10243 particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z ≈ 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low-mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.

  19. Achievements of engineering students on a fluid mechanics course in relation to the use of illustrative interactive simulations

    NASA Astrophysics Data System (ADS)

    Romero, Carlos; Martínez, Elvira

    2013-07-01

    Among other skills, a capacity for abstraction and good spatial awareness are needed to succeed in physics courses. According to the prevailing low percentages of passed students on these courses, a great proportion of those students are likely to lack these skills. Our working hypothesis is that simulations could help engineering students visualize physical phenomena and thereby gain a better understanding of physical theoretical concepts and achieve higher grades. Two groups of students (n1 = 40 and n2 = 43) took the same fluid mechanics course at an engineering school. Both groups took the same end-of-course examination, but only group 1 was simulation-taught. For that purpose, 15 original simulations were created with GeoGebra software. Simulation-taught students completed a questionnaire on the interest of using simulations to teach fluid mechanics. Simulations designed in this work covered all the concepts taught on the course and overcame criticisms made on previous simulations also created to teach fluid mechanics. At the examination, the average grade and the percentage of passed students were higher in group 1 than in group 2. When surveyed, group 1 students declared that they enjoyed interacting with the simulations and considered them to be a good complement to the theoretical explanations because simulations helped them revise previously explained concepts. Simulations assisted students with difficulties to visualize and understand physical theoretical concepts but still students performed poorly on the examination. Additional strategies need to be adopted in order to help students develop the skills required to succeed in physics courses.

  20. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  1. Result-driven exploration of simulation parameter spaces for visual effects design.

    PubMed

    Bruckner, Stefan; Möller, Torsten

    2010-01-01

    Graphics artists commonly employ physically-based simulation for the generation of effects such as smoke, explosions, and similar phenomena. The task of finding the correct parameters for a desired result, however, is difficult and time-consuming as current tools provide little to no guidance. In this paper, we present a new approach for the visual exploration of such parameter spaces. Given a three-dimensional scene description, we utilize sampling and spatio-temporal clustering techniques to generate a concise overview of the achievable variations and their temporal evolution. Our visualization system then allows the user to explore the simulation space in a goal-oriented manner. Animation sequences with a set of desired characteristics can be composed using a novel search-by-example approach and interactive direct volume rendering is employed to provide instant visual feedback. A user study was performed to evaluate the applicability of our system in production use.

  2. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results.

  3. SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES

    EPA Science Inventory

    A three-dimensional and three-phase (water, NAPL and gas) numerical simulator, called NAPL, was employed to study the interaction between DNAPL (PCE) plumes in a variably saturated porous media. Several model verification tests have been performed, including a series of 2-D labo...

  4. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    ERIC Educational Resources Information Center

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-01-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from…

  5. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    ERIC Educational Resources Information Center

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  6. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    SciTech Connect

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle configurations. Three runs

  7. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Technical Reports Server (NTRS)

    Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality

  8. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A.; Adrian, M. L.; Yeh, P.; Winkert, G.; Lobell, J.; Vinas, A. F.; Simpson, D. G.

    2009-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° x 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° x 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 6.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present updated simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data as well as the FPI-DIS ion data. Compression analysis is based upon a seed of re-processed Cluster

  9. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A. C.; Adrian, M. L.; Yeh, P.; Winkert, G. E.; Lobell, J. V.; Viňas, A. F.; Simpson, D. G.; Moore, T. E.

    2008-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° × 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° × 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 7.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm- based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re- processed Cluster/PEACE electron measurements. Topics to be

  10. Photon Counting Chirped AM Ladar: Concept, Simulation, and Experimental Results

    DTIC Science & Technology

    2006-11-01

    sensitivity. This noise is well above the signal shot noise limit. We are developing a method using Geiger -mode avalanche photodiode (Gm-APD) photon counting...Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law ...photon counting receiver bandwidth, and therefore, sets the minimum achievable timing/range resolution. The inverse of the dead time sets the upper

  11. Monetary Incentives in Support of Academic Achievement: Results of a Randomized Field Trial Involving High-Achieving, Low-Resource, Ethnically Diverse Urban Adolescents

    ERIC Educational Resources Information Center

    Spencer, Margaret Beale; Noll, Elizabeth; Cassidy, Elaine

    2005-01-01

    Significant resources have been directed at understanding and alleviating the achievement gap in education. Most programs focused on this aim rely on a top-down approach, including funding for infrastructure improvement, curriculum development, class size, and teacher salaries. This article presents findings from a randomized field trial that…

  12. Achieving supercomputer performance for neural net simulation with an array of digital signal processors

    SciTech Connect

    Muller, U.A.; Baumle, B.; Kohler, P.; Gunzinger, A.; Guggenbuhl, W.

    1992-10-01

    Music, a DSP-based system with a parallel distributed-memory architecture, provides enormous computing power yet retains the flexibility of a general-purpose computer. Reaching a peak performance of 2.7 Gflops at a significantly lower cost, power consumption, and space requirement than conventional supercomputers, Music is well suited to computationally intensive applications such as neural network simulation. 12 refs., 9 figs., 2 tabs.

  13. A computerised third molar surgery simulator--results of supervision by different professionals.

    PubMed

    Rosen, A; Eliassi, S; Fors, U; Sallnäs, E-L; Forsslund, J; Sejersen, R; Lund, B

    2014-05-01

    The purpose of the study was to investigate which supervisory approach afforded the most efficient learning method for undergraduate students in oral and maxillofacial surgery (OMS) using a computerised third molar surgery simulator. Fifth year dental students participated voluntarily in a randomised experimental study using the simulator. The amount of time required and the number of trials used by each student were evaluated as a measure of skills development. Students had the opportunity to practise the procedure until no further visible improvements were achieved. The study assessed four different types of supervision to guide the students. The first group was where they were supported by a teacher/specialist in OMS, the second by a teaching assistant, the third group practised without any supervision and the fourth received help from a simulator technician/engineer. A protocol describing assessment criteria was designed for this purpose, and a questionnaire was completed by all participating students after the study. The average number of attempts required to virtually remove a third molar tooth in the simulator was 1.44 times for the group supervised by an OMS teacher; 1.5 times for those supervised by a teaching assistant; 2.8 times for those who had no supervision; and 3.6 times when support was provided only by a simulator technician. The results showed that the most efficient experience of the students was when they were helped by an OMS teacher or a teaching assistant. In a time and cost-effective perspective, supervision by a teaching assistant for a third molar surgery simulator would be the optimal choice.

  14. Simulations Build Efficacy: Empirical Results from a Four-Week Congressional Simulation

    ERIC Educational Resources Information Center

    Mariani, Mack; Glenn, Brian J.

    2014-01-01

    This article describes a four-week congressional committee simulation implemented in upper level courses on Congress and the Legislative process at two liberal arts colleges. We find that the students participating in the simulation possessed high levels of political knowledge and confidence in their political skills prior to the simulation. An…

  15. Direct drive: Simulations and results from the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Dixit, S. N.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Moody, J.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Sangster, T. C.; Sio, H.; Skupsky, S.; Zylstra, A.

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  16. Direct drive: Simulations and results from the National Ignition Facility

    DOE PAGES

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; ...

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  17. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  18. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  19. Stellar populations of stellar halos: Results from the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Conroy, C.; Pillepich, A.; Hernquist, L.

    2016-08-01

    The influence of both major and minor mergers is expected to significantly affect gradients of stellar ages and metallicities in the outskirts of galaxies. Measurements of observed gradients are beginning to reach large radii in galaxies, but a theoretical framework for connecting the findings to a picture of galactic build-up is still in its infancy. We analyze stellar populations of a statistically representative sample of quiescent galaxies over a wide mass range from the Illustris simulation. We measure metallicity and age profiles in the stellar halos of quiescent Illustris galaxies ranging in stellar mass from 1010 to 1012 M ⊙, accounting for observational projection and luminosity-weighting effects. We find wide variance in stellar population gradients between galaxies of similar mass, with typical gradients agreeing with observed galaxies. We show that, at fixed mass, the fraction of stars born in-situ within galaxies is correlated with the metallicity gradient in the halo, confirming that stellar halos contain unique information about the build-up and merger histories of galaxies.

  20. What can decision makers achieve from computer simulations of environmental systems?

    NASA Astrophysics Data System (ADS)

    Hill, M. C.; Kavetski, D.; Clark, M. P.; Ye, M.; Arabi, M.; Lu, D.; Foglia, L.; Mehl, S.

    2013-12-01

    For scientists and decision-makers to understand model predictions and their limitations, models need to be as transparent and refutable as possible. This is achieved by evaluating model fit to data, estimated parameter values, sensitivities, and uncertainty. This talk illustrates methods for evaluating model accuracy, identifying important parameters and observations, quantifying uncertainty, and identifying potential new observations. We also point out some important challenges. First, advances in computing power notwithstanding, computational runtimes remain a major constraint as environmental models become more complicated in an attempt to better capture realistic complexity, heterogeneity and non-stationarity. This constraint is often particularly restrictive given the continuing push towards computationally intensive analysis methods requiring 10,000s or more model runs. In environmental fields, where models can take a week or more per forward run, such methods are burdensome and often infeasible. Second, the relationships between the various model analysis methods and metrics in current use and in research are yet to be clearly established. This makes it difficult for research managers - and even researchers themselves - to develop strategic insights from the enormous ongoing effort to model environmental systems. In our strategy for navigating these difficulties, we suggest viewing the plethora of methods and metrics based on their objectives and computational demand, and making clear links between methods pursuing the same objectives despite starkly different theoretical backgrounds. The strategy emphasizes practical solutions as embodied in the proposed integrated use of methods that range from being computationally frugal (typically local) to demanding (typically global). We identify inexpensive diagnostics to distinguish between cases where frugal methods provide adequate and efficient insights into complex, high-dimensional models and enable systematic

  1. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  2. The effects of an interactive dissection simulation on the performance and achievement of high school biology students

    NASA Astrophysics Data System (ADS)

    Kinzie, Mable B.; Strauss, Richard; Foss, Jean

    Educators, administrators, and students are reevaluating the value of animal dissection in the classroom and are taking a careful look at instructional alternatives. This research is an attempt to examine the performance, achievement, and attitudinal effects of a dissection alternative, an interactive videodiscbased (IVD) simulation, in two ways: as a substitute for dissection and as a preparatory tool used prior to dissection. Sixty-one high school students enrolled in three general-ability high school biology classes participated in this research over a 4-day period. On the substitution issue, findings suggest that the IVD simulation was at least as effective as actual dissection in promoting student learning of frog anatomy and dissection procedures. On the preparation issue, it was found that students using the IVD simulation as a preparation performed a subsequent dissection more effectively than students receiving no preparation and more effectively than students viewing a videotape as preparation. Students using the IVD simulation as preparation also learned more about frog anatomy and dissection procedures than those who dissected without preparation. Students in all groups evidenced little change in attitudes toward dissection. All students reported a significant gain in dissection self-efficacy, but no between-group differences were found. Findings are discussed relative to their implications for educational practice and future research.

  3. Diamond-NICAM-SPRINTARS: downscaling and simulation results

    NASA Astrophysics Data System (ADS)

    Uchida, J.

    2012-12-01

    As a part of initiative "Research Program on Climate Change Adaptation" (RECCA) which investigates how predicted large-scale climate change may affect a local weather, and further examines possible atmospheric hazards that cities may encounter due to such a climate change, thus to guide policy makers on implementing new environmental measures, a "Development of Seamless Chemical AssimiLation System and its Application for Atmospheric Environmental Materials" (SALSA) project is funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology and is focused on creating a regional (local) scale assimilation system that can accurately recreate and predict a transport of carbon dioxide and other air pollutants. In this study, a regional model of the next generation global cloud-resolving model NICAM (Non-hydrostatic ICosahedral Atmospheric Model) (Tomita and Satoh, 2004) is used and ran together with a transport model SPRINTARS (Spectral Radiation Transport Model for Aerosol Species) (Takemura et al, 2000) and a chemical transport model CHASER (Sudo et al, 2002) to simulate aerosols across urban cities (over a Kanto region including metropolitan Tokyo). The presentation will mainly be on a "Diamond-NICAM" (Figure 1), a regional climate model version of the global climate model NICAM, and its dynamical downscaling methodologies. Originally, a global NICAM can be described as twenty identical equilateral triangular-shaped panels covering the entire globe where grid points are at the corners of those panels, and to increase a resolution (called a "global-level" in NICAM), additional points are added at the middle of existing two adjacent points, so a number of panels increases by fourfold with an increment of one global-level. On the other hand, a Diamond-NICAM only uses two of those initial triangular-shaped panels, thus only covers part of the globe. In addition, NICAM uses an adaptive mesh scheme and its grid size can gradually decrease, as the grid

  4. Electron transport in the solar wind -results from numerical simulations

    NASA Astrophysics Data System (ADS)

    Smith, Håkan; Marsch, Eckart; Helander, Per

    A conventional fluid approach is in general insufficient for a correct description of electron trans-port in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat transport from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the electron distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat transport a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for electrons in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal electrons has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D

  5. Covariate-Based Assignment to Treatment Groups: Some Simulation Results.

    ERIC Educational Resources Information Center

    Jain, Ram B.; Hsu, Tse-Chi

    1980-01-01

    Six estimators of treatment effect when assignment to treatment groups is based on the covariate are compared in terms of empirical standard errors and percent relative bias. Results show that simple analysis of covariance estimator is not always appropriate. (Author/GK)

  6. Preliminary Benchmarking and MCNP Simulation Results for Homeland Security

    SciTech Connect

    Robert Hayes

    2008-03-01

    The purpose of this article is to create Monte Carlo N-Particle (MCNP) input stacks for benchmarked measurements sufficient for future perturbation studies and analysis. The approach was to utilize historical experimental measurements to recreate the empirical spectral results in MCNP, both qualitatively and quantitatively. Results demonstrate that perturbation analysis of benchmarked MCNP spectra can be used to obtain a better understanding of field measurement results which may be of national interest. If one or more spectral radiation measurements are made in the field and deemed of national interest, the potential source distribution, naturally occurring radioactive material shielding, and interstitial materials can only be estimated in many circumstances. The effects from these factors on the resultant spectral radiation measurements can be very confusing. If benchmarks exist which are sufficiently similar to the suspected configuration, these benchmarks can then be compared to the suspect measurements. Having these benchmarks with validated MCNP input stacks can substantially improve the predictive capability of experts supporting these efforts.

  7. Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Juanjuan; Zhang, Tianping; Geng, Hai; Jia, Yanhui; Meng, Wei; Wu, Xianming; Sun, Anbang

    2016-06-01

    Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime. During the thruster's operation, Charge Exchange Xenon (CEX) ions are generated from collisions between plasma and neutral atoms. Those CEX ions grid's barrel and wall frequently, which cause the failures of the grid system. In order to validate whether the 20 cm Lanzhou Ion Propulsion System (LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping (NSSK), this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster. Different from the previous method, in this paper, the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly. Then, based on these results, theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200. The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster. The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.

  8. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane

    2003-01-01

    This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.

  9. Head Kinematics Resulting from Simulated Blast Loading Scenarios

    DTIC Science & Technology

    2012-09-17

    pressure wave and the body which commonly damages air-filled organs such as the lungs , gastrointestinal tract, and ears. Secondary blast injury...subsequent impact with surrounding obstacles or the ground. Quaternary injury is the result of other factors including burns or inhalation of dust and gas... Woods , W., Feldman, S., Cummings, T., et al. (2011). Survival Risk Assessment for Primary Blast Exposures to the Head. Journal of neurotrauma, 2328

  10. Diffusion of emergency warning: Comparing empirical and simulation results

    SciTech Connect

    Rogers, G.O.; Sorensen, J.H.

    1988-10-01

    As officials consider emergency warning systems to alert the public to potential danger in areas surrounding hazardous facilities, the issue of warning system effectiveness is of critical importance. The purpose of this paper is to present the results of an analysis on the timing of warning system information dissemination including the alert of the public and delivery of a warning message. A general model of the diffusion of emergency warning is specified as a logistic function. Alternative warning systems are characterized in terms of the parameters of the model, which generally constrain the diffusion process to account for judged maximum penetration of each system for various locations and likelihood of being in those places by time of day. The results indicate that the combination of either telephone ring-down warning systems or tone-alert radio systems combined with sirens provide the most effective warning system under conditions of either very rapid onset, or close proximity or both. These results indicate that single technology systems provide adequate warning effectiveness when available warning time (to the public after detection and the decision to warn) extends to as much as an hour. Moreover, telephone ring-down systems provide similar coverage at approximately 30 minutes of available public warning time. 36 refs., 5 figs., 3 tabs.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  12. Numerical Simulation of Micronozzles with Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Thornber, B.; Chesta, E.; Gloth, O.; Brandt, R.; Schwane, R.; Perigo, D.; Smith, P.

    2004-10-01

    A numerical analysis of conical micronozzle flows has been conducted using the commercial software package CFD-RC FASTRAN [13]. The numerical results have been validated by comparison with direct thrust and mass flow measurements recently performed in ESTEC Propulsion Laboratory on Polyflex Space Ltd. 10mN Cold-Gas thrusters in the frame of ESA CryoSat mission. The flow is viscous dominated, with a throat Reynolds number of 5000, and the relatively large length of the nozzle causes boundary layer effects larger than usual for nozzles of this size. This paper discusses in detail the flow physics such as boundary layer growth and structure, and the effects of rarefaction. Furthermore a number of different domain sizes and exit boundary conditions are used to determine the optimum combination of computational time and accuracy.

  13. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    SciTech Connect

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  14. Preliminary Benchmarking Efforts and MCNP Simulation Results for Homeland Security

    SciTech Connect

    Robert Hayes

    2008-04-18

    It is shown in this work that basic measurements made from well defined source detector configurations can be readily converted in to benchmark quality results by which Monte Carlo N-Particle (MCNP) input stacks can be validated. Specifically, a recent measurement made in support of national security at the Nevada Test Site (NTS) is described with sufficient detail to be submitted to the American Nuclear Society’s (ANS) Joint Benchmark Committee (JBC) for consideration as a radiation measurement benchmark. From this very basic measurement, MCNP input stacks are generated and validated both in predicted signal amplitude and spectral shape. Not modeled at this time are those perturbations from the more recent pulse height light (PHL) tally feature, although what spectral deviations are seen can be largely attributed to not including this small correction. The value of this work is as a proof-of-concept demonstration that with well documented historical testing can be converted into formal radiation measurement benchmarks. This effort would support virtual testing of algorithms and new detector configurations.

  15. Democratic population decisions result in robust policy-gradient learning: a parametric study with GPU simulations.

    PubMed

    Richmond, Paul; Buesing, Lars; Giugliano, Michele; Vasilaki, Eleni

    2011-05-04

    High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning. The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience. Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural population (a "non-democratic" mechanism), achieve mediocre learning results at best. In absence of recurrent connections, where all neurons "vote" independently ("democratic") for a decision via population vector readout, the task is generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of 5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.

  16. The relativity experiment of MORE: Global full-cycle simulation and results

    NASA Astrophysics Data System (ADS)

    Schettino, Giulia

    2015-07-01

    BepiColombo is a joint ESA/JAXA mission to Mercury with challenging objectives regarding geophysics, geodesy and fundamental physics. In particular, the Mercury Orbiter Radio science Experiment (MORE) intends, as one of its goals, to perform a test of General Relativity. This can be done by measuring and constraining the parametrized post-Newtonian (PPN) parameters to an accuracy significantly better than current one. In this work we perform a global numerical full-cycle simulation of the BepiColombo Radio Science Experiments (RSE) in a realistic scenario, focussing on the relativity experiment, solving simultaneously for all the parameters of interest for RSE in a global least squares fit within a constrained multiarc strategy. The results on the achievable accuracy for each PPN parameter will be presented and discussed, confirming the significant improvement to the actual knowledge of gravitation theory expected for the MORE relativity experiment. In particular, we will show that, including realistic systematic effects in the range observables, an accuracy of the order of 10-6 can still be achieved in the Eddington parameter β and in the parameter α1, which accounts for preferred frame effects, while the only poorly determined parameter turns out to be ζ, which describes the temporal variations of the gravitational constant and the Sun mass.

  17. The Variation in Student Achievement and Behavior within a Portfolio Management Model: Early Results from New Orleans

    ERIC Educational Resources Information Center

    McEachin, Andrew J.; Welsh, Richard Osbourne; Brewer, Dominic James

    2016-01-01

    A growing number of states experimented with alternative governance structures in response to pressure to raise student achievement. Post-Katrina experimentation in New Orleans was widely regarded as a model example of new governance reforms and provided a unique opportunity to learn about the variation in student achievement and behavior within…

  18. Different Methods, Different Results: Examining the Implications of Methodological Divergence and Implicit Processes for Achievement Goal Research

    ERIC Educational Resources Information Center

    da Costa, Laura; Remedios, Richard

    2014-01-01

    Achievement goal theory is one of the most popular theories of achievement motivation. Techniques researchers have used to assess goals include standardized questionnaires and interviews. One curious finding is that participants whose self-report questionnaire responses strongly indicate they operate with a performance goal do not make performance…

  19. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  20. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  1. Simulated changes in ground-water levels resulting from proposed phosphate mining, west-central Florida; preliminary results

    USGS Publications Warehouse

    Wilson, William Edward

    1977-01-01

    A digital model of two-dimensional ground-water flow was used to simulate projected changes in the Floridan aquifer potentiometric surface in 1985 and 2000, resulting from proposed ground-water developments by the phosphate mining industry in west-central Florida. The .model was calibrated under steady-state conditions to simulate the September 1975 potentiometric surface. Under one development plan, existing phosphate mines in Polk County would continue to withdraw ground water at 1975 rates, until phased out as the ore is depleted; no new mines would be introduced. Preliminary results indicate that under this plan, maximum simulated recovery of the potentiometric surface is 11.9 feet by 1985 and 36.5 feet by 2000. Under an alternative plan, all proposed mines in Polk, Hardee, DeSoto, Hillsborough and Manatee Counties would begin operations: in addition to the continuation and phasing out of existing mines. Preliminary results indicate that the potentiometric surface would generally recover in Polk County and decline elsewhere in the modeled area. Maximum simulated recovery is 4.5 feet by 1985 and 29.6 feet by 2000; maximum simulated drawdown is 15.1 feet by 1985 and feet by 2000. All results are preliminary and subject to revision as the investigation continues.

  2. Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching

    2010-01-01

    Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.

  3. Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Recchi, Simone; Hensler, Gerhard

    2015-07-01

    Context. In spite of enormous progress and brilliant achievements in cosmological simulations, they still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient detail. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. Aims: We aim to improve available numerical techniques to simulate individual dwarf galaxies. In particular, we aim to (i) study in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach; and (ii) study for the first time the chemodynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. Methods: We present a novel chemodynamical code for studying the evolution of individual dwarf galaxies. In this code, the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which facilitates an accurate calculation of the stellar feedback depending on the stellar age. The code has been accurately benchmarked, allowing us to provide a recipe for improving the code performance on the Sedov test problem. Results: We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support (and hence high degrees of flattening) develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. Models that start from non

  4. Physical activity and academic achievement across the curriculum: Results from a 3-year cluster-randomized trial.

    PubMed

    Donnelly, Joseph E; Hillman, Charles H; Greene, Jerry L; Hansen, David M; Gibson, Cheryl A; Sullivan, Debra K; Poggio, John; Mayo, Matthew S; Lambourne, Kate; Szabo-Reed, Amanda N; Herrmann, Stephen D; Honas, Jeffery J; Scudder, Mark R; Betts, Jessica L; Henley, Katherine; Hunt, Suzanne L; Washburn, Richard A

    2017-02-11

    We compared changes in academic achievement across 3years between children in elementary schools receiving the Academic Achievement and Physical Activity Across the Curriculum intervention (A+PAAC), in which classroom teachers were trained to deliver academic lessons using moderate-to-vigorous physical activity (MVPA) compared to a non-intervention control. Elementary schools in eastern Kansas (n=17) were cluster randomized to A+PAAC (N=9, target ≥100min/week) or control (N=8). Academic achievement (math, reading, spelling) was assessed using the Wechsler Individual Achievement Test-Third Edition (WIAT-III) in a sample of children (A+PAAC=316, Control=268) in grades 2 and 3 at baseline (Fall 2011) and repeated each spring across 3years. On average 55min/week of A+PACC lessons were delivered each week across the intervention. Baseline WIAT-III scores (math, reading, spelling) were significantly higher in students in A+PAAC compared with control schools and improved in both groups across 3years. However, linear mixed modeling, accounting for baseline between group differences in WIAT-III scores, ethnicity, family income, and cardiovascular fitness, found no significant impact of A+PAAC on any of the academic achievement outcomes as determined by non-significant group by time interactions. A+PAAC neither diminished or improved academic achievement across 3-years in elementary school children compared with controls. Our target of 100min/week of active lessons was not achieved; however, students attending A+PAAC schools received an additional 55min/week of MVPA which may be associated with both physical and mental health benefits, without a reduction in time devoted to academic instruction.

  5. Mathematics beliefs and instructional strategies in achievement of elementary-school students in Japan: results from the TIMSS 2003 assessment.

    PubMed

    House, J Daniel

    2007-04-01

    Recent findings concerning mathematics assessment indicate that students in Japan consistently score above international averages. Researchers have examined specific mathematics beliefs and instructional strategies associated with mathematics achievement for students in Japan. This study examined relationships among self-beliefs, classroom instructional strategies, and mathematics achievement for a large national sample of students (N=4,207) from the TIMSS 2003 international sample of fourth graders in Japan. Several significant relationships between mathematics beliefs and test scores were found; a number of classroom teaching strategies were also significantly associated with test scores. However, multiple regression using the complete set of five mathematics beliefs and five instructional strategies explained only 25.1% of the variance in mathematics achievement test scores.

  6. Evolution of the concept of Capacity-building, results achieved during the past years and the future

    NASA Astrophysics Data System (ADS)

    Laffaiteur, M.; Camacho, S.

    -faring countries and developing countries. A strategy has been presented by the Action Team in order to implement a strategy aimed at increasing again the impact of the various initiatives already going on. The promotion of the sharing of educational materials and information could be facilitated by a network of bodies in UN Member States, dedicated organizations and UN regional centres. This presentation will aim to show the current status of this issue and to present results already achieved and the way forward.

  7. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.

  8. The Impact of Every Classroom, Every Day on High School Student Achievement: Results from a School-Randomized Trial

    ERIC Educational Resources Information Center

    Early, Diane M.; Berg, Juliette K.; Alicea, Stacey; Si, Yajuan; Aber, J. Lawrence; Ryan, Richard M.; Deci, Edward L.

    2016-01-01

    Every Classroom, Every Day (ECED) is a set of instructional improvement interventions designed to increase student achievement in math and English/language arts (ELA). ECED includes three primary components: (a) systematic classroom observations by school leaders, (b) intensive professional development and support for math teachers and…

  9. Teacher Perceptions of Alternate Assessments Based on Alternate Achievement Standards: Results from a Three-State Survey

    ERIC Educational Resources Information Center

    Restorff, Diane; Sharpe, Michael; Abery, Brian; Rodriguez, Michael; Kim, Nam Keol

    2012-01-01

    The purpose of this study was to investigate teachers' perceptions of the impact of alternate assessments based on alternate achievement standards (AA-AAS). We used a survey of 401 teachers from three states to probe teacher perspectives across a wide range of topics. Our study found teacher perceptions were more universal than state specific. The…

  10. Can Research Design Explain Variation in Head Start Research Results? A Meta-Analysis of Cognitive and Achievement Outcomes

    ERIC Educational Resources Information Center

    Shager, Hilary M.; Schindler, Holly S.; Magnuson, Katherine A.; Duncan, Greg J.; Yoshikawa, Hirokazu; Hart, Cassandra M. D.

    2013-01-01

    This study explores the extent to which differences in research design explain variation in Head Start program impacts. We employ meta-analytic techniques to predict effect sizes for cognitive and achievement outcomes as a function of the type and rigor of research design, quality and type of outcome measure, activity level of control group, and…

  11. Challenges and Opportunities for Promoting Student Achievement through Large-Scale Assessment Results: Research, Reflections, and Future Directions

    ERIC Educational Resources Information Center

    Decker, Dawn M.; Bolt, Sara E.

    2008-01-01

    The intent of large-scale assessment systems is to promote student achievement toward specific standards by holding schools accountable for the performance of all students. However, it is difficult to know whether large-scale assessment systems are having this intended effect as they are currently implemented. In this article, the authors examine…

  12. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  13. A simulation study of the flight dynamics of elastic aircraft. Volume 1: Experiment, results and analysis

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  14. Simulation shows hospitals that cooperate on infection control obtain better results than hospitals acting alone.

    PubMed

    Lee, Bruce Y; Bartsch, Sarah M; Wong, Kim F; Yilmaz, S Levent; Avery, Taliser R; Singh, Ashima; Song, Yeohan; Kim, Diane S; Brown, Shawn T; Potter, Margaret A; Platt, Richard; Huang, Susan S

    2012-10-01

    Efforts to control life-threatening infections, such as with methicillin-resistant Staphylococcus aureus (MRSA), can be complicated when patients are transferred from one hospital to another. Using a detailed computer simulation model of all hospitals in Orange County, California, we explored the effects when combinations of hospitals tested all patients at admission for MRSA and adopted procedures to limit transmission among patients who tested positive. Called "contact isolation," these procedures specify precautions for health care workers interacting with an infected patient, such as wearing gloves and gowns. Our simulation demonstrated that each hospital's decision to test for MRSA and implement contact isolation procedures could affect the MRSA prevalence in all other hospitals. Thus, our study makes the case that further cooperation among hospitals--which is already reflected in a few limited collaborative infection control efforts under way--could help individual hospitals achieve better infection control than they could achieve on their own.

  15. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  16. Results of GEANT simulations and comparison with first experiments at DANCE.

    SciTech Connect

    Reifarth, R.; Bredeweg, T. A.; Browne, J. C.; Esch, E. I.; Haight, R. C.; O'Donnell, J. M.; Kronenberg, A.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2003-07-29

    This report describes intensive Monte Carlo simulations carried out to be compared with the results of the first run cycle with DANCE (Detector for Advanced Neutron Capture Experiments). The experimental results were gained during the commissioning phase 2002/2003 with only a part of the array. Based on the results of these simulations the most important items to be improved before the next experiments will be addressed.

  17. DoSSiER: Database of scientific simulation and experimental results

    SciTech Connect

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof; Elvira, Daniel; Pokorski, Witold; Carminati, Federico; Konstantinov, Dmitri; Ribon, Alberto; Folger, Gunter; Dotti, Andrea

    2016-08-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  18. A method for data handling numerical results in parallel OpenFOAM simulations

    SciTech Connect

    Anton, Alin; Muntean, Sebastian

    2015-12-31

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  19. Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results

    NASA Astrophysics Data System (ADS)

    Sharmazanashvili, A.; Tsutskiridze, Niko

    2016-09-01

    Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.

  20. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  1. EPA Science to Achieve Results (STAR) Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management

    EPA Science Inventory

    This poster describes the missions and objectives of four newly-awarded Science to Achieve Results (STAR) Centers. There is also a description of how the projects fit together to meet solicitation research questions.

  2. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  3. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, L.; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  4. Results of computer calculations for a simulated distribution of kidney cells

    NASA Technical Reports Server (NTRS)

    Micale, F. J.

    1985-01-01

    The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.

  5. Comparison of experimental results with numerical simulations for pulsed thermographic NDE

    NASA Astrophysics Data System (ADS)

    Sripragash, Letchuman; Sundaresan, Mannur

    2017-02-01

    This paper examines pulse thermographic nondestructive evaluation of flat bottom holes of isotropic materials. Different combinations of defect diameters and depths are considered. Thermographic Signal Reconstruction (TSR) method is used to analyze these results. In addition, a new normalization procedure is used to remove the dependence of thermographic results on the material properties and instrumentation settings during these experiments. Hence the normalized results depend only on the geometry of the specimen and the defects. These thermographic NDE procedures were also simulated using finite element technique for a variety of defect configurations. The data obtained from numerical simulations were also processed using the normalization scheme. Excellent agreement was seen between the results obtained from experiments and numerical simulations. Therefore, the scheme is extended to introduce a correlation technique by which numerical simulations are used to quantify the defect parameters.

  6. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  7. Updated electron-cloud simulation results for the Large Hadron Collider (LHC)

    SciTech Connect

    Furman, M. A.; Pivi, M.

    2001-06-26

    This paper presents new simulation results for the power deposition from the electron cloud in the beam screen of the Large Hadron Collider (LHC). We pay particular attention to the sensitivity of the results to certain low-energy parameters of the secondary electron (SE)emission. Most of these parameters, which constitute an input to the simulation program, are extracted from recent measurements at CERN and SLAC.

  8. Intelligence and Achievement Test Results of Kindergarten-Age Children in England, Ireland and the United States

    ERIC Educational Resources Information Center

    Vane, Julia R.

    1973-01-01

    Results support the hypothesis that the differences between the test results of the middle and lower classes in the individual countries are greater than the differences between the same classes in the three different countries. (Author)

  9. Occupational health nurses’ achievement of competence and comfort in respiratory protection and preferred learning methods results of a nationwide survey.

    PubMed

    Burgel, Barbara J; Novak, Debra A; Carpenter, Holly Elizabeth; Gruden, MaryAnn; Lachat, Ann M; Taormina, Deborah

    2014-02-01

    Additional findings are presented from a 2012 nationwide survey of 2,072 occupational health nurses regarding how they achieved competence in respiratory protection, their preferred methods of learning, and how they motivated employees to use respiratory protection. On-the-job training, taking a National Institute for Occupational Safety and Health spirometry course, or attending professional conferences were the primary ways occupational health nurses gained respiratory protection knowledge. Attending professional conferences was the preferred method of learning, varying by type of industry and years of occupational health nurse experience. Employee motivational strategies were not widely used; the most common strategy was to tailor respiratory protection training to workplace culture. Designing training methods that match learning preferences, within the context of the organization's safety and quality improvement culture, is a key recommendation supported by the literature and these findings. Including respiratory protection content and competencies in all levels of academic nursing education is an additional recommendation. Additional research is needed to link training strategies with consistent and correct use of respiratory protection by employees.

  10. A fast but accurate excitonic simulation of the electronic circular dichroism of nucleic acids: how can it be achieved?

    PubMed

    Loco, Daniele; Jurinovich, Sandro; Di Bari, Lorenzo; Mennucci, Benedetta

    2016-01-14

    We present and discuss a simple and fast computational approach to the calculation of electronic circular dichroism spectra of nucleic acids. It is based on a exciton model in which the couplings are obtained in terms of the full transition-charge distributions, as resulting from TDDFT methods applied on the individual nucleobases. We validated the method on two systems, a DNA G-quadruplex and a RNA β-hairpin whose solution structures have been accurately determined by means of NMR. We have shown that the different characteristics of composition and structure of the two systems can lead to quite important differences in the dependence of the accuracy of the simulation on the excitonic parameters. The accurate reproduction of the CD spectra together with their interpretation in terms of the excitonic composition suggest that this method may lend itself as a general computational tool to both predict the spectra of hypothetic structures and define clear relationships between structural and ECD properties.

  11. Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment.

    PubMed

    Friedrich, Karen; Wilbrandt, Steffen; Stenzel, Olaf; Kaiser, Norbert; Hoffmann, Karl Heinz

    2010-06-01

    Virtual deposition runs have been performed to estimate the production yield of selected oxide optical interference coatings when plasma ion-assisted deposition with an advanced plasma source is applied. Thereby, deposition of each layer can be terminated either by broadband optical monitoring or quartz crystal monitoring. Numerous deposition runs of single-layer coatings have been performed to investigate the reproducibility of coating properties and to quantify deposition errors for the simulation. Variations of the following parameters are considered in the simulation: refractive index, extinction coefficient, and film thickness. The refractive index and the extinction coefficient are simulated in terms of the oscillator model. The parameters are varied using an apodized normal distribution with known mean value and standard deviation. Simulation of variations in the film thickness is performed specific to the selected monitoring strategy. Several deposition runs of the selected oxide interference coatings have been performed to verify the simulation results by experimental data.

  12. Application of ARM Cloud Radar Simulator to GCMs: Plan, Issues, and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xie, S.; Klein, S. A.; Marchand, R.; Lin, W.; Kollias, P.; Clothiaux, E. E.

    2015-12-01

    It has been challenging to directly compare ARM ground-based cloud radar measurements with climate model output because of limitations or features of the observing process. To address this issue, an ongoing effort in ARM is to implement ARM cloud radar simulator, similar to satellite simulators that have been widely used in the global climate modeling community, to convert model data into pseudo-ARM cloud radar observations. The simulator mimics the instrument view of a narrow atmospheric column (as compared to a large GCM grid-cell) thus allowing meaningful comparison between model output and ARM cloud observations. This work is being closely coordinated with the CFMIP (the Cloud-Feedback Model Intercomparison Project) Observation Simulator Package (COSP, www.cfmip.net; Bodas-Salcedo et al. 2011) project. The goal is to incorporate ARM simulators into COSP with the global climate modeling community as the target user. This poster provides details about the implementation plan, discusses potential issues with ground-based simulators for both ARM radars, and presents preliminary results in evaluating the DOE Accelerated Climate Model for Energy (ACME) simulated clouds with ARM radar observations through applying the ARM radar simulator to ACME. Future plans on this project are discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. A Study Investigating the Effect of Treatment Developed by Integrating the 5E and Simulation on Pre-Service Science Teachers' Achievement in Photoelectric Effect

    ERIC Educational Resources Information Center

    Taslidere, Erdal

    2015-01-01

    The Current study investigated the effect of the 5E learning cycle in which the simulations were integrated on pre-service science teachers' achievement in photoelectric subject. Four sophomore level classes with their 140 students participated in the research and a quasi-experimental design was used. The classes were randomly assigned into one of…

  14. Wave spectra of a shoaling wave field: A comparison of experimental and simulated results

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; Grosch, C. E.; Poole, L. R.

    1982-01-01

    Wave profile measurements made from an aircraft crossing the North Carolina continental shelf after passage of Tropical Storm Amy in 1975 are used to compute a series of wave energy spectra for comparison with simulated spectra. Results indicate that the observed wave field experiences refraction and shoaling effects causing statistically significant changes in the spectral density levels. A modeling technique is used to simulate the spectral density levels. Total energy levels of the simulated spectra are within 20 percent of those of the observed wave field. The results represent a successful attempt to theoretically simulate, at oceanic scales, the decay of a wave field which contains significant wave energies from deepwater through shoaling conditions.

  15. Results from a limited area mesoscale numerical simulation for 10 April 1979

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Results are presented from a nine-hour limited area fine mesh (35-km) mesoscale model simulation initialized with SESAME-AVE I radiosonde data for Apr. 10, 1979 at 2100 GMT. Emphasis is on the diagnosis of mesoscale structure in the mass and precipitation fields. Along the Texas/Oklahoma border, independent of the short wave, convective precipitation formed several hours into the simulation and was organized into a narrow band suggestive of the observed April 10 squall line.

  16. Columbus meteoroid/debris protection study - Experimental simulation techniques and results

    NASA Astrophysics Data System (ADS)

    Schneider, E.; Kitta, K.; Stilp, A.; Lambert, M.; Reimerdes, H. G.

    1992-08-01

    The methods and measurement techniques used in experimental simulations of micrometeoroid and space debris impacts with the ESA's laboratory module Columbus are described. Experiments were carried out at the two-stage light gas gun acceleration facilities of the Ernst-Mach Institute. Results are presented on simulations of normal impacts on bumper systems, oblique impacts on dual bumper systems, impacts into cooled targets, impacts into pressurized targets, and planar impacts of low-density projectiles.

  17. The Contribution of the Responsive Classroom Approach on Children's Academic Achievement: Results from a Three Year Longitudinal Study

    ERIC Educational Resources Information Center

    Rimm-Kaufman, Sara E.; Fan, Xitao; Chiu, Yu-Jen; You, Wenyi

    2007-01-01

    This paper reports the results of a quasi-experimental study on the contribution of the Responsive Classroom ("RC") Approach to elementary school children's reading and math performance over one-, two-, and three-year periods. All children enrolled in six schools (3 intervention and 3 control schools in a single district) were the participants in…

  18. Preventing Underage Drinking: Using Getting to Outcomes with the SAMHSA Strategic Prevention Framework to Achieve Results. RAND Technical Report

    ERIC Educational Resources Information Center

    Imm, Pamela; Chinman, Matthew; Wandersman, Abraham; Rosenbloom, David; Guckenburg, Sarah; Leis, Roberta

    2007-01-01

    Underage drinking is a significant problem in the United States: Alcohol is the primary contributor to the leading causes of death among adolescents. As a result, communitywide strategies to prevent underage drinking are more important than ever. Such strategies depend on the involvement and education of adolescents, parents, law enforcement …

  19. MULTI - TRACER CONTROL ROOM AIR INLEAKAGE PROTOCOL AND SIMULATED PRIMARY AND EXTENDED MULTI - ZONE RESULTS.

    SciTech Connect

    DIETZ,R.N.

    2002-01-01

    The perfluorocarbon tracer (PFT) technology can be applied simultaneously to the wide range in zonal flowrates (from tens of cfms in some Control Rooms to almost 1,000,000 cfm in Turbine Buildings), to achieve the necessary uniform tagging for subsequent determination of the desired air inleakage and outleakage from all zones surrounding a plant's Control Room (CR). New types of PFT sources (Mega sources) were devised and tested to handle the unusually large flowrates in a number of HVAC zones in power stations. A review of the plans of a particular nuclear power plant and subsequent simulations of the tagging and sampling results confirm that the technology can provide the necessary concentration measurement data to allow the important ventilation pathways involving the Control Room and its air flow communications with all adjacent zones to be quantitatively determined with minimal uncertainty. Depending on need, a simple single or 3-zone scheme (involving the Control Room alone or along with the Aux. Bldg. and Turbine Bldg.) or a more complex test involving up to 7 zones simultaneously can be accommodated with the current revisions to the technology; to test all the possible flow pathways, several different combinations of up to 7 zones would need to be run. The potential exists that for an appropriate investment, in about 2 years, it would be possible to completely evaluate an entire power plant in a single extended multizone test with up to 12 to 13 separate HVAC zones. With multiple samplers in the Control Room near each of the contiguous zones, not only will the prevalent inleakage or outleakage zones be documented, but the particular location of the pathway's room of ingress can be identified. The suggested protocol is to perform a 3-zone test involving the Control Room, Aux. Bldg., and Turbine Bldg. to (1) verify CR total inleakage and (2) proportion that inleakage to distinguish that from the other 2 major buildings and any remaining untagged locations

  20. Handling Qualities Results of an Initial Geared Flap Tilt Wing Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Guerrero, Lourdes M.; Corliss, Lloyd D.

    1991-01-01

    An exploratory simulation study of a novel approach to pitch control for a tilt wing aircraft was conducted in 1990 on the NASA-Ames Vertical Motion Simulator. The purpose of the study was to evaluate and compare the handling qualities of both a conventional and a geared flap tilt wing control configuration. The geared flap is an innovative control concept which has the potential for reducing or eliminating the horizontal pitch control tail rotor or reaction jets required by prior tilt wing designs. The handling qualities results of the geared flap control configuration are presented in this paper and compared to the conventional (programmed flap) tilt wing control configuration. This paper also describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, and the pilot evaluation tasks and procedures.

  1. Ship's behaviour during hurricane Sandy near the USA coasts. Simulation results

    NASA Astrophysics Data System (ADS)

    Chiotoroiu, B.; Grosan, N.; Soare, L.

    2015-11-01

    The aim of this study is to analyze the impact of the stormy weather during hurricane Sandy on an oil tank using the navigation simulator. Meteorological and waves maps from forecast models are used, together with relevant information from the meteorological warnings. The simulation sessions were performed on the navigation simulator from the Constanta Maritime University and allowed us the selection of specific parameters for the ship and the environment in order to observe the ship's behavior in heavy sea conditions. Simulation results are important due to the unexpected environmental conditions and the ship position: very close to the hurricane centre when the storm began to change its track and to transform into an extra tropical cyclone.

  2. Canine olfaction as an alternative to analytical instruments for disease diagnosis: understanding 'dog personality' to achieve reproducible results.

    PubMed

    Hackner, Klaus; Pleil, Joachim

    2017-01-09

    Recent literature has touted the use of canine olfaction as a diagnostic tool for identifying pre-clinical disease status, especially cancer and infection from biological media samples. Studies have shown a wide range of outcomes, ranging from almost perfect discrimination, all the way to essentially random results. This disparity is not likely to be a detection issue; dogs have been shown to have extremely sensitive noses as proven by their use for tracking, bomb detection and search and rescue. However, in contrast to analytical instruments, dogs are subject to boredom, fatigue, hunger and external distractions. These challenges are of particular importance in a clinical environment where task repetition is prized, but not as entertaining for a dog as chasing odours outdoors. The question addressed here is how to exploit the intrinsic sensitivity and simplicity of having a dog simply sniff out disease, in the face of variability in behavior and response.

  3. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  4. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  5. Obtaining identical results on varying numbers of processors in domain decomposed particle Monte Carlo simulations.

    SciTech Connect

    Brunner, Thomas A.; Kalos, Malvin H.; Gentile, Nicholas A.

    2005-03-01

    Domain decomposed Monte Carlo codes, like other domain-decomposed codes, are difficult to debug. Domain decomposition is prone to error, and interactions between the domain decomposition code and the rest of the algorithm often produces subtle bugs. These bugs are particularly difficult to find in a Monte Carlo algorithm, in which the results have statistical noise. Variations in the results due to statistical noise can mask errors when comparing the results to other simulations or analytic results.

  6. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Siddappaji, Kiran; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  7. Results of a 3-D full particle simulation of quasi-perpendicular shock

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Fujimoto, M.

    2010-12-01

    Recent progress of computational power enables us to perform really macro-scale three-dimensional situations with full particle codes. In this presentation, we will report results of a three-dimensional simulation of a quasi-perpendicular shock. The simulation parameters were selected to simulate a Cluster-II observational result reported by Seki et al. (2009), M_A=7.4 and beta=0.16. The realistic mass ratio mi/me=1840 was taken, and almost one ion inertia length square could be allocated to the plane perpendicular to the upstream flow axis. The result shows that both the self-reformation process and whistler emission are observed. However, the 3-D result is not a simple superposition of 2-D results. The most impressive feature is that quite complicated wave activity is found in the shock foot region. With the help of this wave activity, electron heating observed in the 3-D run is more efficient than those in the 1-D and 2-D runs with the same shock parameters. Moreover, non-thermal electrons are also produced only in the 3D run. In this paper, comparing the 3-D result with previous 1-D and 2-D simulation results, three dimensional nature of the shock transition region of quasi-perpendicular shock is discussed.

  8. Ophthalmologists' practice patterns and challenges in achieving optimal management for glaucoma in Nigeria: results from a nationwide survey

    PubMed Central

    Kyari, Fatima; Nolan, Winifred; Gilbert, Clare

    2016-01-01

    Purpose of the study Glaucoma, a chronic non-communicable disease, and leading cause of irreversible blindness worldwide is a public health problem in Nigeria, with a prevalence of 5.02% in people aged ≥40 years. The purpose of this nationwide survey was to assess Nigerian ophthalmologists’ practice patterns and their constraints in managing glaucoma. Study design Ophthalmologists were sent a semistructured questionnaire on how they manage glaucoma, their training in glaucoma care, where they practice, their access to equipment for diagnosis and treatment, whether they use protocols and the challenges they face in managing patients with glaucoma. Results 153/250 ophthalmologists in 80 centres completed questionnaires. Although 79% felt their training was excellent or good, 46% needed more training in glaucoma diagnosis and surgery. All had ophthalmoscopes, 93% had access to applanation tonometers, 81% to visual field analysers and 29% to laser machines (in 19 centres). 3 ophthalmologists had only ophthalmoscopes and schiøtz tonometers. For 85%, a glaucomatous optic disc was the most important feature that would prompt glaucoma work-up. Only 56% routinely performed gonioscopy and 61% used slit-lamp stereoscopic biomicroscopy for disc assessment. Trabeculectomy (with/without antimetabolites) was the only glaucoma surgery performed with one mention of canaloplasty. Poor compliance with medical treatment (78%) and low acceptance of surgery (71%) were their greatest challenges. Conclusions This study indicates that a systems-oriented approach is required to enhance ophthalmologist's capability for glaucoma care. Strategies to improve glaucoma management include strengthening poorly equipped centres including provision of lasers and training, and improving patients’ awareness and education on glaucoma. PMID:27729348

  9. Multiobjective Decision Making Policies and Coordination Mechanisms in Hierarchical Organizations: Results of an Agent-Based Simulation

    PubMed Central

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  10. Achievements and bottlenecks in humanitarian demining EU-funded research: final results from the EC DELVE project

    NASA Astrophysics Data System (ADS)

    Sahli, Hichem; Bruschini, Claudio; Van Kempen, Luc; Schleijpen, Ric; den Breejen, Eric

    2008-04-01

    The EC DELVE Support Action project has analyzed the bottlenecks in the transfer of Humanitarian Demining (HD) technology from technology development to the use in the field, and drawn some lessons learned, basing itself on the assessment of the European Humanitarian Demining Research and Technology Development (RTD) situation from early 1990 until 2006. The situation at the European level was analyzed with emphasis on activities sponsored by the European Commission (EC). This was also done for four European countries and Japan, with emphasis on national activities. The developments in HD during the last 10 years underline the fact that in a number of cases demining related developments have been terminated or at least put on hold. The study also showed that the funding provided by the EC under the Framework Program for RTD has led directly to the creation of an extensive portfolio of Humanitarian Demining technology development projects. The latter provided a range of research and supporting measures addressing the critical issues identified as a result of the regulatory policies developed in the field of Humanitarian Demining over the last ten years. However, the range of instruments available to the EC to finance the necessary research and development were limited, to pre-competitive research. The EC had no tools or programs to directly fund actual product development. As a first consequence, the EC funding program for development of technology for Humanitarian Demining unfortunately proved to be largely unsuitable for the small-scale development needed in a field where there is only a very limited market. As a second consequence, most of the research has been demonstrator-oriented. Moreover, the timeframe for RTD in Humanitarian Demining has not been sufficiently synchronized with the timeframe of the EC policies and regulations. The separation of the Mine Action and RTD funding streams in the EC did also negatively affect the take-up of new technologies. As a

  11. Simulation and Analysis of Microwave Transmission through an Electron Cloud, a Comparison of Results

    SciTech Connect

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-03-12

    Simulation studies for transmission of microwaves through electron cloudes show good agreement with analytic results. The elctron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for acessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab maininjector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.

  12. SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS

    SciTech Connect

    Sonnad, Kiran G.; Furman, Miguel; Veitzer, Seth A.; Cary, John

    2006-04-15

    Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.

  13. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    SciTech Connect

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  14. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra

  15. The Efforts to Improve Mathematics Learning Achievement Results of High School Students as Required by Competency-Based Curriculum and Lesson Level-Based Curriculum

    ERIC Educational Resources Information Center

    Sidabutar, Ropinus

    2016-01-01

    The research was aimed to investigate the effect of various, innovated teaching models to improved the student's achievement in various topic in Mathematics. The study was conduct experiment by using innovated teaching with contextual, media and web which are the compared. with conventional teaching method. The result showed the innovation in the…

  16. Effects of Problem-Based Learning Model versus Expository Model and Motivation to Achieve for Student's Physic Learning Result of Senior High School at Class XI

    ERIC Educational Resources Information Center

    Prayekti

    2016-01-01

    "Problem-based learning" (PBL) is one of an innovative learning model which can provide an active learning to student, include the motivation to achieve showed by student when the learning is in progress. This research is aimed to know: (1) differences of physic learning result for student group which taught by PBL versus expository…

  17. Mathematics Beliefs and Achievement of Elementary School Students in Japan and the United States: Results from the Third International Mathematics and Science Study

    ERIC Educational Resources Information Center

    House, J. Daniel

    2006-01-01

    Student self-beliefs are significantly related to several types of academic achievement. In addition, results from international assessments have indicated that students in Japan have typically scored above international averages (D. L. Kelly, I. V. S. Mullis, & M. O. Martin, 2000). In this study, the author examined relationships between…

  18. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  19. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  20. Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, M.; Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Guidetti, M.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Pivanti, M.; Perez-Gaviro, S.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancon, A.; Tellez, P.; Tripiccione, R.; Yllanes, D.

    2012-08-01

    We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.

  1. New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics

    NASA Astrophysics Data System (ADS)

    Mahdavipour, B.; Salar Elahi, A.

    The Inertial electrostatic confinement (IEC) is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014). In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time.

  2. Convergence and shear statistics in galaxy clusters as a result of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Poplavsky, Alexander

    2016-03-01

    In this paper the influence of galaxy cluster halo environment on the deflection properties of its galaxies is investigated. For this purpose circular and elliptical projected cluster haloes obeying Einasto density profiles are modelled in the \\varLambdaCDM cosmological model. By Monte-Carlo simulations external shear and convergence are calculated for random positions of a test galaxy within its cluster. Throughout the simulations the total virial mass, profile concentration and slope parameters are varied both for cluster and its galaxies. The cluster is composed of smooth matter distribution (intergalactic gas and dark matter) and randomly placed galaxies. As a result of multiple simulation runs robust statistical estimations of external shear and convergence are derived for variable cluster characteristics and its redshift. In addition, the models for external shear and convergence are applied for the galaxy lens seen through the cluster IRC-0218.

  3. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  4. Monte Carlo simulations of microchannel plate detectors. I. Steady-state voltage bias results

    SciTech Connect

    Wu Ming; Kruschwitz, Craig A.; Morgan, Dane V.; Morgan, Jiaming

    2008-07-15

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast Z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a MCP under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured MCP sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  5. Computer simulation of shelf and stream profile geomorphic evolution resulting from eustasy and uplift

    SciTech Connect

    Johnson, R.M. )

    1993-04-01

    A two-dimensional computer simulation of shelf and stream profile evolution with sea level oscillation has been developed to illustrate the interplay of coastal and fluvial processes on uplifting continental margins. The shelf evolution portion of the simulation is based on the erosional model of Trenhaile (1989). The rate of high tide cliff erosion decreases as abrasion platform gradient decreases the sea cliff height increases. The rate of subtidal erosion decreases as the subtidal sea floor gradient decreases. Values are specified for annual wave energy, energy required to erode a cliff notch 1 meter deep, nominal low tidal erosion rate, and rate of removal of cliff debris. The values were chosen arbitrarily to yield a geomorphic evolution consistent with the present coast of northern California, where flights of uplifted marine terraces are common. The stream profile evolution simulation interfaces in real time with the shelf simulation. The stream profile consists of uniformly spaced cells, each representing the median height of a profile segment. The stream simulation results show that stream response to sea level change on an uplifting coast is dependent on the profile gradient near the stream mouth, relative to the shelf gradient. Small streams with steep gradients aggrade onto the emergent shelf during sea level fall and incise at the mountain front during sea level rise. Large streams with low gradients incise the emergent shelf during sea level fall and aggrade in their valleys during sea level rise.

  6. Ejector nozzle test results at simulated flight conditions for an advanced supersonic transport propulsion system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Bresnahan, D. L.

    1983-01-01

    Results are presented of wind tunnel tests conducted to verify the performance improvements of a refined ejector nozzle design for advanced supersonic transport propulsion systems. The analysis of results obtained at simulated engine operating conditions is emphasized. Tests were conducted with models of approximately 1/10th scale which were configured to simulate nozzle operation at takeoff, subsonic cruise, transonic cruise, and supersonic cruise. Transonic cruise operation was not a consideration during the nozzle design phase, although an evaluation at this condition was later conducted. Test results, characterized by thrust and flow coefficients, are given for a range of nozzle pressure ratios, emphasizing the thrust performance at the engine operating conditions predicted for each flight Mach number. The results indicate that nozzle performance goals were met or closely approximated at takeoff and supersonic cruise, while subsonic cruise performance was within 2.3 percent of the goal with further improvement possible.

  7. Improving the trust in results of numerical simulations and scientific data analytics

    SciTech Connect

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul; Peterka, Tom; Phillips, Carolyn; Snir, Marc; Wild, Stefan

    2015-04-30

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general

  8. Cinacalcet HCl and Concurrent Low-dose Vitamin D Improves Treatment of Secondary Hyperparathyroidism in Dialysis Patients Compared with Vitamin D Alone: The ACHIEVE Study Results

    PubMed Central

    Fishbane, Steven; Shapiro, Warren B.; Corry, Dalila B.; Vicks, Steven L.; Roppolo, Michael; Rappaport, Kenneth; Ling, Xiang; Goodman, William G.; Turner, Stewart; Charytan, Chaim

    2008-01-01

    Background and objectives: Patients with chronic kidney disease (CKD) receiving dialysis often develop secondary hyperparathyroidism with disturbed calcium and phosphorus metabolism. The National Kidney Foundation-Kidney Disease Outcomes Quality Initiative (KDOQI) was established to guide treatment practices for these disorders. The ACHIEVE study was designed to test two treatment strategies for achieving KDOQI goals. Design, setting, participants, measurements: Individuals on hemodialysis treated with vitamin D sterols were enrolled in this 33-week study. Subjects were randomly assigned to treatment with either cinacalcet and low-dose vitamin D (Cinacalcet-D) or flexible vitamin D alone (Flex-D) to achieve KDOQI-recommended bone mineral targets. ACHIEVE included a 6-week screening phase, including vitamin D washout, a 16-week dose-titration phase, and an 11-week assessment phase. Results: Of 173 subjects enrolled, 83% of Cinacalcet-D and 67% of Flex-D subjects completed the study. A greater proportion of Cinacalcet-D versus Flex-D subjects had a ≥30% reduction in parathyroid hormone (PTH) (68% versus 36%, P < 0.001) as well as PTH ≤300 pg/ml (44% versus 23%, P = 0.006). The proportion of subjects simultaneously achieving targets for intact PTH (150–300 pg/ml) and calcium-phosphorus product (Ca×P) (<55 mg2/dl2) was also greater (21% versus 14%), but this was not statistically significant. This was attributable to 19% of Cinacalcet-D subjects with a PTH value below the KDOQI target range. Conclusions: Achievement of KDOQI targets was difficult, especially with Flex-D. Maintaining calcium and phosphorus target values precluded the use of vitamin D doses necessary to lower PTH to within the narrow target range and highlighted limitations inherent to the KDOQI treatment algorithm. PMID:18945995

  9. Results of an A109 simulation validation and handling qualities study

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Orlandi, Diego; Bonaita, Giovanni; Barbieri, Sergio

    1989-01-01

    The results for the validation of a mathematical model of the Agusta A109 helicopter, and subsequent use of the model as the baseline for a handling qualities study of cockpit centerstick requirements, are described. The technical approach included flight test, non-realtime analysis, and realtime piloted simulation. Results of the validation illustrate a time- and frequency-domain approach to the model and simulator issues. The final A109 model correlates well with the actual aircraft with the Stability Augmentation System (SAS) engaged, but is unacceptable without the SAS because of instability and response coupling at low speeds. Results of the centerstick study support the current U.S. Army handling qualities requirements for centerstick characteristics.

  10. Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using BISON

    SciTech Connect

    Novascone, S. R.; Spencer, B. W.; Andrs, D.; Williamson, R. L.; Hales, J. D.; Perez, D. M.

    2013-07-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa. (authors)

  11. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  12. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  13. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  14. Laboratory simulations of lidar returns from clouds - Experimental and numerical results

    NASA Astrophysics Data System (ADS)

    Zaccanti, Giovanni; Bruscaglioni, Piero; Gurioli, Massimo; Sansoni, Paola

    1993-03-01

    The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.

  15. Laboratory simulations of lidar returns from clouds: experimental and numerical results.

    PubMed

    Zaccanti, G; Bruscaglioni, P; Gurioli, M; Sansoni, P

    1993-03-20

    The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.

  16. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  17. Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study

    PubMed Central

    McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.

    2015-01-01

    Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939

  18. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  19. Simulating Late Ordovician deep ocean O2 with an earth system climate model. Preliminary results.

    NASA Astrophysics Data System (ADS)

    D'Amico, Daniel F.; Montenegro, Alvaro

    2016-04-01

    The geological record provides several lines of evidence that point to the occurrence of widespread and long lasting deep ocean anoxia during the Late Ordovician, between about 460-440 million years ago (ma). While a series of potential causes have been proposed, there is still large uncertainty regarding how the low oxygen levels came about. Here we use the University of Victoria Earth System Climate Model (UVic ESCM) with Late Ordovician paleogeography to verify the impacts of paleogeography, bottom topography, nutrient loading and cycling and atmospheric concentrations of O2 and CO2 on deep ocean oxygen concentration during the period of interest. Preliminary results so far are based on 10 simulations (some still ongoing) covering the following parameter space: CO2 concentrations of 2240 to 3780 ppmv (~8x to 13x pre-industrial), atmospheric O2 ranging from 8% to 12% per volume, oceanic PO4 and NO3 loading from present day to double present day, reductions in wind speed of 50% and 30% (winds are provided as a boundary condition in the UVic ESCM). For most simulations the deep ocean remains well ventilated. While simulations with higher CO2, lower atmospheric O2 and greater nutrient loading generate lower oxygen concentration in the deep ocean, bottom anoxia - here defined as concentrations <10 μmol L-1 - in these cases is restricted to the high-latitue northern hemisphere. Further simulations will address the impact of greater nutrient loads and bottom topography on deep ocean oxygen concentrations.

  20. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  1. Trace the Denmark Strait Overflow Water in an Eddy-Resolving Atlantic Simulation: Some Preliminary Results

    DTIC Science & Technology

    2013-05-01

    Trace the Denmark Strait overflow water in an eddy-resolving Atlantic simulation: some preliminary results Xiaobiao Xu ( COAPS /FSU), Alan...Wallcraft (NRL/SSC), Eric Chassignet ( COAPS /FSU) Thanks: Peter Rhines (UW) and William Schmitz May 21-23, Layered ocean modeling workshop, Ann Arbor, MI...Prediction Studies ( COAPS ),2000 Levy Avenue, Building A, Suite 292,Tallahassee,FL,32306-2741 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  2. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results

    PubMed Central

    2015-01-01

    Background Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue. Methods Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue. Results Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen. Conclusions Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large

  3. Numerical simulations of soft and hard turbulence - Preliminary results for two-dimensional convection

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Werne, J.; Rosner, R.; Cattaneo, F.

    1990-01-01

    Results on the transition from soft to hard turbulence in simulations of two-dimensional Boussinesq convection are reported. The computed probability densities for temperature fluctuations are exponential in form in both soft and hard turbulence, unlike what is observed in experiments. In contrast, a change is obtained in the Nusselt number scaling on Rayleigh number in good agreement with the three-dimensional experiments.

  4. PRELIMINARY RESULTS FROM A SIMULATION OF QUENCHED QCD WITH OVERL AP FERMIONS ON A LARGE LATTICE.

    SciTech Connect

    BERRUTO,F.GARRON,N.HOELBLING,D.LELLOUCH,L.REBBI,C.SHORESH,N.

    2003-07-15

    We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at {beta} = 6 on an 18{sup 3} x 64 lattice. We calculate quark propagators for a single source point and quark mass ranging from am{sub 4} = 0.03 to 0.75. We present here preliminary results based on the propagators for 60 gauge field configurations.

  5. Mathematics beliefs and achievement of elementary school students in Japan and the United States: results from the Third International Mathematics and Science Study.

    PubMed

    House, J Daniel

    2006-03-01

    Student self-beliefs are significantly related to several types of academic achievement. In addition, results from international assessments have indicated that students in Japan have typically scored above international averages (D. L. Kelly, I. V. S. Mullis, & M. O. Martin, 2000). In this study, the author examined relationships between mathematics beliefs and achievement of elementary school-aged students in the United States and Japan. The students had participated in the Third International Mathematics and Science Study (TIMSS; A. E. Beaton et al., 1996). The author examined several self-beliefs and used variance estimation techniques for complex sampling designs. The author identified a number of significant relationships between self-beliefs and mathematics achievement. Students who attributed success in mathematics to controllable factors (e.g., hard work, studying at home) showed higher test scores whereas students who attributed success in mathematics at school to external factors (e.g., good luck) tended to earn lower mathematics test scores. These results extend the findings of previous research results because the author examined large national samples of students in cross-cultural settings as part of a comprehensive international assessment.

  6. Obtaining Identical Results on Varying Numbers of Processors In Domain Decomposed particle Monte Carlo Simulations

    SciTech Connect

    Gentile, N A; Kalos, M H; Brunner, T A

    2005-03-22

    Domain decomposed Monte Carlo codes, like other domain-decomposed codes, are difficult to debug. Domain decomposition is prone to error, and interactions between the domain decomposition code and the rest of the algorithm often produces subtle bugs. These bugs are particularly difficult to find in a Monte Carlo algorithm, in which the results have statistical noise. Variations in the results due to statistical noise can mask errors when comparing the results to other simulations or analytic results. If a code can get the same result on one domain as on many, debugging the whole code is easier. This reproducibility property is also desirable when comparing results done on different numbers of processors and domains. We describe how reproducibility, to machine precision, is obtained on different numbers of domains in an Implicit Monte Carlo photonics code.

  7. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  8. Comparisons of Observations with Results from 3D Simulations and Implications for Predictions of Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Steenrod, Stephen D.; Polarsky, Brian C.

    2004-01-01

    Although chemistry and transport models (CTMs) include the same basic elements (photo- chemical mechanism and solver, photolysis scheme, meteorological fields, numerical transport scheme), they produce different results for the future recovery of stratospheric ozone as chlorofluorcarbons decrease. Three simulations will be contrasted: the Global Modeling Initiative (GMI) CTM driven by a single year\\'s winds from a general circulation model; the GMI CTM driven by a single year\\'s winds from a data assimilation system; the NASA GSFC CTM driven by a winds from a multi-year GCM simulation. CTM results for ozone and other constituents will be compared with each other and with observations from ground-based and satellite platforms to address the following: Does the simulated ozone tendency and its latitude, altitude and seasonal dependence match that derived from observations? Does the balance from analysis of observations? Does the balance among photochemical processes match that expected from observations? Can the differences in prediction for ozone recovery be anticipated from these comparisons?

  9. Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2013-09-28

    This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

  10. Preliminary Analysis and Simulation Results of Microwave Transmission Through an Electron Cloud

    SciTech Connect

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-12

    The electromagnetic particle-in-cell (PIC) code VORPAL is being used to simulate the interaction of microwave radiation through an electron cloud. The results so far showgood agreement with theory for simple cases. The study has been motivated by previous experimental work on this problem at the CERN SPS [1], experiments at the PEP-II Low Energy Ring (LER) at SLAC [4], and proposed experiments at the Fermilab Main Injector (MI). With experimental observation of quantities such as amplitude, phase and spectrum of the output microwave radiation and with support from simulations for different cloud densities and applied magnetic fields, this technique can prove to be a useful probe for assessing the presence as well as the densityof electron clouds.

  11. RESULTS OF CESIUM MASS TRANSFER TESTING FOR NEXT GENERATION SOLVENT WITH HANFORD WASTE SIMULANT AP-101

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2011-09-27

    SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L{trademark}. This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79{trademark} guanidine, and a diluent, Isopar L{trademark}. Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

  12. Computer simulation applied to jewellery casting: challenges, results and future possibilities

    NASA Astrophysics Data System (ADS)

    Tiberto, Dario; Klotz, Ulrich E.

    2012-07-01

    Computer simulation has been successfully applied in the past to several industrial processes (such as lost foam and die casting) by larger foundries and direct automotive suppliers, while for the jewelry sector it is a procedure which is not widespread, and which has been tested mainly in the context of research projects. On the basis of a recently concluded EU project, the authors here present the simulation of investment casting, using two different softwares: one for the filling step (Flow-3D®), the other one for the solidification (PoligonSoft®). A work on material characterization was conducted to obtain the necessary physical parameters for the investment (used for the mold) and for the gold alloys (through thermal analysis). A series of 18k and 14k gold alloys were cast in standard set-ups to have a series of benchmark trials with embedded thermocouples for temperature measurement, in order to compare and validate the software output in terms of the cooling curves for definite test parts. Results obtained with the simulation included the reduction of micro-porosity through an optimization of the feeding channels for a controlled solidification of the metal: examples of the predicted porosity in the cast parts (with metallographic comparison) will be shown. Considerations on the feasibility of applying the casting simulation in the jewelry sector will be reached, underlining the importance of the software parametrization necessary to obtain reliable results, and the discrepancies found with the experimental comparison. In addition an overview on further possibilities of application for the CFD in jewellery casting, such as the modeling of the centrifugal and tilting processes, will be presented.

  13. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    SciTech Connect

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual`s performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average.

  14. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Forget, François

    2009-02-01

    associated dynamics: convective motions, overlying gravity waves, and dust devil-like vortices. Modeled temperature profiles are in satisfactory agreement with the Miniature Thermal Emission Spectrometer (Mini-TES) measurements. The ability of the model to transport tracers at regional scales is exemplified by the model's prediction for the altitude of the Tharsis topographical water ice clouds in the afternoon. Finally, a nighttime ``warm ring'' at the base of Olympus Mons is identified in the simulations, resulting from adiabatic warming by the intense downslope winds along the flanks of the volcano. The surface temperature enhancement reaches +20 K throughout the night. Such a phenomenon may have adversely affected the thermal inertia derivations in the region.

  15. Why an SO/sub 2/ emission tax is an unpopular policy instrument: Simulation results from a general equilibrium model of the Norwegian economy

    SciTech Connect

    Hanson, D.A.; Alfsen, K.H.

    1986-01-01

    Norway, together with some twenty other countries, signed the Helsinki treaty in July 1985 for the purpose of reducing SO/sub 2/ emissions. Hence, it is interesting to analyze the emission reductions that could be achieved using a tax on SO/sub 2/ emissions, as well as the indirect impacts on the economy. Simulations of the economic impact of the tax (which effectively increases the cost of using energy) were made using the Multi-Sectoral Growth (MSG) model. Results of the simulations indicated a larger than expected reduction in economic output.

  16. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  17. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  18. Flow-driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian; Naab, Thorsten; Walch, Stefanie

    2011-07-01

    The fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two-dimensional simulations of flow-driven cloud formation without self-gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code VINE and the Eulerian grid code PROTEUS. Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M⊙ pc-1, the clump mass function has an average slope of -0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid-based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high-density, low-temperature clumps as possible seeds for star formation.

  19. Mechanisms of Core-Collapse Supernovae & Simulation Results from the CHIMERA Code

    NASA Astrophysics Data System (ADS)

    Bruenn, S. W.; Mezzacappa, A.; Hix, W. R.; Blondin, J. M.; Marronetti, P.; Messer, O. E. B.; Dirk, C. J.; Yoshida, S.

    2009-05-01

    Unraveling the mechanism for core-collapse supernova explosions is an outstanding computational challenge and the problem remains essentially unsolved despite more than four decades of effort. However, much progress in realistic modeling has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements have led to some key insights which may clarify the picture in the not too distant future. Here we briefly review the current status of the three explosion mechanisms (acoustic, MHD, and neutrino heating) that are currently under active investigation, concentrating on the neutrino heating mechanism as the one most likely responsible for producing explosions from progenitors in the mass range ~10 to ~25Msolar. We then briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We finally describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25Msolar progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 10,000 km. We finally very briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15Msolar progenitor.

  20. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  1. Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations - Results from numerical simulations

    USGS Publications Warehouse

    Scholl, M.A.

    2000-01-01

    Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence

  2. Effects of a free school breakfast programme on children's attendance, academic achievement and short-term hunger: results from a stepped-wedge, cluster randomised controlled trial

    PubMed Central

    Gorton, Delvina; Turley, Maria; Jiang, Yannan; Michie, Jo; Maddison, Ralph; Hattie, John

    2013-01-01

    Background Free school breakfast programmes (SBPs) exist in a number of high-income countries, but their effects on educational outcomes have rarely been evaluated in randomised controlled trials. Methods A 1-year stepped-wedge, cluster randomised controlled trial was undertaken in 14 New Zealand schools in low socioeconomic resource areas. Participants were 424 children, mean age 9±2 years, 53% female. The intervention was a free daily SBP. The primary outcome was children's school attendance. Secondary outcomes were academic achievement, self-reported grades, sense of belonging at school, behaviour, short-term hunger, breakfast habits and food security. Results There was no statistically significant effect of the breakfast programme on children's school attendance. The odds of children achieving an attendance rate <95% was 0.76 (95% CI 0.56 to 1.02) during the intervention phase and 0.93 (95% CI 0.67 to 1.31) during the control phase, giving an OR of 0.81 (95% CI 0.59 to 1.11), p=0.19. There was a significant decrease in children's self-reported short-term hunger during the intervention phase compared with the control phase, demonstrated by an increase of 8.6 units on the Freddy satiety scale (95% CI 3.4 to 13.7, p=0.001). There were no effects of the intervention on any other outcome. Conclusions A free SBP did not have a significant effect on children's school attendance or academic achievement but had significant positive effects on children's short-term satiety ratings. More frequent programme attendance may be required to influence school attendance and academic achievement. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR)—ACTRN12609000854235. PMID:23043203

  3. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.

    2016-12-01

    Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.

  4. Three-dimensional Spherical Simulations of Solar Convection. I. Differential Rotation and Pattern Evolution Achieved with Laminar and Turbulent States

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Elliott, Julian R.; Toomre, Juri; Clune, Tom L.; Glatzmaier, Gary A.; Gilman, Peter A.

    2000-03-01

    Rotationally constrained convection possesses velocity correlations that transport momentum and drive mean flows such as differential rotation. The nature of this transport can be very complex in turbulent flow regimes, where large-scale, coherent vorticity structures and mean flows can be established by smaller scale turbulence through inverse cascades. The dynamics of the highly turbulent solar convection zone therefore may be quite different than in early global-scale numerical models, which were limited by computational resources to nearly laminar flows. Recent progress in high-performance computing technology and ongoing helioseismic investigations of the dynamics of the solar interior have motivated us to develop more sophisticated numerical models of global-scale solar convection. Here we report three-dimensional simulations of compressible, penetrative convection in rotating spherical shells in both laminar and turbulent parameter regimes. The convective structure in the laminar case is dominated by ``banana cells,'' but the turbulent case is much more complex, with an intricate, rapidly evolving downflow network in the upper convection zone and an intermittent, plume-dominated structure in the lower convection zone and overshoot region. Convective patterns generally propagate prograde at low latitudes and retrograde at high latitudes relative to the local rotation. The differential rotation profiles show some similarity with helioseismic determinations of the solar rotation but still exhibit significantly more cylindrical alignment. Strong, intermittent, vortical downflow lanes and plumes play an important dynamical role in turbulent flow regimes and are responsible for significant differences relative to laminar flows with regard to momentum and energy transport and to the structure of the overshoot region at the base of the convection zone.

  5. Conversion of NIMROD simulation results for graphical analysis using VisIt

    SciTech Connect

    Romero-Talamas, C A

    2006-05-03

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  6. Results and simulation of the prototype detection unit of KM3NeT-ARCA

    NASA Astrophysics Data System (ADS)

    Hugon, C. M. F.

    2017-03-01

    KM3NeT-ARCA is a deep sea high energy neutrino detector. A detection unit prototype was deployed in the future KM3NeT-ARCA deep-sea site, off of the Sicilian coast. This detection unit is composed of a line of 3 digital optical modules with 31 photomultiplier tubes on each one. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. The results of the calibration of this detection unit and its simulation are presented and discussed.

  7. The Mayfield method of estimating nesting success: A model, estimators and simulation results

    USGS Publications Warehouse

    Hensler, G.L.; Nichols, J.D.

    1981-01-01

    Using a nesting model proposed by Mayfield we show that the estimator he proposes is a maximum likelihood estimator (m.l.e.). M.l.e. theory allows us to calculate the asymptotic distribution of this estimator, and we propose an estimator of the asymptotic variance. Using these estimators we give approximate confidence intervals and tests of significance for daily survival. Monte Carlo simulation results show the performance of our estimators and tests under many sets of conditions. A traditional estimator of nesting success is shown to be quite inferior to the Mayfield estimator. We give sample sizes required for a given accuracy under several sets of conditions.

  8. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  9. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  10. Results from the simulations of geopotential coefficient estimation from gravity gradients

    NASA Astrophysics Data System (ADS)

    Bettadpur, S.; Schutz, B. E.; Lundberg, J. B.

    New information of the short and medium wavelength components of the geopotential is expected from the measurements of gravity gradients made by the future ESA Aristoteles and the NASA Superconducting Gravity Gradiometer missions. In this paper, results are presented from preliminary simulations concerning the estimation of the spherical harmonic coefficients of the geopotential expansion from gravity gradients data. Numerical issues in the brute-force inversion (BFI) of the gravity gradients data are examined, and numerical algorithms are developed that substantially speed up the computation of the potential, acceleration, and gradients, as well as the mapping from the gravity gradients to the geopotential coefficients. The solution of a large least squares problem is also examined, and computational requirements are determined for the implementation of a large scale inversion. A comparative analysis of the results from the BFI and a symmetry method is reported for the test simulations of the estimation of a degree and order 50 gravity field. The results from the two, in the presence of white noise, are seen to compare well. The latter method is implemented on a special, axially symmetric surface that fits the orbit within 380 meters.

  11. Influence of land use on rainfall simulation results in the Souss basin, Morocco

    NASA Astrophysics Data System (ADS)

    Peter, Klaus Daniel; Ries, Johannes B.; Hssaine, Ali Ait

    2013-04-01

    Situated between the High and Anti-Atlas, the Souss basin is characterized by a dynamic land use change. It is one of the fastest growing agricultural regions of Morocco. Traditional mixed agriculture is replaced by extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market. For the implementation of the land use change and further expansion of the plantations into marginal land which was former unsuitable for agriculture, land levelling by heavy machinery is used to plane the fields and close the widespread gullies. These gully systems are cutting deep between the plantations and other arable land. Their development started already over 400 years ago with the introduction of sugar production. Heavy rainfall events lead to further strong soil and gully erosion in this with 200 mm mean annual precipitation normally arid region. Gullies are cutting into the arable land or are re-excavating their old stream courses. On the test sites around the city of Taroudant, a total of 122 rainfall simulations were conducted to analyze the susceptibility of soils to surface runoff and soil erosion under different land use. A small portable nozzle rainfall simulator is used for the rainfall simulation experiments, quantifying runoff and erosion rates on micro-plots with a size of 0.28 m2. A motor pump boosts the water regulated by a flow metre into the commercial full cone nozzle at a height of 2 m. The rainfall intensity is maintained at about 40 mm h-1 for each of the 30 min lasting experiments. Ten categories of land use are classified for different stages of levelling, fallow land, cultivation and rangeland. Results show that mean runoff coefficients and mean sediment loads are significantly higher (1.4 and 3.5 times respectively) on levelled study sites compared to undisturbed sites. However, the runoff coefficients of all land use types are relatively equal and reach high median coefficients from 39 to 56 %. Only the

  12. SZ effects in the Magneticum Pathfinder simulation: comparison with the Planck, SPT, and ACT results

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Komatsu, E.; Sunyaev, R.

    2016-12-01

    We calculate the one-point probability density distribution functions (PDF) and the power spectra of the thermal and kinetic Sunyaev-Zeldovich (tSZ and kSZ) effects and the mean Compton Y parameter using the Magneticum Pathfinder simulations, state-of-the-art cosmological hydrodynamical simulations of a large cosmological volume of (896 Mpc h-1)3. These simulations follow in detail the thermal and chemical evolution of the intracluster medium as well as the evolution of supermassive black holes and their associated feedback processes. We construct full-sky maps of tSZ and kSZ from the light-cones out to z = 0.17, and one realization of 8.8° × 8.8° deep light-cone out to z = 5.2. The local universe at z < 0.027 is simulated by a constrained realization. The tail of the one-point PDF of tSZ from the deep light-cone follows a power-law shape with an index of -3.2. Once convolved with the effective beam of Planck, it agrees with the PDF measured by Planck. The predicted tSZ power spectrum agrees with that of the Planck data at all multipoles up to l ≈ 1000, once the calculations are scaled to the Planck 2015 cosmological parameters with Ωm = 0.308 and σ8 = 0.8149. Consistent with the results in the literature, however, we continue to find the tSZ power spectrum at l = 3000 that is significantly larger than that estimated from the high-resolution ground-based data. The simulation predicts the mean fluctuating Compton Y value of bar{Y}=1.18× 10^{-6} for Ωm = 0.272 and σ8 = 0.809. Nearly half (≈5 × 10-7) of the signal comes from haloes below a virial mass of 1013 M⊙ h-1. Scaling this to the Planck 2015 parameters, we find bar{Y}=1.57× {}10^{-6}.

  13. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.

    PubMed

    Passler, Peter P; Hofer, Thomas S

    2017-02-15

    Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short-coming has little impact on structural and short-time dynamic properties, it can be shown that dynamics in the long-time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD-region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard-Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed Nose-Hoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self-diffusion characteristic for stochastic dynamics are eliminated. © 2016 Wiley Periodicals, Inc.

  14. Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results

    PubMed Central

    Jang, Neo W.; Zakrzewski, Aaron; Rossi, Christina; Dalecki, Diane; Gracewski, Sheryl

    2011-01-01

    Motivated by various clinical applications of ultrasound contrast agents within blood vessels, the natural frequencies of two bubbles in a compliant tube are studied analytically, numerically, and experimentally. A lumped parameter model for a five degree of freedom system was developed, accounting for the compliance of the tube and coupled response of the two bubbles. The results were compared to those produced by two different simulation methods: (1) an axisymmetric coupled boundary element and finite element code previously used to investigate the response of a single bubble in a compliant tube and (2) finite element models developed in comsol Multiphysics. For the simplified case of two bubbles in a rigid tube, the lumped parameter model predicts two frequencies for in- and out-of-phase oscillations, in good agreement with both numerical simulation and experimental results. For two bubbles in a compliant tube, the lumped parameter model predicts four nonzero frequencies, each asymptotically converging to expected values in the rigid and compliant limits of the tube material. PMID:22088008

  15. Evolution of star cluster systems in isolated galaxies: first results from direct N-body simulations

    NASA Astrophysics Data System (ADS)

    Rossi, L. J.; Bekki, K.; Hurley, J. R.

    2016-11-01

    The evolution of star clusters is largely affected by the tidal field generated by the host galaxy. It is thus in principle expected that under the assumption of a `universal' initial cluster mass function the properties of the evolved present-day mass function of star cluster systems should show a dependence on the properties of the galactic environment in which they evolve. To explore this expectation, a sophisticated model of the tidal field is required in order to study the evolution of star cluster systems in realistic galaxies. Along these lines, in this work we first describe a method developed for coupling N-body simulations of galaxies and star clusters. We then generate a data base of galaxy models along the Hubble sequence and calibrate evolutionary equations to the results of direct N-body simulations of star clusters in order to predict the clusters' mass evolution as function of the galactic environment. We finally apply our methods to explore the properties of evolved `universal' initial cluster mass functions and any dependence on the host galaxy morphology and mass distribution. The preliminary results show that an initial power-law distribution of the masses `universally' evolves into a lognormal distribution, with the properties correlated with the stellar mass and stellar mass density of the host galaxy.

  16. Modelled air pollution levels versus EC air quality legislation - results from high resolution simulation.

    PubMed

    Chervenkov, Hristo

    2013-12-01

    An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.

  17. Newest Results from the Investigation of Polymer-Induced Drag Reduction through Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Costas D.; Beris, Antony N.; Sureshkumar, R.; Handler, Robert A.

    1998-11-01

    This work continues our attempts to elucidate theoretically the mechanism of polymer-induced drag reduction through direct numerical simulations of turbulent channel flow, using an independently evaluated rheological model for the polymer stress. Using appropriate scaling to accommodate effects due to viscoelasticity reveals that there exists a great consistency in the results for different combinations of the polymer concentration and chain extension. This helps demonstrate that our obervations are applicable to very dilute systems, currently not possible to simulate. It also reinforces the hypothesis that one of the prerequisites for the phenomenon of drag reduction is sufficiently enhanced extensional viscosity, corresponding to the level of intensity and duration of extensional rates typically encountered during the turbulent flow. Moreover, these results motivate a study of the turbulence structure at larger Reynolds numbers and for different periodic computational cell sizes. In addition, the Reynolds stress budgets demonstrate that flow elasticity adversely affects the activities represented by the pressure-strain correlations, leading to a redistribution of turbulent kinetic energy amongst all directions. Finally, we discuss the influence of viscoelasticity in reducing the production of streamwise vorticity.

  18. The structural properties of a two-Yukawa fluid: Simulation and analytical results.

    PubMed

    Broccio, Matteo; Costa, Dino; Liu, Yun; Chen, Sow-Hsin

    2006-02-28

    Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.

  19. The structural properties of a two-Yukawa fluid: Simulation and analytical results

    NASA Astrophysics Data System (ADS)

    Broccio, Matteo; Costa, Dino; Liu, Yun; Chen, Sow-Hsin

    2006-02-01

    Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.

  20. Natural frequencies of two bubbles in a compliant tube: analytical, simulation, and experimental results.

    PubMed

    Jang, Neo W; Zakrzewski, Aaron; Rossi, Christina; Dalecki, Diane; Gracewski, Sheryl

    2011-11-01

    Motivated by various clinical applications of ultrasound contrast agents within blood vessels, the natural frequencies of two bubbles in a compliant tube are studied analytically, numerically, and experimentally. A lumped parameter model for a five degree of freedom system was developed, accounting for the compliance of the tube and coupled response of the two bubbles. The results were compared to those produced by two different simulation methods: (1) an axisymmetric coupled boundary element and finite element code previously used to investigate the response of a single bubble in a compliant tube and (2) finite element models developed in comsol Multiphysics. For the simplified case of two bubbles in a rigid tube, the lumped parameter model predicts two frequencies for in- and out-of-phase oscillations, in good agreement with both numerical simulation and experimental results. For two bubbles in a compliant tube, the lumped parameter model predicts four nonzero frequencies, each asymptotically converging to expected values in the rigid and compliant limits of the tube material.

  1. Ion equation of state in quasi-parallel shocks - A simulation result

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Kan, J. R.

    1988-01-01

    Ion equation of state in the quasi-parallel collisionless shock is deduced from simulation results. The simulations were performed for theta(bn) = 10 deg, beta = 0.5 and M sub A in the range from 1.2 to 8, where M sub A is the Alfven Mach number, beta is the upstream ratio of plasma pressure to magnetic pressure, and theta(bn) is the angle between the shock normal and the upstream magnetic field. The equation of state can be approximated by a power law with different exponents in the upstream and downstream sides of the shock transition region. The exponent in the upstream side of the transition region is much greater than the adiabatic value of 5/3 and increases with M sub A. The exponent in the downstream side of the transition region is slightly less than 5/3. The results show that ion heating in the quasi-parallel shock is highly nonadiabatic with a large increase in entropy and in temperature ratio in the upstream side of the transition region, while the heating is highly isentropic with a large increase in temperature difference across the principal density jump in the downstream side of the transition region.

  2. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  3. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    NASA Astrophysics Data System (ADS)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  4. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results.

    PubMed

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Ibarra-Castanedo, Clemente; Guimarares, Gilmar; Maldague, Xavier

    2016-12-01

    Composite materials are widely used in the aeronautic industry. One of the reasons is because they have strength and stiffness comparable to metals, with the added advantage of significant weight reduction. Infrared thermography (IT) is a safe nondestructive testing technique that has a fast inspection rate. In active IT, an external heat source is used to stimulate the material being inspected in order to generate a thermal contrast between the feature of interest and the background. In this paper, carbon-fiber-reinforced polymers are inspected using IT. More specifically, carbon/PEEK (polyether ether ketone) laminates with square Kapton inserts of different sizes and at different depths are tested with three different IT techniques: pulsed thermography, vibrothermography, and line scan thermography. The finite element method is used to simulate the pulsed thermography experiment. Numerical results displayed a very good agreement with experimental results.

  5. Multipacting simulation and test results of BNL 704 MHz SRF gun

    SciTech Connect

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.; Cullen, C. et al

    2012-05-20

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab, and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.

  6. Results of Simulated Galactic Cosmic Radiation (GCR) and Solar Particle Events (SPE) on Spectra Restraint Fabric

    NASA Technical Reports Server (NTRS)

    Peters, Benjamin; Hussain, Sarosh; Waller, Jess

    2017-01-01

    Spectra or similar Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is the likely choice for future structural space suit restraint materials due to its high strength-to-weight ratio, abrasion resistance, and dimensional stability. During long duration space missions, space suits will be subjected to significant amounts of high-energy radiation from several different sources. To insure that pressure garment designs properly account for effects of radiation, it is important to characterize the mechanical changes to structural materials after they have been irradiated. White Sands Test Facility (WSFTF) collaborated with the Crew and Thermal Systems Division at the Johnson Space Center (JSC) to irradiate and test various space suit materials by examining their tensile properties through blunt probe puncture testing and single fiber tensile testing after the materials had been dosed at various levels of simulated GCR and SPE Iron and Proton beams at Brookhaven National Laboratories. The dosages were chosen based on a simulation developed by the Structural Engineering Division at JSC for the expected radiation dosages seen by space suit softgoods seen on a Mars reference mission. Spectra fabric tested in the effort saw equivalent dosages at 2x, 10x, and 20x the predicted dose as well as a simulated 50 year exposure to examine the range of effects on the material and examine whether any degradation due to GCR would be present if the suit softgoods were stored in deep space for a long period of time. This paper presents the results of this work and outlines the impact on space suit pressure garment design for long duration deep space missions.

  7. Free space optical communication flight mission: simulations and experimental results on ground level demonstrator

    NASA Astrophysics Data System (ADS)

    Mata Calvo, Ramon; Ferrero, Valter; Camatel, Stefano; Catalano, Valeria; Bonino, Luciana; Toselli, Italo

    2009-05-01

    In the context of the increasing demand in high-speed data link for scientific, planetary exploration and earth observation missions, the Italian Space Agency (ASI), involving Thales Alenia Space as prime, the Polytechnic of Turin and other Italian partners, is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. We have designed and analyzed a ground level bidirectional Free Space Optical Communication (FSOC) Breadboard at 2.5Gbit/s working at 1550nm as an emulator of slant path link. The breadboard is full-working and we tested it back-toback, at 500m and 2.3km during one month. The distances were chosen in order to get an equivalent slant path cumulative turbulence in a ground level link. The measurements campaign was done during the day and the night time and under several weather conditions, from sunny, rainy or windy. So we could work under very different turbulence conditions from weak to strong turbulence. We measured the scintillation both, on-axis and off-axis by introducing known misalignments at the terminals, transmission losses at both path lengths and BER at both receivers. We present simulations results considering slant and ground level links, where we took into account the atmospheric effects; scintillation, beam spread, beam wander and fade probability, and comparing them with the ground level experimental results, we find a good agreement between them. Finally we discuss the results obtained in the experimentation and in the flight mission simulations in order to apply our experimental results in the next project phases.

  8. Role of dayside transients in a substorm process: Results from the global kinetic simulation Vlasiator

    NASA Astrophysics Data System (ADS)

    Palmroth, M.; Hoilijoki, S.; Pfau-Kempf, Y.; Hietala, H.; Nishimura, Y.; Angelopoulos, V.; Pulkkinen, T. I.; Ganse, U.; Hannuksela, O.; von Alfthan, S.; Battarbee, M. C.; Vainio, R. O.

    2015-12-01

    We investigate the dayside-nightside coupling of the magnetospheric dynamics in a global kinetic simulation displaying the entire magnetosphere. We use the newly developed Vlasiator (http://vlasiator.fmi.fi), which is the world's first global hybrid-Vlasov simulation modelling the ions as distribution functions, while electrons are treated as a charge-neutralising fluid. Here, we run Vlasiator in the 5-dimensional (5D) setup, where the ordinary space is presented in the 2D noon-midnight meridional plane, embedding in each grid cell the 3D velocity space. This approach combines the improved physical solution with fine resolution, allowing to investigate kinetic processes as a consequence of the global magnetospheric evolution. The simulation is during steady southward interplanetary magnetic field. We observe dayside reconnection and the resulting 2D representations of flux transfer events (FTE). FTE's move tailwards and distort the magnetopause, while the largest of them even modify the plasma sheet location. In the nightside, the plasma sheet shows bead-like density enhancements moving slowly earthward. The tailward side of the dipolar field stretches. Strong reconnection initiates first in the near-Earth region, forming a tailward-moving magnetic island that cannibalises other islands forming further down the tail, increasing the island's volume and complexity. After this, several reconnection lines are formed again in the near-Earth region, resulting in several magnetic islands. At first, none of the earthward moving islands reach the closed field region because just tailward of the dipolar region exists a relatively stable X-line, which is strong enough to push most of the magnetic islands tailward. However, finally one of the tailward X-lines is strong enough to overcome the X-line nearest to Earth, forming a strong surge into the dipolar field region as there is nothing anymore to hold back the propagation of the structure. We investigate this substorm

  9. Is There a Relationship between Physical Fitness and Academic Achievement? Positive Results from Public School Children in the Northeastern United States

    ERIC Educational Resources Information Center

    Chomitz, Virginia R.; Slining, Meghan M.; McGowan, Robert J.; Mitchell, Suzanne E.; Dawson, Glen F.; Hacker, Karen A.

    2009-01-01

    Objectives: To determine relationships between physical fitness and academic achievement in diverse, urban public school children. Methods: This cross-sectional study used public school data from 2004 to 2005. Academic achievement was assessed as a passing score on Massachusetts Comprehensive Assessment System (MCAS) achievement tests in…

  10. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.

    PubMed

    Bannwarth, M A; Grovermann, C; Schreinemachers, P; Ingwersen, J; Lamers, M; Berger, T; Streck, T

    2016-01-01

    Pesticide application rates are high and increasing in upland agricultural systems in Thailand producing vegetables, fruits and ornamental crops, leading to the pollution of stream water with pesticide residues. The objective of this study was to determine the maximum per hectare application rates of two widely used pesticides that would achieve non-hazardous pesticide concentrations in the stream water and to evaluate how farm household incomes would be affected if farmers complied with these restricted application rates. For this purpose we perform an integrated modeling approach of a hydrological solute transport model (the Soil and Water Assessment Tool, SWAT) and an agent-based farm decision model (Mathematical Programming-based Multi-Agent Systems, MPMAS). SWAT was used to simulate the pesticide fate and behavior. The model was calibrated to a 77 km(2) watershed in northern Thailand. The results show that to stay under a pre-defined eco-toxicological threshold, the current average application of chlorothalonil (0.80 kg/ha) and cypermethrin (0.53 kg/ha) would have to be reduced by 80% and 99%, respectively. The income effect of such reductions was simulated using MPMAS. The results suggest that if farm households complied with the application thresholds then their income would reduce by 17.3% in the case of chlorothalonil and by 38.3% in the case of cypermethrin. Less drastic income effects can be expected if methods of integrated pest management were more widely available. The novelty of this study is to combine two models from distinctive disciplines to evaluate pesticide reduction scenarios based on real-world data from a single study site.

  11. Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Norman, Michael L.; O'Shea, Brian W.; Wise, John H.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc3, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strong Lyman-Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ˜3 × 107 M ⊙. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.

  12. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-06-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  13. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-10-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  14. Simulated flight through JAWS wind shear - In-depth analysis results. [Joint Airport Weather Studies

    NASA Technical Reports Server (NTRS)

    Frost, W.; Chang, H.-P.; Elmore, K. L.; Mccarthy, J.

    1984-01-01

    The Joint Airport Weather Studies (JAWS) field experiment was carried out in 1982 near Denver. An analysis is presented of aircraft performance in the three-dimensional wind fields. The fourth dimension, time, is not considered. The analysis seeks to prepare computer models of microburst wind shear from the JAWS data sets for input to flight simulators and for research and development of aircraft control systems and operational procedures. A description is given of the data set and the method of interpolating velocities and velocity gradients for input to the six-degrees-of-freedom equations governing the motion of the aircraft. The results of the aircraft performance analysis are then presented, and the interpretation classifies the regions of shear as severe, moderate, or weak. Paths through the severe microburst of August 5, 1982, are then recommended for training and operational applications. Selected subregions of the flow field defined in terms of planar sections through the wind field are presented for application to simulators with limited computer storage capacity, that is, for computers incapable of storing the entire array of variables needed if the complete wind field is programmed.

  15. The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.

    2003-01-01

    We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.

  16. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  17. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    SciTech Connect

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J. M.; Irvine, Peter J.; Jones, Andrew; Lawrence, M. G.; MacCracken, Michael C.; Muri, Helene O.; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Sillmann, Jana; Storelvmo, Trude; Wang, Hailong; Watanabe, Shingo

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  18. Simulation of compact circumstellar shells around Type Ia supernovae and the resulting high-velocity features

    NASA Astrophysics Data System (ADS)

    Mulligan, Brian W.; Wheeler, J. Craig

    2017-01-01

    For Type Ia supernovae that are observed prior to B-band maximum (approximately 18-20 days after the explosion) Ca absorption features are observed at velocities of order 10,000 km/s faster than the typical photospheric features. These high velocity features weaken in the first couple of weeks, disappearing entirely by a week after B-band maximum. The source of this high velocity material is uncertain: it may be the result of interaction between the supernova and circumstellar material or may be the result of plumes or bullets of material ejected during the course of the explosion. We simulate interaction between a supernova and several compact circumstellar shells, located within 0.03 solar radii of the progenitor white dwarf and having masses of 0.02 solar masses or less. We use FLASH to perform hydrodynamic simulations of the system to determine the structure of the ejecta and shell components after the interaction, then use these results to generate synthetic spectra with 1 day cadence for the first 25 days after the explosion. We compare the evolution of the velocity and pseudo-equivalent width of the Ca near-infrared triplet features in the synthetic spectra to observed values, demonstrating that these models are consistent with observations. Additionally, we fit the observed spectra of SN 2011fe (Parrent 2012, Pereira 2013) prior to B-band maximum using these models and synthetic spectra and provide an estimate for Ca abundance within the circumstellar material with implications for the mechanism by which the white dwarf explodes.

  19. Biofilm formation and control in a simulated spacecraft water system - Two-year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1991-01-01

    The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  20. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  1. AeroMACS C-Band Interference Modeling and Simulation Results

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey

    2010-01-01

    A new C-band (5091-5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. It is necessary to establish practical limits on AeroMACS transmission power from airports so that the threshold of interference into the Mobile Satellite Service (Globalstar) feeder uplinks is not exceeded. To help provide guidelines for these limits, interference models have been created with the commercial software Visualyse Professional. In this presentation, simulation results were shown for the aggregate interference power at low earth orbit from AeroMACS transmitters at each of up to 757 airports in the United States, Canada, Mexico, and the surrounding area. Both omni-directional and sectoral antenna configurations were modeled. Effects of antenna height, beamwidth, and tilt were presented.

  2. Statistics of interacting networks with extreme preferred degrees: Simulation results and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.

    2012-02-01

    Network studies have played a central role for understanding many systems in nature - e.g., physical, biological, and social. So far, much of the focus has been the statistics of networks in isolation. Yet, many networks in the world are coupled to each other. Recently, we considered this issue, in the context of two interacting social networks. In particular, We studied networks with two different preferred degrees, modeling, say, introverts vs. extroverts, with a variety of ``rules for engagement.'' As a first step towards an analytically accessible theory, we restrict our attention to an ``extreme scenario'': The introverts prefer zero contacts while the extroverts like to befriend everyone in the society. In this ``maximally frustrated'' system, the degree distributions, as well as the statistics of cross-links (between the two groups), can depend sensitively on how a node (individual) creates/breaks its connections. The simulation results can be reasonably well understood in terms of an approximate theory.

  3. Using Classification and Regression Trees (CART) and random forests to analyze attrition: Results from two simulations.

    PubMed

    Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J

    2015-12-01

    In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers.

  4. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.

    2009-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  5. Barred Galaxy Photometry: Comparing results from the Cananea sample with N-body simulations

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Gadotti, D. A.; Carrasco, L.; Bosma, A.; de Souza, R. E.; Recillas, E.

    2009-11-01

    We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and K[s] bands with the CANICA near infrared (NIR) camera at the 2.1 m telescope of the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. The comparison includes radial ellipticity profiles and surface brightness (density for the N-body galaxies) profiles along the bar major and minor axes. We find very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  6. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  7. Results of field trials using the NPL simulated reactor neutron field facility.

    PubMed

    Taylor, G C; Thomas, D J; Bennett, A

    2007-01-01

    The NPL simulated reactor neutron field facility provides neutron spectra similar to those found in the environs of UK gas-cooled reactors. Neutrons are generated by irradiating a thick lithium-alloy target with monoenergetic protons between 2.5 and 3.5 MeV (depending on the desired spectrum), and then moderated by a 40-cm diameter sphere of heavy water. This represents an extremely soft workplace field, with a mean neutron energy of 25 keV and, more significantly, a mean fluence to ambient dose equivalent conversion coefficient of the order of 20 pSv cm(2), approximately 20 times lower than those of the ISO standard calibration sources (252)Cf and (241)Am-Be. Results of field trials are presented, including readings from neutron spectrometers, personal dosimeters (active and passive) and neutron area survey meters, and issues with beam monitoring are discussed.

  8. Results of Aging Tests of Vendor-Produced Blended Feed Simulant

    SciTech Connect

    Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

    2009-04-21

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75°F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: 1) stored outside in a 250-gallon tote, 2) stored inside in a gallon plastic bottle, 3) stored inside in a well mixed 5-L tank, and 4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following

  9. First results from ARTEMIS lunar wake crossing: observations and hybrid simulation

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Wiehle, S.; Angelopoulos, V.; Auster, H.; Georgescu, E.; Glassmeier, K.; Motschmann, U. M.; Sibeck, D. G.

    2010-12-01

    The Moon does not have an intrinsic magnetic field and its conductivity is not sufficient to facilitate the development of an induced magnetosphere. The interaction of the Moon with the unperturbed solar wind (SW) is, hence, dominated by the absorption of SW particles on its surface and the consequent generation of a lunar wake on the night side. The SW magnetic field is basically convected through the Moon; the pressure imbalance in lunar wake, however, accounts for a slight increase in magnetic pressure in the lunar wake center. The wake is slowly filled up with SW particles due to their thermal motion, which generates a magnetohydrodynamic (MHD) rarefaction wave propagating away from the wake in the SW frame of reference. Over the last 3 years the Time History of Events and Macroscale Interactions During Substorms (THEMIS) mission provided excellent data helping the scientific community in drawing a detailed picture of the physical processes associated with the development of substorms in the terrestrial magnetotail. Two of the five THEMIS spacecraft are currently being sent into stationary orbits around the Moon in a follow-up mission called Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS). The ARTEMIS P1 spacecraft (formerly THEMIS-B) has recently passed through the lunar wake in a flyby maneuver on February 13, 2010. We show first results of two hybrid code simulations with static and, for the first time, dynamically changing SW input. Adapted SW monitor data of the NASA OMNI database is used as input for the simulations. During the wake crossing the spin stabilized spacecraft P1 was in lunar shadow and, hence, its spin period cannot be determined from sun sensor data. Therefore, an eclipse-spin model is applied to bridge the gap of missing spin period data in order to recover vector measurements. A comparison of the simulation results with correctly despun magnetic field and particle measurements of

  10. Simulated microgravity inhibits the proliferation of K562 erythroleukemia cells but does not result in apoptosis

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Xia, Bing; Xue, Ming; Zhang, Guang-Yao; Wang, Hong; Zhou, Hui-Min; Sun, Yan; Zhuang, Feng-Yuan

    2009-07-01

    Astronauts and experimental animals in space develop the anemia of space flight, but the underlying mechanisms are still unclear. In this study, the impact of simulated microgravity on proliferation, cell death, cell cycle progress and cytoskeleton of erythroid progenitor-like K562 leukemia cells was observed. K562 cells were cultured in NASA Rotary Cell Culture System (RCCS) that was used to simulate microgravity (at 15 rpm). After culture for 24 h, 48 h, 72 h, and 96 h, the cell densities cultured in RCCS were only 55.5%, 54.3%, 67.2% and 66.4% of the flask-cultured control cells, respectively. The percentages of trypan blue-stained dead cells and the percentages of apoptotic cells demonstrated no difference between RCCS-cultured cells and flask-cultured cells at every time points (from 12 h to 96 h). Compared with flask-cultured cells, RCCS culture induced an accumulation of cell number at S phase concomitant with a decrease at G0/G1 and G2/M phases at 12 h. But 12 h later (from 24 h to 60 h), the distribution of cell cycle phases in RCCS-cultured cells became no difference compared to flask-cultured cells. Consistent with the changes of cell cycle distribution, the levels of intercellular cyclins in RCCS-cultured cells changed at 12 h, including a decrease in cyclin A, and the increasing in cyclin B, D1 and E, and then (from 24 h to 36 h) began to restore to control levels. After RCCS culture for 12-36 h, the microfilaments showed uneven and clustered distribution, and the microtubules were highly disorganized. These results indicated that RCCS-simulated microgravity could induce a transient inhibition of proliferation, but not result in apoptosis, which could involve in the development of space flight anemia. K562 cells could be a useful model to research the effects of microgravity on differentiation and proliferation of hematopoietic cells.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  12. Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland - Part II: Parameter regionalisation and flood estimation results

    NASA Astrophysics Data System (ADS)

    Viviroli, Daniel; Mittelbach, Heidi; Gurtz, Joachim; Weingartner, Rolf

    2009-10-01

    SummaryFlood estimations for ungauged mesoscale catchments are as important as they are difficult. So far, empirical and stochastic methods have mainly been used for this purpose. Experience shows, however, that these procedures entail major errors. In order to make further progress in flood estimation, a continuous precipitation-runoff-modelling approach has been developed for practical application in Switzerland using the process-oriented hydrological modelling system PREVAH (Precipitation-Runoff-EVApotranspiration-HRU related model). The main goal of this approach is to achieve discharge hydrographs for any Swiss mesoscale catchment without measurement of discharge. Subsequently, the relevant flood estimations are to be derived from these hydrographs. On the basis of 140 calibrated catchments ( Viviroli et al., 2009b), a parameter regionalisation scheme has been developed to estimate PREVAH's tuneable parameters where calibration is not possible. The scheme is based on three individual parameter estimation approaches, namely Nearest Neighbours (parameter transfer from catchments similar in attribute space), Kriging (parameter interpolation in physical space) and Regression (parameter estimation from relations to catchment attributes). The most favourable results were achieved when the simulations using these three individual regionalisations were combined by computing their median. It will be demonstrated that the framework introduced here yields plausible flood estimations for ungauged Swiss catchments. Comparing a flood with a return period of 100 years to the reference value derived from the observed record, the median error from 49 representative catchments is only -7%, while the error for half of these catchments ranges between -30% and +8%. Additionally, our estimate lies within the statistical 90% confidence interval of the reference value in more than half of these catchments. The average quality of these flood estimations compares well with present

  13. Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.

  14. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  15. Elastodynamic analysis of a gear pump. Part II: Meshing phenomena and simulation results

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.; Rivola, A.

    2010-10-01

    A non-linear lumped kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps is presented. It takes into account the most important phenomena involved in the operation of this kind of machines. Two main sources of noise and vibration can be considered: pressure and gear meshing. Fluid pressure distribution on gears, which is time-varying, is computed and included as a resultant external force and torque acting on the gears. Parametric excitations due to time-varying meshing stiffness, the tooth profile errors (obtained by a metrological analysis), the backlash effects between meshing teeth, the lubricant squeeze and the possibility of tooth contact on both lines of action were also included. Finally, the torsional stiffness and damping of the driving shaft and the non-linear behaviour of the hydrodynamic journal bearings were also taken into account. Model validation was carried out on the basis of experimental data concerning case accelerations and force reactions. The model can be used in order to analyse the pump dynamic behaviour and to identify the effects of modifications in design and operation parameters, in terms of vibration and dynamic forces. Part I is devoted to the calculation of the gear eccentricity in the steady-state condition as result of the balancing between mean pressure loads, mean meshing force and bearing reactions, while in Part II the meshing phenomena are fully explained and the main simulation results are presented.

  16. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  17. Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?

    NASA Astrophysics Data System (ADS)

    Saro, A.; De Lucia, G.; Borgani, S.; Dolag, K.

    2010-08-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is

  18. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these

  19. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    code, (5) description of the modeling code, (6) the results of a number of preliminary imaging simulations, and (7) recommendations for future Wolter designs and for further modeling studies.

  20. A rainfall simulation experiment on soil and water conservation measures - Undesirable results

    NASA Astrophysics Data System (ADS)

    Hösl, R.; Strauss, P.

    2012-04-01

    Sediment and nutrient inputs from agriculturally used land into surface waters are one of the main problems concerning surface water quality. On-site soil and water conservation measures are getting more and more popular throughout the last decades and a lot of research has been done within this issue. Numerous studies can be found about rainfall simulation experiments with different conservation measures tested like no till, mulching employing different types of soil cover, as well as sub soiling practices. Many studies document a more or less great success in preventing soil erosion and enhancing water quality by implementing no till and mulching techniques on farmland but few studies also indicate higher erosion rates with implementation of conservation tillage practices (Strauss et al., 2003). In May 2011 we conducted a field rainfall simulation experiment in Upper Austria to test 5 different maize cultivation techniques: no till with rough seedbed, no till with fine seedbed, mulching with disc harrow and rotary harrow, mulching with rotary harrow and conventional tillage using plough and rotary harrow. Rough seedbed refers to the seedbed preparation at planting of the cover crops. On every plot except on the conventionally managed one cover crops (a mix of Trifolium alexandrinum, Phacelia, Raphanus sativus and Herpestes) were sown in August 2010. All plots were rained three times with deionised water (<50 μS.cm-1) for one hour with 50mm.h-1 rainfall intensity. Surface runoff and soil erosion were measured. Additionally, soil cover by mulch was measured as well as soil texture, bulk density, penetration resistance, surface roughness and soil water content before and after the simulation. The simulation experiments took place about 2 weeks after seeding of maize in spring 2011. The most effective cultivation techniques for soil prevention expectedly proved to be the no till variants, mean erosion rate was about 0.1 kg.h-1, mean surface runoff was 29 l.h-1

  1. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.

    PubMed

    Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi

    2016-08-05

    The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc.

  2. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  3. Initial quality performance results using a phantom to simulate chest computed radiography.

    PubMed

    Muhogora, Wilbroad; Padovani, Renato; Msaki, Peter

    2011-01-01

    The aim of this study was to develop a homemade phantom for quantitative quality control in chest computed radiography (CR). The phantom was constructed from copper, aluminium, and polymenthylmethacrylate (PMMA) plates as well as Styrofoam materials. Depending on combinations, the literature suggests that these materials can simulate the attenuation and scattering characteristics of lung, heart, and mediastinum. The lung, heart, and mediastinum regions were simulated by 10 mm x 10 mm x 0.5 mm, 10 mm x 10 mm x 0.5 mm and 10 mm x 10 mm x 1 mm copper plates, respectively. A test object of 100 mm x 100 mm and 0.2 mm thick copper was positioned to each region for CNR measurements. The phantom was exposed to x-rays generated by different tube potentials that covered settings in clinical use: 110-120 kVp (HVL=4.26-4.66 mm Al) at a source image distance (SID) of 180 cm. An approach similar to the recommended method in digital mammography was applied to determine the CNR values of phantom images produced by a Kodak CR 850A system with post-processing turned off. Subjective contrast-detail studies were also carried out by using images of Leeds TOR CDR test object acquired under similar exposure conditions as during CNR measurements. For clinical kVp conditions relevant to chest radiography, the CNR was highest over 90-100 kVp range. The CNR data correlated with the results of contrast detail observations. The values of clinical tube potentials at which CNR is the highest are regarded to be optimal kVp settings. The simplicity in phantom construction can offer easy implementation of related quality control program.

  4. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report

    DTIC Science & Technology

    1998-06-01

    Agent Permeation of GB and HD Through 25-Mil Chemical Protective Glove 30 3.3 System Test (Aerosol Simulant) 3.3.1 System Test (Aerosol Simulant... Chemical Protective Glove GB Permeation 176 Appendix Q: Commander Brigade F91 Table Q - 3: Commander Brigade F91: System Test (Vapor Simulant) Results No...capability to protect in a chemical agent or biological agent environment. Each

  5. Petroleum Systems of South Kara Basin: 3D stratigraphic simulation and basin modeling results

    NASA Astrophysics Data System (ADS)

    Malysheva, S.; Vasilyev, V.; Verzhbitsky, V.; Ananyev, V.; Murzin, R.; Komissarov, D.; Kosenkova, N.; Roslov, Yu.

    2012-04-01

    Petroleum systems of South Kara Basin are still poorly studied and hydrocarbon resource estimates vary depending on geological models and understanding of the basin evolution. The main purpose of the regional studies of South Kara Basin was to produce a consistent model, which would be able to explain the existence of the fields discovered in the area as well as to determine the most favorable hydrocarbon accumulation zones in the study area for further exploration. In the study 3D stratigraphic simulation and basin modeling of South Kara Basin was carried out. The stratigraphic simulation results, along with geological, geophysical and geochemical data for the inland areas of Yamal and Gydan peninsulas and South Kara islands enabled to predict the lithological composition and distribution of source rocks, reservoirs and seals in the Kara Sea offshore area. Based on the basin modeling results hydrocarbon accumulations may occur in the reservoir facies of the wide stratigraphic range from Jurrasic to Cretaceous. The main source for the hydrocarbons, accumulated in the South Kara Basin Neocomian and Cenomanian reservoirs are the J3-K1 (the northward extension of Bazhenov Formation and its analogs of West Siberia), as well as J1 and probably J2 shales with predominantly marine type of kerogen (type II). Thermal and burial history restorations show that Lower Cretaceous (Aptian-Albian) sediments enriched with terrigenous organic matter (kerogen of type III) and containing coaly layers could not produce the hydrocarbon volumes to fill the giant Rusanovskoye and Leningradskoye gas-condensate fields as the K1 source rocks are not mature enough. The modeling results, in particular, suggest that the geologic conditions in the South Kara Basin are favorable for further discoveries of giant fields. Although gas accumulations are predominating in the basin, oil-and-gascondensate fields (not a pure oil fields though) with sufficient part of liquid hydrocarbons might be present

  6. Simulation and experimental results for a phase retrieval-based algorithm for far-field beam steering and shaping

    NASA Astrophysics Data System (ADS)

    Roggemann, Michael C.; Welsh, Byron M.; Stone, Bradley R.; Su, Ting Ei

    2002-02-01

    Active laser-based electro-optical (EO) sensors on future aircraft and spacecraft will be used for a variety of missions and will be required to have a number of demanding technical characteristics. A key challenge to achieving these characteristics is the development of inexpensive, high degree of freedom optical wave front control devices, and the development of effective algorithms for controlling these devices. In this paper we present our research in the development of phase retrieval-based wave front control algorithms that can be used implemented with segmented liquid crystal-based wave front control devices. We have developed a wave front control algorithm that allows dynamic small-angle beam steering and shaping in the presence of an aberrating output window. Our approach is based on a phase retrieval algorithm to determine the optimal figure of a segmented wave front control device. Simulation and experimental results presented here show that this approach allows shaped far field patterns to be created and steered over small angles.

  7. Factors influencing the probability of an incident at a junction: results from an interactive driving simulator.

    PubMed

    Alexander, Jennifer; Barham, Philip; Black, Ian

    2002-11-01

    Using data generated from a fixed-base interactive driving simulator, which was used to evaluate a driver decision aid, a model is built to predict the probability of an incident (i.e. an accident or a 'near miss') occurring as a result of a right-turn across left-hand traffic at an unsignalised junction. This can be considered to be the product of two separate probabilities, the first being the probability that the gap between a pair of vehicles in the traffic stream is accepted, and the second the probability that the time needed to cross the on-coming stream of traffic causes the time-to-collision with the nearest vehicle in this traffic stream to be less than a second. The model is developed from the results of experimental trials involving a sample of drivers, the majority of whom were aged 60 years or older, in order to demonstrate the effect of various parameters on these probabilities. The parameters considered include the size of the gap between successive vehicles, vehicle characteristics such as size, colour and velocity, driver characteristics such as age and sex, and both daytime and night-time conditions.

  8. Results from simulated remote-handled transuranic waste experiments at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Molecke, M A

    1992-01-01

    Multi-year, simulated remote-handled transuranic waste (RH TRU, nonradioactive) experiments are being conducted underground in the Waste Isolation Pilot-Plant (WIPP) facility. These experiments involve the near-reference (thermal and geometrical) testing of eight full size RH TRU test containers emplaced into horizontal, unlined rock salt boreholes. Half of the test emplacements are partially filled with bentonite/silica-sand backfill material. All test containers were electrically heated at about 115 W/each for three years, then raised to about 300 W/each for the remaining time. Each test borehole was instrumented with a selection of remote-reading thermocouples, pressure gages, borehole vertical-closure gages, and vertical and horizontal borehole-diameter closure gages. Each test emplacements was also periodically opened for visual inspections of brine intrusions and any interactions with waste package materials, materials sampling, manual closure measurements, and observations of borehole changes. Effects of heat on borehole closure rates and near-field materials (metals, backfill, rock salt, and intruding brine) interactions were closely monitored as a function of time. This paper summarizes results for the first five years of in situ test operation with supporting instrumentation and laboratory data and interpretations. Some details of RH TRU waste package materials, designs, and assorted underground test observations are also discussed. Based on the results, the tested RH TRU waste packages, materials, and emplacement geometry in unlined salt boreholes appear to be quite adequate for initial WIPP repository-phase operations.

  9. Correlations between visual test results and flying performance on the advanced simulator for pilot training (ASPT).

    PubMed

    Kruk, R; Regan, D; Beverley, K I; Longridge, T

    1981-08-01

    Looking for visual differences in pilots to account for differences in flying performance, we tested five groups of subjects: Air Force primary student jet pilots, graduating (T38 aircraft) students, Air Force pilot instructors, and two control groups made up of experienced nonpilot aircrew and nonflying civilians. This interim report compares 13 different visual test results with low-visibility landing performance on the Air Force Human Resources Laboratory ASPT simulator. Performance was assessed by the number of crashes and by the distance of the aircraft from the runway threshold at the time of the first visual flight correction. Our main finding was that, for student pilots, landing performance correlated with tracking performance for a target that changed size (as if moving in depth) and also with tracking performance for a target that moved sideways. On the other hand, landing performance correlated comparatively weakly with psychophysical thresholds for motion and contrast. For student pilots, several of the visual tests gave results that correlated with flying grades in T37 and T38 jet aircraft. Tracking tests clearly distinguished between the nonflying group and all the flying groups. On the other hand, visual threshold tests did not distinguish between nonflying and flying groups except for grating contrast, which distinguished between the nonflying group and the pilot instructors. The sideways-motion tracking task was sensitive enough to distinguish between the various flying groups.

  10. Simulation Results of the Huygens Probe Entry and Descent Trajectory Reconstruction Algorithm

    NASA Technical Reports Server (NTRS)

    Kazeminejad, B.; Atkinson, D. H.; Perez-Ayucar, M.

    2005-01-01

    Cassini/Huygens is a joint NASA/ESA mission to explore the Saturnian system. The ESA Huygens probe is scheduled to be released from the Cassini spacecraft on December 25, 2004, enter the atmosphere of Titan in January, 2005, and descend to Titan s surface using a sequence of different parachutes. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for "ground-truthing" Orbiter remote sensing measurements, it is essential that the probe entry and descent trajectory reconstruction be performed as early as possible in the postflight data analysis phase. The Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team (HSWT), is responsible for developing a methodology and performing the entry and descent trajectory reconstruction. This paper provides an outline of the trajectory reconstruction methodology, preliminary probe trajectory retrieval test results using a simulated synthetic Huygens dataset developed by the Huygens Project Scientist Team at ESA/ESTEC, and a discussion of strategies for recovery from possible instrument failure.

  11. Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium detectors

    NASA Technical Reports Server (NTRS)

    Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.

    1997-01-01

    Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.

  12. Benefits and costs of methadone treatment: results from a lifetime simulation model.

    PubMed

    Zarkin, Gary A; Dunlap, Laura J; Hicks, Katherine A; Mamo, Daniel

    2005-11-01

    Several studies have examined the benefits and costs of drug treatment; however, they have typically focused on the benefits and costs of a single treatment episode. Although beneficial for certain analyses, the results are limited because they implicitly treat drug abuse as an acute problem that can be treated in one episode. We developed a Monte Carlo simulation model that incorporates the chronic nature of drug abuse. Our model represents the progression of individuals from the general population aged 18-60 with respect to their heroin use, treatment for heroin use, criminal behavior, employment, and health care use. We also present three model scenarios representing an increase in the probability of going to treatment, an increase in the treatment length of stay, and a scenario in which drug treatment is not available to evaluate how changes in treatment parameters affect model results. We find that the benefit-cost ratio of treatment from our lifetime model (37.72) exceeds the benefit-cost ratio from a static model (4.86). The model provides a rich characterization of the dynamics of heroin use and captures the notion of heroin use as a chronic recurring condition. Similar models can be developed for other chronic diseases, such as diabetes, mental illness, or cardiovascular disease.

  13. LSP Simulation and Analytical Results on Electromagnetic Wave Scattering on Coherent Density Structures

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T.

    2014-09-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP) and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present PIC simulation results on EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Acknowledgement: This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE grant no. DE-FC52-06NA27616 at the University of Nevada at Reno.

  14. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  15. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  16. CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety

    DTIC Science & Technology

    2011-09-01

    Public September 2011 x This page intentionally left blank. CSSC Fish Barrier Simulated Rescuer Touch...electrode on the wet end (hook end) to simulate the PIW, and lashed it to the life ring to provide flotation during towing. The dry end was wrapped in foil

  17. Effects of a Universally Free, In-Classroom School Breakfast Program: Results from the Second Year of the Maryland Meals for Achievement Evaluation. Interim Report.

    ERIC Educational Resources Information Center

    Murphy, J. Michael; Rankin, Emunah; Feeney, Kelly; Kenney, Leigh; Kleinman, Ron

    Noting that many children in the United States are not well nourished despite the recent economic boom, the state of Maryland began the Maryland Meals for Achievement (MMFA) program, a demonstration project to see if providing a classroom breakfast free to all students can improve student nutrition and academic achievement. This interim report…

  18. Explaining the Achievement Gap between Indigenous and Non-Indigenous Students: An Analysis of PISA 2009 Results for Australia and New Zealand

    ERIC Educational Resources Information Center

    Song, Steve; Perry, Laura B.; McConney, Andrew

    2014-01-01

    This study investigates the relative roles of home and school variables in accounting for achievement gaps between Indigenous and non-Indigenous students in Australia and New Zealand. Using data from the Programme for International Student Assessment [PISA] 2009, our findings show that achievement gaps between Indigenous and non-Indigenous…

  19. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  20. Feature Extraction from Simulations and Experiments: Preliminary Results Using a Fluid Mix Problem

    SciTech Connect

    Kamath, C; Nguyen, T

    2005-01-04

    Code validation, or comparing the output of computer simulations to experiments, is necessary to determine which simulation is a better approximation to an experiment. It can also be used to determine how the input parameters in a simulation can be modified to yield output that is closer to the experiment. In this report, we discuss our experiences in the use of image processing techniques for extracting features from 2-D simulations and experiments. These features can be used in comparing the output of simulations to experiments, or to other simulations. We first describe the problem domain and the data. We next explain the need for cleaning or denoising the experimental data and discuss the performance of different techniques. Finally, we discuss the features of interest and describe how they can be extracted from the data. The focus in this report is on extracting features from experimental and simulation data for the purpose of code validation; the actual interpretation of these features and their use in code validation is left to the domain experts.

  1. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  2. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    surfaces to shift away from the equilibrium location. We apply a relative rotation of the fracture surfaces to preserve force equilibrium during each iteration. The results of the model are compared with flow-through experiments conducted on fractured limestone cores and on analogue rough-surfaced KDP-glass fractures. The fracture apertures are mapped before, during (for some) and after the experiments. These detailed aperture measurements are used as input to our new coupled model. The experiments cover a wide range of transport and reaction conditions; some exhibit permeability increase due to channel formation and others exhibit fracture closure due to deformation of contacting asperities. Simulation results predict these general trends as well as the small-scale details in regions of contacting asperities.n example of an aperture field under chemical and mechanical alterations. The color scale is in microns.

  3. Preliminary results for a two-dimensional simulation of the working process of a Stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    Stirling engines have several potential advantages over existing types of engines, in particular they can use renewable energy sources for power production and their performance meets the demands on the environmental security. In order to design Stirling Engines properly, and to put into effect their potential performance, it is important to more accurately mathematically simulate its working process. At present, a series of very important mathematical models are used for describing the working process of Stirling Engines and these are, in general, classified as models of three levels. All the models consider one-dimensional schemes for the engine and assume a uniform fluid velocity, temperature and pressure profiles at each plane of the internal gas circuit of the engine. The use of two-dimensional CFD models can significantly extend the capabilities for the detailed analysis of the complex heat transfer and gas dynamic processes which occur in the internal gas circuit, as well as in the external circuit of the engine. In this paper a two-dimensional simplified frame (no construction walls) calculation scheme for the Stirling Engine has been assumed and the standard {kappa}-{var{underscore}epsilon} turbulence model has been used for the analysis of the engine working process. The results obtained show that the use of two-dimensional CFD models gives the possibility of gaining a much greater insight into the fluid flow and heat transfer processes which occur in Stirling Engines.

  4. Personal values and crew compatibility: Results from a 105 days simulated space mission

    NASA Astrophysics Data System (ADS)

    Sandal, Gro M.; Bye, Hege H.; van de Vijver, Fons J. R.

    2011-08-01

    On a mission to Mars the crew will experience high autonomy and inter-dependence. "Groupthink", known as a tendency to strive for consensus at the cost of considering alternative courses of action, represents a potential safety hazard. This paper addresses two aspects of "groupthink": the extent to which confined crewmembers perceive increasing convergence in personal values, and whether they attribute less tension to individual differences over time. It further examines the impact of personal values for interpersonal compatibility. These questions were investigated in a 105-day confinement study in which a multinational crew ( N=6) simulated a Mars mission. The Portrait of Crew Values Questionnaire was administered regularly to assess personal values, perceived value homogeneity, and tension attributed to value disparities. Interviews were conducted before and after the confinement. Multiple regression analysis revealed no significant changes in value homogeneity over time; rather the opposite tendency was indicated. More tension was attributed to differences in hedonism, benevolence and tradition in the last 35 days when the crew was allowed greater autonomy. Three subgroups, distinct in terms of personal values, were identified. No evidence for "groupthink" was found. The results suggest that personal values should be considered in composition of crews for long duration missions.

  5. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  6. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T; Ali, Jawad K

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems.

  7. Do tanning salons adhere to new legal regulations? Results of a simulated client trial in Germany.

    PubMed

    Möllers, Tobias; Pischke, Claudia R; Zeeb, Hajo

    2016-03-01

    In August 2009 and January 2012, two regulations were passed in Germany to limit UV exposure in the general population. These regulations state that no minors are allowed to use tanning devices. Personnel of tanning salons is mandated to offer counseling regarding individual skin type, to create a dosage plan with the customer and to provide a list describing harmful effects of UV radiation. Furthermore, a poster of warning criteria has to be visible and readable at all times inside the tanning salon. It is unclear whether these regulations are followed by employees of tanning salons in Germany, and we are not aware of any studies examining the implementation of the regulations at individual salons. We performed a simulated client study visiting 20 tanning salons in the city-state of Bremen in the year 2014, using a short checklist of criteria derived from the legal requirements, to evaluate whether legal requirements were followed or not. We found that only 20 % of the tanning salons communicated adverse health effects of UV radiation in visible posters and other materials and that only 60 % of the salons offered the required determination of the skin type to customers. In addition, only 60 % of the salons offered to complete the required dosage plan with their customers. To conclude, our results suggest that the new regulations are insufficiently implemented in Bremen. Additional control mechanisms appear necessary to ensure that consumers are protected from possible carcinogenic effects of excessive UV radiation.

  8. Wide Bandpass and Narrow Bandstop Microstrip Filters Based on Hilbert Fractal Geometry: Design and Simulation Results

    PubMed Central

    Mezaal, Yaqeen S.; Eyyuboglu, Halil T.; Ali, Jawad K.

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, −28 dB return loss and −0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, −0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems. PMID:25536436

  9. Biofilm formation and control in a simulated spacecraft water system - Three year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Flanagan, David T.; Bruce, Rebekah J.; Mudgett, Paul D.; Carr, Sandra E.; Rutz, Jeffrey A.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1992-01-01

    Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. SEM indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm. Metals analyses reveal some corrosion in the iodinated system after 3 years of continuous exposure. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  10. Simulation of natural corrosion by vapor hydration test: seven-year results

    SciTech Connect

    Luo, J.S.; Ebert, W.L.; Mazer, J.J.; Bates, J.K.

    1996-12-31

    We have investigated the alteration behavior of synthetic basalt and SRL 165 borosilicate waste glasses that had been reacted in water vapor at 70 {degrees}C for time periods up to seven years. The nature and extent of corrosion of glasses have been determined by characterizing the reacted glass surface with optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). Alteration in 70 {degrees}C laboratory tests was compared to that which occurs at 150-200 {degrees}C and also with Hawaiian basaltic glasses of 480 to 750 year old subaerially altered in nature. Synthetic basalt and waste glasses, both containing about 50 percent wt SiO{sub 2} were found to react with water vapor to form an amorphous hydrated gel that contained small amounts of clay, nearly identical to palagonite layers formed on naturally altered basaltic glass. This result implies that the corrosion reaction in nature can be simulated with a vapor hydration test. These tests also provide a means for measuring the corrosion kinetics, which are difficult to determine by studying natural samples because alteration layers have often spelled off the samples and we have only limited knowledge of the conditions under which alteration occurred.

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  12. The Planetary Accretion Shock. I. Framework for Radiation-hydrodynamical Simulations and First Results

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Klahr, Hubert; Kuiper, Rolf; Mordasini, Christoph

    2017-02-01

    The key aspect determining the postformation luminosity of gas giants has long been considered to be the energetics of the accretion shock at the surface of the planet. We use one-dimensional radiation-hydrodynamical simulations to study the radiative loss efficiency and to obtain postshock temperatures and pressures and thus entropies. The efficiency is defined as the fraction of the total incoming energy flux that escapes the system (roughly the Hill sphere), taking into account the energy recycling that occurs ahead of the shock in a radiative precursor. We focus in this paper on a constant equation of state (EOS) to isolate the shock physics but use constant and tabulated opacities. While robust quantitative results will have to await a self-consistent treatment including hydrogen dissociation and ionization, the results presented here show the correct qualitative behavior and can be understood from semianalytical calculations. The shock is found to be isothermal and supercritical for a range of conditions relevant to the core accretion formation scenario (CA), with Mach numbers { M }≳ 3. Across the shock, the entropy decreases significantly by a few times {k}{{B}}/{{baryon}}. While nearly 100% of the incoming kinetic energy is converted to radiation locally, the efficiencies are found to be as low as roughly 40%, implying that a significant fraction of the total accretion energy is brought into the planet. However, for realistic parameter combinations in the CA scenario, we find that a nonzero fraction of the luminosity always escapes the Hill sphere. This luminosity could explain, at least in part, recent observations in the young LkCa 15 and HD 100546 systems.

  13. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; Von Huene, R.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  14. Design and fabrication of micro-hotplates made on a polyimide foil: electrothermal simulation and characterization to achieve power consumption in the low mW range

    NASA Astrophysics Data System (ADS)

    Courbat, J.; Canonica, M.; Teyssieux, D.; Briand, D.; de Rooij, N. F.

    2011-01-01

    The design of ultra-low power micro-hotplates on a polyimide (PI) substrate supported by thermal simulations and characterization is presented. By establishing a method for the thermal simulation of very small scale heating elements, the goal of this study was to decrease the power consumption of PI micro-hotplates to a few milliwatts to make them suitable for very low power applications. To this end, the mean heat transfer coefficients in air of the devices were extracted by finite element analysis combined with very precise thermographic measurements. A simulation model was implemented for these hotplates to investigate both the influence of their downscaling and the bulk micromachining of the polyimide substrate to lower their power consumptions. Simulations were in very good agreement with the experimental results. The main parameters influencing significantly the power consumption at such dimensions were identified and guidelines were defined allowing the design of very small (15 × 15 µm) and ultra-low power heating elements (6 mW at 300 °C). These very low power heating structures enable the realization of flexible sensors, such as gas, flow or wind sensors, for applications in autonomous wireless sensors networks or RFID applications and make them compatible with large-scale production on foil such as roll-to-roll or printing processes.

  15. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  16. The simulation of optical diagnostics for crystal growth - Models and results

    NASA Astrophysics Data System (ADS)

    Banish, M. R.; Clark, R. L.; Kathman, A. D.; Lawson, S. M.

    A computer simulation of a Two Color Holographic Interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  17. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  18. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  19. The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron

    USGS Publications Warehouse

    Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.

    2014-01-01

    Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low

  20. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  1. Transient analysis of distribution class Adaptive Var Compensators: Simulation and field test results

    SciTech Connect

    Kagalwala, R.A.; Venkata, S.S.; El-Sharkawi, M.A.; Butler, N.G.; Van Leuven, A.; Rodriguez, A.P.; Kerszenbaum, I.; Smith, D.

    1995-04-01

    Simulation studies are performed to analyze the transient behavior of the Adaptive Var Compensator (AVC), a power electronic device installed at the distribution level, during its design, installation and field testing stages. The simulation model includes detailed models for power apparatus, power semiconductor devices and low signal level electronics. Hence, by using this model, a wide range of simulation studies which contribute towards the development of the AVC and its effectiveness in the field can all be performed on the same platform. A new power electronics simulator called SABER has proven to be very effective for this study because of its model-independent structure and extensive library that covers various disciplines of engineering. The simulation studies are aimed at gaining a better understanding of the interaction between the AVC and the distribution system. They cover a range of phenomena such as switching transients due to mechanical capacitor bank closing, fast transients due to reverse recovery of the power diodes of the AVC, power system harmonics and voltage flicker problem. This paper also briefly describes the criteria for selection of the simulation tool and the models developed.

  2. NPE 2010 results - Independent performance assessment by simulated CTBT violation scenarios

    NASA Astrophysics Data System (ADS)

    Ross, O.; Bönnemann, C.; Ceranna, L.; Gestermann, N.; Hartmann, G.; Plenefisch, T.

    2012-04-01

    earthquakes by seismological analysis. The remaining event at Black Thunder Mine, Wyoming, on 23 Oct at 21:15 UTC showed clear explosion characteristics. It caused also Infrasound detections at one station in Canada. An infrasonic one station localization algorithm led to event localization results comparable in precision to the teleseismic localization. However, the analysis of regional seismological stations gave the most accurate result giving an error ellipse of about 60 square kilometer. Finally a forward ATM simulation was performed with the candidate event as source in order to reproduce the original detection scenario. The ATM results showed a simulated station fingerprint in the IMS very similar to the fictitious detections given in the NPE 2010 scenario which is an additional confirmation that the event was correctly identified. The shown event analysis of the NPE 2010 serves as successful example for Data Fusion between the technology of radionuclide detection supported by ATM and seismological methodology as well as infrasound signal processing.

  3. Innovative Hypofractionated Stereotactic Regimen Achieves Excellent Local Control with No Radiation Necrosis: Promising Results in the Management of Patients with Small Recurrent Inoperable GBM

    PubMed Central

    Pannullo, Susan C.; Minkowitz, Shlomo; Taube, Shoshana; Chang, Jenghwa; Parashar, Bhupesh; Christos, Paul; Wernicke, A.Gabriella

    2016-01-01

    Management of recurrent glioblastoma multiforme (GBM) remains a challenge. Several institutions reported that a single fraction of ≥ 20 Gy for small tumor burden results in excellent local control; however, this is at the expense of a high incidence of radiation necrosis (RN). Therefore, we developed a hypofractionation pattern of 33 Gy/3 fractions, which is a radiobiological equivalent of 20 Gy, with the aim to lower the incidence of RN. We reviewed records of 21 patients with recurrent GBM treated with hypofractionated stereotactic radiation therapy (HFSRT) to their 22 respective lesions. Sixty Gy fractioned external beam radiotherapy was performed as first-line treatment. Median time from primary irradiation to HFSRT was 9.6 months (range: 3.1 – 68.1 months). In HFSRT, a median dose of 33 Gy in 11 Gy fractions was delivered to the 80% isodose line that encompassed the target volume. The median tumor volume was 1.07 cm3 (range: 0.11 – 16.64 cm3). The median follow-up time after HFSRT was 9.3 months (range: 1.7 – 33.6 months). Twenty-one of 23 lesions treated (91.3%) achieved local control while 2/23 (8.7%) progressed. Median time to progression outside of the treated site was 5.2 months (range: 2.2 – 9.6 months). Progression was treated with salvage chemotherapy. Five of 21 patients (23.8%) were alive at the end of this follow-up; two patients remain disease-free. The remaining 16/21 patients (76.2%) died of disease. Treatment was well tolerated by all patients with no acute CTC/RTOG > Grade 2. There was 0% incidence of RN. A prospective trial will be underway to validate these promising results. PMID:27096136

  4. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  5. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  6. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.

  7. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1994-08-01

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components.

  8. Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.

  9. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    SciTech Connect

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-12-31

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at {approximately}40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations.

  10. Design, Results, Evolution and Status of the ATLAS Simulation at Point1 Project

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Fazio, D.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Sedov, A.; Twomey, M. S.; Wang, F.; Zaytsev, A.

    2015-12-01

    During the LHC Long Shutdown 1 (LSI) period, that started in 2013, the Simulation at Point1 (Sim@P1) project takes advantage, in an opportunistic way, of the TDAQ (Trigger and Data Acquisition) HLT (High-Level Trigger) farm of the ATLAS experiment. This farm provides more than 1300 compute nodes, which are particularly suited for running event generation and Monte Carlo production jobs that are mostly CPU and not I/O bound. It is capable of running up to 2700 Virtual Machines (VMs) each with 8 CPU cores, for a total of up to 22000 parallel jobs. This contribution gives a review of the design, the results, and the evolution of the Sim@P1 project, operating a large scale OpenStack based virtualized platform deployed on top of the ATLAS TDAQ HLT farm computing resources. During LS1, Sim@P1 was one of the most productive ATLAS sites: it delivered more than 33 million CPU-hours and it generated more than 1.1 billion Monte Carlo events. The design aspects are presented: the virtualization platform exploited by Sim@P1 avoids interferences with TDAQ operations and it guarantees the security and the usability of the ATLAS private network. The cloud mechanism allows the separation of the needed support on both infrastructural (hardware, virtualization layer) and logical (Grid site support) levels. This paper focuses on the operational aspects of such a large system during the upcoming LHC Run 2 period: simple, reliable, and efficient tools are needed to quickly switch from Sim@P1 to TDAQ mode and back, to exploit the resources when they are not used for the data acquisition, even for short periods. The evolution of the central OpenStack infrastructure is described, as it was upgraded from Folsom to the Icehouse release, including the scalability issues addressed.

  11. Development and simulation results of a sparsification and readout circuit for wide pixel matrices

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F.; Morsani, F.; Villa, M.

    2011-06-01

    In future collider experiments, the increasing luminosity and centre of mass energy are rising challenging problems in the design of new inner tracking systems. In this context we develop high-efficiency readout architectures for large binary pixel matrices that are meant to cope with the high-stressing conditions foreseen in the innermost layers of a tracker [The SuperB Conceptual Design Report, INFN/AE-07/02, SLAC-R-856, LAL 07-15, Available online at: http://www.pi.infn.it/SuperB]. We model and design digital readout circuits to be integrated on VLSI ASICs. These architectures can be realized with different technology processes and sensors: they can be implemented on the same silicon sensor substrate of a CMOS MAPS devices (Monolithic Active Pixel Sensor), on the CMOS tier of a hybrid pixel sensor or in a 3D chip where the digital layer is stacked on the sensor and the analog layers [V. Re et al., Nuc. Instr. and Meth. in Phys. Res. A, doi:10.1016/j.nima.2010.05.039]. In the presented work, we consider a data-push architecture designed for a sensor matrix of an area of about 1.3 cm 2 with a pitch of 50 microns. The readout circuit tries to take great advantage of the high density of in-pixel digital logic allowed by vertical integration. We aim at sustaining a rate density of 100 Mtrack ṡ s -1 ṡ cm -2 with a temporal resolution below 1 μs. We show how this architecture can cope with these stressing conditions presenting the results of Monte Carlo simulations.

  12. CORRECTING FOR INTERSTELLAR SCATTERING DELAY IN HIGH-PRECISION PULSAR TIMING: SIMULATION RESULTS

    SciTech Connect

    Palliyaguru, Nipuni; McLaughlin, Maura; Stinebring, Daniel; Demorest, Paul; Jones, Glenn E-mail: maura.mclaughlin@mail.wvu.edu E-mail: pdemores@nrao.edu

    2015-12-20

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse “jitter” is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  13. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect

    Innocenzi, V. De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  14. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  15. Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.

  16. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  17. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  18. Three-dimensional MHD simulation of the Caltech plasma jet experiment: first results

    SciTech Connect

    Zhai, Xiang; Bellan, Paul M.; Li, Hui; Li, Shengtai E-mail: pbellan@caltech.edu E-mail: sli@lanl.gov

    2014-08-10

    Magnetic fields are believed to play an essential role in astrophysical jets with observations suggesting the presence of helical magnetic fields. Here, we present three-dimensional (3D) ideal MHD simulations of the Caltech plasma jet experiment using a magnetic tower scenario as the baseline model. Magnetic fields consist of an initially localized dipole-like poloidal component and a toroidal component that is continuously being injected into the domain. This flux injection mimics the poloidal currents driven by the anode-cathode voltage drop in the experiment. The injected toroidal field stretches the poloidal fields to large distances, while forming a collimated jet along with several other key features. Detailed comparisons between 3D MHD simulations and experimental measurements provide a comprehensive description of the interplay among magnetic force, pressure, and flow effects. In particular, we delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. With suitably chosen parameters that are derived from experiments, the jet in the simulation agrees quantitatively with the experimental jet in terms of magnetic/kinetic/inertial energy, total poloidal current, voltage, jet radius, and jet propagation velocity. Specifically, the jet velocity in the simulation is proportional to the poloidal current divided by the square root of the jet density, in agreement with both the experiment and analytical theory. This work provides a new and quantitative method for relating experiments, numerical simulations, and astrophysical observation, and demonstrates the possibility of using terrestrial laboratory experiments to study astrophysical jets.

  19. Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results

    NASA Astrophysics Data System (ADS)

    Janković, I.; Fiori, A.; Dagan, G.

    2003-09-01

    results are in the comparison of the macrodispersivities, computed with the aid of the Lagrangian velocity covariances, as functions of travel time. For the longitudinal macrodispersivity, the SC approximation yields results close to the numerical ones in 2-D for n = 0.4 but underestimates them for n = 0.9. The asymptotic, large travel time values of macrodispersivities in the SC and FO approximations are close for low to moderate σY2, as shown and explained in part 1. However, while the slow tendency to Fickian behavior is well reproduced by SC, it is much quicker in the FO approximation. In 3-D the SC approximation is closer to numerical one for the highest n = 0.7 and the different σY2 = 2, 4, 8, and the comparison improves if molecular diffusion is taken into account. Transverse macrodispersivity for small travel times is underestimated by SC in 2-D and is closer to numerical results in 3-D, whereas FO overestimates them. Transverse macrodispersivity asymptotically tends to zero in 2-D for large travel times. In 3-D the numerical simulations lead to a small but persistent transverse macrodispersivity for large travel times, whereas it tends to zero in the approximate solutions. The results suggest that the self-consistent semianalytical approximation provides a valuable tool to model transport in highly heterogeneous isotropic formations of a 3-D structure in terms of trajectories statistical moments. It captures effects like slow transition to Fickian behavior and to Gaussian trajectory distribution, which are neglected by the first-order approximation.

  20. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  1. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  2. Preliminary results of column experiments simulating nutrients transport in artificial recharge by treated wastewater

    NASA Astrophysics Data System (ADS)

    Leal, María; Meffe, Raffaella; Lillo, Javier

    2013-04-01

    the field site. Wastewater synthesized in the laboratory simulates the secondary effluent used for recharge activities in the Experimental Plant of Carrión de los Céspedes, Experimental results showed that ammonium and phosphates are clearly retarded when infiltrating through both materials (zeolite and palygorskite) as consequence of cation exchange and surface complexation processes. Indeed, after about 14 days from the beginning of the experiments the two compounds do not appear at the column effluent exhibiting a very strong retardation. Concerning nitrites and nitrates, no retardation is observed. Preliminary interpretation of the experimental results by means of the geochemical modeling code PHREEQ-C confirmed and quantified the importance of specific reactive processes affecting transport of nutrients through the applied reactive materials.

  3. Energy systems efficiency influences the results of 2,000 m race simulation among elite rowers

    PubMed Central

    MARTIN, STEFAN ADRIAN; TOMESCU, VALERIU

    2017-01-01

    Hypothesis Energy efficiency within an elite group of athletes will ensure metabolic adaptation during training. Objectives To identify energy system efficiency and contribution according to exercise intensity, and performance obtained during a 2,000 m race simulation in an elite group of rowers. Method An observational cross-sectional study was conducted in February 2016 in Bucharest, Romania, on a group of 16 elite rowers. Measurements were performed through Cosmed Quark CPET equipment, and Concept 2 ergometer, by conducting a VO2max test over a standard rowing distance of 2,000 m. The analyzed parameters during the test were: HR (bpm), Rf (b/min), VE (l/min), VO2 (ml/min), VCO2 (ml/min), VT (l), O2exp (ml), CO2exp (ml), RER, PaCO2 (mmHg), PaO2 (mmHg), Kcal/min, FAT (g), CHO (g), from which we determined the ventilatory thresholds, and the energy resource used during the specific 2,000 m rowing distance (ATP, ATP+CP, muscle glycogen). Results We performed an association between HR (180.2±4.80 b/min), and carbohydrate consumption during the sustained effort (41.55±3.99 g) towards determining the energy systems involved: ATP (3.49±1.55%), ATP+CP (18.06±2.99%), muscle glycogen (77.9±3.39%). As a result, completion time (366.3±10.25 s) was significantly correlated with both Rf (p=0.0024), and VO2 (p=0.0166) being also pointed out that ≥5 l VO2 value is associated with an effort time of ≤360 s. (p=0.040, RR=3.50, CI95%=1.02 to 11.96). Thus, the average activation time among muscle ATP (12.81±5.70 s), ATP+CP (66.04±10.17 s, and muscle glycogen (295±9.5 s) are interrelated, and significantly correlated with respiratory parameters. Conclusions Decreased total activity time was associated with accessing primary energy source in less time, during effort, improving the body energy power. Its effectiveness was recorded by early carbohydrates access, as a primary energy source, during specific activity performed up to 366 seconds. PMID:28246499

  4. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  5. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  6. Summary of results of January climate simulations with the GISS coarse-mesh model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents.

  7. Mathematics beliefs and achievement of a national sample of Native American students: results from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States assessment.

    PubMed

    House, J Daniel

    2009-04-01

    Recent mathematics assessment findings indicate that Native American students tend to score below students of the ethnic majority. Findings suggest that students' beliefs about mathematics are significantly related to achievement outcomes. This study examined relations between self-beliefs and mathematics achievement for a national sample of 130 Grade 8 Native American students from the Trends in International Mathematics and Science Study (TIMSS) 2003 United States sample of (M age = 14.2 yr., SD = 0.5). Multiple regression indicated several significant relations of mathematics beliefs with achievement and accounted for 26.7% of the variance in test scores. Students who earned high test scores tended to hold more positive beliefs about their ability to learn mathematics quickly, while students who earned low scores expressed negative beliefs about their ability to learn new mathematics topics.

  8. Achieving Consensus for the Design and Delivery of an Online Intervention to Support Midwives in Work-Related Psychological Distress: Results From a Delphi Study

    PubMed Central

    Clyne, Wendy

    2016-01-01

    Background Some midwives are known to experience both professional and organizational sources of psychological distress, which can manifest as a result of the emotionally demanding midwifery work, and the traumatic work environments they endure. An online intervention may be one option midwives may engage with in pursuit of effective support. However, the priorities for the development of an online intervention to effectively support midwives in work-related psychological distress have yet to be explored. Objective The aim of this study was to explore priorities in the development of an online intervention to support midwives in work-related psychological distress. Methods A two-round online Delphi study was conducted. This study invited both qualitative and quantitative data from experts recruited via a scoping literature search and social media channels. Results In total, 185 experts were invited to participate in this Delphi study. Of all participants invited to contribute, 35.7% (66/185) completed Round 1 and of those who participated in this first round, 67% (44/66) continued to complete Round 2. Out of 39 questions posed over two rounds, 18 statements (46%) achieved consensus, 21 (54%) did not. Participants were given the opportunity to write any additional comments as free text. In total, 1604 free text responses were collected and categorized into 2446 separate statements of opinion, creating a total of 442 themes. Overall, participants agreed that in order to effectively support midwives in work-related psychological distress, online interventions should make confidentiality and anonymity a high priority, along with 24-hour mobile access, effective moderation, an online discussion forum, and additional legal, educational, and therapeutic components. It was also agreed that midwives should be offered a simple user assessment to identify those people deemed to be at risk of either causing harm to others or experiencing harm themselves, and direct them to

  9. Simulation and Gaming to Promote Health Education: Results of a Usability Test

    ERIC Educational Resources Information Center

    Albu, Mihai; Atack, Lynda; Srivastava, Ishaan

    2015-01-01

    Objective: Motivating clients to change the health behaviour, and maintaining an interest in exercise programmes, is an ongoing challenge for health educators. With new developments in technology, simulation and gaming are increasingly being considered as ways to motivate users, support learning and promote positive health behaviours. The purpose…

  10. Simulation results of liquid and plastic scintillator detectors for reactor antineutrino detection - A comparison

    NASA Astrophysics Data System (ADS)

    Kashyap, V. K. S.; Pant, L. M.; Mohanty, A. K.; Datar, V. M.

    2016-03-01

    A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring.

  11. Influence of Boundary Conditions on Regional Air Quality Simulations-Analysis of AQMEII Phase 3 Results

    EPA Science Inventory

    This presentation focuses on the dynamic evaluation of the CMAQ model over the continental United States using multi-decadal simulations for the period from 1990 to 2010 to examine how well the changes in observed ozone air quality induced by variations in meteorology and/or emis...

  12. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  13. Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.

    2010-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.

  14. Onboard utilization of ground control points for image correction. Volume 2: Analysis and simulation results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An approach to remote sensing that meets future mission requirements was investigated. The deterministic acquisition of data and the rapid correction of data for radiometric effects and image distortions are the most critical limitations of remote sensing. The following topics are discussed: onboard image correction systems, GCP navigation system simulation, GCP analysis, and image correction analysis measurement.

  15. Exploratory Analysis Of The 3D Cloud Resolving Model Simulations of TOGA COARE: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Mendes, S.; Bretherton, C.

    2007-12-01

    Global climate model studies suggest that cumulus momentum transport (CMT) in tropical oceanic convective cloud systems plays a significant role in the tropical mean circulation and transient variability. CMT is difficult to measure directly and can depend on the detailed structure and organization of the convection. Yet there have been comparatively few evaluations of CMT parameterizations and the assumptions underlying them using 3D cloud resolving model (CRM) simulations. We have analyzed CMT in a four month 3D 64x64x64 gridpoint CRM simulation of TOGA COARE with 1 km horizontal resolution. An additional 256x256x64 large-domain simulation was performed for a 10 day subperiod with strong convection combined with substantial mean vertical zonal wind shear, conditions favorably for strong CMT. Both simulations were identically forced with prescribed vertical motion, horizontal temperature and moisture advection, and relaxation of the domain-mean wind profile to observations on a one-hour timescale. Both were initialized with small amplitude white noise, but spun up realistic convection in less than a day. The domain-mean CMT in the small and large domain simulations for the 10-day common simulation period was compared. The two simulations showed remarkably similar CMT profiles on daily-mean timescales, suggesting that mesoscale contributions to CMT of scales greater than 64 km were small. The skill of a downgradient mixing-length parameterization CMT = Mc*L*DU/Dz was also tested. Here , Mc is convective mass flux, dU/dz is mean vertical shear, and L is a mixing length for updraft zonal velocity perturbations associated with entrainment and horizontal pressure gradient accelerations. This was done by regressing CMT at each height was regressed against Mc*DU/Dz at the same height across all 3D model snapshots over the 10 days. The correlation coefficient describes the accuracy of this downgradient parameterization, and L was calculated as the regression slope. In the

  16. Blood-Borne Markers of Fatigue in Competitive Athletes – Results from Simulated Training Camps

    PubMed Central

    Hecksteden, Anne; Skorski, Sabrina; Schwindling, Sascha; Hammes, Daniel; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2016-01-01

    Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover) have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength) at 3 time-points: after a run-in resting phase (d 1), after a 6-day induction of fatigue (d 8) and following a subsequent 2-day recovery period (d 11). Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue) which significantly regresses towards baseline until day 11 (Δrecovery). With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l), urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl), free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml) and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml). For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l) only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling and by CK

  17. Low Dimensional Non-Crystallographic Metallic Nanostructures:. HRTEM Simulation, Models and Experimental Results

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.

    Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle

  18. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  19. Who Are the Students Who May Qualify for an Alternate Assessment Based on Modified Academic Achievement Standards (AA-MAS)?: Focus Group Results. Synthesis Report 79

    ERIC Educational Resources Information Center

    Berndt, Sandra; Ebben, Barbara; Kubinski, Eva; Sim, Grant; Liu, Kristin; Lazarus, Sheryl; Thurlow, Martha; Christian, Elizabeth

    2011-01-01

    Beginning in 2007, federal regulations to two major education laws gave state departments of education the option to develop an alternate assessment based on modified achievement standards (AA-MAS) for some students with disabilities. The regulations stated that the AA-MAS was intended for students who were being instructed in the grade-level…

  20. Coping Styles and Achievement: A Cross-National Study of School Children. Volume I of V Volumes: The Theory, Design, and Validation Results.

    ERIC Educational Resources Information Center

    Peck, Robert F.

    This study undertook to develop an improved conceptual system for explaining effective behavior; to build reliable measures of the components of that behavior; to develop and apply the measures internationally; and to validate the measures and concepts against objective criteria of achievement. An eight-nation team defined three sets of components…

  1. A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 1: Summary of results and airworthiness implications

    NASA Technical Reports Server (NTRS)

    Stapleford, R. L.; Heffley, R. K.; Hynes, C. S.; Scott, B. C.

    1974-01-01

    A simulator study of STOL airworthiness criteria was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The results are summarized and possible implications with regard to airworthiness criteria are discussed. The results provide a data base for future STOL airworthiness requirements and a preliminary indication of potential problem areas. The results are also compared to the results from an earlier simulation of the Breguet 941S. Where possible, airworthiness criteria are proposed for consideration.

  2. Preliminary experimental test results using 35 GHz offset fed reflector simulating surface pillows and aperture cables

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Young, W. R.

    1982-01-01

    The effects caused by reflector surface pillows and aperture cables on RF performance were determined. The test uses models that were designed to be replicas of a quad aperture at the proper F/D = 1.50 as provided in the LSST point design. Separate pillow models were machined from solid aluminum sections that simulated the surface contour pillows but on an exaggerated basis. The worse case pillow heights lamda/20 and lamda/5 were machined onto the precision reflector. In addition to the pillow effects, the scattering effects of aperture (Hoop/Column cables) cables were determined. Therefore, simulated quartz and graphite cables were tested with the smooth, lamda/20, and lamda/5 reflector models.

  3. RHF RELAP5 model and preliminary loss-of-offsite-power simulation results for LEU conversion

    SciTech Connect

    Licht, J. R.; Bergeron, A.; Dionne, B.; Thomas, F.

    2014-08-01

    The purpose of this document is to describe the current state of the RELAP5 model for the Institut Laue-Langevin High Flux Reactor (RHF) located in Grenoble, France, and provide an update to the key information required to complete, for example, simulations for a loss of offsite power (LOOP) accident. A previous status report identified a list of 22 items to be resolved in order to complete the RELAP5 model. Most of these items have been resolved by ANL and the RHF team. Enough information was available to perform preliminary safety analyses and define the key items that are still required. Section 2 of this document describes the RELAP5 model of RHF. The final part of this section briefly summarizes previous model issues and resolutions. Section 3 of this document describes preliminary LOOP simulations for both HEU and LEU fuel at beginning of cycle conditions.

  4. Comparison of a laboratory spectrum of Eu-152 with results of simulation using the MCNP code

    NASA Astrophysics Data System (ADS)

    Ródenas, J.; Gallardo, S.; Ortiz, J.

    2007-09-01

    Detectors used for gamma spectrometry must be calibrated for each geometry considered in environmental radioactivity laboratories. This calibration is performed using a standard solution containing gamma emitter sources. Nevertheless, the efficiency curves obtained are periodically checked using a source such as 152Eu emitting many gamma rays that cover a wide energy range (20-1500 keV). 152Eu presents a problem because it has a lot of peaks affected by True Coincidence Summing (TCS). Two experimental measures have been performed placing the source (a Marinelli beaker) at 0 and 10 cm from the detector. Both spectra are simulated by the MCNP 4C code, where the TCS is not reproduced. Therefore, the comparison between experimental and simulated peak net areas permits one to choose the most convenient peaks to check the efficiency curves of the detector.

  5. RUSICA initial implementations: Simulation results of sandy shore evolution in Porto Cesareo, Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Di Gregorio, Salvatore; Gullace, Francesco; Gullı, Daniel; Lupiano, Valeria

    2016-06-01

    Beach recession is spreading in Mediterranean by effects of climatic change. RUSICA is a Cellular Automata model, that is in developing phase for simulating such a complex phenomenon, considering its main mechanisms: loose particles (sand, gravel, silt, clay, etc.) mobilization, suspension, deposit and transport, triggered by waves and currents. A simplified version of the model was implemented and applied to data, related to the sandy shore of Torre Lapillo (Porto Cesareo, Italy), in August 2010, where shore evolution was monitored, even if data quality and quantity aren't ideal in order to feed RUSICA. Simulations of different scenarios of stormy sea in that area evidenced the adequate performance of the model in capturing the main emergent features of the phenomenon in despite of the simplified approach.

  6. Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Observations in the Pacific Sector

    NASA Technical Reports Server (NTRS)

    Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.

    2012-01-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.

  7. Open Cherry Picker simulation results. [manned platform for satellite servicing from Shuttle

    NASA Technical Reports Server (NTRS)

    Nathan, C. A.

    1982-01-01

    The Open Cherry Picker (OCP) is a manned platform, mounted at the end of the Remote Manipulator System (RMS), which is used to enhance extravehicular activities. The objective of the simulation program described was to reduce the existing complexity of those OCP design features that are mandatory for initial Space Shuttle applications. The OCP development test article consists of a torque box, a rotating foot restraint, a rotating stanchion that houses handholds, and a tool storage section with an interface with payload modules. If the size or complexity of the payload increases, payload handling devices may be added at a later data. The simulations have shown that the crew can control the RMS from the Aft Flight Deck of the Shuttle, using voice commands from the EVA crewman. No need for a stabilizer was evident, and RMS dynamics due to crew-induced workloads were found to be minor.

  8. DoD Simulations: Improved Assessment Procedures Would Increase the Credibility of Results.

    DTIC Science & Technology

    1987-12-01

    200 million for research, development, testing, and eval- uation or $1 billion for producton . Then we imposed further condi- tions-a system’s...report identified several major limitations of the simulation that, in our opin- ion , cast substantial doubt on the ability of the Carmonette to study...reduce the effectiveness of attack or surveillance by hostile aircraft or missiles Page 82 GAO/PEMD-W83 Asessing DOI) Simulat ions for (’redibility

  9. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  10. Evaluation of automated decision making methodologies and development of an integrated robotic system simulation: Study results

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelley, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The implementation of a generic computer simulation for manipulator systems (ROBSIM) is described. The program is written in FORTRAN, and allows the user to: (1) Interactively define a manipulator system consisting of multiple arms, load objects, targets, and an environment; (2) Request graphic display or replay of manipulator motion; (3) Investigate and simulate various control methods including manual force/torque and active compliance control; and (4) Perform kinematic analysis, requirements analysis, and response simulation of manipulamotion. Previous reports have described the algorithms and procedures for using ROBSIM. These reports are superseded and additional features which were added are described. They are: (1) The ability to define motion profiles and compute loads on a common base to which manipulator arms are attached; (2) Capability to accept data describing manipulator geometry from a Computer Aided Design data base using the Initial Graphics exchange Specification format; (3) A manipulator control algorithm derived from processing the TV image of known reference points on a target; and (4) A vocabulary of simple high level task commands which can be used to define task scenarios.

  11. Development of a six station knee wear simulator and preliminary wear results.

    PubMed

    Burgess, I C; Kolar, M; Cunningham, J L; Unsworth, A

    1997-01-01

    In order to assess the wear performance of different designs of total knee replacements (TKR), a six station multi-axis knee simulator has been designed, built and commissioned. The most important features of a knee simulator are representative angles of flexion-extension synchronized with a dynamically applied load, and a combination of rolling and sliding motion. The simulator typically applies flexion-extension of 0-65, anterior-posterior translation of up to 15 mm, a dynamic load of up to 5.0 kN, and operates at 1.0 Hz. The loads and motions are applied using computer controlled servohydraulic actuators and hence their profiles are easily modified. A preliminary wear test has been conducted using a Kinemax (Howmedica, United Kingdom) TKR. The test was conducted in 30 per cent bovine serum which was changed every 150,000 cycles, at which time the bearing surfaces were examined and the UHMWPE tibial component was weighed. Over eight million cycles, a tibial wear rate of 2.62 mg/10(6) cycles was measured. The mild wear observed was characterized by burnishing and slight scratching in the anterior posterior direction. These observations are broadly in line with both in vitro and ex vivo studies reported in the literature for this type of prosthesis. Delamination wear sometimes observed in vivo was not seen.

  12. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  13. Basin scale reactive-transport simulations of CO2 leakage and resulting metal transport in a shallow drinking water aquifer

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.; Maxwell, R. M.; Hammond, G. E.; Lichtner, P. C.

    2011-12-01

    Leakage of CO2 from underground storage formations into overlying aquifers will decrease groundwater pH resulting in a geochemical response of the aquifer. If metal containing aquifer minerals dissolve as a part of this response, there is a risk of exceeding regulatory limits set by the EPA. Risk assessment methods require a realistic prediction of the maximum metal concentration at wells or other points of exposure. Currently, these predictions are based on numerical reactive transport simulations of CO2 leaks. While previous studies have simulated galena dissolution as a source of lead to explore the potential for contamination of drinking water aquifers, it may be more realistic to simulate lead release from more common minerals that are known to contain trace amounts of metals, e.g. calcite. Model domains for these previous studies are often sub-km in scale or have very coarse grid resolution, due to computation limitations. In this study we simulate CO2 leakage into a drinking water aquifer using the massively parallel subsurface flow and reactive transport code PFLOTRAN. The regional model domain is 4km x 1km x 0.1 km. Even with fairly coarse grid spacing (~ 9 m x 9 m x 0.9 m), the simulations have > 49 million degrees of freedom, requiring the use of High-Performance Computing (HPC). Our simulations are run on Jaguar at Oak Ridge National Laboratory. Lead concentrations in extraction wells 3 km down gradient from a CO2 leak increase above background concentrations due to kinetic mineral dissolution along the flow path. Increases in aqueous concentrations are less when lead is allowed to sorb onto mineral surfaces. Surprisingly, lead concentration increases are greater in simulations where lead is present as a trace constituent in calcite (5% by volume) relative to simulations with galena (0.001% by volume) as the lead source. It appears that galena becomes oversaturated and begins to precipitate, a result observed in previous modeling studies, and its low

  14. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  15. Natural frequency of a gas bubble in a tube: Experimental and simulation results

    PubMed Central

    Jang, Neo W.; Gracewski, Sheryl M.; Abrahamsen, Ben; Buttaccio, Travis; Halm, Robert; Dalecki, Diane

    2009-01-01

    Use of ultrasonically excited microbubbles within blood vessels has been proposed for a variety of clinical applications. In this paper, an axisymmetric coupled boundary element and finite element code and experiments have been used to investigate the effects of a surrounding tube on a bubble’s response to acoustic excitation. A balloon model allowed measurement of spherical gas bubble response. Resonance frequencies match one-dimensional cylindrical model predictions for a bubble well within a rigid tube but deviate for a bubble near the tube end. Simulations also predict bubble translation along the tube axis and aspherical oscillations at higher amplitudes. PMID:19603851

  16. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Kovalenko, A. D.; Taratin, A. M.

    2017-03-01

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  17. Ferrocyanide safety program: Results of relative humidity experiments using ferrocyanide waste simulants

    SciTech Connect

    King, C.V.

    1994-10-01

    To be categorized as conditionally safe, ferrocyanide tanks containing {ge} 8 wt% Na{sub 2}NiFe(CN){sub 6} on an energy equivalent basis (i.e., {ge} 115 cal/g) are required to contain some amount of water. These tests were conducted to determine the equilibrium moisture content of waste simulant at the conditions of 30% relative humidity and 25{degrees}C. This test report was prepared to disseminate data collected from these tests. These data are used to model the waste tank moisture contents and transport. These models can determine if the moisture in these tanks will drop below the defined safety limits.

  18. Natural frequency of a gas bubble in a tube: experimental and simulation results.

    PubMed

    Jang, Neo W; Gracewski, Sheryl M; Abrahamsen, Ben; Buttaccio, Travis; Halm, Robert; Dalecki, Diane

    2009-07-01

    Use of ultrasonically excited microbubbles within blood vessels has been proposed for a variety of clinical applications. In this paper, an axisymmetric coupled boundary element and finite element code and experiments have been used to investigate the effects of a surrounding tube on a bubble's response to acoustic excitation. A balloon model allowed measurement of spherical gas bubble response. Resonance frequencies match one-dimensional cylindrical model predictions for a bubble well within a rigid tube but deviate for a bubble near the tube end. Simulations also predict bubble translation along the tube axis and aspherical oscillations at higher amplitudes.

  19. Whipple bumper shield results and CTH simulations at velocities in excess of 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. Jr.; Reinhart, W.D.; Miller, J.M.

    1992-09-01

    A series of experiments has been performed on the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities in excess of 10 km/s. Upon impact by a 0.67 g (0.87 mm thick) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris penetrates the substructure completely. However, when the mass of the flier plate is reduced to 0.33 g, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete penetration of the substructure by the subsequent debris cloud for a 0.87 g flier plate. The numerical simulations for a 0.33 g flier plate show a strong dependence on assumed impact geometry. For the assumption of a spherical projectile impact geometry, perforation of the substructure by the subsequent debris cloud is not predicted by CTH.

  20. Whipple bumper shield results and CTH simulations at velocities in excess of 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. Jr.; Reinhart, W.D.; Miller, J.M.

    1992-09-01

    A series of experiments has been performed on the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities in excess of 10 km/s. Upon impact by a 0.67 g (0.87 mm thick) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of [approximately]14 km/s and expands radially at a velocity of [approximately]7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris penetrates the substructure completely. However, when the mass of the flier plate is reduced to 0.33 g, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete penetration of the substructure by the subsequent debris cloud for a 0.87 g flier plate. The numerical simulations for a 0.33 g flier plate show a strong dependence on assumed impact geometry. For the assumption of a spherical projectile impact geometry, perforation of the substructure by the subsequent debris cloud is not predicted by CTH.

  1. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  2. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  3. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  4. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  5. End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Hewasawam, Kuravi; Mendillo, Christopher B.; Cahoy, Kerri L.; Cook, Timothy A.; Finn, Susanna C.; Howe, Glenn A.; Kuchner, Marc J.; Lewis, Nikole K.; Marinan, Anne D.; Mawet, Dimitri; Chakrabarti, Supriya

    2015-09-01

    We describe a set of numerical approaches to modeling the performance of space flight high-contrast imaging payloads. Mission design for high-contrast imaging requires numerical wavefront error propagation to ensure accurate component specifications. For constructed instruments, wavelength and angle-dependent throughput and contrast models allow detailed simulations of science observations, allowing mission planners to select the most productive science targets. The PICTURE family of missions seek to quantify the optical brightness of scattered light from extrasolar debris disks via several high-contrast imaging techniques: sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment) and balloon flights of a visible nulling coronagraph, as well as a balloon flight of a vector vortex coronagraph (the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph, PICTURE-C). The rocket mission employs an on-axis 0.5m Gregorian telescope, while the balloon flights will share an unobstructed off-axis 0.6m Gregorian. This work details the flexible approach to polychromatic, end-to-end physical optics simulations used for both the balloon vector vortex coronagraph and rocket visible nulling coronagraph missions. We show the preliminary PICTURE-C telescope and vector vortex coronagraph design will achieve 10-8 contrast without post-processing as limited by realistic optics, but not considering polarization or low-order errors. Simulated science observations of the predicted warm ring around Epsilon Eridani illustrate the performance of both missions.

  6. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  7. Spatial firm competition in two dimensions with linear transportation costs: simulations and analytical results

    NASA Astrophysics Data System (ADS)

    Roncoroni, Alan; Medo, Matus

    2016-12-01

    Models of spatial firm competition assume that customers are distributed in space and transportation costs are associated with their purchases of products from a small number of firms that are also placed at definite locations. It has been long known that the competition equilibrium is not guaranteed to exist if the most straightforward linear transportation costs are assumed. We show by simulations and also analytically that if periodic boundary conditions in a plane are assumed, the equilibrium exists for a pair of firms at any distance. When a larger number of firms is considered, we find that their total equilibrium profit is inversely proportional to the square root of the number of firms. We end with a numerical investigation of the system's behavior for a general transportation cost exponent.

  8. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  9. The spectroscopic search for the trace aerosols in the planetary atmospheres - the results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Blecka, Maria I.

    2010-05-01

    The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.

  10. Experimental and simulation study results of an Adaptive Video Guidance System /AVGS/

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.

    1975-01-01

    Studies relating to stellar-body exploration programs have pointed out the need for an adaptive guidance scheme capable of providing automatic real-time guidance and site selection capability. For the case of a planetary lander, without such guidance, targeting is limited to what are believed to be generally benign areas in order to ensure a reasonable landing-success probability. Typically, the Mars Viking Lander will be jeopardized by obstacles exceeding 22 centimers in diameter. The benefits of on-board navigation and real-time selection of a landing site and obstacle avoidance have been demonstrated by the Apollo lunar landings, in which man performed the surface sensing and steering functions. Therefore, an Adaptive Video Guidance System (AVGS) has been developed, bread-boarded, and flown on a six-degree-of-freedom simulator.

  11. Experimental results and simulations from aperture synthesis three-dimensional radiometric imaging

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    2016-10-01

    This paper presents the theory and algorithm of how a three-dimensional (3D) image can be generated using crosscorrelations of radiometric emission from a source measured using antennas in the near field. An example of how the algorithm is used to create 3D images of emission measured from a noise source is presented, indicating the presence of Fresnel noise and aliasing in the experimental data when the source is moved away from the phase centre. Simulations are presented which reproduce the Fresnel noise as generated by a 3x3x3 array of point sources located at the centre of a 2 metre diameter array of antennas representing a security screening portal. Two methods of reducing the Fresnel noise are presented: 1) a software method which makes successive more accurate estimates of the locations and intensities of sources; 2) a hardware method which reduces the coherence length of the radiation by increasing the radiation bandwidth.

  12. MULTILEVEL MONTE CARLO (MLMC) SIMULATIONS: PERFORMANCE RESULTS FOR SPE10 (XY SLICES)

    SciTech Connect

    Kalchev, Delyan; Vassilevski, Panayot S.

    2016-02-26

    In this report we first describe a generic multilevel Monte Carlo method and then illustrate its superior performance over a traditional single-level Monte Carlo method for second order elliptic PDEs corresponding to two-dimensional layers in (x, y)-direction of the Tenth SPE Comparative Solution project (SPE 10) which gives high-contrast permeability coefficients. The SPE10 data set is used as a coarse level in the Monte Carlo method and the respective permeability coefficient k (provided in the SPE10 dataset) is used as a mean in the simulation. The actual coefficients are drawn based on a KL-expansion assuming that the log-mean is perturbed by a log-normal distributed samples.

  13. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    SciTech Connect

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  14. Excluded Volume Effects in Polymer Solutions: II. Comparison of Experimental Results with Numerical Simulation Data

    SciTech Connect

    Graessley, W.W.; Grest, G.S.; Hayward, R.C.

    1999-03-23

    The effect of excluded volume on the coil size of dilute linear polymers was investigated by off-lattice Monte Carlo simulations. The radius of gyration R{sub g} was evaluated for a wide range of chain lengths at several temperatures and at the athermal condition. The theta temperature and the corresponding theta chain dimensions were established for the system, and the dependence of the size expansion factor, a{sub s} = R{sub g} /(R{sub g}){sub {theta}}, on chain length N and temperature T was examined. For long chains and at high temperatures, a{sub s} is a function of N/N{sub s}{sup 2} alone, where the length scale N{sub s}{sup 2} depends only on T. The form of this simulations-based master function compares favorably with {alpha}{sub s}(M/M{sub s}{sup 2}), an experimental master curve for linear polymers in good solvents, where M{sub s}{sup 2} depends only on polymer-solvent system. Comparisons when N{sub s}{sup 2}(T) and M{sub s}{sup 2}(system) are reduced to common units, numbers of Kuhn steps, strongly indicate that coil expansion in even the best of good solvents is small relative to that expected for truly athermal solutions. An explanation for this behavior is proposed, based on what would appear to be an inherent difference in the equation of state properties for polymeric and monomeric liquids.

  15. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT – CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    SciTech Connect

    Seitz, Roger; Freshley, Mark D.; Dixon, Paul; Hubbard, Susan S.; Freedman, Vicky L.; Flach, Gregory P.; Faybishenko, Boris; Gorton, Ian; Finsterle, Stefan A.; Moulton, John D.; Steefel, Carl I.; Marble, Justin

    2013-06-27

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  16. From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X.

    2012-11-01

    In this work the possibility of modeling manufacturing ceramic products is analyzed through the application of transient thermography, holographic interferometry and digital speckle photography, in order to identify the subsurface defects characteristics. This integrated method could be used to understand the nature of heterogeneous materials (such as plastic, sponge simulating a void, wood, aluminum) potentially contained within ceramic materials, as well as to predict crack formation due to them. The paper presents the analysis of green ceramic tile containing defects of different types and sizes located at different depths. The finite element method is used for solving the problem of transient heat transfer occurring in experimental conditions. Unknown parameters of the numerical model (such as convective heat transfer coefficients and sample surface emissivity) were adjusted to obtain numerical simulation results as close as possible to those obtained experimentally. Similarities and differences between experimental and simulated data are analyzed and discussed. Possibilities for improving the results and further developments are proposed.

  17. Recent Electron-Cloud Simulation Results for the Main Damping Rings of the NLC and the TESLA Linear Colliders

    SciTech Connect

    Pivi, Mauro T F

    2003-05-19

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  18. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    SciTech Connect

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-05-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  19. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  20. H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations

    NASA Astrophysics Data System (ADS)

    Bonnefoy-Claudet, Sylvette; Cornou, Cécile; Bard, Pierre-Yves; Cotton, Fabrice; Moczo, Peter; Kristek, Jozef; Fäh, Donat

    2006-11-01

    Ambient vibration techniques such as the H/V method may have the potential to significantly contribute to site effect evaluation, particularly in urban areas. Previous studies interpret the so-called Nakamura's technique in relation to the ellipticity ratio of Rayleigh waves, which, for a high enough impedance contrast, exhibits a pronounced peak close to the fundamental S-wave resonance frequency. Within the European SESAME project (Site EffectS assessment using AMbient Excitations) this interpretation has been tested through noise numerical simulation under well-controlled conditions in terms of source type and distribution and propagation structure. We will present simulations for a simple realistic site (one sedimentary layer over bedrock) characterized by a rather high impedance contrast and low quality factor. Careful H/V and array analysis on these noise synthetics allow an in-depth investigation of the link between H/V ratio peaks and the noise wavefield composition for the soil model considered here: (1) when sources are near (4 to 50 times the layer thickness) and surficial, H/V curves exhibit one single peak, while the array analysis shows that the wavefield is dominated by Rayleigh waves; (2) when sources are distant (more than 50 times the layer thickness) and located inside the sedimentary layer, two peaks show up on the H/V curve, while the array analysis indicates both Rayleigh waves and strong S head waves; the first peak is due to both fundamental Rayleigh waves and resonance of head S waves, the second is only due to the resonance of head S waves; (3) when sources are deep (located inside the bedrock), whatever their distance, H/V ratio exhibit peaks at the fundamental and harmonic resonance frequencies, while array analyses indicate only non-dispersive body waves; the H/V is thus simply due to multiple reflections of S waves within the layer. Therefore, considering that experimental H/V ratio (i.e. derived from actual noise measured in the field

  1. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    SciTech Connect

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  2. Simulating Results of Experiments on Gene Regulation of the Lactose Operon in Escherichia coli; a Problem-Solving Exercise.

    ERIC Educational Resources Information Center

    Hitchen, Trevor; Metcalfe, Judith

    1987-01-01

    Describes a simulation of the results of real experiments which use different strains of Escherichia coli. Provides an inexpensive practical problem-solving exercise to aid the teaching and understanding of the Jacob and Monod model of gene regulation. (Author/CW)

  3. Measurement results from a balloon experiment simulating land mobile satellite transmissions

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Torrence, G. W.

    1984-01-01

    A transmitter operating at 869.525 MHz was twice carried by a stratospheric balloon to an altitude of about 40 km. A motor vehicle was driven within the line-of-sight from the transmitter. Measurements of the received signal strength were made every 1/8 wavelength for an overall travelling distance of about seven hundred kilometers. This scenario was to simulate a satellite system providing mobile communications to rural areas. The statistics of the sampled field, consisting of a combination of direct wave, specular reflection and diffuse components, are presented as a function of elevation angle. Parameters such as type of road driven (mostly 2 lane) or type of landscape (rolling to flat) and vegetation (pine and mixed forest) encountered are described where possible. The power distribution function for all the data, at elevation angles from 10 to 35 degrees, is 1 dB below the free space mean at the 50% level, 7 dB below at the 90% level, and 18 dB below at the 99% level. In the elevation angle range of 30 to 35 degrees the corresponding values were found to be .5, 1.2, and 4.5 dB. The conditional fade duration and level crossing rate distribution functions are also presented. The former shows some dependence on the threshold level, the latter almost none.

  4. Measurement results from a balloon experiment simulating land mobile satellite transmissions

    NASA Astrophysics Data System (ADS)

    Vogel, W. J.; Torrence, G. W.

    1984-04-01

    A transmitter operating at 869.525 MHz was twice carried by a stratospheric balloon to an altitude of about 40 km. A motor vehicle was driven within the line-of-sight from the transmitter. Measurements of the received signal strength were made every 1/8 wavelength for an overall travelling distance of about seven hundred kilometers. This scenario was to simulate a satellite system providing mobile communications to rural areas. The statistics of the sampled field, consisting of a combination of direct wave, specular reflection and diffuse components, are presented as a function of elevation angle. Parameters such as type of road driven (mostly 2 lane) or type of landscape (rolling to flat) and vegetation (pine and mixed forest) encountered are described where possible. The power distribution function for all the data, at elevation angles from 10 to 35 degrees, is 1 dB below the free space mean at the 50% level, 7 dB below at the 90% level, and 18 dB below at the 99% level. In the elevation angle range of 30 to 35 degrees the corresponding values were found to be .5, 1.2, and 4.5 dB. The conditional fade duration and level crossing rate distribution functions are also presented. The former shows some dependence on the threshold level, the latter almost none.

  5. Type of partnership and heterosexual spread of HIV infection in rural Uganda: results from simulation modelling.

    PubMed

    Robinson, N J; Mulder, D; Auvert, B; Whitworth, J; Hayes, R

    1999-11-01

    The objective was to estimate the likely percentage of HIV infections that may be attributable to one-off partnerships (such as those between female sex workers and their clients) and longer-term partnerships in rural Uganda. This was addressed by the application of a microsimulation model (SimulAIDS) of the transmission dynamics of HIV infection, drawing on data from a population cohort of 10,000 in rural Uganda. For a scenario reproducing documented characteristics of the study population in 1990, when adult HIV prevalence was 9%, and during subsequent follow up (1990-1994), when adult HIV incidence was 8 per 1000 person-years, the percentage of HIV infections in men (women) attributed to one-off partnerships decreased from 96% (26%) during 1980 to 67% (8%) in 1989 and 22% (5%) in 1994. Reducing HIV transmission between one-off partners early in an HIV epidemic may substantially limit the potential for the spread of HIV infection. At a later phase, prevention must also focus on control of transmission between longer-term HIV-discordant partners.

  6. Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.

    1978-01-01

    Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

  7. James Webb Space Telescope Optical Simulation Testbed I: overview and first results

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-08-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.

  8. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies

    NASA Astrophysics Data System (ADS)

    Tibermacine, T.; Merazga, A.; Ledra, M.; Ouhabab, N.

    2015-09-01

    The constant photocurrent method in the ac-mode (ac-CPM) is used to determine the defect density of states (DOS) in hydrogenated microcrystalline silicon (μc-Si:H) prepared by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD). The absorption coefficient spectrum (ac-α(hv)), is measured under ac-CPM conditions at 60 Hz. The measured ac-α(hv) is converted by the CPM spectroscopy into a DOS distribution covering a portion in the lower energy range of occupied states. We have found that the density of valence band-tail states falls exponentially towards the gap with a typical band-tail width of 63 meV. Independently, computer simulations of the ac-CPM are developed using a DOS model that is consistent with the measured ac-α(hv) in the present work and a previously measured transient photocurrent (TPC) for the same material. The DOS distribution model suggested by the measurements in the lower and in the upper part of the energy-gap, as well as by the numerical modelling in the middle part of the energy-gap, coincide reasonably well with the real DOS distribution in hydrogenated microcrystalline silicon because the computed ac-α(hv) is found to agree satisfactorily with the measured ac-α(hv).

  9. Thermodynamically Constrained Averaging Theory (TCAT) Two-Phase Flow Model: Derivation, Closure, and Simulation Results

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Miller, C. T.; Dye, A. L.; Gray, W. G.; McClure, J. E.; Rybak, I.

    2015-12-01

    The thermodynamically constrained averaging theory (TCAT) has been usedto formulate general classes of porous medium models, including newmodels for two-fluid-phase flow. The TCAT approach provides advantagesthat include a firm connection between the microscale, or pore scale,and the macroscale; a thermodynamically consistent basis; explicitinclusion of factors such as interfacial areas, contact angles,interfacial tension, and curvatures; and dynamics of interface movementand relaxation to an equilibrium state. In order to render the TCATmodel solvable, certain closure relations are needed to relate fluidpressure, interfacial areas, curvatures, and relaxation rates. In thiswork, we formulate and solve a TCAT-based two-fluid-phase flow model. We detail the formulation of the model, which is a specific instancefrom a hierarchy of two-fluid-phase flow models that emerge from thetheory. We show the closure problem that must be solved. Using recentresults from high-resolution microscale simulations, we advance a set ofclosure relations that produce a closed model. Lastly, we solve the model using a locally conservative numerical scheme and compare the TCAT model to the traditional model.

  10. Plasticity resulted from phase transformation for monolayer molybdenum disulfide film during nanoindentation simulations.

    PubMed

    Wang, Weidong; Li, Longlong; Yang, Chenguang; Soler-Crespo, Rafael A; Meng, Zhaoxu; Li, Minglin; Zhang, Xu; Keten, Sinan; Espinosa, Horacio D

    2017-04-21

    Molecular dynamics simulations on nanoindentation of circular monolayer molybdenum disulfide (MoS2) film are carried out to elucidate the deformation and failure mechanisms. Typical force-deflection curves are obtained, and in-plane stiffness of MoS2 is extracted according to a continuum mechanics model. The measured in-plane stiffness of monolayer MoS2 is about 182 ± 14 N m(-1), corresponding to an effective Young's modulus of 280 ± 21 GPa. More interestingly, at a critical indentation depth, the loading force decreases sharply and then increases again. The loading-unloading-reloading processes at different initial unloading deflections are also conducted to explain the phenomenon. It is found that prior to the critical depth, the monolayer MoS2 film can return to the original state after completely unloading, while there is hysteresis when unloading after the critical depth and residual deformation exists after indenter fully retracted, indicating plasticity. This residual deformation is found to be caused by the changed lattice structure of the MoS2, i.e. a phase transformation. The critical pressure to induce the phase transformation is then calculated to be 36 ± 2 GPa, consistent with other studies. Finally, the influences of temperature, the diameter and indentation rate of MoS2 monolayer on the mechanical properties are also investigated.

  11. Overview of HIT-SI3 experiment: Simulations, Diagnostics, and Summary of Current Results

    NASA Astrophysics Data System (ADS)

    Penna, James; Jarboe, Thomas; Nelson, Brian; Hossack, Aaron; Sutherland, Derek; Morgan, Kyle; Hansen, Chris; Benedett, Thomas; Everson, Chris; Victor, Brian

    2016-10-01

    The Helicity Injected Torus - Steady Inductive 3(HIT-SI3)experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI). Three injector units allow for continuous injection of helicity into a copper flux conserver in order to sustain a spheromak. Firing of the injectors with a phase difference allows finite rotation of the plasma to provide a stabilizing effect. Simulations in the MHD code NIMROD and the fluid-model code PSI-TET provide validation and a basis for interpretation of the observed experimental data. Thompson Scattering (TS) and Far Infrared (FIR) Interferometer systems allow temperature and line-averaged density measurements to be taken. An Ion Doppler Spectroscopy (IDS) system allows measurement of the plasma rotation and velocity. HIT-SI3 data has been used for validation of IDCD predictions, in particular the projected impedance of helicity injectors according to the theory. The experimental impedances have been calculated here for the first time for different HIT-SI3 regimes. Such experimental evidence will contribute to the design of future experiments employing IDCD as a current-drive mechanism. Work supported by the D.O.E., Office of Science, Office of Fusion Science.

  12. Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma

    PubMed Central

    Tatham, Andrew J.; Boer, Erwin R.; Gracitelli, Carolina P. B.; Rosen, Peter N.; Medeiros, Felipe A.

    2015-01-01

    Purpose: To examine the relationship between Motor Vehicle Collisions (MVCs) in drivers with glaucoma and standard automated perimetry (SAP), Useful Field of View (UFOV), and driving simulator assessment of divided attention. Methods: A cross-sectional study of 153 drivers from the Diagnostic Innovations in Glaucoma Study. All subjects had SAP and divided attention was assessed using UFOV and driving simulation using low-, medium-, and high-contrast peripheral stimuli presented during curve negotiation and car following tasks. Self-reported history of MVCs and average mileage driven were recorded. Results: Eighteen of 153 subjects (11.8%) reported a MVC. There was no difference in visual acuity but the MVC group was older, drove fewer miles, and had worse binocular SAP sensitivity, contrast sensitivity, and ability to divide attention (UFOV and driving simulation). Low contrast driving simulator tasks were the best discriminators of MVC (AUC 0.80 for curve negotiation versus 0.69 for binocular SAP and 0.59 for UFOV). Adjusting for confounding factors, longer reaction times to driving simulator divided attention tasks provided additional value compared with SAP and UFOV, with a 1 standard deviation (SD) increase in reaction time (approximately 0.75 s) associated with almost two-fold increased odds of MVC. Conclusions: Reaction times to low contrast divided attention tasks during driving simulation were significantly associated with history of MVC, performing better than conventional perimetric tests and UFOV. Translational Relevance: The association between conventional tests of visual function and MVCs in drivers with glaucoma is weak, however, tests of divided attention, particularly using driving simulation, may improve risk assessment. PMID:26046007

  13. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  14. Detached Eddy Simulation Results for a Space Launch System Configuration at Liftoff Conditions and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Ghaffari, Farhad

    2015-01-01

    Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.

  15. Simulation of high-efficiency n[sup +]p indium phosphide solar cell results and future improvements

    SciTech Connect

    Jain, R.K.; Flood, D.J. )

    1994-12-01

    A simulation of the highest efficiency (19.1% AM0) n[sup +]p indium phosphide (InP) solar cell was made using a computer code PC-1D in order to understand it and suggest future improvements to it. Available cell design and process data was used in the simulation. Minority carrier diffusion lengths in the emitter and base have been varied to match the experimental cell I-V characteristics with the calculated results. To further understand and improve the InP cell efficiency, simulations were performed using improved values of cell material and process parameters. The authors show that the efficiency of this cell could be increased to more than 23% AM0 by incorporating the suggested cell material, design and process improvements. At these high efficiencies InP cell technology will be very attractive for space use.

  16. A Study of the Pre-Licensure Nursing Students' Perception of the Simulation Learning Environment as Helpful in Achieving Clinical Competencies and Their Perception of the Impact of the Level of Fidelity

    ERIC Educational Resources Information Center

    Crary, Wendy M.

    2012-01-01

    The research question of this study was: to what degree do nursing students perceive using the High Fidelity Simulation (HFS) learning environment to be helpful in their ability to achieve clinical competency. The research sub-questions (7) explored the students' demographics as an influence on rating of reality and helpfulness and the…

  17. Computer simulation of cerebral blood flow in moyamoya and the results of surgical therapies.

    PubMed

    Charbel, F T; Misra, M; Clarke, M E; Ausman, J I

    1997-10-01

    Moyamoya is the disease which involves the terminal portions of the internal carotid or origins of the middle or anterior cerebral arteries. The posterior communicating arteries are also involved, but not the vertebrals or the basilar artery. The disease occurs more commonly in females than males and it has two age peaks at less than 10 and 40 years. Over the years many treatment options or procedures have been advocated for this disease either with direct bypasses or indirect revascularization procedures or both in combination. Whether one procedure is better than another is a matter of question and still to be determined. Along with it, there are various diagnostic and research work have been done for the etiology and the management of this disease. We have tried to implement a computer model of cerebral blood flow in order to assess and predict the flow in this disease process. At this time to know and predict the effectivity of certain types of offered treatment of Moyamoya disease is only to evaluate patients clinically with long term follow ups and at some interval after surgery with angiography or blood flow determinations. This study tries to focus on the use of computerized model of predicting cerebral blood flow which tries to assess the cerebral flow and decide which treatment option would be the best for a particular patient. After various computer simulations the blood flow following each treatment option is detected and the situation which offers the best treatment in a particular case is offered to the patient. To confirm the use of utility of this computer model a larger population of patients with Moyamoya disease need to be evaluated.

  18. Polar Direct Drive--Simulations and Results from OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2015-11-01

    Polar direct drive (PDD) is a valuable platform to study implosion dynamics at the National Ignition Facility (NIF). While hydrodynamic behavior is expected to scale between OMEGA and the NIF, coronal laser-plasma interactions that influence drive and shell preheat are expected to be different because of the larger coronal density scale lengths characteristic of the NIF. The goal of NIF experiments is to validate physics models (e.g., thermal transport and laser-plasma interactions relevant to energy coupling) at these longer scale lengths to gain confidence in hydrodynamic simulations of direct-drive implosions. Models in the hydrodynamic code DRACO, validated using OMEGA implosions, are used to design and interpret NIF experiments. The physics in these models, including cross-beam energy transfer and nonlocal transport, is discussed. Comparisons with observations including shell and ablation surface trajectory, temporally resolved scattered light and spectra, bang time, shell shape, time-resolved x-ray emission, and areal density are presented from OMEGA and NIF experiments. Excellent agreement is obtained on the backlit shell trajectories and scattered light, providing confidence in the modeling of the laser drive at the longer scale. Possible reasons for the discrepancy in the predicted trajectory of the ablation surface are discussed and planned experiments to address issues such as imprint and shock timing are presented. As will be shown, high-convergence implosions should be possible with custom phase plates relevant to PDD, improved single-beam smoothing, and laser pulse shaping. Such implosions are a necessary step toward a future direct-drive -ignition campaign. A path forward for direct drive on the NIF is presented. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. The effects of the L/N-type calcium channel blocker (cilnidipine) on sympathetic hyperactive morning hypertension: results from ACHIEVE-ONE.

    PubMed

    Kario, Kazuomi; Ando, Shin-ichi; Kido, Hidenori; Nariyama, Jin; Takiuchi, Shin; Yagi, Tetsuo; Shimizu, Toshiki; Eguchi, Kazuo; Ohno, Minoru; Kinoshita, Osamu; Yamada, Takahisa

    2013-02-01

    The Ambulatory Blood Pressure Control and Home Blood Pressure (Morning and Evening) Lowering By N-Channel Blocker Cilnidipine (ACHIEVE-ONE) trial is a large-scale clinical study on blood pressure (BP) and pulse rate (PR) in the real world with use of cilnidipine, a unique L/N-type Ca channel blocker, possessing a suppressive action on increased sympathetic activity in patients with essential hypertension. The effects of cilnidipine on morning hypertension were examined. The authors examined 2319 patients treated with cilnidipine for 12 weeks. Clinic systolic BP (SBP) decreased by 19.6 mm Hg from 155.0 mm Hg, whereas morning SBP decreased by 17.0 mm Hg from 152.9 mm Hg after 12-week cilnidipine treatment. Cilnidipine reduced both morning SBP and PR more markedly in patients with higher baseline morning SBP (-3.2 mm Hg and -1.3 beats per minute in the first quartile of morning SBP, -30.9 mm Hg and -3.2 beats per minute in the fourth quartile), and also reduced both morning PR and SBP more markedly in patients with higher baseline morning PR (0.6 beats per minute and -15.6 mm Hg in <70 beats per minute, and -9.7 beats per minute and -20.2 mm Hg in ≥85 beats per minute). Cilnidipine significantly reduced BP and PR in hypertensive patients at the clinic and at home, especially with higher BP and PR in the morning.

  20. Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Gargano, Lucas J.

    2014-01-01

    Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had

  1. Learning Residential Electrical Wiring through Computer Simulation: The Impact of Computer-Based Learning Environments on Student Achievement and Cognitive Load

    ERIC Educational Resources Information Center

    Liu, Han-Chin; Su, I-Hsien

    2011-01-01

    Multimedia learning environments such as computer simulations are widely accepted as tools for supporting science learning. Although the design of multimedia learning environments can be domain specific, few studies have focused on the use of computer simulations for learning residential electrical wiring. This study aimed to determine whether…

  2. The impact of perceptual treatments on driver's behavior: from driving simulator studies to field tests--first results.

    PubMed

    Auberlet, Jean-Michel; Rosey, Florence; Anceaux, Françoise; Aubin, Sébastien; Briand, Patrice; Pacaux, Marie-Pierre; Plainchault, Patrick

    2012-03-01

    Our study focused on the lateral position of drivers in relation to risk on rural crest vertical curves, using a field site proposed by a local operator of the French road network (Conseil Général de Maine-et-Loire, 49). The final goal was to test one road treatment on this field site. The study consisted of three stages. The first, using driving simulators, selected two perceptual treatments (i.e., rumble strips on both sides of the centerline and sealed shoulders) from five that were tested in order to help drivers maintain lateral control when driving on crest vertical curves. The rumble strips were installed first on the field site. The second stage was to develop a diagnostic device specifically in order to evaluate, on the field site, the impact of a perceptual treatment on the driver's performance (i.e., lateral position). This diagnostic device was installed in the field upstream and downstream of the target crest vertical curve. The third stage was to collect the data during two periods, before and after the centerline rumble strips were installed. We then compared the results obtained in the field study with those from the driving simulator studies. The comparison showed that, as in the simulator studies, the centerline rumble strips on the crest vertical curve affected lateral positions, causing the participants to drive closer to the center of the lane. Finally, the results showed the usefulness of driving simulators in the road design process.

  3. Electron Beam Focusing and Spreading due to interactions With Copropagating Plasma Waves and Lasers: Explanation of Simulation Results

    NASA Astrophysics Data System (ADS)

    Bowman, A.; Williams, R. L.

    2016-10-01

    Numerical simulation results suggest that a low energy electron beam, injected perpendicularly across co-propagating plasma waves and laser beams, can be compressed to a line focus under certain conditions, but under different conditions can be spread out into two main lobes on which bunching patterns are impressed. We report several explanations for these observations, and also discuss the similarity of these results to other research results previously reported in the literature. The prospects for testing these results in a laboratory will be discussed, as well as the use of these phenomena as diagnostics. Supported by the Department of Energy.

  4. Studies of Multipactor in Dielectric-Loaded Accelerator Structures: Comparison of Simulation Results with Experimental Data

    SciTech Connect

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas Jr.

    2010-11-04

    In this paper new results of numerical studies of multipactor in dielectric-loaded accelerator structures are presented. The results are compared with experimental data obtained during recent studies of such structures performed by Argonne National Laboratory, the Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs, LLC. Good agreement between the theory and experiment was observed for the structures with larger inner diameter, however the structures with smaller inner diameter demonstrated a discrepancy between the two. Possible reasons for such discrepancy are discussed.

  5. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: simulation results.

    PubMed

    Keall, P J; Lauve, A D; Hagan, M P; Siebers, J V

    2007-06-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D5, D95, and Dmean were not increased or decreased by more than 5% of the prescription dose for any of the 3600 simulated

  6. How Often Do Subscores Have Added Value? Results from Operational and Simulated Data

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2010-01-01

    Recently, there has been an increasing level of interest in subscores for their potential diagnostic value. Haberman suggested a method based on classical test theory to determine whether subscores have added value over total scores. In this article I first provide a rich collection of results regarding when subscores were found to have added…

  7. UAS Integration in the NAS Project: Part Task 6 V & V Simulation: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Shively, Jay; Santiago, Confesor

    2016-01-01

    This is a presentation of the preliminary results on final V and V (Verification and Validation) activity of [RTCA (Radio Technical Commission for Aeronautics)] SC (Special Committee)-228 DAA (Detect and Avoid) HMI (Human-Machine Interface) requirements for display alerting and guidance.

  8. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  9. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  10. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  11. Phase transitions in cooperative coinfections: Simulation results for networks and lattices

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran

    2016-04-01

    We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d -dimensional lattices with d ≥4 , and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.

  12. Phase transitions in cooperative coinfections: Simulation results for networks and lattices.

    PubMed

    Grassberger, Peter; Chen, Li; Ghanbarnejad, Fakhteh; Cai, Weiran

    2016-04-01

    We study the spreading of two mutually cooperative diseases on different network topologies, and with two microscopic realizations, both of which are stochastic versions of a susceptible-infected-removed type model studied by us recently in mean field approximation. There it had been found that cooperativity can lead to first order transitions from spreading to extinction. However, due to the rapid mixing implied by the mean field assumption, first order transitions required nonzero initial densities of sick individuals. For the stochastic model studied here the results depend strongly on the underlying network. First order transitions are found when there are few short but many long loops: (i) No first order transitions exist on trees and on 2-d lattices with local contacts. (ii) They do exist on Erdős-Rényi (ER) networks, on d-dimensional lattices with d≥4, and on 2-d lattices with sufficiently long-ranged contacts. (iii) On 3-d lattices with local contacts the results depend on the microscopic details of the implementation. (iv) While single infected seeds can always lead to infinite epidemics on regular lattices, on ER networks one sometimes needs finite initial densities of infected nodes. (v) In all cases the first order transitions are actually "hybrid"; i.e., they display also power law scaling usually associated with second order transitions. On regular lattices, our model can also be interpreted as the growth of an interface due to cooperative attachment of two species of particles. Critically pinned interfaces in this model seem to be in different universality classes than standard critically pinned interfaces in models with forbidden overhangs. Finally, the detailed results mentioned above hold only when both diseases propagate along the same network of links. If they use different links, results can be rather different in detail, but are similar overall.

  13. UAS Integration into the NAS: HSI Full Mission Simulation Preliminary Results

    NASA Technical Reports Server (NTRS)

    Shively, Jay; Fern, Lisa; Rorie, Conrad

    2014-01-01

    The goal of the Full Mission Sim was to examine the effects of different command and control interfaces on UAS pilots' ability to respond to ATC commands and traffic advisories. Results suggest that higher levels of automation (i.e., waypoint-to-waypoint control interfaces) lead to longer initial response times and longer edit times. The findings demonstrate the importance of providing pilots with interfaces that facilitate their ability to get back "in the loop."

  14. Measurement and computer simulation of antennas on ships and aircraft for results of operational reliability

    NASA Astrophysics Data System (ADS)

    Kubina, Stanley J.

    1989-09-01

    The review of the status of computational electromagnetics by Miller and the exposition by Burke of the developments in one of the more important computer codes in the application of the electric field integral equation method, the Numerical Electromagnetic Code (NEC), coupled with Molinet's summary of progress in techniques based on the Geometrical Theory of Diffraction (GTD), provide a clear perspective on the maturity of the modern discipline of computational electromagnetics and its potential. Audone's exposition of the application to the computation of Radar Scattering Cross-section (RCS) is an indication of the breadth of practical applications and his exploitation of modern near-field measurement techniques reminds one of progress in the measurement discipline which is essential to the validation or calibration of computational modeling methodology when applied to complex structures such as aircraft and ships. The latter monograph also presents some comparison results with computational models. Some of the results presented for scale model and flight measurements show some serious disagreements in the lobe structure which would require some detailed examination. This also applies to the radiation patterns obtained by flight measurement compared with those obtained using wire-grid models and integral equation modeling methods. In the examples which follow, an attempt is made to match measurements results completely over the entire 2 to 30 MHz HF range for antennas on a large patrol aircraft. The problem of validating computer models of HF antennas on a helicopter and using computer models to generate radiation pattern information which cannot be obtained by measurements are discussed. The use of NEC computer models to analyze top-side ship configurations where measurement results are not available and only self-validation measures are available or at best comparisons with an alternate GTD computer modeling technique is also discussed.

  15. Results from the US/USSR exchange for heat load material studies of simulated tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Gahl, J. M.; Crawford, J. F.; McDonald, J. M.; McGrath, R. T.; Zakharov, A.

    This paper presents recent results from exchange I.2 of the US/USSR Exchange Program of Cooperation for Magnetic Confinement Fusion. Previous results from this exchange demonstrated much lower than expected ablation of graphites when the graphites were exposed to disruption like heat fluxes delivered by plasma gun sources. This lower than expected ablation has been accounted for by the 'vapor shielding' effect. Vapor shielding occurs when material is ablated from the surface of the graphite target early in the plasma pulse. This ablated material then shields the surface of the target from the rest of the incoming plasma pulse. Vapor shielding has been inferred from diagnostics and ablation data at all participating laboratories, and clear evidence of the effect has been found by laser interferometry at Kurchatov (Troitsk) in the 2MK-200 machine. Recent results from Kurchatov on the 2MK-200 and MKT experiments continue to indicate that the erosion of graphite exposed to disruption like heat fluxes is much lower than expected. Work from the University of New Mexico on the PLAIDS experiment confirms earlier important work conducted on the VIKA experiment at Efremov. This is particularly interesting in that PLAIDS and VIA have very similar plasma pulse characteristics.

  16. THERMAL ESCAPE IN THE HYDRODYNAMIC REGIME: RECONSIDERATION OF PARKER's ISENTROPIC THEORY BASED ON RESULTS OF KINETIC SIMULATIONS

    SciTech Connect

    Volkov, Alexey N.; Johnson, Robert E.

    2013-03-10

    The one-dimensional steady-state problem of thermal escape from a single-component atmosphere of mon- and diatomic gases is studied in the hydrodynamic (blow-off) regime using the direct simulation Monte Carlo method for an evaporative-type condition at the lower boundary. The simulations are performed for various depths into an atmosphere, indicated by a Knudsen number, Kn{sub 0}, equal to the ratio of the mean free path of molecules to the radial position of the source surface, ranging from 10 to 10{sup -5}, and for the range of the source Jeans parameter, {lambda}{sub 0}, equal to the ratio of gravitational and thermal energies, specific to blow-off. The results of kinetic simulations are compared with the isentropic model (IM) and the Navier-Stokes model. It is shown that the IM can be simplified if formulated in terms of the local Mach number and Jeans parameter. The simulations predict that at Kn{sub 0} < {approx} 10{sup -3} the flow includes a near-surface non-equilibrium Knudsen layer, a zone where the flow can be well approximated by the IM, and a rarefied far field. The corresponding IM solutions, however, only approach Parker's critical solution as {lambda}{sub 0} approaches the upper limit for blow-off. The IM alone is not capable for predicting the flow and requires boundary conditions at the top of the Knudsen layer. For small Kn{sub 0}, the scaled escape rate and energy loss rate are found to be independent of {lambda}{sub 0}. The simulation results can be scaled to any single-component atmosphere exhibiting blow-off if the external heating above the lower boundary is negligible, in particular, to sublimation-driven atmospheres of Kuiper belt objects.

  17. Lac Repressor Mediated DNA Looping: Monte Carlo Simulation of Constrained DNA Molecules Complemented with Current Experimental Results

    PubMed Central

    Biton, Yoav Y.; Kumar, Sandip; Dunlap, David; Swigon, David

    2014-01-01

    Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor. PMID:24800809

  18. Results of sludge slurry pipeline pluggage tests. [Simulation of Radioactive Slurry Flow

    SciTech Connect

    Fazio, J.M.

    1987-02-06

    Test results of sludge slurry transport through the Interarea Transfer Line (IAL) Mock-up Facility showed little risk of plugging the interarea pipelines with sludge slurry. Plug-free operation of the pipeline was successfully demonstrated by worst case IAL operating scenarios. Pipeline pressure gradients were measured vs. flow rate for comparison with a computer model over a range of sludge slurry rheological properties. A mathematical computer model developed by L. M. Lee is included in this report which will predict pressure drop for Bingham plastic fluid flow in a pipeline. IAL pluggage situations and pumping requirements may be realized from this model. 4 refs., 11 figs., 2 tabs.

  19. Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations

    NASA Astrophysics Data System (ADS)

    Saghebfar, M.; Tehrani, M. K.; Darbani, S. M. R.; Majd, A. E.

    2017-01-01

    In this work, the results of experimental and computational single- and multi-shot ablation threshold and the incubation effect of chromium metal sample, irradiated by ultrashort laser pulses, are presented. The experimental value of the ablation threshold is determined based on D2 method by measuring the outer ablation crater diameters as a function of incident laser pulse energy using 800 nm, 30 fs, laser pulses. The value of 0.19 ± 0.04 (J/cm2 ), is obtained for the single-shot ablation threshold fluence. The experimental results are compared with time-dependent heat flow calculations based on the two-temperature model and the effect of number and separation time of two consecutive laser pulses with the same total fluence is studied for the Cr target. Moreover, the role of pulse width and absorbed fluence in thermal equilibrium time between electrons and lattice is investigated in two-temperature model. The thermal equilibrium between electron and lattice is established after a few picoseconds for low fluences and after a few tens of picoseconds at higher fluences.

  20. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen.

    PubMed

    Sorensen, E N; Burgreen, G W; Wagner, W R; Antaki, J F

    1999-01-01

    We have previously described the development of a two-dimensional computational model of platelet deposition onto biomaterials from flowing blood (Sorensen et al., Ann. Biomed. Eng. 27:436-448, 1999). The model requires estimation of four parameters to fit it to experimental data: shear-dependent platelet diffusivity and three platelet-deposition-related reaction rate constants. These parameters are estimated for platelet deposition onto a collagen substrate for simple parallel-plate flow of whole blood in both the presence and absence of thrombin. One set of experimental results is used as a benchmark for model-fitting purposes. The "trained" model is then validated by applying it to additional test cases from the literature for parallel-plate Poiseuille flow over collagen at both higher and lower wall shear rates, and in the presence of various anticoagulants. The predicted values agree very well with the experimental results for the training cases, and good reproduction of deposition trends and magnitudes is obtained for the heparin, but not the citrate, validation cases. The model is formulated to be easily extended to synthetic biomaterials, as well as to more complex flows.