Science.gov

Sample records for achieved simulation results

  1. Goal Setting to Achieve Results

    ERIC Educational Resources Information Center

    Newman, Rich

    2012-01-01

    Both districts and individual schools have a very clear set of goals and skills for their students to achieve and master. In fact, except in rare cases, districts and schools develop very detailed goals they wish to pursue. In most cases, unfortunately, only the teachers and staff at a particular school or district-level office are aware of the…

  2. Getting to Results. Closing the Achievement Gap

    ERIC Educational Resources Information Center

    Read, Tory

    2008-01-01

    The "Closing the Achievement Gap" series explores the Casey Foundation's education investments and presents stories, results, and lessons learned. This publication describes efforts to develop a flexible but rigorous results measurements system that enables the Foundation and its grantees to reflect on practice and course-correct as needed to…

  3. Electrodialysis simulation to achieve optimum current density

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.

    1993-01-01

    Electrodialysis is used to remove salts from waste or other water streams, to yield a concentrated brine and a substatially deionized product water. During the electrodialysis process, the boundary layer adjacent to the ion selective membrane can become depleted of ions, resulting in severe pH changes sometimes accompanied by precipitation, and power losses, by a process known as water splitting. In order to optimize the applied electric current density, to achieve maximum deionization without exceeding the limiting current at any point along the path, a simulation program has been created to plot ion concentrations and fluxes, and cell current densities and voltages along the electrodialysis path. A means for tapering the current density along the path is recommended.

  4. Sharing Leadership Responsibilities Results in Achievement Gains

    ERIC Educational Resources Information Center

    Armistead, Lew

    2010-01-01

    Collective, not individual, leadership in schools has a greater impact on student achievement; when principals and teachers share leadership responsibilities, student achievement is higher; and schools having high student achievement also display a vision for student achievement and teacher growth. Those are just a few of the insights into school…

  5. Results of scientific achievements for production

    SciTech Connect

    Primachenko, V.V.

    1988-07-01

    During recent years the Aluminosilicate Refractory Laboratory of the Ukrainian Scientific-Research Institute for Refractories together with refractory, metallurgical, and other plants has solved a number of problems on the technology and service of refractories. This paper reviews those achievements. A method for producing refractories, vibrocasting, was developed and was found to increase labor productivity by two or three times. The properties of vibrocast refractory parts and materials are discussed and compared to those of pressed and pneumatically rammed refractories. A number of new high-quality forms of refractory production were introduced for fused mullite and heat-resistant mullite-corundum refractories. Increasing the service life of coke oven doors by using an unreinforced block liner and mechanizing their installation and removal was also discussed. The economic savings obtained via these and other developments are cited.

  6. Initial results of SEPAC scientific achievement

    NASA Technical Reports Server (NTRS)

    Obayashi, T.; Kawashima, N.; Sasaki, S.; Yanagisawa, M.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Roberts, W. T.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    Electron beam injection of 5 keV, 300 mA (1.5 kW) and MPD arcjet plasma injection of 2 kJ/shot were successfully performed together with various kinds of diagnostic instruments including a high sensitivity TV camera observation in the Spacelab 1. Major scientific results obtained are studies of: (1) vehicle charge-up due to the electron beam emission and its neutralization by the MPD arcjet plasma; (2) beam-plasma interaction including the plasma wave excitation; (3) beam-atmosphere interaction such as the verification of critical velocity ionization effect; and (4) anomalous enhancement of ionization associated with a neutral gas injection into space.

  7. Open cherry picker simulation results

    NASA Technical Reports Server (NTRS)

    Nathan, C. A.

    1982-01-01

    The simulation program associated with a key piece of support equipment to be used to service satellites directly from the Shuttle is assessed. The Open Cherry Picker (OCP) is a manned platform mounted at the end of the remote manipulator system (RMS) and is used to enhance extra vehicular activities (EVA). The results of simulations performed on the Grumman Large Amplitude Space Simulator (LASS) and at the JSC Water Immersion Facility are summarized.

  8. Achieving better cooling of turbine blades using numerical simulation methods

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.

    2013-02-01

    A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.

  9. School Counselors: Closing Achievement Gaps and Writing Results Reports

    ERIC Educational Resources Information Center

    Hartline, Julie; Cobia, Debra

    2012-01-01

    Charged with closing the achievement gap for marginalized students, school counselors need to be able to identify gaps, develop interventions, evaluate effectiveness, and share results. This study examined 100 summary results reports submitted by school counselors after having received four days of training on the ASCA National Model. Findings…

  10. Fast Plasma Instrument for MMS: Simulation Results

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the

  11. SARDA HITL Simulations: System Performance Results

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam

    2012-01-01

    This presentation gives an overview of the 2012 SARDA human-in-the-loop simulation, and presents a summary of system performance results from the simulation, including delay, throughput and fuel consumption

  12. Higher Education Counts: Achieving Results, 2008. Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2008

    2008-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with elementary…

  13. Higher Education Counts: Achieving Results. 2006 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2006

    2006-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the principle vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with…

  14. Higher Education Counts: Achieving Results. 2009 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2009

    2009-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with elementary…

  15. Higher Education Counts: Achieving Results. 2007 Executive Summary

    ERIC Educational Resources Information Center

    Connecticut Department of Higher Education (NJ1), 2007

    2007-01-01

    "Higher Education Counts" is the annual accountability report on Connecticut's system of higher education. Since 2000, the report has been the primary vehicle for reporting higher education's progress toward achieving six, statutorily-defined state goals: (1) To enhance student learning and promote academic excellence; (2) To join with elementary…

  16. Effective Teaching Results in Increased Science Achievement for All Students

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Kahle, Jane Butler; Fargo, Jamison D.

    2007-01-01

    This study of teacher effectiveness and student achievement in science demonstrated that effective teachers positively impact student learning. A general linear mixed model was used to assess change in student scores on the Discovery Inquiry Test as a function of time, race, teacher effectiveness, gender, and impact of teacher effectiveness in…

  17. Busted Butte: Achieving the Objectives and Numerical Modeling Results

    SciTech Connect

    W.E. Soll; M. Kearney; P. Stauffer; P. Tseng; H.J. Turin; Z. Lu

    2002-10-07

    The Unsaturated Zone Transport Test (UZTT) at Busted Butte is a mesoscale field/laboratory/modeling investigation designed to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain. The UZTT test facility is located approximately 8 km southeast of the potential Yucca Mountain repository area. The UZTT was designed in two phases, to address five specific objectives in the UZ: the effect of heterogeneities, flow and transport (F&T) behavior at permeability contrast boundaries, migration of colloids , transport models of sorbing tracers, and scaling issues in moving from laboratory scale to field scale. Phase 1A was designed to assess the influence of permeability contrast boundaries in the hydrologic Calico Hills. Visualization of fluorescein movement , mineback rock analyses, and comparison with numerical models demonstrated that F&T are capillary dominated with permeability contrast boundaries distorting the capillary flow. Phase 1B was designed to assess the influence of fractures on F&T and colloid movement. The injector in Phase 1B was located at a fracture, while the collector, 30 cm below, was placed at what was assumed to be the same fracture. Numerical simulations of nonreactive (Br) and reactive (Li) tracers show the experimental data are best explained by a combination of molecular diffusion and advective flux. For Phase 2, a numerical model with homogeneous unit descriptions was able to qualitatively capture the general characteristics of the system. Numerical simulations and field observations revealed a capillary dominated flow field. Although the tracers showed heterogeneity in the test block, simulation using heterogeneous fields did not significantly improve the data fit over homogeneous field simulations. In terms of scaling, simulations of field tracer data indicate a hydraulic conductivity two orders of magnitude higher than measured in the laboratory. Simulations of Li, a weakly sorbing tracer

  18. The Value of Full Correction: Achieving Excellent and Affordable Results.

    PubMed

    Kaplan, Julie Bass

    2016-01-01

    Patients often come to medical aesthetic offices with hopes to fully correct lost facial volume and achieve a natural appearance. Unfortunately, the cost per syringe of dermal filler can be a barrier to desired outcomes. Many aesthetic practitioners do the best they can with the amount of product the patient can afford, often falling short of the "wow" effect for the patient. This article describes what one office implemented to solve the conundrum of affordability while still allowing offices to cover its own financial realities. This tool can help patients achieve beautiful, natural, and affordable outcomes while helping offices advance in manufacturer's tiers, improve word-of-mouth advertising, and increase job satisfaction. PMID:27606585

  19. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect

    Kaplan, D.I.

    2001-07-26

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  20. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  1. SCEC Earthquake Simulator Comparison Results for California

    NASA Astrophysics Data System (ADS)

    Tullis, T. E.; Richards-Dinger, K. B.; Barall, M.; Dieterich, J. H.; Field, E. H.; Heien, E. M.; Kellogg, L. H.; Pollitz, F. F.; Rundle, J. B.; Sachs, M. K.; Turcotte, D. L.; Ward, S. N.; Zielke, O.

    2011-12-01

    This is our first report on comparisons of earthquake simulator results with one another and with actual earthquake data for all of California, excluding Cascadia. Earthquake simulators are computer programs that simulate long sequences of earthquakes and therefore allow study of a much longer earthquake history than is possible from instrumental, historical and paleoseismic data. The usefulness of simulated histories for anticipating the probabilities of future earthquakes and for contributing to public policy decisions depends on whether simulated earthquake catalogs properly represent actual earthquakes. Thus, we compare simulated histories generated by five different earthquake simulators with one another and with what is known about actual earthquake history in order to evaluate the usefulness of the simulator results. Although sharing common features, our simulators differ from one another in their details in many important ways. All simulators use the same fault geometry and the same ~15,000, 3x3 km elements to represent the strike-slip and thrust faults in California. The set of faults and the input slip rates on them are essentially those of the UCERF2 fault and deformation model; we will switch to the UCERF3 model once it is available. All simulators use the boundary element method to compute stress transfer between elements. Differences between the simulators include how they represent fault friction and what assumptions they make to promote rupture propagation from one element to another. The behavior of the simulators is encouragingly similar and the results are similar to what is known about real earthquakes, although some refinements are being made to some of the simulators to improve these comparisons as a result of our initial results. The frequency magnitude distributions of simulated events from M6 to M7.5 for a 30,000 year simulated history agree well with instrumental observations for all of California. Scaling relations, as seen on plots of

  2. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  3. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when

  4. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  5. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  6. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    SciTech Connect

    Tisseur, D. Costin, M. Rattoni, B. Vienne, C. Vabre, A. Cattiaux, G.; Sollier, T.

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  7. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    NASA Astrophysics Data System (ADS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-03-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  8. Simulation results for the Viterbi decoding algorithm

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Moorehead, R. W.; Taqvi, S. Z. H.

    1972-01-01

    Concepts involved in determining the performance of coded digital communications systems are introduced. The basic concepts of convolutional encoding and decoding are summarized, and hardware implementations of sequential and maximum likelihood decoders are described briefly. Results of parametric studies of the Viterbi decoding algorithm are summarized. Bit error probability is chosen as the measure of performance and is calculated, by using digital computer simulations, for various encoder and decoder parameters. Results are presented for code rates of one-half and one-third, for constraint lengths of 4 to 8, for both hard-decision and soft-decision bit detectors, and for several important systematic and nonsystematic codes. The effect of decoder block length on bit error rate also is considered, so that a more complete estimate of the relationship between performance and decoder complexity can be made.

  9. Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.

    2000-01-01

    The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.

  10. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    NASA Astrophysics Data System (ADS)

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-08-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from use of such a tool: students are often taught a list of concepts and a separate list of parameters for mathematical equations. The link between the two can be elusive. While wet-lab experimentation is the proven approach to developing this link, in silico simulation can provide a means of acquiring important insight and understanding within a time frame and at a cost that cannot be achieved otherwise. We suggest that simulations and their representation of laboratory experiments in the classroom can become a key component in student achievement by helping to develop a student's positive attitude towards science and his or her creativity in scientific inquiry. We present results of two simulation experiments that validate against data taken from current literature. We follow with a classroom example demonstrating how this tool can be seamlessly integrated within the traditional pharmacology learning experience.

  11. Taking advantage of ground data systems attributes to achieve quality results in testing software

    NASA Technical Reports Server (NTRS)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  12. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  13. Medical Simulation Practices 2010 Survey Results

    NASA Technical Reports Server (NTRS)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  14. Interhemispheric Field-Aligned Currents: Simulation Results

    NASA Astrophysics Data System (ADS)

    Lyatsky, Sonya

    2016-04-01

    We present simulation results of the 3-D magnetosphere-ionosphere current system including the Region 1, Region 2, and interhemispheric (IHC) field-aligned currents flowing between the Northern and Southern conjugate ionospheres in the case of asymmetry in ionospheric conductivities in two hemispheres (observed, for instance, during the summer-winter seasons). We also computed the maps of ionospheric and equivalent ionospheric currents in two hemispheres. The IHCs are an important part of the global 3-D current system in high-latitude ionospheres. These currents are especially significant during summer and winter months. In the winter ionosphere, they may be comparable and even exceed both Region 1 and Region 2 field-aligned currents. An important feature of these interhemispheric currents is that they link together processes in two hemispheres, so that the currents observed in one hemisphere can provide us with information about the currents in the opposite hemisphere. Despite the significant role of these IHCs in the global 3-D current system, they have not been sufficiently studied yet. The main results of our research may be summarized as follows: 1) In winter hemisphere, the IHCs may significantly exceed and be a substitute for the local Region 1 and Region 2 currents; 2) The IHCs may strongly affect the magnitude, location, and direction of the ionospheric and equivalent ionospheric currents (especially in the nightside winter auroral ionosphere). 3) The IHCs in winter hemisphere may be, in fact, an important (and sometimes even major) source of the Westward Auroral Electrojet, observed in both hemispheres during substorm activity. The study of the contribution from the IHCs into the total global 3-D current system allows us to improve the understanding and forecasting of geomagnetic, auroral, and ionospheric disturbances in two hemispheres. The results of our studies of the Interhemispheric currents are presented in papers: (note: for publications my last

  15. SALTSTONE MATRIX CHARACTERIZATION AND STADIUM SIMULATION RESULTS

    SciTech Connect

    Langton, C.

    2009-07-30

    SIMCO Technologies, Inc. was contracted to evaluate the durability of the saltstone matrix material and to measure saltstone transport properties. This information will be used to: (1) Parameterize the STADIUM{reg_sign} service life code, (2) Predict the leach rate (degradation rate) for the saltstone matrix over 10,000 years using the STADIUM{reg_sign} concrete service life code, and (3) Validate the modeled results by conducting leaching (water immersion) tests. Saltstone durability for this evaluation is limited to changes in the matrix itself and does not include changes in the chemical speciation of the contaminants in the saltstone. This report summarized results obtained to date which include: characterization data for saltstone cured up to 365 days and characterization of saltstone cured for 137 days and immersed in water for 31 days. Chemicals for preparing simulated non-radioactive salt solution were obtained from chemical suppliers. The saltstone slurry was mixed according to directions provided by SRNL. However SIMCO Technologies Inc. personnel made a mistake in the premix proportions. The formulation SIMCO personnel used to prepare saltstone premix was not the reference mix proportions: 45 wt% slag, 45 wt% fly ash, and 10 wt% cement. SIMCO Technologies Inc. personnel used the following proportions: 21 wt% slag, 65 wt% fly ash, and 14 wt% cement. The mistake was acknowledged and new mixes have been prepared and are curing. The results presented in this report are assumed to be conservative since the excessive fly ash was used in the SIMCO saltstone. The SIMCO mixes are low in slag which is very reactive in the caustic salt solution. The impact is that the results presented in this report are expected to be conservative since the samples prepared were deficient in slag and contained excess fly ash. The hydraulic reactivity of slag is about four times that of fly ash so the amount of hydrated binder formed per unit volume in the SIMCO saltstone samples is

  16. Results of a new polarization simulation

    NASA Astrophysics Data System (ADS)

    Fetrow, Matthew P.; Wellems, David; Sposato, Stephanie H.; Bishop, Kenneth P.; Caudill, Thomas R.; Davis, Michael L.; Simrell, Elizabeth R.

    2002-01-01

    Including polarization signatures of material samples in passive sensing may enhance target detection capabilities. To obtain more information on this potential improvement, a simulation is being developed to aid in interpreting IR polarization measurements in a complex environment. The simulation accounts for the background, or incident illumination, and the scattering and emission from the target into the sensor. MODTRAN, in combination with a dipole approximation to singly scattered radiance, is used to polarimetrically model the background, or sky conditions. The scattering and emission from rough surfaces are calculated using an energy conserving polarimetric Torrance and Sparrow BRDF model. The simulation can be used to examine the surface properties of materials in a laboratory environment, to investigate IR polarization signatures in the field, or a complex environment, and to predict trends in LWIR polarization data. In this paper we discuss the simulation architecture, the process for determining and roughness as a function of wavelength, which involves making polarization measurements of flat glass plates at various angles and temperatures in the laboratory at Kirtland AF Base, and the comparison of the simulation with field dat taken at Elgin Air Force Base. The later process entails using the extrapolated index of refraction and surface roughness, and a polarimetric incident sky dome generated by MODTRAN. We also present some parametric studies in which the sky condition, the sky temperature and the sensor declination angle were all varied.

  17. Performance as a Function of Resultant Achievement Motivation (Perceived Ability) and Perceived Difficulty

    ERIC Educational Resources Information Center

    Kukla, Andy

    1974-01-01

    Data confirmed Kukla's attributional theory of performance. When a task is perceived to be difficult, high resultant achievers perform better than low resultant achievers, whereas the low motive group proves to be superior to the high group when the task is perceived as easy. (Author/RK)

  18. Piloted Simulator Investigation of Techniques to Achieve Attitude Command Response with Limited Authority Servos

    NASA Technical Reports Server (NTRS)

    Key, David L.; Heffley, Robert K.

    2002-01-01

    The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.

  19. High-fidelity simulation: Assessment of student nurses' team achievements of clinical judgment.

    PubMed

    Hallin, Karin; Bäckström, Britt; Häggström, Marie; Kristiansen, Lisbeth

    2016-07-01

    Nursing educators have the challenge of preparing nursing students to handle complex patient care situations in real life, but much remains unknown about the ability to make clinical judgments. In this study, high-fidelity simulation (HFS) was used at a Swedish university to find answers about pre-licensure nursing students' success in clinical judgment in terms of team ability and relationships with theoretical achievements, and personal and scenario circumstances. The matrix Lasater Clinical Judgment Rubric (LCJR) was used to analyze and score the students' ability in teams to notice, interpret and respond to complex care situations. Overall, the results showed the student teams in their first meeting with HFS in a complex care situation achieved low clinical judgment points; most teams were in the stages of Beginning and Developing. For attaining high team achievements the majority of the students in the team should theoretically be "high performance". Being observers and having HFS experience before nursing education was significant too. However, age, health care experience, and assistant nurse degrees were of secondary importance. Further research at universities regionally, nationally, and internationally is needed. PMID:27428686

  20. Two- and Three-Year Achievement Results from the Memphis Restructuring Initiative.

    ERIC Educational Resources Information Center

    Ross, Steven M.; Sanders, William L.; Wright, S. Paul; Stringfield, Sam; Wang, L. Weiping; Alberg, Marty

    2001-01-01

    Presents the results of a study of student achievement, using a value-added testing technique, after 3 years of Memphis Restructuring Initiative. Findings show positive achievement gains in reform schools compared to demographically similar control schools, though strength of gains varied by type of reform and community poverty levels. (Contains…

  1. The Effects of CSCOPE on Student Achievement as Measured by Both TAKS and STAAR Test Results

    ERIC Educational Resources Information Center

    Helm, Maricela Robledo

    2013-01-01

    The purpose of this study was to examine the effects of CSCOPE curriculum on student achievement. CSCOPE is a curriculum management system used in 750 of the 1,039 school districts in the state of Texas. Student achievement is based on the results acquired from the Texas Assessment of Knowledge and Skills (TAKS) and the new version of the state…

  2. Achieving accurate simulations of urban impacts on ozone at high resolution

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2014-11-01

    The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations [O3] due to urbanization within cities in arid/semi-arid environments. First, a method based on a shape preserving Monotonic Cubic Interpolation (MCI) is developed and used to downscale anthropogenic emissions from the 4 km resolution 2005 National Emissions Inventory (NEI05) to the finest model resolution of 1 km. Using the rapidly expanding Phoenix metropolitan region as the area of focus, we demonstrate the proposed MCI method achieves ozone simulation results with appreciably improved correspondence to observations relative to the default interpolation method of the WRF-Chem system. Next, two additional sets of experiments are conducted, with the recommended MCI approach, to examine impacts of urbanization on ozone production: (1) the urban land cover is included (i.e., urbanization experiments) and, (2) the urban land cover is replaced with the region’s native shrubland. Impacts due to the presence of the built environment on [O3] are highly heterogeneous across the metropolitan area. Increased near surface [O3] due to urbanization of 10-20 ppb is predominantly a nighttime phenomenon while simulated impacts during daytime are negligible. Urbanization narrows the daily [O3] range (by virtue of increasing nighttime minima), an impact largely due to the region’s urban heat island. Our results demonstrate the importance of the MCI method for accurate representation of the diurnal profile of ozone, and highlight its utility for high-resolution air quality simulations for urban areas.

  3. Some Correlates of Net Gain Resultant from Answer Changing on Objective Achievement Test Items

    ERIC Educational Resources Information Center

    Mueller, Daniel J.; Schwedel, Allan

    1975-01-01

    Determines the relationship of sex, answer-changing incidence, and total score to net changes in total score resulting from changing answers, by examining the answer-changing behavior of graduate students responding to achievement test items. (Author/RC)

  4. Modeling and simulation of protein-surface interactions: achievements and challenges.

    PubMed

    Ozboyaci, Musa; Kokh, Daria B; Corni, Stefano; Wade, Rebecca C

    2016-01-01

    Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse

  5. Science Simulations: Do They Make a Difference in Student Achievement and Attitude in the Physics Laboratory?

    ERIC Educational Resources Information Center

    Kelly, Janet; Bradley, Curtis; Gratch, Jonathan

    2008-01-01

    The purpose of this study was to compare and contrast laboratory simulations with traditional (equipment) explorations in physics to determine differences, if any, in student achievement and changes in attitude toward science. Based upon the investigations conducted in undergraduate physics classes with 96 students who were non-science majors, it…

  6. Influence of the Simulation Method on 7th Grade Students' Achievements in Science and Technology Lessons

    ERIC Educational Resources Information Center

    Teke, Huseyin; Dogan, Bekir; Duran, Ahmet

    2015-01-01

    This study aimed to make a comparative analysis of seventh-grade (the second level of the primary education) students' achievement in "Systems of The Human Body" unit in Science and Technology lesson which was taught using both the simulation method and the traditional method along with the influence of these methods on students'…

  7. Superspreading: molecular dynamics simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Theodorakis, Panagiotis; Kovalchuk, Nina; Starov, Victor; Muller, Erich; Craster, Richard; Matar, Omar

    2015-11-01

    The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Recently, we have observed that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid-vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid-vapor and solid-liquid interfaces with surfactants from the interior of the droplet. Here, we present the structural characteristics and kinetics of the droplet spreading during the different stages of this process, and we compare our results with experimental data for trisiloxane and poly oxy ethylene surfactants. In this way, we highlight and explore the differences between surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting. EPSRC Platform Grant MACIPh (EP/L020564/).

  8. School Achievement and Personality. Description of School Achievement in Terms of Ability, Trait, Situational and Background Variables. I: Design and Hypotheses; IV: Results and Discussion.

    ERIC Educational Resources Information Center

    Niskanen, Erkki A.

    This monograph, done in Helsinki, Finland, contains the first and fourth sections dealing with design, hypotheses, results, and discussion, describing school achievement in terms of ability, trait, situational, and background variables. The report (1) investigates the structure of school achievement, (2) describes school achievement in terms of…

  9. The Study of Student Achievement as a Result of Modification of Certain Identifiable Teacher Behaviors.

    ERIC Educational Resources Information Center

    Widell, Waldo R.; And Others

    This study found no significant difference in student achievement as a result of change in identified teacher behaviors in an American History course. The behaviors were those identified in the Stanford Teacher Competence Appraisal Guide. Behavior change was effected through the use of a microteaching teach-reteach cycle with feedback from…

  10. Missing Data and Mixed Results: The Effects of Teach For America on Student Achievement Revisited

    ERIC Educational Resources Information Center

    Penner, Emily K.

    2013-01-01

    This paper revisits existing experimental work on Teach For America (TFA) and extends it by examining treatment effects across the distribution of student achievement. TFA is a rapidly expanding teacher preparation program that currently serves over half a million students in low-income districts across the country. Previous research results did…

  11. Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces - analytical study combined with molecular dynamics simulation.

    PubMed

    Lee, Eungkyu; Zhang, Teng; Hu, Ming; Luo, Tengfei

    2016-06-22

    Interfacial thermal resistance presents great challenges to the thermal management of modern electronics. In this work, we perform an analytical study to enhance the thermal boundary conductance (TBC) of nanostructured interfaces with square-shape pillar arrays, extendable to the characteristic lengths that can be fabricated in practice. As a representative system, we investigate a SiC substrate with the square-shape pillar array combined with epitaxial GaN as the nanostructured interface. By applying a first-order ray tracing method and molecular dynamics simulations to analyze phonon incidence and transmission at the nanostructured interface, we systematically study the impact of the characteristic dimensions of the pillar array on the TBC. Based on the multi-scale analysis we provide a general guideline to optimize the nanostructured interfaces to achieve higher TBC, demonstrating that the optimized TBC value of the nanostructured SiC/GaN interfaces can be 42% higher than that of the planar SiC/GaN interfaces without nanostructures. The model used and results obtained in this study will guide the further experimental realization of nanostructured interfaces for better thermal management in microelectronics. PMID:27275647

  12. Effects of simulated interventions to improve school entry academic skills on socioeconomic inequalities in educational achievement.

    PubMed

    Chittleborough, Catherine R; Mittinty, Murthy N; Lawlor, Debbie A; Lynch, John W

    2014-01-01

    Randomized controlled trial evidence shows that interventions before age 5 can improve skills necessary for educational success; the effect of these interventions on socioeconomic inequalities is unknown. Using trial effect estimates, and marginal structural models with data from the Avon Longitudinal Study of Parents and Children (n = 11,764, imputed), simulated effects of plausible interventions to improve school entry academic skills on socioeconomic inequality in educational achievement at age 16 were examined. Progressive universal interventions (i.e., more intense intervention for those with greater need) to improve school entry academic skills could raise population levels of educational achievement by 5% and reduce absolute socioeconomic inequality in poor educational achievement by 15%. PMID:25327718

  13. Effects of Simulated Interventions to Improve School Entry Academic Skills on Socioeconomic Inequalities in Educational Achievement

    PubMed Central

    Chittleborough, Catherine R; Mittinty, Murthy N; Lawlor, Debbie A; Lynch, John W

    2014-01-01

    Randomized controlled trial evidence shows that interventions before age 5 can improve skills necessary for educational success; the effect of these interventions on socioeconomic inequalities is unknown. Using trial effect estimates, and marginal structural models with data from the Avon Longitudinal Study of Parents and Children (n = 11,764, imputed), simulated effects of plausible interventions to improve school entry academic skills on socioeconomic inequality in educational achievement at age 16 were examined. Progressive universal interventions (i.e., more intense intervention for those with greater need) to improve school entry academic skills could raise population levels of educational achievement by 5% and reduce absolute socioeconomic inequality in poor educational achievement by 15%. PMID:25327718

  14. The VIIRS ocean data simulator enhancements and results

    NASA Astrophysics Data System (ADS)

    Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-10-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  15. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  16. Cooperative learning using simulation to achieve mastery of nasogastric tube insertion.

    PubMed

    Cason, Melanie Leigh; Gilbert, Gregory E; Schmoll, Heidi H; Dolinar, Susan M; Anderson, Jane; Nickles, Barbara Marshburn; Pufpaff, Laurie A; Henderson, Ruth; Lee, Frances Wickham; Schaefer, John J

    2015-03-01

    Traditionally, psychomotor skills training for nursing students involves didactic instruction followed by procedural review and practice with a task trainer, manikin, or classmates. This article describes a novel method of teaching psychomotor skills to associate degree and baccalaureate nursing students, Cooperative Learning Simulation Skills Training (CLSST), in the context of nasogastric tube insertion using a deliberate practice-to-mastery learning model. Student dyads served as operator and student learner. Automatic scoring was recorded in the debriefing log. Student pairs alternated roles until they achieved mastery, after which they were assessed individually. Median checklist scores of 100% were achieved by students in both programs after one practice session and through evaluation. Students and faculty provided positive feedback regarding this educational innovation. CLSST in a deliberate practice-to-mastery learning paradigm offers a novel way to teach psychomotor skills in nursing curricula and decreases the instructor-to-student ratio. PMID:25692824

  17. Next Generation Scientists, Next Opportunities: EPA's Science To Achieve Results (STAR) Program

    NASA Astrophysics Data System (ADS)

    Jones, M.

    2004-12-01

    Scientific research is one of the most powerful tools we have for understanding and protecting our environment. It provides the foundation for what we know about our planet, how it has changed, and how it could be altered in the future. The National Center for Environmental Research (NCER) in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) supports high-quality, extramural research by the nation's leading scientists and engineers to strengthen the basis for decisions about local and national environmental issues. NCER works with academia, state and local governments, other federal agencies, and scientists in EPA to increase human knowledge of how to protect our health and natural resources through its three major programs: · Science to Achieve Results (STAR) Grants · Small Business Innovative Research (SBIR) · Science to Achieve Results (STAR) Fellowships STAR, NCER's primary program, funds research grants and graduate fellowships in environmental science and engineering. Developing the next generation of environmental scientists and engineers is one of NCER's most important objectives. Each year, NCER helps between 80 and 160 students achieve Master's or Ph.D. degrees in environmental science and engineering through its STAR and Greater Research Opportunities (GRO) fellowships. Some of these students have moved on to careers in government while others are now full-time professors and researchers. Still others are working for state environmental agencies or furthering their studies through postdoctoral positions at universities. Since the inception of the NCER program, STAR fellowships (along with grants and SBIR projects) have been awarded in every state in the country. With the help of STAR, current and future scientists and engineers have been able to explore ways to preserve and protect human health and our precious resources.

  18. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  19. Results from D-T Experiments on TFTR and Implications for Achieving an Ignited Plasma

    SciTech Connect

    Hawryluk, R.J. and the TFTR Group

    1998-07-14

    Progress in the performance of tokamak devices has enabled not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain for achieving a magnetic fusion energy reactor. In this paper, the implications of the TFTR experiments for overcoming these remaining issues will be discussed.

  20. "STEPS" Avionics for Exploration Systems the Achieved Results and the Next "STEPS-2"

    NASA Astrophysics Data System (ADS)

    Martelli, Andrea; Perino, Maria Antonietta; Gaia, Enrico; Paccagnini, Carlo

    2013-08-01

    This paper presents the STEPS project reached results in the avionics domains like: vision-based GNC for Mars Descent & Landing, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on perception, 3D map reconstruction and path planning; Mobility & Mechanisms providing an Integrated Ground Mobility System, Rendezvous & Docking equipment, and protection from Environment effects; Human-machine interface features of a predictive Command and Control System;; novel Design & Development Tools, such as a Rover S/W simulator and prototypes of the DEM viewer and of a S/W Rock Creator/visualizator. This paper presents also the STEPS 2 project that started January 2013 and is aimed at improving the development of the most promising technologies, selected from the results of the first STEP phase, and addressing the needs of the exploration missions as defined in the 2012 ministerial conference, with the ultimate goal of an in-flight validation within next five years.

  1. Aerosol kinetic code "AERFORM": Model, validation and simulation results

    NASA Astrophysics Data System (ADS)

    Gainullin, K. G.; Golubev, A. I.; Petrov, A. M.; Piskunov, V. N.

    2016-06-01

    The aerosol kinetic code "AERFORM" is modified to simulate droplet and ice particle formation in mixed clouds. The splitting method is used to calculate condensation and coagulation simultaneously. The method is calibrated with analytic solutions of kinetic equations. Condensation kinetic model is based on cloud particle growth equation, mass and heat balance equations. The coagulation kinetic model includes Brownian, turbulent and precipitation effects. The real values are used for condensation and coagulation growth of water droplets and ice particles. The model and the simulation results for two full-scale cloud experiments are presented. The simulation model and code may be used autonomously or as an element of another code.

  2. Experimental and simulational result multipactors in 112 MHz QWR injector

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Brutus, J. C.; Skaritka, J.; Wu, Q.; Xiao, B.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsed mode after several round of conditioning processes.

  3. Preliminary Results from SCEC Earthquake Simulator Comparison Project

    NASA Astrophysics Data System (ADS)

    Tullis, T. E.; Barall, M.; Richards-Dinger, K. B.; Ward, S. N.; Heien, E.; Zielke, O.; Pollitz, F. F.; Dieterich, J. H.; Rundle, J. B.; Yikilmaz, M. B.; Turcotte, D. L.; Kellogg, L. H.; Field, E. H.

    2010-12-01

    Earthquake simulators are computer programs that simulate long sequences of earthquakes. If such simulators could be shown to produce synthetic earthquake histories that are good approximations to actual earthquake histories they could be of great value in helping to anticipate the probabilities of future earthquakes and so could play an important role in helping to make public policy decisions. Consequently it is important to discover how realistic are the earthquake histories that result from these simulators. One way to do this is to compare their behavior with the limited knowledge we have from the instrumental, historic, and paleoseismic records of past earthquakes. Another, but slow process for large events, is to use them to make predictions about future earthquake occurrence and to evaluate how well the predictions match what occurs. A final approach is to compare the results of many varied earthquake simulators to determine the extent to which the results depend on the details of the approaches and assumptions made by each simulator. Five independently developed simulators, capable of running simulations on complicated geometries containing multiple faults, are in use by some of the authors of this abstract. Although similar in their overall purpose and design, these simulators differ from one another widely in their details in many important ways. They require as input for each fault element a value for the average slip rate as well as a value for friction parameters or stress reduction due to slip. They share the use of the boundary element method to compute stress transfer between elements. None use dynamic stress transfer by seismic waves. A notable difference is the assumption different simulators make about the constitutive properties of the faults. The earthquake simulator comparison project is designed to allow comparisons among the simulators and between the simulators and past earthquake history. The project uses sets of increasingly detailed

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  5. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  6. School climate, peer victimization, and academic achievement: results from a multi-informant study.

    PubMed

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E; Haltigan, J D; Hymel, Shelley

    2014-09-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling, with school climate as a contextual variable. Boys and girls reported no differences in victimization by their peers, although boys had lower GPAs than girls. Peer victimization was related to lower GPA and to a poorer perception of school climate (individual-level), which was also associated with lower GPA. Results of multilevel analyses revealed that peer victimization was again negatively associated with GPA, and that lower school-level climate was associated with lower GPA. Although no moderating effects of school-level school climate or sex were observed, the relation between peer victimization and GPA remained significant after taking into account (a) school-level climate scores, (b) individual variability in school-climate scores, and (c) several covariates--ethnicity, absenteeism, household income, parental education, percentage of minority students, type of school, and bullying perpetration. These findings underscore the importance of a positive school climate for academic success and viewing school climate as a fundamental collective school outcome. Results also speak to the importance of viewing peer victimization as being harmfully linked to students' academic performance. PMID:25198617

  7. Endonasal endoscopic dacryocystorhinostomy: how to achieve optimal results with simple punch technique.

    PubMed

    Naraghi, Mohsen; Tabatabaii Mohammadi, Sayed Ziaeddin; Sontou, Alain Fabrice; Farajzadeh Deroee, Armin; Boroojerdi, Masoud

    2012-05-01

    Endonasal endoscopic dacryocystorhinostomy (EEDCR) has been popularized as a minimally invasive technique. Although preliminary reports revealed less success in comparison with external approaches, recent endonasal endoscopic surgeries on various types of DCR have preserved advantages of this technique while diminishing the failures. We described our experience on EEDCR, including the main advantages and disadvantages of it. Hundred consecutive cases of lachrymal problems underwent EEDCR utilizing simple punch removal of bone, instead of powered instrumentation or lasers. The medial aspect of the sac was removed in all of patients, while preserving normal mucosa around the sac. Hundred cases of EEDCR were performed on 81 patients, with 19 bilateral procedures. Nine procedures were performed under local anesthesia. Based on a mean 14 months follow-up, 95 cases were free of symptoms, revealing 95% success rate. The punch technique diminishes the expenses of powered or laser instrumentation with comparable results. It seems that preserving normal tissues and creating a patent rhinostomy with least surgical trauma and less subsequent scar, plays the most important role in achieving desirable results. PMID:22065173

  8. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges

    PubMed Central

    D'Abramo, Marco; Besker, Neva; Chillemi, Giovanni; Grottesi, Alessandro

    2014-01-01

    Protein kinases work because their flexibility allows to continuously switch from inactive to active form. Despite the large number of structures experimentally determined in such states, the mechanism of their conformational transitions as well as the transition pathways are not easily to capture. In this regard, computational methods can help to shed light on such an issue. However, due to the intrinsic sampling limitations, much efforts have been done to model in a realistic way the conformational changes occurring in protein kinases. In this review we will address the principal biological achievements and structural aspects in studying kinases conformational transitions and will focus on the main challenges related to computational approaches such as molecular modeling and MD simulations. PMID:24860596

  9. A Study of the Generalizability of the Results of a Standardized Achievement Test.

    ERIC Educational Resources Information Center

    Pelavin, Sol H.; Barker, Pierce

    A standardized achievement testing program was begun in Alum Rock, California in the fall of 1972 as part of an evaluation of an Educational Voucher Demonstration. During each of the first three years of the demonstration both the form of test administration and the particular level of the standardized achievement test that a student is assigned…

  10. Achievement Goal Validation among African American High School Students: CFA and Rasch Results

    ERIC Educational Resources Information Center

    Hart, Caroline O.; Mueller, Christian E.; Royal, Kenneth D.; Jones, Martin H.

    2013-01-01

    Achievement goal theory helps describe how and why students engage in various academic behaviors. Historically, achievement goals have been examined almost exclusively with undergraduate, nonminority samples, and predominately with factor analytic techniques. The present study adds to a growing literature by providing initial validation of a…

  11. Does Lengthening the School Day Increase Students' Academic Achievement? Results from a Natural Experiment in Chile

    ERIC Educational Resources Information Center

    Bellei, Cristian

    2009-01-01

    This study (an impact evaluation of the Chilean full school day program) uses difference-in-differences to estimate the effect of a large increase in instructional time on high school students' academic achievement. The main findings are (i) the program had a positive effect on students' achievement in both mathematics and language; (ii) the…

  12. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  13. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  14. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  15. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  16. Simulating lightning into the RAMS model: implementation and preliminary results

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Petracca, M.; Panegrossi, G.; Sanò, P.; Casella, D.; Dietrich, S.

    2014-05-01

    This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS). The method gives the flash density at the resolution of the RAMS grid-scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity. Results show that the model predicts reasonably well both cases and that the lightning activity is well reproduced especially for the most intense case. However, there are errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the intensity and the evolution of the convection. This shows the importance of the use of computationally efficient lightning schemes, such as the one described in this paper, in forecast models.

  17. Results from D-T experiments on TFTR and implications for achieving an ignited plasma

    SciTech Connect

    Hawryluk, R.J.; Blanchard, W.; Batha, S.

    1998-07-01

    Progress in the performance of tokamak devices has enable not only the production of significant bursts of fusion energy from deuterium-tritium plasmas in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) but, more importantly, the initial study of the physics of burning magnetically confined plasmas. As a result of the worldwide research on tokamaks, the scientific and technical issues for achieving an ignited plasma are better understood and the remaining questions more clearly defined. The principal research topics which have been studied on TFTR are transport, magnetohydrodynamic stability, and energetic particle confinement. The integration of separate solutions to problems in each of these research areas has also been of major interest. Although significant advances, such as the reduction of turbulent transport by means of internal transport barriers, identification of the theoretically predicted bootstrap current, and the study of the confinement of energetic fusion alpha-particles have been made, interesting and important scientific and technical issues remain. In this paper, the implications for the TFTR experiments for overcoming these remaining issues will be discussed.

  18. Recent results in analysis and simulation of beam halo

    SciTech Connect

    Ryne, Robert D.; Wangler, Thomas P.

    1995-09-15

    Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to the necessity for time-consuming remote maintenance. Recently there has been much activity related to the core-halo model of halo evolution [1-5]. In this paper we will discuss the core-halo model in the context of constant focusing channels and periodic focusing channels. We will present numerical results based on this model and we will show comparisons with results from large scale particle simulations run on a massively parallel computer. We will also present results from direct Vlasov simulations.

  19. Recent results in analysis and simulation of beam halo

    SciTech Connect

    Ryne, R.D.; Wangler, T.P.

    1994-09-01

    Understanding and predicting beam halo is a major issue for accelerator driven transmutation technologies. If strict beam loss requirements are not met, the resulting radioactivation can reduce the availability of the accelerator facility and may lead to the necessity for time-consuming remote maintenance. Recently there has been much activity related to the core-halo model of halo evolution. In this paper the authors will discuss the core-halo model in the context of constant focusing channels and periodic focusing channels. They will present numerical results based on this model and they will show comparisons with results from large scale particle simulations run on a massively parallel computer. They will also present results from direct Vlasov simulations.

  20. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  1. Computer Simulations in the High School: Students' Cognitive Stages, Science Process Skills and Academic Achievement in Microbiology.

    ERIC Educational Resources Information Center

    Huppert, J.; Lomask, S. Michal; Lazarowitz, R.

    2002-01-01

    Investigates the impact of computer simulation on students' academic achievement and their mastery of science process skills with regard to their cognitive stages. Based on the computer simulation program "The Growth Curve of Microorganisms" which requires 10th grade biology students to use problem solving skills while simultaneously manipulating…

  2. Primary simulation and experimental results of a coaxial plasma accelerator

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Huang, J.; Han, J.; Zhang, Z.; Quan, R.; Wang, L.; Yang, X.; Feng, C.

    A coaxial plasma accelerator with a compressing coil is developed to simulate the impacting and erosion effect of space debris on exposed materials of spacecrafts During its adjustment operation some measurements are conducted including discharging current by Rogowski coil average plasma speed in the coaxial gun by magnetic coils and ejected particle speed by piezoelectric sensor etc In concert with the experiment a primary physical model is constructed in which only the coaxial gun is taken into account with the compressor coil not considered for its unimportant contribution to the plasma ejection speed The calculation results by the model agree well with the diagnostic results considering some assumptions for simplification Based on the simulation result some important suggestions for optimum design and adjustment of the accelerator are obtained for its later operation

  3. ANOVA parameters influence in LCF experimental data and simulation results

    NASA Astrophysics Data System (ADS)

    Delprete, C.; Sesanaa, R.; Vercelli, A.

    2010-06-01

    The virtual design of components undergoing thermo mechanical fatigue (TMF) and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation) and the damage and life model (for life assessment). The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF) tests, low cycle fatigue (LCF) tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo structural FEM

  4. Mathematics beliefs and achievement of adolescent students in Japan: results from the TIMSS 1999 assessment.

    PubMed

    House, J Daniel

    2005-12-01

    A recent study (1) of undergraduate students in a precalculus course indicated that they expressed slightly positive attitudes toward mathematics. It is important, however, to examine relationships between students' initial attitudes and achievement outcomes. The present purpose was to assess the relationship between self-beliefs and mathematics achievement for a large national sample of students from the TIMSS 1999 international sample (eighth graders) from Japan. Several significant relationships between mathematics beliefs and test scores were noted. In addition, the overall multiple regression equation that assessed the joint significance of the complete set of self-belief variables was significant (F7.65 = 159.48, p < .001) and explained 20.6% of the variance in mathematics achievement test scores. PMID:16512286

  5. Preliminary Simulation Results of the 23 June, 2001 Peruvian Tsunami

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Koshimura, S.; Ortiz, M.; Borrero, J.

    2001-12-01

    The tsunami generated by the June 23, 2001 Peruvian earthquake devastated a 50--km section of coast near the earthquake epicenter and was recorded on tide-gages throughout the Pacific. The coastal town of Camana sustained the most damage with tsunami waves penetrating up to 1--km inland and runup exceeding 5--m. The extreme local effects and widespread impact motivated modeling efforts to produce a realistic tsunami simulation of this event. Preliminary results were produced by the TIME center using two resident numerical models, TUNAMI--2 and MOST. Both models were used to produce preliminary simulations shortly after the earthquake, and first results were posted on the Internet a day after the event (http://www.pmel.noaa.gov/tsunami/peru_pmel.html). These numerical results aimed to quantify the magnitude of the tsunami and, to certain extent, to guide the post-tsunami survey. The first simulations have been revised using new data about the seismic source and the results of the post-tsunami survey. Measured inundation distances, flow depths, and runup along topographic transects are used to constrain the inundation model. Preliminary numerical analysis of tsunami inundation will be presented.

  6. Simulating lightning into the RAMS model: implementation and preliminary results

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Petracca, M.; Panegrossi, G.; Sanò, P.; Casella, D.; Dietrich, S.

    2014-11-01

    This paper shows the results of a tailored version of a previously published methodology, designed to simulate lightning activity, implemented into the Regional Atmospheric Modeling System (RAMS). The method gives the flash density at the resolution of the RAMS grid scale allowing for a detailed analysis of the evolution of simulated lightning activity. The system is applied in detail to two case studies occurred over the Lazio Region, in Central Italy. Simulations are compared with the lightning activity detected by the LINET network. The cases refer to two thunderstorms of different intensity which occurred, respectively, on 20 October 2011 and on 15 October 2012. The number of flashes simulated (observed) over Lazio is 19435 (16231) for the first case and 7012 (4820) for the second case, and the model correctly reproduces the larger number of flashes that characterized the 20 October 2011 event compared to the 15 October 2012 event. There are, however, errors in timing and positioning of the convection, whose magnitude depends on the case study, which mirrors in timing and positioning errors of the lightning distribution. For the 20 October 2011 case study, spatial errors are of the order of a few tens of kilometres and the timing of the event is correctly simulated. For the 15 October 2012 case study, the spatial error in the positioning of the convection is of the order of 100 km and the event has a longer duration in the simulation than in the reality. To assess objectively the performance of the methodology, standard scores are presented for four additional case studies. Scores show the ability of the methodology to simulate the daily lightning activity for different spatial scales and for two different minimum thresholds of flash number density. The performance decreases at finer spatial scales and for higher thresholds. The comparison of simulated and observed lighting activity is an immediate and powerful tool to assess the model ability to reproduce the

  7. Enhanced vision systems: results of simulation and operational tests

    NASA Astrophysics Data System (ADS)

    Hecker, Peter; Doehler, Hans-Ullrich

    1998-07-01

    Today's aircrews have to handle more and more complex situations. Most critical tasks in the field of civil aviation are landing approaches and taxiing. Especially under bad weather conditions the crew has to handle a tremendous workload. Therefore DLR's Institute of Flight Guidance has developed a concept for an enhanced vision system (EVS), which increases performance and safety of the aircrew and provides comprehensive situational awareness. In previous contributions some elements of this concept have been presented, i.e. the 'Simulation of Imaging Radar for Obstacle Detection and Enhanced Vision' by Doehler and Bollmeyer 1996. Now the presented paper gives an overview about the DLR's enhanced vision concept and research approach, which consists of two main components: simulation and experimental evaluation. In a first step the simulational environment for enhanced vision research with a pilot-in-the-loop is introduced. An existing fixed base flight simulator is supplemented by real-time simulations of imaging sensors, i.e. imaging radar and infrared. By applying methods of data fusion an enhanced vision display is generated combining different levels of information, such as terrain model data, processed images acquired by sensors, aircraft state vectors and data transmitted via datalink. The second part of this contribution presents some experimental results. In cooperation with Daimler Benz Aerospace Sensorsystems Ulm, a test van and a test aircraft were equipped with a prototype of an imaging millimeter wave radar. This sophisticated HiVision Radar is up to now one of the most promising sensors for all weather operations. Images acquired by this sensor are shown as well as results of data fusion processes based on digital terrain models. The contribution is concluded by a short video presentation.

  8. Key results from SB8 simulant flowsheet studies

    SciTech Connect

    Koopman, D. C.

    2013-04-26

    Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density.

  9. High School Size, Achievement Equity, and Cost: Robust Interaction Effects and Tentative Results.

    ERIC Educational Resources Information Center

    Bickel, Robert; Howley, Craig; Williams, Tony; Glascock, Catherine

    Research has revealed interactive effects of school size and socioeconomic status--as school size increases, the mean measured achievement of schools with disadvantaged students declines. The larger the number of less advantaged students attending a school, the greater the decline. The same school-level interactions have been found in California,…

  10. Some Results and Comments on Using Latent Structure Models to Measure Achievement.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1980-01-01

    Technical problems in achievement testing associated with using latent structure models to estimate the probability of guessing correct responses by examinees is studied; also the lack of problems associated with using Wilcox's formula score. Maximum likelihood estimates are derived which may be applied when items are hierarchically related.…

  11. Do Teacher Characteristics Matter? New Results on the Effects of Teacher Preparation on Student Achievement

    ERIC Educational Resources Information Center

    Kukla-Acevedo, Sharon

    2009-01-01

    Research fairly consistently demonstrates that teachers are an important measurable factor in student learning, yet few teacher characteristics are shown to be consistently related to student achievement. Using a state administrative dataset that matches individual students to their teachers over time, I find that math teachers' undergraduate…

  12. Influences on Academic Achievement: A Comparison of Results from Uganda and More Industrialized Societies.

    ERIC Educational Resources Information Center

    Heyneman, Stephen P.

    Findings in industrialized countries, such as those of Jencks and Coleman, indicate that socioeconomic status has a strong influence on academic achievement and that school effects are of lesser importance. This study of socioeconomic influences and school influences on the performance of 23,615 Ugandan children taking the Primary Leaving…

  13. Usage of Computers and Calculators and Students' Achievement: Results from TIMSS 2003

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2007-01-01

    The paper deals with the facts obtained from TIMSS 2003 (Trends in International Mathematics and Science Study). This international comparative study, which includes 47 participant countries worldwide, explores dependence between eighth grade students' achievement in the areas of mathematics, physics, chemistry, biology and geography, and basic…

  14. BOY SCOUT 5 A DAY ACHIEVEMENT BADGE: OUTCOME RESULTS OF A TROOP & INTERNET INTERVENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: A Boy Scout Five-A-Day Achievement Badge program (SAD), with both troop and Internet-based activities was developed and implemented, and its effect on fruit-juice (FJ) and low-fat vegetable (LV) consumption and psychosocial mediators evaluated. Methods: The nine-week program included 20 ...

  15. 5 A DAY ACHIEVEMENT BADGE FOR AFRICAN AMERICAN BOY SCOUTS: PILOT OUTCOME RESULTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boy Scouts are an important channel to complement school-based programs to enable boys to eat more fruit, 100% juice, and vegetables (FJV) for chronic disease prevention. The "5 a Day Achievement Badge" program was presented on a pilot study basis to African-American Boy Scout troops in Houston. Tro...

  16. School Climate, Peer Victimization, and Academic Achievement: Results from a Multi-Informant Study

    ERIC Educational Resources Information Center

    Wang, Weijun; Vaillancourt, Tracy; Brittain, Heather L.; McDougall, Patricia; Krygsman, Amanda; Smith, David; Cunningham, Charles E.; Haltigan, J. D.; Hymel, Shelley

    2014-01-01

    School-level school climate was examined in relation to self-reported peer victimization and teacher-rated academic achievement (grade point average; GPA). Participants included a sample of 1,023 fifth-grade children nested within 50 schools. Associations between peer victimization, school climate, and GPA were examined using multilevel modeling,…

  17. Improving Achievement in Low-Performing Schools: Key Results for School Leaders

    ERIC Educational Resources Information Center

    Ward, Randolph E.; Burke, Mary Ann

    2004-01-01

    As accountability in schools becomes more crucial, educators are looking for comprehensive and innovative management practices that respond to challenges and realities of student academic achievement. In order to improve academic performance and the quality of instruction, the entire school community needs to be involved. This book provides six…

  18. Study of a Simulation Tool to Determine Achievable Control Dynamics and Control Power Requirements with Perfect Tracking

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.

    1998-01-01

    This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.

  19. Comparisons of Methodologies and Results in Vertical Scaling for Educational Achievement Tests

    ERIC Educational Resources Information Center

    Tong, Ye; Kolen, Michael J.

    2007-01-01

    A number of vertical scaling methodologies were examined in this article. Scaling variations included data collection design, scaling method, item response theory (IRT) scoring procedure, and proficiency estimation method. Vertical scales were developed for Grade 3 through Grade 8 for 4 content areas and 9 simulated datasets. A total of 11 scaling…

  20. Mathematics Instruction and Achievement of Eighth-Grade Students in Korea: Results from the TIMSS 2007 Assessment

    ERIC Educational Resources Information Center

    House, J, Daniel; Telese, James A.

    2013-01-01

    Effective teaching practice for improving student achievement in mathematics is a critical area for instructional design. Further, results from international assessments of mathematics achievement have indicated that students in Korea typically earned test scores higher then international averages. The purpose of this study was to investigate the…

  1. Techniques for mass resolution improvement achieved by typical plasma mass analyzers: Modeling and simulations

    NASA Astrophysics Data System (ADS)

    Nicolaou, Georgios; Yamauchi, Masatoshi; Wieser, Martin; Barabash, Stas; Fedorov, Andrei

    2016-04-01

    Mass separation and particularly distinction between atomic ions and molecular ions are essential in understanding a wide range of plasma environments, with each consisted of different species with various properties. In this study we present the optimization results of light-weight (about 2 kg) magnetic mass analyzers with high g-factor for Rosetta (Ion Composition Analyser: ICA) and for Mars Express and Venus Express (Ion Mass Analyser: IMA). For the instrument's optimization we use SIMION, a 3D ion tracing software in which we can trace particle beams of several energies and directions, passing through the instrument's units. We first reproduced ICA and IMA results, which turned out to be different from simple models for low energy (< 100 eV). We then change the mechanical structure of several units of the instrument and we quantify the new mass resolution achieved with each change. Our goal is to find the optimal instrument's structure, which will allow us to achieve a proper mass resolution to distinguish atomic nitrogen from atomic oxygen for the purposes of a future magnetospheric mission.

  2. Preliminary Results of Laboratory Simulation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-Biao; Xie, Jin-Lin; Hu, Guang-Hai; Li, Hong; Huang, Guang-Li; Liu, Wan-Dong

    2011-10-01

    In the Linear Magnetized Plasma (LMP) device of University of Science and Technology of China and by exerting parallel currents on two parallel copper plates, we have realized the magnetic reconnection in laboratory plasma. With the emissive probes, we have measured the parallel (along the axial direction) electric field in the process of reconnection, and verified the dependence of reconnection current on passing particles. Using the magnetic probe, we have measured the time evolution of magnetic flux, and the measured result shows no pileup of magnetic flux, in consistence with the result of numerical simulation.

  3. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  4. BWR Full Integral Simulation Test (FIST). Phase I test results

    SciTech Connect

    Hwang, W S; Alamgir, M; Sutherland, W A

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report.

  5. Modeling results for a linear simulator of a divertor

    SciTech Connect

    Hooper, E.B.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Jackson, M.C.; Kaiser, T.B.; Molvik, A.W.; Nevins, W.M.; Nilson, D.G.; Pearlstein, L.D.; Rognlien, T.D.

    1993-06-23

    A divertor simulator, IDEAL, has been proposed by S. Cohen to study the difficult power-handling requirements of the tokamak program in general and the ITER program in particular. Projections of the power density in the ITER divertor reach {approximately} 1 Gw/m{sup 2} along the magnetic fieldlines and > 10 MW/m{sup 2} on a surface inclined at a shallow angle to the fieldlines. These power densities are substantially greater than can be handled reliably on the surface, so new techniques are required to reduce the power density to a reasonable level. Although the divertor physics must be demonstrated in tokamaks, a linear device could contribute to the development because of its flexibility, the easy access to the plasma and to tested components, and long pulse operation (essentially cw). However, a decision to build a simulator requires not just the recognition of its programmatic value, but also confidence that it can meet the required parameters at an affordable cost. Accordingly, as reported here, it was decided to examine the physics of the proposed device, including kinetic effects resulting from the intense heating required to reach the plasma parameters, and to conduct an independent cost estimate. The detailed role of the simulator in a divertor program is not explored in this report.

  6. Simulation results of corkscrew motion in DARHT-II

    SciTech Connect

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.; Hughes, T. P.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignments of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.

  7. The effects of computer simulation versus hands-on dissection and the placement of computer simulation within the learning cycle on student achievement and attitude

    NASA Astrophysics Data System (ADS)

    Hopkins, Kathryn Susan

    The value of dissection as an instructional strategy has been debated, but not evidenced in research literature. The purpose of this study was to examine the efficacy of using computer simulated frog dissection as a substitute for traditional hands-on frog dissection and to examine the possible enhancement of achievement by combining the two strategies in a specific sequence. In this study, 134 biology students at two Central Texas schools were divided into the five following treatment groups: computer simulation of frog dissection, computer simulation before dissection, traditional hands-on frog dissection, dissection before computer simulation, and textual worksheet materials. The effects on achievement were evaluated by labeling 10 structures on three diagrams, identifying 11 pinned structures on a prosected frog, and answering 9 multiple-choice questions over the dissection process. Attitude was evaluated using a thirty item survey with a five-point Likert scale. The quasi-experimental design was pretest/post-test/post-test nonequivalent group for both control and experimental groups, a 2 x 2 x 5 completely randomized factorial design (gender, school, five treatments). The pretest/post-test design was incorporated to control for prior knowledge using analysis of covariance. The dissection only group evidenced a significantly higher performance than all other treatments except dissection-then-computer on the post-test segment requiring students to label pinned anatomical parts on a prosected frog. Interactions between treatment and school in addition to interaction between treatment and gender were found to be significant. The diagram and attitude post-tests evidenced no significant difference. Results on the nine multiple-choice questions about dissection procedures indicated a significant difference between schools. The interaction between treatment and school was also found to be significant. On a delayed post-test, a significant difference in gender was

  8. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    SciTech Connect

    Cleveland, Mathew A. Brunner, Thomas A.; Gentile, Nicholas A.; Keasler, Jeffrey A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositions will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.

  9. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  10. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  11. HOMs simulation and measurement results of IHEP02 cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-Juan; Zhai, Ji-Yuan; Zhao, Tong-Xian; Gao, Jie

    2015-11-01

    In accelerator RF cavities, there exists not only the fundamental mode which is used to accelerate the beam, but also higher order modes (HOMs). The higher order modes excited by the beam can seriously affect beam quality, especially for the higher R/Q modes. 1.3 GHz low-loss 9-cell superconducting cavity as a candidate for ILC high gradient cavity, the properties of higher order mode has not been studied carefully. IHEP based on existing low loss cavity, designed and developed a large grain size 1.3 GHz low-loss 9-cell superconducting cavity (IHEP02 cavity). The higher order mode coupler of IHEP02 used TESLA coupler's design. As a result of the limitation of the mechanical design, the distance between higher order mode coupler and end cell is larger than TESLA cavity. This paper reports on measured results of higher order modes in the IHEP02 1.3 GHz low-loss 9-cell superconducting cavity. Using different methods, Qe of the dangerous modes passbands have been obtained. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been obtained by simulation and compared with the results of the TESLA cavity. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences

  12. The Effect of Simulation-Games Environment on Students Achievement in and Attitudes to Mathematics in Secondary Schools

    ERIC Educational Resources Information Center

    Akinsola, M. K.; Animasahun, I. A.

    2007-01-01

    This study sought to determine the effect of simulation-games environment on students' achievement in attitudes to mathematics in secondary school. Data was collected from a sample of 147 students in senior secondary school in Osun-State, Nigeria. t-test and analysis of variance was used to analyze the data collected for the study. The finding…

  13. Effects of a Haptic Augmented Simulation on K-12 Students' Achievement and Their Attitudes Towards Physics

    ERIC Educational Resources Information Center

    Civelek, Turhan; Ucar, Erdem; Ustunel, Hakan; Aydin, Mehmet Kemal

    2014-01-01

    The current research aims to explore the effects of a haptic augmented simulation on students' achievement and their attitudes towards Physics in an immersive virtual reality environment (VRE). A quasi-experimental post-test design was employed utilizing experiment and control groups. The participants were 215 students from a K-12 school in…

  14. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  15. SLAC E144 Plots, Simulation Results, and Data

    DOE Data Explorer

    The 1997 E144 experiments at the Stanford Linear Accelerator Center (SLAC) utilitized extremely high laser intensities and collided huge groups of photons together so violently that positron-electron pairs were briefly created, actual particles of matter and antimatter. Instead of matter exploding into heat and light, light actually become matter. That accomplishment opened a new path into the exploration of the interactions of electrons and photons or quantum electrodynamics (QED). The E144 information at this website includes Feynmann Diagrams, simulation results, and data files. See also aseries of frames showing the E144 laser colliding with a beam electron and producing an electron-positron pair at http://www.slac.stanford.edu/exp/e144/focpic/focpic.html and lists of collaborators' papers, theses, and a page of press articles.

  16. Wastewater neutralization control based in fuzzy logic: Simulation results

    SciTech Connect

    Garrido, R.; Adroer, M.; Poch, M.

    1997-05-01

    Neutralization is a technique widely used as a part of wastewater treatment processes. Due to the importance of this technique, extensive study has been devoted to its control. However, industrial wastewater neutralization control is a procedure with a lot of problems--nonlinearity of the titration curve, variable buffering, changes in loading--and despite the efforts devoted to this subject, the problem has not been totally solved. in this paper, the authors present the development of a controller based in fuzzy logic (FLC). In order to study its effectiveness, it has been compared, by simulation, with other advanced controllers (using identification techniques and adaptive control algorithms using reference models) when faced with various types of wastewater with different buffer capacity or when changes in the concentration of the acid present in the wastewater take place. Results obtained show that FLC could be considered as a powerful alternative for wastewater neutralization processes.

  17. Governance of complex systems: results of a sociological simulation experiment.

    PubMed

    Adelt, Fabian; Weyer, Johannes; Fink, Robin D

    2014-01-01

    Social sciences have discussed the governance of complex systems for a long time. The following paper tackles the issue by means of experimental sociology, in order to investigate the performance of different modes of governance empirically. The simulation framework developed is based on Esser's model of sociological explanation as well as on Kroneberg's model of frame selection. The performance of governance has been measured by means of three macro and two micro indicators. Surprisingly, central control mostly performs better than decentralised coordination. However, results not only depend on the mode of governance, but there is also a relation between performance and the composition of actor populations, which has yet not been investigated sufficiently. Practitioner Summary: Practitioners can gain insights into the functioning of complex systems and learn how to better manage them. Additionally, they are provided with indicators to measure the performance of complex systems. PMID:24456093

  18. Realism, Authenticity, and Learning in Healthcare Simulations: Rules of Relevance and Irrelevance as Interactive Achievements

    ERIC Educational Resources Information Center

    Rystedt, Hans; Sjoblom, Bjorn

    2012-01-01

    Because simulators offer the possibility of functioning as authentic representations of real-world tasks, these tools are regarded as efficient for developing expertise. The users' experience of realism is recognised as crucial, and is often regarded as an effect of the similarity between reality and the simulator itself. In this study, it is…

  19. Are New Technologies Influencing the Academic Results Achieved by Students? An Exploratory Study

    ERIC Educational Resources Information Center

    Gargallo-Castel, Ana; Esteban-Salvador, Luisa; Marzo-Navarro, Mercedes

    2010-01-01

    The purpose of this study is to analyze the application of Information Communication Technologies (ICTs) within tertiary education in a Spanish University. We analyze the results of a new initiative developed by the University of Zaragoza through an innovative project for a virtual campus called "Anillo Digital Docente." Data relating to…

  20. Neighborhoods and Academic Achievement: Results from the Moving to Opportunity Experiment. NBER Working Paper No. 11909

    ERIC Educational Resources Information Center

    Sanbonmatsu, Lisa; Kling, Jeffrey R.; Duncan, Greg J.; Brooks-Gunn, Jeanne

    2006-01-01

    Families originally living in public housing were assigned housing vouchers by lottery, encouraging moves to neighborhoods with lower poverty rates. Although we had hypothesized that reading and math test scores would be higher among children in families offered vouchers (with larger effects among younger children), the results show no significant…

  1. Neighborhoods and Academic Achievement: Results from the Moving to Opportunity Experiment

    ERIC Educational Resources Information Center

    Sanbonmatsu, Lisa; Kling, Jeffrey R.; Duncan, Greg J.; Brooks-Gunn, Jeanne

    2006-01-01

    Families originally living in public housing were assigned housing vouchers by lottery, encouraging moves to neighborhoods with lower poverty rates. Although we had hypothesized that reading and math test scores would be higher among children in families offered vouchers (with larger effects among younger children), the results show no significant…

  2. So What's Different? Student Achievement and Attitude Results from Instructional Development Projects.

    ERIC Educational Resources Information Center

    Eastmond, J. Nicholls; Van Horn, Kathleen L.

    Reported are the results of instructional development projects at Utah State University, funded under mini grants, faculty development grants, or developmental grants to departments. These projects involve redesign of courses in media production, library resources, pattern design and fitting, counselling psychology, quantitative methods,…

  3. Is the Presence of a Results-Oriented Professional Learning Community Predictive of Student Achievement?

    ERIC Educational Resources Information Center

    Sullivan, Michael E.

    2013-01-01

    This study investigated the relationships between teacher collaboration practices known as working as a professional learning community (PLC) and student performance. Through a review of the current literature, an operational framework of PLCs was developed that distinguished results-oriented from inquiry-oriented PLCs. The study considered the…

  4. Student Achievement in Private Schools: Results From NAEP 2000-2005. NCES 2006-459

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2005

    2005-01-01

    This report is the first to focus on private school students' performance on NAEP assessments. It provides results in reading, mathematics, science, and writing in 2000, 2002, 2003, and 2005. Specifically, it focuses on the three private school types that combined enroll the greatest proportion of private school students (Catholic, Lutheran, and…

  5. Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio

    SciTech Connect

    Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D; D'Amico, G; Yager, R; Hosea, J; Wilson, J R; Ryan, P

    2009-05-26

    Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.

  6. Achieving Higher Diagnostic Results in Stereotactic Brain Biopsy by Simple and Novel Technique

    PubMed Central

    Gulsen, Salih

    2015-01-01

    BACKGROUND: Neurosurgeons have preferred to perform the stereotactic biopsy for pathologic diagnosis when the intracranial pathology located eloquent areas and deep sites of the brain. AIM: To get a higher ratio of definite pathologic diagnosis during stereotactic biopsy and develop practical method. MATERIAL AND METHODS: We determined at least two different target points and two different trajectories to take brain biopsy during stereotactic biopsy. It is a different way from the conventional stereotactic biopsy method in which one point has been selected to take a biopsy. We separated our patients into two groups, group 1 (N=10), and group 2 (N= 19). We chose one target to take a biopsy in group 1, and two different targets and two different trajectories in group 2. In group 2, one patient underwent craniotomy due to hemorrhage at the site of the biopsy during tissue biting. However, none of the patients in both groups suffered any neurological complication related biopsy procedure. RESULTS: In group 1, two of 10 cases, and, in group 2, fourteen of 19 cases had positive biopsy harvesting. These results showed statistically significant difference between group 1 and group 2 (P<0.05). CONCLUSIONS: Regarding these results, choosing more than one trajectories and taking at least six specimens from each target provides higher diagnostic rate in stereotaxic biopsy taking method.

  7. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  8. Mid-Holocene permafrost: Results from CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yeyi; Jiang, Dabang

    2016-01-01

    Distribution of frozen ground and active layer thickness in the Northern Hemisphere during the mid-Holocene (MH) and differences with respect to the preindustrial (PI) were investigated here using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Two typical diagnostic methods, respectively, based on soil temperature (Ts based; a direct method) and air temperature (Ta based; an indirect method) were employed to classify categories and extents of frozen ground. In relation to orbitally induced changes in climate and in turn freezing and thawing indices, the MH permafrost extent was 20.5% (1.8%) smaller than the PI, whereas seasonally frozen ground increased by 9.2% (0.8%) in the Northern Hemisphere according to the Ts-based (Ta-based) method. Active layer thickness became larger, but by ≤ 1.0 m in most of permafrost areas during the MH. Intermodel disagreement remains within areas of permafrost boundary by both the Ts-based and Ta-based results, with the former demonstrating less agreement among the CMIP5 models because of larger variation in land model abilities to represent permafrost processes. However, both the methods were able to reproduce the MH relatively degenerated permafrost and increased active layer thickness (although with smaller magnitudes) as observed in data reconstruction. Disparity between simulation and reconstruction was mainly found in the seasonally frozen ground regions at low to middle latitudes, where the reconstruction suggested a reduction of seasonally frozen ground extent to the north, whereas the simulation demonstrated a slightly expansion to the south for the MH compared to the PI.

  9. The Effects of Teaching Numerical Control Concepts Via Simulator Versus Non-Simulator Activities on the Achievement, Programming Proficiency and Attitude of High School Students.

    ERIC Educational Resources Information Center

    Pine, Douglas Taylor

    This study utilized 120 metalworking students and six teachers from Columbus, Ohio area high schools to ascertain the effects of teaching numerical control to industrial arts students by means of simulator-aided activities versus nonsimulator aided activities. Scores obtained from an achievement test, attitude inventory, and word address…

  10. Waste Minimization Improvements Achieved Through Six Sigma Analysis Result In Significant Cost Savings

    SciTech Connect

    Mousseau, Jeffrey, D.; Jansen, John, R.; Janke, David, H.; Plowman, Catherine, M.

    2003-02-26

    Improved waste minimization practices at the Department of Energy's (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) are leading to a 15% reduction in the generation of hazardous and radioactive waste. Bechtel, BWXT Idaho, LLC (BBWI), the prime management and operations contractor at the INEEL, applied the Six Sigma improvement process to the INEEL Waste Minimization Program to review existing processes and define opportunities for improvement. Our Six Sigma analysis team: composed of an executive champion, process owner, a black belt and yellow belt, and technical and business team members used this statistical based process approach to analyze work processes and produced ten recommendations for improvement. Recommendations ranged from waste generator financial accountability for newly generated waste to enhanced employee recognition programs for waste minimization efforts. These improvements have now been implemented to reduce waste generation rates and are producing positive results.

  11. Learning Microbiology with Computer Simulations: Students' Academic Achievement by Method and Gender.

    ERIC Educational Resources Information Center

    Huppert, Jehuda; Yaakobi, Judith; Lazarowitz, Reuven

    1998-01-01

    Studies the use of a computer-assisted learning simulation episode during a unit on the growth curve of microorganisms in grade ten. Finds no significant gender differences in either the experimental or control groups. Contains 25 references. (DDR)

  12. Interprofessional curriculum development achieves results: Initial evidence from a dementia-care protocol.

    PubMed

    Annear, Michael James; Goldberg, Lynette R; Lo, Amanda; Robinson, Andrew

    2016-05-01

    This report describes the outcomes of a five-day, protocol-based interprofessional education (IPE) initiative to prepare undergraduate medical, nursing, and paramedic students for collaborative work with adults with dementia. Clinical placements provided a structured and supervised IPE experience for 127 students in two Residential Aged Care Facilities (RACFs) in Hobart, Australia, during 2013 and 2014. The IPE activity was based on a seven-step protocol formulated by an interprofessional team of educators and aged care practitioners that revolved around collaborative assessments of adults with complex health needs. This article describes the IPE protocol and presents the results of a pre- and post-placement attitude questionnaire and knowledge quiz administered to evaluate student attitudes towards IPE and knowledge of dementia. Data suggest that a five-day, supervised, and protocol-based IPE experience in a dementia-care setting can inculcate positive changes in student attitudes about collaborative practice and may encourage dementia-related learning outcomes. PMID:27029913

  13. The South America VLF Network - SAVNET: Achievements, Latest Results and Future Directions

    NASA Astrophysics Data System (ADS)

    Raulin, J.

    2013-05-01

    In this paper we present recent results obtained by the South America VLF Network (SAVNET). The use of the VLF technique by tracking subionospheric propagation anomalies appears as a very promising tool to study various aspects of Space Weather disturbances. On long timescales it is possible to indirectly monitor the solar Lyman-alpha radiation along the solar cycles. Short time phenomena like solar explosive events can be observed with 100% probability, even for the small intensity events. The effect of high-energy precipitating solar particles can be tracked in the low ionosphere. The same technique is also relevant to study the ionospheric perturbations caused by geomagnetic storms on typical timescales of a day to few days. Extra solar and terrestrial high-energy phenomena are naturally detected in the very sensitive low ionospheric plasma, as Gamma-ray bursts and Soft Gamma-ray repeaters. Finally, the remote sensing of the low ionosphere is also used to search for seismic-electromagnetic effects prior to Earthquakes. At the present time, SAVNET is composed of nine (9) tracking receiver stations in Brazil, Peru, Argentina and Mexico. In this presentation we will describe our future plans for expanding the array. Eastern Europe, Ecuador and Asia are good host candidates to participate in these forthcoming activities. The array expansion is necessary to improve the probability detection of very high-energy remote phenomena, and to demonstrate that these processes of great astrophysical importance can be easily detected using a cheap and simple technique.

  14. The Valid Use of NAEP Achievement Level Scores to Confirm State Test Results in the No Child Left Behind Act

    ERIC Educational Resources Information Center

    Stoneberg, Bert D.

    2007-01-01

    The No Child Left Behind Act sanctions the use of NAEP scores to confirm state testing results. The U.S. Department of Education, as test developer, is responsible to set forth how NAEP scores are to be interpreted and used. Thus far, the Department has not published a clear set of guidelines for using NAEP achievement level scores to conduct a…

  15. Airborne ICESat-2 simulator (MABEL) results from Greenland

    NASA Astrophysics Data System (ADS)

    Neumann, T.; Markus, T.; Brunt, K. M.; Walsh, K.; Hancock, D.; Cook, W. B.; Brenner, A. C.; Csatho, B. M.; De Marco, E.

    2012-12-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key observations of sea ice freeboard, ice sheet elevation change, vegetation canopy height, earth surface elevation and sea surface heights. Scheduled for launch in mid-2016, ICESat-2 will collect data between 88 degrees north and south using a high-repetition rate (10 kHz) laser operating at 532nm, and using a photon-counting detection strategy. Our airborne simulator, the Multiple Altimeter Beam Experimental Lidar (MABEL) uses a similar photon-counting measurement strategy, operates at 532nm (16 beams) and 1064 nm (8 beams) to collect similar data to what we expect for ICESat-2. The comparison between frequencies allows for studies of possible penetration of green light into water or snow. MABEL collects more spatially-dense data than ICESat-2 (2cm along-track vs. 70 cm along track for ICESat-2, and has a smaller footprint than ICESat-2 (2m nominal diameter vs. 10m nominal diameter for ICESat-2) requiring geometric and radiometric scaling to relate MABEL data to simulate ICESat-2 data. We based MABEL out of Keflavik, Iceland during April 2012, and collected ~ 100 hours of data from 20km altitude over a variety of targets. MABEL collected sea ice data over the Nares Strait, and off the east coast of Greenland, the later flight in coordination with NASA's Operation IceBridge, which collected ATM data along the same track within 90 minutes of MABEL data collection. MABEL flew a variety of lines over Greenland in the southwest, Jakobshavn region, and over the ice sheet interior, including 4 hours of coincident data with Operation IceBridge in southwest Greenland. MABEL flew a number of calibration sites, including corner cubes in Svalbard, Summit Station (where a GPS survey of the surface elevation was collected within an hour of our overflight), and well-surveyed targets in Iceland and western Greenland. In this presentation, we present an overview of

  16. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  17. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M.; Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery, Shelly; Carstenson, Larry; Dugan, James; Farritor, Shane; Joyce, James; Rebrovich, Barb

    2003-01-01

    Condensing five years of significant work into a brief narrative fitting PPR requirements gave the affiliates of the Nebraska Space Grant a valuable chance for reflection. Achievements of Space Grant in Nebraska were judiciously chosen for this document that best illustrate the resultant synergism of this consortium, keeping in mind that these examples are only a representation of greater activity throughout the state. Following are highlights of many of the finer and personal achievements for Nebraska Space Grant. The Consortium welcomes inquiries to elaborate on any of these accomplishments.

  18. Achievements of engineering students on a fluid mechanics course in relation to the use of illustrative interactive simulations

    NASA Astrophysics Data System (ADS)

    Romero, Carlos; Martínez, Elvira

    2013-07-01

    Among other skills, a capacity for abstraction and good spatial awareness are needed to succeed in physics courses. According to the prevailing low percentages of passed students on these courses, a great proportion of those students are likely to lack these skills. Our working hypothesis is that simulations could help engineering students visualize physical phenomena and thereby gain a better understanding of physical theoretical concepts and achieve higher grades. Two groups of students (n1 = 40 and n2 = 43) took the same fluid mechanics course at an engineering school. Both groups took the same end-of-course examination, but only group 1 was simulation-taught. For that purpose, 15 original simulations were created with GeoGebra software. Simulation-taught students completed a questionnaire on the interest of using simulations to teach fluid mechanics. Simulations designed in this work covered all the concepts taught on the course and overcame criticisms made on previous simulations also created to teach fluid mechanics. At the examination, the average grade and the percentage of passed students were higher in group 1 than in group 2. When surveyed, group 1 students declared that they enjoyed interacting with the simulations and considered them to be a good complement to the theoretical explanations because simulations helped them revise previously explained concepts. Simulations assisted students with difficulties to visualize and understand physical theoretical concepts but still students performed poorly on the examination. Additional strategies need to be adopted in order to help students develop the skills required to succeed in physics courses.

  19. Safety Observations Achieve Results

    2000-01-16

    The SOAR web application provides a multi-checklist capability where focused observations can be created to address risk-likely work environments, tasks, etc. The SOAR web application has numerous reports to sort the data by key word, multiple factors (i.e., location, team, behavior, checklist, work environment, etc.), and the highest frequency of behaviors and error-likely predecessors, etc. Other performance indicators are also provided.

  20. Simulation of optical diagnostics for crystal growth: models and results

    NASA Astrophysics Data System (ADS)

    Banish, Michele R.; Clark, Rodney L.; Kathman, Alan D.; Lawson, Shelah M.

    1991-12-01

    A computer simulation of a two-color holographic interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  1. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  2. The Cognitive Effects of Simulation-Modeling Software and Systems Thinking on Learning and Achievement.

    ERIC Educational Resources Information Center

    Mandinach, Ellen B.

    This paper examines the effect of using a systems thinking approach in existing secondary school curricula to teach content-specific knowledge as well as general problem solving skills, and the effect of using STELLA (Structural Thinking Experimental Learning Laboratory with Animation), a simulation-modeling software program, as a tool by which to…

  3. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    ERIC Educational Resources Information Center

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  4. On Achieving Experimental Accuracy from Molecular Dynamics Simulations of Flexible Molecules: Aqueous Glycerol

    PubMed Central

    Yongye, Austin B.; Foley, B. Lachele; Woods, Robert J.

    2014-01-01

    The rotational isomeric states (RIS) of glycerol at infinite dilution have been characterized in the aqueous phase via a 1 μs conventional molecular dynamics (MD) simulation, a 40 ns enhanced sampling replica exchange molecular dynamics (REMD) simulation, and a reevaluation of the experimental NMR data. The MD and REMD simulations employed the GLYCAM06/AMBER force field with explicit treatment of solvation. The shorter time scale of the REMD sampling method gave rise to RIS and theoretical scalar 3JHH coupling constants that were comparable to those from the much longer traditional MD simulation. The 3JHH coupling constants computed from the MD methods were in excellent agreement with those observed experimentally. Despite the agreement between the computed and the experimental J-values, there were variations between the rotamer populations computed directly from the MD data and those derived from the experimental NMR data. The experimentally derived populations were determined utilizing limiting J-values from an analysis of NMR data from substituted ethane molecules and may not be completely appropriate for application in more complex molecules, such as glycerol. Here, new limiting J-values have been derived via a combined MD and quantum mechanical approach and were used to decompose the experimental 3JHH coupling constants into population distributions for the glycerol RIS. PMID:18311953

  5. Medical simulation is needed in anesthesia training to achieve patient's safety

    PubMed Central

    2013-01-01

    Many medical schools and hospitals throughout the world are equipped with a simulation center for the purpose of training anesthesiologists to perform both technical and non-technical skills. Because induction, maintenance, and emergence of general anesthesia are critical to patient welfare, various simulation mannequins and tools are utilized for the purpose of training anesthesiologists for safer patient care. Traditionally, anesthesia residency training mostly consisted of didactic lectures and observations. After completion of "traditional" training, anesthesia residents were allowed to perform procedures on patients under supervision. However, simulation would be a more effective training tool for which to teach anesthesiologists the skills necessary to perform invasive procedures, such as endotracheal intubation, central venous catheter insertion, and epidural catheter insertion. Recently, non-technical skills, such as the Anesthesia Non-Technical Skills developed by anesthesiologists from Aberdeen University, have been emphasized as an important training resource. Technical skills and non-technical skills can be learned by anesthesiology residents through a standardized and organized simulation program. Such programs would be beneficial in training anesthesia residents to work efficiently as a team in the operation room. PMID:23560184

  6. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    ERIC Educational Resources Information Center

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-01-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from…

  7. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  8. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. PMID:25063109

  9. Achieving supercomputer performance for neural net simulation with an array of digital signal processors

    SciTech Connect

    Muller, U.A.; Baumle, B.; Kohler, P.; Gunzinger, A.; Guggenbuhl, W.

    1992-10-01

    Music, a DSP-based system with a parallel distributed-memory architecture, provides enormous computing power yet retains the flexibility of a general-purpose computer. Reaching a peak performance of 2.7 Gflops at a significantly lower cost, power consumption, and space requirement than conventional supercomputers, Music is well suited to computationally intensive applications such as neural network simulation. 12 refs., 9 figs., 2 tabs.

  10. Albedo in the ATIC Experiment: Results of Measurements and Simulation

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    Characteristics of albedo, or backscatter current, providing a 'background' for calorimeter experiments in high energy cosmic rays are analyzed. The comparison of experimental data obtained in the flights of the ATIC spectrometer is made with simulations performed using the GEANT 3.21 code. The influence of the backscatter on charge resolution in the ATIC experiment is discussed.

  11. SOME RESULTS OF A SIMULATION OF AN URBAN SCHOOL DISTRICT.

    ERIC Educational Resources Information Center

    SISSON, ROGER L.

    A COMPUTER PROGRAM WHICH SIMULATES THE GROSS OPERATIONAL FEATURES OF A LARGE URBAN SCHOOL DISTRICT IS DESIGNED TO PREDICT SCHOOL DISTRICT POLICY VARIABLES ON A YEAR-TO-YEAR BASIS. THE MODEL EXPLORES THE CONSEQUENCES OF VARYING SUCH DISTRICT PARAMETERS AS STUDENT POPULATION, STAFF, COMPUTER EQUIPMENT, NUMBERS AND SIZES OF SCHOOL BUILDINGS, SALARY,…

  12. SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES

    EPA Science Inventory

    A three-dimensional and three-phase (water, NAPL and gas) numerical simulator, called NAPL, was employed to study the interaction between DNAPL (PCE) plumes in a variably saturated porous media. Several model verification tests have been performed, including a series of 2-D labo...

  13. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Technical Reports Server (NTRS)

    Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality

  14. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A.; Adrian, M. L.; Yeh, P.; Winkert, G.; Lobell, J.; Vinas, A. F.; Simpson, D. G.

    2009-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° x 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° x 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 6.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present updated simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data as well as the FPI-DIS ion data. Compression analysis is based upon a seed of re-processed Cluster

  15. Fast Plasma Instrument for MMS: Data Compression Simulation Results

    NASA Astrophysics Data System (ADS)

    Barrie, A. C.; Adrian, M. L.; Yeh, P.; Winkert, G. E.; Lobell, J. V.; Viňas, A. F.; Simpson, D. G.; Moore, T. E.

    2008-12-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6° × 180° fields-of-view (FOV) are set 90° apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45° × 180° fan about the its nominal viewing (0° deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb s-1 of electron data while the DIS generates 1.1-Mb s-1 of ion data yielding an FPI total data rate of 7.6-Mb s-1. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mb s-1. Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm- based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re- processed Cluster/PEACE electron measurements. Topics to be

  16. FINAL SIMULATION RESULTS FOR DEMONSTRATION CASE 1 AND 2

    SciTech Connect

    David Sloan; Woodrow Fiveland

    2003-10-15

    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle configurations. Three runs

  17. Simulated performance results of the OMV video compression telemetry system

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Parker, Glenn; Thomas, Lee Ann

    1989-01-01

    The control system of NASA's Orbital Maneuvering Vehicle (OMV) will employ range/range-rate radar, a forward command link, and a compressed video return link. The video data is compressed by sampling every sixth frame of data; a rate of 5 frames/sec is adequate for the OMV docking speeds. Further axial compression is obtained, albeit at the expense of spatial resolution, by averaging adjacent pixels. The remaining compression is achieved on the basis of differential pulse-code modulation and Huffman run-length encoding. A concatenated error-correction coding system is used to protect the compressed video data stream from channel errors.

  18. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  19. Simulations Build Efficacy: Empirical Results from a Four-Week Congressional Simulation

    ERIC Educational Resources Information Center

    Mariani, Mack; Glenn, Brian J.

    2014-01-01

    This article describes a four-week congressional committee simulation implemented in upper level courses on Congress and the Legislative process at two liberal arts colleges. We find that the students participating in the simulation possessed high levels of political knowledge and confidence in their political skills prior to the simulation. An…

  20. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m‑1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  1. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study.

    PubMed

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-21

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m(-1). The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin. PMID:27223492

  2. Fault induction dynamic model, suitable for computer simulation: Simulation results and experimental validation

    NASA Astrophysics Data System (ADS)

    Baccarini, Lane Maria Rabelo; de Menezes, Benjamim Rodrigues; Caminhas, Walmir Matos

    2010-01-01

    The study of induction motor behavior under not normal conditions and the ability to detect and predict these conditions has been an area of increasing interest. Early detection and diagnosis of incipient faults are desirable for interactive evaluation over the running condition, product quality guarantee, and improved operational efficiency of induction motors. The main difficulty in this task is the lack of accurate analytical models to describe a faulty motor. This paper proposes a dynamic model to analyze electrical and mechanical faults in induction machines and includes net asymmetries and load conditions. The model permits to analyze the interactions between different faults in order to detect possible false alarms. Simulations and experimental results were performed to confirm the validity of the model.

  3. Direct drive: Simulations and results from the National Ignition Facility

    DOE PAGESBeta

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; et al

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  4. Direct drive: Simulations and results from the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Dixit, S. N.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Moody, J.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Sangster, T. C.; Sio, H.; Skupsky, S.; Zylstra, A.

    2016-05-01

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  5. Implementation and Simulation Results using Autonomous Aerobraking Development Software

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.

    2011-01-01

    An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.

  6. Decoupling instead of grid coarsening: how to achieve reservoir scale reactive transport simulations in highly heterogeneous settings. Example from CO2 storage

    NASA Astrophysics Data System (ADS)

    De Lucia, M.; Kempka, T.; Kuehn, M.

    2014-12-01

    The characteristics of a typical CO2 storage system allow simplification strategies for reactive transport simulations based on process decoupling. In such systems the feedback of the slow chemical reactions to hydrodynamics is low until the system reaches a substantial hydrodynamic equilibrium. Furthermore, the presence of CO2 is the main driving force for chemical reactions, which are for most reactants kinetically controlled. Hence, the same reaction path is substantially replicated in all elements of the grid exposed to the injected CO2, either in gaseous or in dissolved form. The analysis offully coupled 3D simulations of the Ketzin pilot site for CO2 storage performed with the TOUGHREACT simulator confirms these hypotheses to a large extent, both in homogeneous and in heterogeneous settings. This allows the definition of a simplified one-way coupling combining independent non-reactive hydrodynamic and batch geochemical models. The exposure time to CO2 of each grid element is estimated by the conservative simulations, then the outcome of one single geochemical model per lithofacies is applied to each grid element. A threshold value for the minimum concentration of dissolved CO2 required to start chemical reactions permits to mitigate the discrepancy due to the lack of a mass balance between the independently run simulations. The comparison with fully coupled simulations validates the novel approach. The simplified coupling can tackle a wide class of problems, not only CO2 storage; it allows calculating reactive chemistry on grids comprising millions of elements, overcoming a major limitation of reactive transport models, which are often bounded to 2D radial domains. This is particularly advantageous in highly heterogeneous settings with complex hydrodynamics. The new coupling is demonstrated at full scale for the Ketzin site with simulations up to 15000 years, a result which cannot yet be achieved by fully coupled simulations.

  7. Chromium coatings by HVOF thermal spraying: Simulation and practical results

    SciTech Connect

    Knotek, O.; Lugscheider, E.; Jokiel, P.; Schnaut, U.; Wiemers, A.

    1994-12-31

    Within recent years High Velocity Oxygen-Fuel (HVOF) thermal spraying has been considered an asset to the family of thermal spraying processes. Especially for spray materials with melting points below 3,000 K it has proven successful, since it shows advantages when compared to coating processes that produce similar qualities. In order to enlarge the fields of thermal spraying applications into regions with rather low thickness, e.g. about 50--100 {micro}m, especially HVOF thermally sprayed coatings seem to be advantageous. The usual evaluation of optimized spraying parameters, including spray distance, traverse speed, gas flow rates etc. is, however, based on numerous and extensive experiments laid out by trial-and-error or statistical experimental design and thus being expensive: man-power and material is required, spray systems are occupied for experimental works and the optimal solution is questioned, for instance, when a new powder fraction or nozzle is used. In this paper the possibility of reducing such experimental efforts by using modeling and simulation is exemplified for producing thin chromium coatings with a CDS{trademark}-HVOF system. The aim is the production of thermally sprayed chromium coatings competing with galvanic hard chromium platings, which are applied to reduce friction and corrosion but are environmentally disadvantageous during their production.

  8. Stellar populations of stellar halos: Results from the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Conroy, C.; Pillepich, A.; Hernquist, L.

    2016-08-01

    The influence of both major and minor mergers is expected to significantly affect gradients of stellar ages and metallicities in the outskirts of galaxies. Measurements of observed gradients are beginning to reach large radii in galaxies, but a theoretical framework for connecting the findings to a picture of galactic build-up is still in its infancy. We analyze stellar populations of a statistically representative sample of quiescent galaxies over a wide mass range from the Illustris simulation. We measure metallicity and age profiles in the stellar halos of quiescent Illustris galaxies ranging in stellar mass from 1010 to 1012 M ⊙, accounting for observational projection and luminosity-weighting effects. We find wide variance in stellar population gradients between galaxies of similar mass, with typical gradients agreeing with observed galaxies. We show that, at fixed mass, the fraction of stars born in-situ within galaxies is correlated with the metallicity gradient in the halo, confirming that stellar halos contain unique information about the build-up and merger histories of galaxies.

  9. SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES: PHASE II RESULTS

    SciTech Connect

    Stone, M; David Best, D

    2006-09-12

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

  10. Electron transport in the solar wind -results from numerical simulations

    NASA Astrophysics Data System (ADS)

    Smith, Håkan; Marsch, Eckart; Helander, Per

    A conventional fluid approach is in general insufficient for a correct description of electron trans-port in weakly collisional plasmas such as the solar wind. The classical Spitzer-Hürm theory is a not valid when the Knudsen number (the mean free path divided by the length scale of tem-perature variation) is greater than ˜ 10-2 . Despite this, the heat transport from Spitzer-Hürm a theory is widely used in situations with relatively long mean free paths. For realistic Knud-sen numbers in the solar wind, the electron distribution function develops suprathermal tails, and the departure from a local Maxwellian can be significant at the energies which contribute the most to the heat flux moment. To accurately model heat transport a kinetic approach is therefore more adequate. Different techniques have been used previously, e.g. particle sim-ulations [Landi, 2003], spectral methods [Pierrard, 2001], the so-called 16 moment method [Lie-Svendsen, 2001], and approximation by kappa functions [Dorelli, 2003]. In the present study we solve the Fokker-Planck equation for electrons in one spatial dimension and two velocity dimensions. The distribution function is expanded in Laguerre polynomials in energy, and a finite difference scheme is used to solve the equation in the spatial dimension and the velocity pitch angle. The ion temperature and density profiles are assumed to be known, but the electric field is calculated self-consistently to guarantee quasi-neutrality. The kinetic equation is of a two-way diffusion type, for which the distribution of particles entering the computational domain in both ends of the spatial dimension must be specified, leaving the outgoing distributions to be calculated. The long mean free path of the suprathermal electrons has the effect that the details of the boundary conditions play an important role in determining the particle and heat fluxes as well as the electric potential drop across the domain. Dorelli, J. C., and J. D. Scudder, J. D

  11. Diamond-NICAM-SPRINTARS: downscaling and simulation results

    NASA Astrophysics Data System (ADS)

    Uchida, J.

    2012-12-01

    As a part of initiative "Research Program on Climate Change Adaptation" (RECCA) which investigates how predicted large-scale climate change may affect a local weather, and further examines possible atmospheric hazards that cities may encounter due to such a climate change, thus to guide policy makers on implementing new environmental measures, a "Development of Seamless Chemical AssimiLation System and its Application for Atmospheric Environmental Materials" (SALSA) project is funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology and is focused on creating a regional (local) scale assimilation system that can accurately recreate and predict a transport of carbon dioxide and other air pollutants. In this study, a regional model of the next generation global cloud-resolving model NICAM (Non-hydrostatic ICosahedral Atmospheric Model) (Tomita and Satoh, 2004) is used and ran together with a transport model SPRINTARS (Spectral Radiation Transport Model for Aerosol Species) (Takemura et al, 2000) and a chemical transport model CHASER (Sudo et al, 2002) to simulate aerosols across urban cities (over a Kanto region including metropolitan Tokyo). The presentation will mainly be on a "Diamond-NICAM" (Figure 1), a regional climate model version of the global climate model NICAM, and its dynamical downscaling methodologies. Originally, a global NICAM can be described as twenty identical equilateral triangular-shaped panels covering the entire globe where grid points are at the corners of those panels, and to increase a resolution (called a "global-level" in NICAM), additional points are added at the middle of existing two adjacent points, so a number of panels increases by fourfold with an increment of one global-level. On the other hand, a Diamond-NICAM only uses two of those initial triangular-shaped panels, thus only covers part of the globe. In addition, NICAM uses an adaptive mesh scheme and its grid size can gradually decrease, as the grid

  12. Fifteen Years of Collaborative Innovation and Achievement: NASA Nebraska Space Grant Consortium 15-Year Program Performance and Results Report

    NASA Technical Reports Server (NTRS)

    Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane

    2003-01-01

    This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.

  13. Preliminary Benchmarking and MCNP Simulation Results for Homeland Security

    SciTech Connect

    Robert Hayes

    2008-03-01

    The purpose of this article is to create Monte Carlo N-Particle (MCNP) input stacks for benchmarked measurements sufficient for future perturbation studies and analysis. The approach was to utilize historical experimental measurements to recreate the empirical spectral results in MCNP, both qualitatively and quantitatively. Results demonstrate that perturbation analysis of benchmarked MCNP spectra can be used to obtain a better understanding of field measurement results which may be of national interest. If one or more spectral radiation measurements are made in the field and deemed of national interest, the potential source distribution, naturally occurring radioactive material shielding, and interstitial materials can only be estimated in many circumstances. The effects from these factors on the resultant spectral radiation measurements can be very confusing. If benchmarks exist which are sufficiently similar to the suspected configuration, these benchmarks can then be compared to the suspect measurements. Having these benchmarks with validated MCNP input stacks can substantially improve the predictive capability of experts supporting these efforts.

  14. Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments

    NASA Astrophysics Data System (ADS)

    Chen, Juanjuan; Zhang, Tianping; Geng, Hai; Jia, Yanhui; Meng, Wei; Wu, Xianming; Sun, Anbang

    2016-06-01

    Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime. During the thruster's operation, Charge Exchange Xenon (CEX) ions are generated from collisions between plasma and neutral atoms. Those CEX ions grid's barrel and wall frequently, which cause the failures of the grid system. In order to validate whether the 20 cm Lanzhou Ion Propulsion System (LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping (NSSK), this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster. Different from the previous method, in this paper, the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly. Then, based on these results, theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200. The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster. The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.

  15. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  16. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    SciTech Connect

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  17. Disc Motor: Conventional and Superconductor Simulated Results Analysis

    NASA Astrophysics Data System (ADS)

    Inácio, David; Martins, João; Neves, Mário Ventim; Álvarez, Alfredo; Rodrigues, Amadeu Leão

    Taking into consideration the development and integration of electrical machines with lower dimensions and higher performance, this paper presents the design and development of a three-phase axial flux disc motor, with 50 Hz frequency supply. It is made with two conventional semi-stators and a rotor, which can be implemented with a conventional aluminum disc or a high temperature-superconducting disc. The analysis of the motor characteristics is done with a 2D commercial finite elements package, being the modeling performed as a linear motor. The obtained results allow concluding that the superconductor motor provides a higher force than the conventional one. The conventional disc motor presents an asynchronous behavior, like a conventional induction motor, while the superconductor motor presents both synchronous and asynchronous behaviors.

  18. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  19. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  20. Different Methods, Different Results: Examining the Implications of Methodological Divergence and Implicit Processes for Achievement Goal Research

    ERIC Educational Resources Information Center

    da Costa, Laura; Remedios, Richard

    2014-01-01

    Achievement goal theory is one of the most popular theories of achievement motivation. Techniques researchers have used to assess goals include standardized questionnaires and interviews. One curious finding is that participants whose self-report questionnaire responses strongly indicate they operate with a performance goal do not make performance…

  1. Classroom Instruction and Science Achievement in Japan, Hong Kong, and Chinese Taipei: Results from the TIMSS 1999 Assessment

    ERIC Educational Resources Information Center

    House, J. Daniel

    2005-01-01

    The Third International Mathematics and Science Study represents the most comprehensive international assessment of educational contexts and student achievement yet conducted. As part of the examination of the effects of contextual factors on student achievement, a model was constructed that considered the effects of variables such as…

  2. Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching

    2010-01-01

    Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.

  3. Preliminary Results of Bioactive Amniotic Suspension with Allograft for Achieving One and Two-Level Lumbar Interbody Fusion

    PubMed Central

    Kerr, Eubulus J.; Utter, Philip A.; Cavanaugh, David A.; Frank, Kelly A.; Moody, Devan; McManus, Brian; Stone, Marcus B.

    2016-01-01

    Background Bone graft material for lumbar fusion was historically autologous bone graft (ABG). In recent years alternatives such as allograft, demineralized bone matrix (DBM), ceramics, and bone morphogenetic protein (BMP) have gained favor, although the complications of these are not fully understood. Bioactive amniotic suspension (BAS) with allograft is a new class of material derived from human amniotic tissue. Methods Eligible patients receiving a one or two level lumbar interbody fusion with Nucel, a BAS with allograft, were contacted and scheduled for a mininmim 12 month follow-up visit. Patients were evaluated for fusion using CT's and plain radiographs. Clincal outcomes, including ODI, VAS back and leg were collected, as well as comorbidities including BMI, smoking status, diabetes and previous lumbar surgery. Results One-level patients (N=38) were 71.1% female with mean age of 58.4 ± 12.7 and mean BMI of 30.6 ± 6.08. Two-level patients (N=34) were 58.8% female with mean age of 49.3 ±10.9 and mean BMI of 30.1 ± 5.82. Kinematic fusion was achieved in 97.4% of one-level patients and 100% of two-level patients. Baseline comorbidities were present in 89.5% of one-level patients and 88.2% of two-level patients. No adverse events related to BAS were reported in this study. Conclusion Fusion status is evaluated with many different biologics and varying methods in the literature. BAS with allograft in this study demonstrated high fusion rates with no complications within a largely comorbid population. Although a small population, BAS with allograft results were encouraging for one and two-level lumbar interbody fusion in this study. Further prospective studies should be conducted to investigate safety and efficacy in a larger population. PMID:27162714

  4. Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Recchi, Simone; Hensler, Gerhard

    2015-07-01

    Context. In spite of enormous progress and brilliant achievements in cosmological simulations, they still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient detail. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. Aims: We aim to improve available numerical techniques to simulate individual dwarf galaxies. In particular, we aim to (i) study in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach; and (ii) study for the first time the chemodynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. Methods: We present a novel chemodynamical code for studying the evolution of individual dwarf galaxies. In this code, the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which facilitates an accurate calculation of the stellar feedback depending on the stellar age. The code has been accurately benchmarked, allowing us to provide a recipe for improving the code performance on the Sedov test problem. Results: We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support (and hence high degrees of flattening) develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. Models that start from non

  5. Breast cancer early diagnosis experience in Florence: can a self referral policy achieve the results of service screening?

    PubMed Central

    Giorgi, D; Paci, E; Zappa, M; Rosselli del Turco, M

    1994-01-01

    STUDY OBJECTIVE--To assess the impact of a breast clinic on a specific target population and evaluate early diagnosis performance indicators for breast cancer in the presence of a self referral policy. DESIGN--Women living in Florence between 1980 and 1989 who had undergone mammography at a self referral breast clinic were studied. Main outcome measures were the use of mammography in relation to age, symptoms, and the interval between two subsequent tests, and early diagnosis performance indicators were the detection rate (DR), the prevalence/incidence ratio, and the proportion of early detected cancers. Performance indicators were compared with those from formal screening programmes. SETTING--Florence, Italy. PATIENTS--All mammograms performed at the clinic from 1980-89 in 40-69 year old women living in Florence were examined (n = 42,226). Records included the date of birth and of the examination, the reason for testing (asymptomatic/presence of pain/presence of symptoms other than pain), and the TNM classification for breast cancer cases. MAIN RESULTS--The total number of mammograms performed per annum increased by 70% over the decade, but much of this was routine repeat mammography (54.1% in 1989). Rates of first examinations in asymptomatic women increased in the second half of the decade from 17 per 1000 in 1985 to 31 per 1000 in 1989. Mammographic coverage decreased with increasing age from 12.6% in 40-49 year olds to 6.0% in 60-69 years old. Performance indicators of the activity in asymptomatic women were comparable with those expected in service screening. The proportion of not advanced cancers detected in asymptomatic women was 62.3% with a DR of 5.3 per 1000, and the average prevalence/incidence ratio was 2.9. CONCLUSIONS--High quality mammography performed in a breast clinic in self referred asymptomatic women can achieve as good results as a formal invitation screening service. Only a few of these women will benefit, but those who do are likely to be

  6. Evolution of the concept of Capacity-building, results achieved during the past years and the future

    NASA Astrophysics Data System (ADS)

    Laffaiteur, M.; Camacho, S.

    -faring countries and developing countries. A strategy has been presented by the Action Team in order to implement a strategy aimed at increasing again the impact of the various initiatives already going on. The promotion of the sharing of educational materials and information could be facilitated by a network of bodies in UN Member States, dedicated organizations and UN regional centres. This presentation will aim to show the current status of this issue and to present results already achieved and the way forward.

  7. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.

  8. Parameter Estimation Using Multiple Matrix Sampling: Simulated versus Empirical Data Results.

    ERIC Educational Resources Information Center

    Gressard, Risa P.; Loyd, Brenda H.

    1991-01-01

    To determine the accuracy of simulated data sets, an investigation was conducted of the effects of item sampling plans in the application of multiple matrix sampling using both simulated and empirical data sets. Although results were similar, empirical data results were more precise. (SLD)

  9. Can Research Design Explain Variation in Head Start Research Results? A Meta-Analysis of Cognitive and Achievement Outcomes

    ERIC Educational Resources Information Center

    Shager, Hilary M.; Schindler, Holly S.; Magnuson, Katherine A.; Duncan, Greg J.; Yoshikawa, Hirokazu; Hart, Cassandra M. D.

    2013-01-01

    This study explores the extent to which differences in research design explain variation in Head Start program impacts. We employ meta-analytic techniques to predict effect sizes for cognitive and achievement outcomes as a function of the type and rigor of research design, quality and type of outcome measure, activity level of control group, and…

  10. The Economy-Wide Benefits of Increasing the Proportion of Students Achieving Year 12 Equivalent Education: Modelling Results.

    ERIC Educational Resources Information Center

    2003

    This study analyzed the economic benefits of an increase in the proportion of Australian students achieving a 12th-grade equivalent education. Earlier research examined the direct costs and benefits of a program that increased 12th grade equivalent education for the five-year cohort 2003-2007. This study built on that by incorporating the indirect…

  11. The Impact of Every Classroom, Every Day on High School Student Achievement: Results from a School-Randomized Trial

    ERIC Educational Resources Information Center

    Early, Diane M.; Berg, Juliette K.; Alicea, Stacey; Si, Yajuan; Aber, J. Lawrence; Ryan, Richard M.; Deci, Edward L.

    2016-01-01

    Every Classroom, Every Day (ECED) is a set of instructional improvement interventions designed to increase student achievement in math and English/language arts (ELA). ECED includes three primary components: (a) systematic classroom observations by school leaders, (b) intensive professional development and support for math teachers and…

  12. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  13. A simulation study of the flight dynamics of elastic aircraft. Volume 1: Experiment, results and analysis

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  14. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    NASA Astrophysics Data System (ADS)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  15. Exploring the Achievement Gap between White and Minority Students in Texas: A Comparison of the 1996 and 2000 NAEP and TAAS Eighth Grade Mathematics Test Results.

    ERIC Educational Resources Information Center

    Linton, Thomas H.; Kester, Donald

    2003-01-01

    Compared scores for Texas eighth graders on the Texas Assessment of Academic Skills (TAAS) and National Assessment of Educational Progress (NAEP) to study the achievement gap in mathematics in 1996 and 2000. Results show the likelihood of a ceiling effect impacting students' TAAS scores that created the illusion the achievement gap had narrowed.…

  16. Elementary School Achievement Profiles. A School-by-School Report of Basic Skills, Test Results, and School/Student/Staff Data. School Year 1983-94.

    ERIC Educational Resources Information Center

    Portland Public Schools, OR. Dept. of Research, Evaluation, and Testing.

    This report presents the 1983-84 summary achievement profiles of the 82 Portland, Oregon, elementary schools for use by school staffs, administrators, and the community for planning, goal setting, and evaluation. The profiles contain Portland Achievement Level Tests results plus data on the physical facility, school personnel, student enrollment,…

  17. The Predictability of Enrolment and First-Year University Results from Secondary School Performance: The New Zealand National Certificate of Educational Achievement

    ERIC Educational Resources Information Center

    Shulruf, Boaz; Hattie, John; Tumen, Sarah

    2008-01-01

    This study investigates the predictive correlations between results from the New Zealand National Certificate of Educational Achievement (NCEA), a standards-based qualification, and university grade point averages achieved by first-year students in one large New Zealand University (and, for comparison purposes, also presents correlations from the…

  18. Analysis of Optical CDMA Signal Transmission: Capacity Limits and Simulation Results

    NASA Astrophysics Data System (ADS)

    Garba, Aminata A.; Yim, Raymond M. H.; Bajcsy, Jan; Chen, Lawrence R.

    2005-12-01

    We present performance limits of the optical code-division multiple-access (OCDMA) networks. In particular, we evaluate the information-theoretical capacity of the OCDMA transmission when single-user detection (SUD) is used by the receiver. First, we model the OCDMA transmission as a discrete memoryless channel, evaluate its capacity when binary modulation is used in the interference-limited (noiseless) case, and extend this analysis to the case when additive white Gaussian noise (AWGN) is corrupting the received signals. Next, we analyze the benefits of using nonbinary signaling for increasing the throughput of optical CDMA transmission. It turns out that up to a fourfold increase in the network throughput can be achieved with practical numbers of modulation levels in comparison to the traditionally considered binary case. Finally, we present BER simulation results for channel coded binary and[InlineEquation not available: see fulltext.]-ary OCDMA transmission systems. In particular, we apply turbo codes concatenated with Reed-Solomon codes so that up to several hundred concurrent optical CDMA users can be supported at low target bit error rates. We observe that unlike conventional OCDMA systems, turbo-empowered OCDMA can allow overloading (more active users than is the length of the spreading sequences) with good bit error rate system performance.

  19. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  20. Three-dimensional Simulations of Thermonuclear Detonation with α-Network: Numerical Method and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Khokhlov, A.; Domínguez, I.; Bacon, C.; Clifford, B.; Baron, E.; Hoeflich, P.; Krisciunas, K.; Suntzeff, N.; Wang, L.

    2012-07-01

    We describe a new astrophysical version of a cell-based adaptive mesh refinement code ALLA for reactive flow fluid dynamic simulations, including a new implementation of α-network nuclear kinetics, and present preliminary results of first three-dimensional simulations of incomplete carbon-oxygen detonation in Type Ia Supernovae.

  1. Field measurement results versus DAYCENT simulations in nitrous oxide emission from agricultural soil in Central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide emissions measured from corn-soybean rotations in Central Iowa were compared with the results obtained from DAYCENT simulations. Available whole year emission field data taken weekly during the growing season and monthly during the winter time, were used. DAYCENT simulations were perfo...

  2. Special Education Simulation and Consultation Project: Special Training Project. Final Report. Part I: Results and Learnings.

    ERIC Educational Resources Information Center

    Batten, Murray O.; Burello, Leonard C.

    Presented is the final report of the Special Education Simulation and Consultation (SECAC) Project designed to provide simulation-based inservice training to Michigan building principals. Part I reviews project goals, objectives, procedures, results, and learnings. It is explained that the training employed the Special Education Administrators…

  3. Results of GEANT simulations and comparison with first experiments at DANCE.

    SciTech Connect

    Reifarth, R.; Bredeweg, T. A.; Browne, J. C.; Esch, E. I.; Haight, R. C.; O'Donnell, J. M.; Kronenberg, A.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2003-07-29

    This report describes intensive Monte Carlo simulations carried out to be compared with the results of the first run cycle with DANCE (Detector for Advanced Neutron Capture Experiments). The experimental results were gained during the commissioning phase 2002/2003 with only a part of the array. Based on the results of these simulations the most important items to be improved before the next experiments will be addressed.

  4. A method for data handling numerical results in parallel OpenFOAM simulations

    NASA Astrophysics Data System (ADS)

    Anton, Alin; Muntean, Sebastian

    2015-12-01

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit®[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  5. A method for data handling numerical results in parallel OpenFOAM simulations

    SciTech Connect

    Anton, Alin; Muntean, Sebastian

    2015-12-31

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  6. Laser thermokeratoplasty: analysis of in-vitro results and refractive changes achieved in a first clinical study

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Geerling, Gerd; Kampmeier, Juergen; Koop, Norbert; Radt, Benno; Birngruber, Reginald

    1997-12-01

    Laser thermokeratoplasty (LTK) is a minimally invasive method to correct hyperopia and astigmatism. A cw mid-IR laser diode emitting at wavelengths around 1.86 micrometers was used to perform LTK on a first clinical trial. The coagulations were applied to the cornea by means of a specially designed focusing handpiece which was introduced into a corneal application mask fixed by a suction ring. Coagulation patterns consisting of 8 spots per ring were performed with a laser power between 100 - 150 mW and an irradiation time of 10 seconds both on single and on double rings. Significant refractive changes up to 19 D could initially be achieved followed by a strong regression within the first month. Three months post LTK, refractive changes achieved with the single and double ring have stabilized, yielding 1.2 and 1.8 D on the average, respectively. The method reveals only little adverse effects limited to the first days post-op. Force measurements were performed on corneal stripes, which were submerged for 10 s into an oil bath of constant temperature in order to investigate the absolute temperatures required for corneal collagen contraction. Only temperatures exceeding 90 degree(s)C induced a significant force. Analyzing the clinically used LTK parameters by temperature calculations revealed that only a small part of the heated stromal volume experienced sufficient high temperatures to induce significant collagen shrinkage.

  7. EPA Science to Achieve Results (STAR) Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management

    EPA Science Inventory

    This poster describes the missions and objectives of four newly-awarded Science to Achieve Results (STAR) Centers. There is also a description of how the projects fit together to meet solicitation research questions.

  8. Achievement of the switch-off condition through Rotational Discontinuity structures in PIC simulations of collisionless magnetic reconnection with guide field

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Lapenta, Giovanni; Goldman, Martin; Newman, David; Markidis, Stefano

    2015-04-01

    In Petschek's model for magnetic reconnection, switch-off (SO) condition is achieved through back-to-back slow mode shocks (SS). No rotational discontinuity (RD) is needed, unless in specific cases detailed in [Vasyliunas 1975]. Decades of simulations with different models (MHD, Hall MHD, hybrid, PIC) have yielded contradictory results regarding the achievement of the SO condition during magnetic reconnection events. It has been recently argued that the formation of Petschek's SO-SS is inhibited by the development of the firehose instability, which provokes the flapping of the magnetic field in the reconnection exhausts (Liu et al., 2012). We report here on the formation of localized switch-off areas in simulations of collisionless magnetic reconnection in extremely large domains (hundreds of ion skin depths) for extremely long times (hundreds of inverse ion cyclotron frequency). A guide field (a magnetic field in the direction perpendicular to the reconnection plane) prevents the development of the firehose instability. The switch-off areas are marked by magnetic field line bending (in a way closely resembling the textbook description of RDs), by the formation of a nozzle-like structure in the in-plane projection of the ion and electron velocities perpendicular to the magnetic field direction and by a reduced rate of plasmoid formation. We use Rankine-Hugoniot conditions to characterize the transitions as Rotational Discontinuities and we comment on their origin. Priest, E. and Forbes, T. (2007). Magnetic reconnection. Magnetic Reconnection, by Eric Priest, Terry Forbes, Cambridge, UK: Cambridge University Press, 2007, 1. Vasyliunas V. (1975). Theoretical models of magnetic field line merging. Review of Geophysics and Space Phsyics, 1975. Liu, Y.-H., Drake, J. F., and Swisdak, M. (2012). The structure of the magnetic reconnection exhaust boundary. Physics of Plasmas (1994-present), 19(2):-.

  9. Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Zhang, Lianyang; Zhu, Hehua; Zhang, Qi

    2014-11-01

    This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young's modulus and Poisson's ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size ( d max/ d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios ( L/ d) were studied for each d max/ d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/ d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young's modulus using the default PFC3D procedure keep increasing with larger L/ d, although the rate of increase decreases with larger L/ d. This is mainly caused by the decrease of model porosity with larger L/ d associated with the default PFC3D method and the better balanced contact force chains at larger L/ d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/ d but the rate is much smaller, the average simulated Young's modulus decreases with larger L/ d instead, and the average simulated Poisson's ratio versus L/ d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/ d min leading to greater average simulated UCS and Young's modulus and smaller average simulated Poisson's ratio, and the changing rates become smaller at larger d max/ d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.

  10. Determining the value of simulation in nurse education: study design and initial results.

    PubMed

    Alinier, Guillaume; Hunt, William B; Gordon, Ray

    2004-09-01

    Nowadays simulation is taking an important place in training and education of healthcare professionals. The University of Hertfordshire is carrying out a study which aims to determine the effect of realistic scenario-based simulation on nursing students' competence and confidence. This project is sponsored by the British Heart Foundation and takes place in the Hertfordshire Intensive Care and Emergency Simulation Centre (HICESC), a simulated three adult beds Intensive Care Unit. The simulation platform used is a Laerdal SimMan Universal Patient Simulator. A unique and robust study design, and results of the study are presented in this article. Consecutive cohorts of students are being assessed and reassessed after six months using an Objective Structured Clinical Examination (OSCE). Students are randomly divided into a control and experimental group for the period intervening between the two examinations. The experimental group is exposed to simulation training while the other students follow their usual nursing courses. Comparison is made between the OSCE results of the two groups of students. The experimental group had a greater improvement in performance than the control group (13.43% compared with 6.76% (p<0.05)). The results and feedback received from students and lecturers suggest that simulation training in nursing education is beneficial. PMID:19038158

  11. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  12. Effect of the energy-environment simulator on achievement, attitudes, and behavior relative to energy-education concepts systematically replicated in higher education

    SciTech Connect

    Lees, J.R.

    1983-01-01

    This study was a systematic replication of a study by Stagliano (1981). Additional hypotheses concerning pretest, student major, and student section variance were tested. Achievement in energy knowledge and conservation attitudes attained by (a) lecture-discussion enriched with the Energy-Environment Simulator and (b) lecture-discussion methods of instruction were measured. Energy knowledge was measured on the Energy Knowledge Assessment Test (EKAT), and attitudes were measured on the Youth Energy Survey (YES), the Lecture-discussion simulation (LDS) used a two hour out-of-class activity in debriefing. The population consisted of 142 college student volunteers randomly selected, and assigned to one of two groups of 71 students for each treatment. Stagliano used three groups (n = 35), one group receiving an energy-game treatment. Both studies used the pretest-posttest true experimental design. The present study included 28 hypotheses, eight of which were found to be significant. Stagliano used 12 hypotheses, all of which were rejected. The present study hypothesized that students who received the LDS treatment would obtain significantly higher scores on the EKAT and the YES instruments. Results showed that significance was found (alpha level .05) on the EKAT and also found on the YES total subscale when covaried for effects of pretest, student major, and student section. When covarying the effects of pretest scores only, significance was found on the EKAT. All YES hypotheses were rejected.

  13. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, L.; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Results of computer calculations for a simulated distribution of kidney cells

    NASA Technical Reports Server (NTRS)

    Micale, F. J.

    1985-01-01

    The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.

  15. SUBWATERSHEDS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Subwatersheds of the Upper San Pedro basin with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  16. Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation

    NASA Astrophysics Data System (ADS)

    Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C.

    2012-12-01

    Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.

  17. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  18. [Improvement of root parameters in land surface model (LSM )and its effect on the simulated results].

    PubMed

    Cai, Kui-ye; Liu, Jing-miao; Zhang, Zheng-qiu; Liang, Hong; He, Xiao-dong

    2015-10-01

    In order to improve root parameterization in land surface model, the sub-model for root in CERES-Maize was coupled in the SSiB2 after calibrating of maize parameters in SSiB2. The effects of two improved root parameterization schemes on simulated results of land surface flux were analyzed. Results indicated that simulation accuracy of land surface flux was enhanced when the root module provided root depth only with the SSiB2 model (scheme I). Correlation coefficients between observed and simulated values of latent flux and sensible flux increased during the whole growing season, and RMSE of linear fitting decreased. Simulation accuracy of CO2 flux was also enhanced from 121 days after sowing to mature period. On the other hand, simulation accuracy of the flux was enhanced when the root module provided root depth and root length density simultaneously for the SSiB2 model (scheme II). Compared with the scheme I, the scheme II was more comprehensive, while its simulation accuracy of land surface flux decreased. The improved root parameterization in the SSiB2 model was better than the original one, which made simulated accuracy of land-atmospheric flux improved. The scheme II overestimated root relative growth in the surface layer soil, so its simulated accuracy was lower than that of the scheme I. PMID:26995920

  19. A Study Investigating the Effect of Treatment Developed by Integrating the 5E and Simulation on Pre-Service Science Teachers' Achievement in Photoelectric Effect

    ERIC Educational Resources Information Center

    Taslidere, Erdal

    2015-01-01

    The Current study investigated the effect of the 5E learning cycle in which the simulations were integrated on pre-service science teachers' achievement in photoelectric subject. Four sophomore level classes with their 140 students participated in the research and a quasi-experimental design was used. The classes were randomly assigned into one of…

  20. Occupational health nurses’ achievement of competence and comfort in respiratory protection and preferred learning methods results of a nationwide survey.

    PubMed

    Burgel, Barbara J; Novak, Debra A; Carpenter, Holly Elizabeth; Gruden, MaryAnn; Lachat, Ann M; Taormina, Deborah

    2014-02-01

    Additional findings are presented from a 2012 nationwide survey of 2,072 occupational health nurses regarding how they achieved competence in respiratory protection, their preferred methods of learning, and how they motivated employees to use respiratory protection. On-the-job training, taking a National Institute for Occupational Safety and Health spirometry course, or attending professional conferences were the primary ways occupational health nurses gained respiratory protection knowledge. Attending professional conferences was the preferred method of learning, varying by type of industry and years of occupational health nurse experience. Employee motivational strategies were not widely used; the most common strategy was to tailor respiratory protection training to workplace culture. Designing training methods that match learning preferences, within the context of the organization's safety and quality improvement culture, is a key recommendation supported by the literature and these findings. Including respiratory protection content and competencies in all levels of academic nursing education is an additional recommendation. Additional research is needed to link training strategies with consistent and correct use of respiratory protection by employees. PMID:24812690

  1. A fast but accurate excitonic simulation of the electronic circular dichroism of nucleic acids: how can it be achieved?

    PubMed

    Loco, Daniele; Jurinovich, Sandro; Di Bari, Lorenzo; Mennucci, Benedetta

    2016-01-14

    We present and discuss a simple and fast computational approach to the calculation of electronic circular dichroism spectra of nucleic acids. It is based on a exciton model in which the couplings are obtained in terms of the full transition-charge distributions, as resulting from TDDFT methods applied on the individual nucleobases. We validated the method on two systems, a DNA G-quadruplex and a RNA β-hairpin whose solution structures have been accurately determined by means of NMR. We have shown that the different characteristics of composition and structure of the two systems can lead to quite important differences in the dependence of the accuracy of the simulation on the excitonic parameters. The accurate reproduction of the CD spectra together with their interpretation in terms of the excitonic composition suggest that this method may lend itself as a general computational tool to both predict the spectra of hypothetic structures and define clear relationships between structural and ECD properties. PMID:26646952

  2. Wave spectra of a shoaling wave field: A comparison of experimental and simulated results

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; Grosch, C. E.; Poole, L. R.

    1982-01-01

    Wave profile measurements made from an aircraft crossing the North Carolina continental shelf after passage of Tropical Storm Amy in 1975 are used to compute a series of wave energy spectra for comparison with simulated spectra. Results indicate that the observed wave field experiences refraction and shoaling effects causing statistically significant changes in the spectral density levels. A modeling technique is used to simulate the spectral density levels. Total energy levels of the simulated spectra are within 20 percent of those of the observed wave field. The results represent a successful attempt to theoretically simulate, at oceanic scales, the decay of a wave field which contains significant wave energies from deepwater through shoaling conditions.

  3. Simulations and cold-test results of a prototype plane wave transformer linac structure

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Pant, K. K.; Krishnagopal, S.

    2002-03-01

    We have built a 4-cell prototype plane wave transformer (PWT) linac structure. We discuss here details of the design and fabrication of the PWT linac structure. We present results from superfish and gdfidl simulations as well as cold tests, which are in good agreement with each other. We also present detailed tolerance maps for the PWT structure. We discuss beam dynamics simulation studies performed using parmela.

  4. Columbus meteoroid/debris protection study - Experimental simulation techniques and results

    NASA Astrophysics Data System (ADS)

    Schneider, E.; Kitta, K.; Stilp, A.; Lambert, M.; Reimerdes, H. G.

    1992-08-01

    The methods and measurement techniques used in experimental simulations of micrometeoroid and space debris impacts with the ESA's laboratory module Columbus are described. Experiments were carried out at the two-stage light gas gun acceleration facilities of the Ernst-Mach Institute. Results are presented on simulations of normal impacts on bumper systems, oblique impacts on dual bumper systems, impacts into cooled targets, impacts into pressurized targets, and planar impacts of low-density projectiles.

  5. Results of NASA/FAA ground and flight simulation experiments concerning helicopter IFR airworthiness criteria

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. V.; Chen, R. T. N.; Gerdes, R. M.; Weber, J. M.; Forrest, R. D.

    1982-01-01

    A sequence of ground and flight simulation experiments was conducted to investigate helicopter instrument-flight-rules airworthiness criteria. The first six of these experiments and major results are summarized. Five of the experiments were conducted on large-amplitude motion base simulators. The NASA-Army V/STOLAND UH-1H variable-stability helicopter was used in the flight experiment. Artificial stability and control augmentation, longitudinal and lateral control, and in pitch and roll attitude augmentation were investigated.

  6. Design and CFD Simulation of the Drift Eliminators in Comparison with PIV Results

    NASA Astrophysics Data System (ADS)

    Stodůlka, Jiří; Vitkovičová, Rut

    2015-05-01

    Drift eliminators are the essential part of all modern cooling towers preventing significant losses of liquid water escaping to the enviroment. These eliminators need to be effective in terms of water capture but on the other hand causing only minimal pressure loss as well. A new type of such eliminator was designed and numerically simulated using CFD tools. Results of the simulation are compared with PIV visulisation on the prototype model.

  7. AVESTAR Center: Dynamic simulation-based collaboration toward achieving opertional excellence for IGCC plants with crbon capture

    SciTech Connect

    Zitney, Strphen E.; Liese, Eric A.; Mahapatra, Priyadarshi; Turton, Richard; Bhattacharyya, Debangsu; Provost, Graham

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTAR(TM)). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  8. The Contribution of the Responsive Classroom Approach on Children's Academic Achievement: Results from a Three Year Longitudinal Study

    ERIC Educational Resources Information Center

    Rimm-Kaufman, Sara E.; Fan, Xitao; Chiu, Yu-Jen; You, Wenyi

    2007-01-01

    This paper reports the results of a quasi-experimental study on the contribution of the Responsive Classroom ("RC") Approach to elementary school children's reading and math performance over one-, two-, and three-year periods. All children enrolled in six schools (3 intervention and 3 control schools in a single district) were the participants in…

  9. Preventing Underage Drinking: Using Getting to Outcomes with the SAMHSA Strategic Prevention Framework to Achieve Results. RAND Technical Report

    ERIC Educational Resources Information Center

    Imm, Pamela; Chinman, Matthew; Wandersman, Abraham; Rosenbloom, David; Guckenburg, Sarah; Leis, Roberta

    2007-01-01

    Underage drinking is a significant problem in the United States: Alcohol is the primary contributor to the leading causes of death among adolescents. As a result, communitywide strategies to prevent underage drinking are more important than ever. Such strategies depend on the involvement and education of adolescents, parents, law enforcement …

  10. MULTI - TRACER CONTROL ROOM AIR INLEAKAGE PROTOCOL AND SIMULATED PRIMARY AND EXTENDED MULTI - ZONE RESULTS.

    SciTech Connect

    DIETZ,R.N.

    2002-01-01

    The perfluorocarbon tracer (PFT) technology can be applied simultaneously to the wide range in zonal flowrates (from tens of cfms in some Control Rooms to almost 1,000,000 cfm in Turbine Buildings), to achieve the necessary uniform tagging for subsequent determination of the desired air inleakage and outleakage from all zones surrounding a plant's Control Room (CR). New types of PFT sources (Mega sources) were devised and tested to handle the unusually large flowrates in a number of HVAC zones in power stations. A review of the plans of a particular nuclear power plant and subsequent simulations of the tagging and sampling results confirm that the technology can provide the necessary concentration measurement data to allow the important ventilation pathways involving the Control Room and its air flow communications with all adjacent zones to be quantitatively determined with minimal uncertainty. Depending on need, a simple single or 3-zone scheme (involving the Control Room alone or along with the Aux. Bldg. and Turbine Bldg.) or a more complex test involving up to 7 zones simultaneously can be accommodated with the current revisions to the technology; to test all the possible flow pathways, several different combinations of up to 7 zones would need to be run. The potential exists that for an appropriate investment, in about 2 years, it would be possible to completely evaluate an entire power plant in a single extended multizone test with up to 12 to 13 separate HVAC zones. With multiple samplers in the Control Room near each of the contiguous zones, not only will the prevalent inleakage or outleakage zones be documented, but the particular location of the pathway's room of ingress can be identified. The suggested protocol is to perform a 3-zone test involving the Control Room, Aux. Bldg., and Turbine Bldg. to (1) verify CR total inleakage and (2) proportion that inleakage to distinguish that from the other 2 major buildings and any remaining untagged locations

  11. Simulation Shows Hospitals That Cooperate On Infection Control Obtain Better Results Than Hospitals Acting Alone

    PubMed Central

    Lee, Bruce Y.; Bartsch, Sarah M.; Wong, Kim F.; Yilmaz, S. Levent; Avery, Taliser R.; Singh, Ashima; Song, Yeohan; Kim, Diane S.; Brown, Shawn T.; Potter, Margaret A.; Platt, Richard; Huang, Susan S.

    2013-01-01

    Efforts to control life-threatening infections, such as with methicillin-resistant Staphylococcus aureus (MRSA), can be complicated when patients are transferred from one hospital to another. Using a detailed computer simulation model of all hospitals in Orange County, California, we explored the effects when combinations of hospitals tested all patients at admission for MRSA and adopted procedures to limit transmission among patients who tested positive. Called “contact isolation,” these procedures specify precautions for health care workers interacting with an infected patient, such as wearing gloves and gowns. Our simulation demonstrated that each hospital’s decision to test for MRSA and implement contact isolation procedures could affect the MRSA prevalence in all other hospitals. Thus, our study makes the case that further cooperation among hospitals—which is already reflected in a few limited collaborative infection control efforts under way—could help individual hospitals achieve better infection control than they could achieve on their own. PMID:23048111

  12. Ride qualities criteria validation/pilot performance study: Flight simulator results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Borland, C. J.; Lefritz, N. M.

    1976-01-01

    Pilot performance was studied during simulated manual terrain following flight for ride quality criteria validation. An existing B-1 simulation program provided the data for these investigations. The B-1 simulation program included terrain following flights under varying controlled conditions of turbulence, terrain, mission length, and system dynamics. The flight simulator consisted of a moving base cockpit which reproduced motions due to turbulence and control inputs. The B-1 aircraft dynamics were programmed with six-degrees-of-freedom equations of motion with three symmetric and two antisymmetric structural degrees of freedom. The results provided preliminary validation of existing ride quality criteria and identified several ride quality/handling quality parameters which may be of value in future ride quality/criteria development.

  13. Comparisons of simulator and flight results on augmentor-wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Innis, R. C.; Anderson, S. B.

    1972-01-01

    The considerations involved in making a piloted simulator an effective research tool in the design and development of new aircraft are discussed. An assessment of the limitations of the simulator in depicting real flight as well as the problem of recognizing erroneous results when the simulator is supplied with incorrect input data is made. Examples of the ways in which the simulator is used to design and develop the augmentor-wing aircraft are presented. Four areas of investigation are: (1) to design the lateral control system for proper feel and response, (2) determine the effect of engine failure during approach, (3) develop the best technique for controlling flight path during approach, and (4) the significance of lift loss in ground effect and how to compensate for such loss.

  14. Handling Qualities Results of an Initial Geared Flap Tilt Wing Piloted Simulation

    NASA Technical Reports Server (NTRS)

    Guerrero, Lourdes M.; Corliss, Lloyd D.

    1991-01-01

    An exploratory simulation study of a novel approach to pitch control for a tilt wing aircraft was conducted in 1990 on the NASA-Ames Vertical Motion Simulator. The purpose of the study was to evaluate and compare the handling qualities of both a conventional and a geared flap tilt wing control configuration. The geared flap is an innovative control concept which has the potential for reducing or eliminating the horizontal pitch control tail rotor or reaction jets required by prior tilt wing designs. The handling qualities results of the geared flap control configuration are presented in this paper and compared to the conventional (programmed flap) tilt wing control configuration. This paper also describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, and the pilot evaluation tasks and procedures.

  15. Ship's behaviour during hurricane Sandy near the USA coasts. Simulation results

    NASA Astrophysics Data System (ADS)

    Chiotoroiu, B.; Grosan, N.; Soare, L.

    2015-11-01

    The aim of this study is to analyze the impact of the stormy weather during hurricane Sandy on an oil tank using the navigation simulator. Meteorological and waves maps from forecast models are used, together with relevant information from the meteorological warnings. The simulation sessions were performed on the navigation simulator from the Constanta Maritime University and allowed us the selection of specific parameters for the ship and the environment in order to observe the ship's behavior in heavy sea conditions. Simulation results are important due to the unexpected environmental conditions and the ship position: very close to the hurricane centre when the storm began to change its track and to transform into an extra tropical cyclone.

  16. Multiobjective Decision Making Policies and Coordination Mechanisms in Hierarchical Organizations: Results of an Agent-Based Simulation

    PubMed Central

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  17. Multiobjective decision making policies and coordination mechanisms in hierarchical organizations: results of an agent-based simulation.

    PubMed

    Leitner, Stephan; Wall, Friederike

    2014-01-01

    This paper analyses how different coordination modes and different multiobjective decision making approaches interfere with each other in hierarchical organizations. The investigation is based on an agent-based simulation. We apply a modified NK-model in which we map multiobjective decision making as adaptive walk on multiple performance landscapes, whereby each landscape represents one objective. We find that the impact of the coordination mode on the performance and the speed of performance improvement is critically affected by the selected multiobjective decision making approach. In certain setups, the performances achieved with the more complex multiobjective decision making approaches turn out to be less sensitive to the coordination mode than the performances achieved with the less complex multiobjective decision making approaches. Furthermore, we present results on the impact of the nature of interactions among decisions on the achieved performance in multiobjective setups. Our results give guidance on how to control the performance contribution of objectives to overall performance and answer the question how effective certain multiobjective decision making approaches perform under certain circumstances (coordination mode and interdependencies among decisions). PMID:25152926

  18. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  19. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  20. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  1. Canonical Signed Digit Study. Part 2; FIR Digital Filter Simulation Results

    NASA Technical Reports Server (NTRS)

    Kim, Heechul

    1996-01-01

    Finite Impulse Response digital filter using Canonical Signed-Digit (CSD) number representation for the coefficients has been studied and its computer simulation results are presented here. Minimum Mean Square Error (MMSE) criterion is employed to optimize filter coefficients into the corresponding CSD numbers. To further improve coefficients optimization process, an extra non-zero bit is added for any filter coefficients exceeding 1/2. This technique improves frequency response of filter without increasing filter complexity almost at all. The simulation results show outstanding performance in bit-error-rate (BER) curve for all CSD implemented digital filters included in this presentation material.

  2. SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS

    SciTech Connect

    Sonnad, Kiran G.; Furman, Miguel; Veitzer, Seth A.; Cary, John

    2006-04-15

    Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.

  3. Simulation and Analysis of Microwave Transmission through an Electron Cloud, a Comparison of Results

    SciTech Connect

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-03-12

    Simulation studies for transmission of microwaves through electron cloudes show good agreement with analytic results. The elctron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for acessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab maininjector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.

  4. Residual stresses in resistance spot welding: Comparison of simulation and measured results

    SciTech Connect

    Sheppard, S.; Syed, M.

    1994-12-31

    Numerical simulations of welding processes offer researchers and engineers the opportunity to study in detail thermal and mechanical histories created by welding. The objective of this work is to explore the influence of the dynamically changing contact patch size on thermal and mechanical histories in resistance spot welding. To this end, a fully coupled electrical-thermal-mechanical simulation of RSW has been developed. The simulation considers welding and the subsequent cooling of the workpiece. The results of such a simulation are presented for the case of HSLA galvanized sheet and are compared with numerical results where such a coupling was not included. In particular, thermal histories and the final states of residual stresses are compared. Specifically, the fully coupled simulation results show that: (1) There is a 44% reduction in contact area at the faying surface as welding progresses. (2) There are substantial (near yield strength) residual stresses in the annulus surrounding the weld nugget. (3) Cooling rates in the nugget are on the order of 10,000{degrees}F/s when welding with electrode hold time. Rates are closer to 1000{degrees}F/s when there is no electrode hold time. (4) predicted residual stresses compare favorably with measured values. Note that it is extremely difficult (if not impossible) to make residual stress measurements in the area of greatest concern with regards to weld fatigue failure. The predicted residual stresses will be valuable input to engineers and researchers concerned with the fatigue performance of resistance spot welded structures.

  5. Achievements and bottlenecks in humanitarian demining EU-funded research: final results from the EC DELVE project

    NASA Astrophysics Data System (ADS)

    Sahli, Hichem; Bruschini, Claudio; Van Kempen, Luc; Schleijpen, Ric; den Breejen, Eric

    2008-04-01

    The EC DELVE Support Action project has analyzed the bottlenecks in the transfer of Humanitarian Demining (HD) technology from technology development to the use in the field, and drawn some lessons learned, basing itself on the assessment of the European Humanitarian Demining Research and Technology Development (RTD) situation from early 1990 until 2006. The situation at the European level was analyzed with emphasis on activities sponsored by the European Commission (EC). This was also done for four European countries and Japan, with emphasis on national activities. The developments in HD during the last 10 years underline the fact that in a number of cases demining related developments have been terminated or at least put on hold. The study also showed that the funding provided by the EC under the Framework Program for RTD has led directly to the creation of an extensive portfolio of Humanitarian Demining technology development projects. The latter provided a range of research and supporting measures addressing the critical issues identified as a result of the regulatory policies developed in the field of Humanitarian Demining over the last ten years. However, the range of instruments available to the EC to finance the necessary research and development were limited, to pre-competitive research. The EC had no tools or programs to directly fund actual product development. As a first consequence, the EC funding program for development of technology for Humanitarian Demining unfortunately proved to be largely unsuitable for the small-scale development needed in a field where there is only a very limited market. As a second consequence, most of the research has been demonstrator-oriented. Moreover, the timeframe for RTD in Humanitarian Demining has not been sufficiently synchronized with the timeframe of the EC policies and regulations. The separation of the Mine Action and RTD funding streams in the EC did also negatively affect the take-up of new technologies. As a

  6. Computed tomography with a low-intensity proton flux: results of a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Schulte, Reinhard W.; Klock, Margio C. L.; Bashkirov, Vladimir; Evseev, Ivan G.; de Assis, Joaquim T.; Yevseyeva, Olga; Lopes, Ricardo T.; Li, Tianfang; Williams, David C.; Wroe, Andrew J.; Schelin, Hugo R.

    2004-10-01

    Conformal proton radiation therapy requires accurate prediction of the Bragg peak position. This problem may be solved by using protons rather than conventional x-rays to determine the relative electron density distribution via proton computed tomography (proton CT). However, proton CT has its own limitations, which need to be carefully studied before this technique can be introduced into routine clinical practice. In this work, we have used analytical relationships as well as the Monte Carlo simulation tool GEANT4 to study the principal resolution limits of proton CT. The GEANT4 simulations were validated by comparing them to predictions of the Bethe Bloch theory and Tschalar's theory of energy loss straggling, and were found to be in good agreement. The relationship between phantom thickness, initial energy, and the relative electron density uncertainty was systematically investigated to estimate the number of protons and dose needed to obtain a given density resolution. The predictions of this study were verified by simulating the performance of a hypothetical proton CT scanner when imaging a cylindrical water phantom with embedded density inhomogeneities. We show that a reasonable density resolution can be achieved with a relatively small number of protons, thus providing a possible dose advantage over x-ray CT.

  7. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    SciTech Connect

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  8. Comparison of the analytical and simulation results of the equilibrium beam profile

    SciTech Connect

    Liu, Z. J.; Zhu Shaoping; Cao, L. H.; Zheng, C. Y.

    2007-10-15

    The evolution of high current electron beams in dense plasmas has been investigated by using two-dimensional particle-in-cell (PIC) simulations with immobile ions. It is shown that electron beams are split into many filaments at the beginning due to the Weibel instability, and then different filamentation beams attract each other and coalesce. The profile of the filaments can be described by formulas. Hammer et al. [Phys. Fluids 13, 1831 (1970)] developed a self-consistent relativistic electron beam model that allows the propagation of relativistic electron fluxes in excess of the Alfven-Lawson critical-current limit for a fully neutralized beam. The equilibrium solution has been observed in the simulation results, but the electron distribution function assumed by Hammer et al. is different from the simulation results.

  9. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra

  10. Effects of Problem-Based Learning Model versus Expository Model and Motivation to Achieve for Student's Physic Learning Result of Senior High School at Class XI

    ERIC Educational Resources Information Center

    Prayekti

    2016-01-01

    "Problem-based learning" (PBL) is one of an innovative learning model which can provide an active learning to student, include the motivation to achieve showed by student when the learning is in progress. This research is aimed to know: (1) differences of physic learning result for student group which taught by PBL versus expository…

  11. Social and Musical Objectives or Experiences School Music Teachers Anticipate Their Students Will Achieve as a Result of Attending a Summer Music Camp

    ERIC Educational Resources Information Center

    Richards, Eric W.

    2011-01-01

    The purpose of this study was to investigate specific social and musical objectives or experiences school music teachers anticipate their students will achieve as a result of attending a summer music camp. A survey instrument was developed to collect demographic data and responses to questions regarding 14 specific musical and social variables.…

  12. Beating the Odds II: A City-By-City Analysis of Student Performance and Achievement Gaps on State Assessments, Spring 2001 Results.

    ERIC Educational Resources Information Center

    Casserly, Michael

    This report presents district-by-district achievement data on 57 major city school systems in reading and mathematics. State assessment results were collected from state Web sites, reports, and databases. Data were analyzed by race/ethnicity when reported. Overall, the Great City Schools have made meaningful gains in math scores on state…

  13. The Efforts to Improve Mathematics Learning Achievement Results of High School Students as Required by Competency-Based Curriculum and Lesson Level-Based Curriculum

    ERIC Educational Resources Information Center

    Sidabutar, Ropinus

    2016-01-01

    The research was aimed to investigate the effect of various, innovated teaching models to improved the student's achievement in various topic in Mathematics. The study was conduct experiment by using innovated teaching with contextual, media and web which are the compared. with conventional teaching method. The result showed the innovation in the…

  14. Mathematics Beliefs and Achievement of Elementary School Students in Japan and the United States: Results from the Third International Mathematics and Science Study

    ERIC Educational Resources Information Center

    House, J. Daniel

    2006-01-01

    Student self-beliefs are significantly related to several types of academic achievement. In addition, results from international assessments have indicated that students in Japan have typically scored above international averages (D. L. Kelly, I. V. S. Mullis, & M. O. Martin, 2000). In this study, the author examined relationships between…

  15. Effectiveness of a mining simulation cooperative learning activity on the cognitive and affective achievement of students in a lower division physical geology course: A confluent approach

    NASA Astrophysics Data System (ADS)

    Tolhurst, Jeffrey Wayne

    the treatment group, statistically significantly different at the alpha = 0.05 level (p = 0.0038). Gains scores for the affective data indicated no statistically significant differences between the treatment and control groups. The simulation seems to make a difference in terms of students' intellectual performance, but not in terms of their attitudinal perceptions of the course. Results support the hypothesis that cognitive achievement is improved by a cooperative learning mining simulation activity. One implication might include adapting and implementing the model in lower division physical geology courses. Another would be to develop similar activities for other lower division, non-majors earth science courses (i.e. environmental geology, astronomy, meteorology, oceanography, etc.) that could improve students' subject matter knowledge. Additionally, the research supports shifting the locus of control from the instructor to students as well as the use of the principles of active learning, cooperative learning, and confluent education in the science classroom.

  16. Simulation of casing vibration resulting from blade-casing rubbing and its verifications

    NASA Astrophysics Data System (ADS)

    Chen, G.

    2016-01-01

    In order to diagnose effectively the blade-casing rubbing fault, it is very much necessary to simulate the casing vibration correctively and study the casing signals' characteristics under blade-casing rubbing. In this paper, the casing vibrations in aero-engine resulting from the blade-casing rubbing are simulated. Firstly, an improved aero-engine blade-casing rubbing model is introduced, in which, the effects of the number of blades and changes in the rotor-stator clearance on rubbing forces are considered, the improved rubbing model can simulate rubbing faults for various rubbing conditions, including single-point, multi-point, local-part, and complete-cycle rubbing on the casing and rotor. Secondly, the rubbing model was applied to the rotor-support-casing coupling model, and the casing acceleration responses under rubbing faults are obtained using the time integration approach, which combines the Newmark-β method and an improved Newmark-β method that is a new explicit integral method named the Zhai method. Thirdly, an aero-engine rotor tester with the casings was used to carry out rubbing experiments for single-point rubbing on the casing and complete-cycle rubbing on the rotor, the simulation result was found to agree well with the experimental values, and the improved blade-casing rubbing model was fully verified. Finally, other rubbing faults were simulated for various rubbing conditions and their rubbing characteristics were analyzed.

  17. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  18. An outcome-based learning model to identify emerging threats : experimental and simulation results.

    SciTech Connect

    Martinez-Moyano, I. J.; Conrad, S. H.; Andersen, D. F.; Decision and Information Sciences; SNL; Univ. at Albany

    2007-01-01

    The authors present experimental and simulation results of an outcome-based learning model as it applies to the identification of emerging threats. This model integrates judgment, decision making, and learning theories to provide an integrated framework for the behavioral study of emerging threats.

  19. Numerical simulation of particle fluxes formation generated as a result of space objects breakups in orbit

    NASA Astrophysics Data System (ADS)

    Aleksandrova, A. G.; Galushina, T. Yu.

    2015-12-01

    The paper describes the software package developed for the numerical simulation of the breakups of natural and artificial objects and algorithms on which it is based. A new software "Numerical model of breakups" includes models of collapse of the spacecraft (SC) as a result of the explosion and collision as well as two models of the explosion of an asteroid.

  20. [Simulation in healthcare for the announcement of harm resulting from healthcare].

    PubMed

    Cluzel, Franck

    2016-04-01

    Simulation is an effective means of transferring competencies in a complex situation such as the announcement of harm resulting from healthcare. The aim is to reinforce patient safety, to improve communication between nurses and patients and between health professionals. PMID:27085931

  1. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  2. Performance and human factors results from thrust vectoring investigations in simulated air combat

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.; Meintel, A. J., Jr.

    1980-01-01

    In support of research related to advanced fighter technology, the Langley Differential Maneuvering Simulator (DMS) has been used to investigate the effects of advanced aerodynamic concepts, parametric changes in performance parameters, and advanced flight control systems on the combat capability of fighter airplanes. At least five studies were related to thrust vectoring and/or inflight thrust reversing. The aircraft simulated ranged from F-4 class to F-15 class, and included the AV-8 Harrier. This paper presents an overview of these studies including the assumptions involved, trends of results, and human factors considerations that were found.

  3. Results of intravehicular manned cargo-transfer studies in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Beasley, G. P.; Yenni, K. R.; Eisele, D. F.

    1972-01-01

    A parametric investigation was conducted in a water immersion simulator to determine the effect of package mass, moment of inertia, and size on the ability of man to transfer cargo in simulated weightlessness. Results from this study indicate that packages with masses of at least 744 kg and moments of inertia of at least 386 kg-m2 can be manually handled and transferred satisfactorily under intravehicular conditions using either one- or two-rail motion aids. Data leading to the conclusions and discussions of test procedures and equipment are presented.

  4. Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, M.; Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Guidetti, M.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Pivanti, M.; Perez-Gaviro, S.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancon, A.; Tellez, P.; Tripiccione, R.; Yllanes, D.

    2012-08-01

    We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.

  5. The latest results from ELM-simulation experiments in plasma accelerators

    NASA Astrophysics Data System (ADS)

    Garkusha, I. E.; Arkhipov, N. I.; Klimov, N. S.; Makhlaj, V. A.; Safronov, V. M.; Landman, I.; Tereshin, V. I.

    2009-12-01

    Recent results of ELM-simulation experiments with quasi-stationary plasma accelerators (QSPAs) Kh-50 (Kharkov, Ukraine) and QSPA-T (Troitsk, Russia) as well as experiments in the pulsed plasma gun MK-200UG (Troitsk, Russia) are discussed. Primary attention in Troitsk experiments has been focused on investigating the carbon-fibre composite (CFC) and tungsten erosion mechanisms, their onset conditions and the contribution of various erosion mechanisms (including droplet splashing) to the resultant surface damage at varying plasma heat flux. The obtained results are used for validating the numerical codes PEGASUS and MEMOS developed in FZK. Crack patterns and residual stresses in tungsten targets under repetitive edge localized mode (ELM)-like plasma pulses are studied in simulation experiments with QSPA Kh-50. Statistical processing of the experimental results on crack patterns after different numbers of QSPA Kh-50 exposures as well as those on the dependence of cracking on the heat load and surface temperature is performed.

  6. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  7. Some numerical simulation results of swirling flow in d.c. plasma torch

    NASA Astrophysics Data System (ADS)

    Felipini, C. L.; Pimenta, M. M.

    2015-03-01

    We present and discuss some results of numerical simulation of swirling flow in d.c. plasma torch, obtained with a two-dimensional mathematical model (MHD model) which was developed to simulate the phenomena related to the interaction between the swirling flow and the electric arc in a non-transferred arc plasma torch. The model was implemented in a computer code based on the Finite Volume Method (FVM) to enable the numerical solution of the governing equations. For the study, cases were simulated with different operating conditions (gas flow rate; swirl number). Some obtained results were compared to the literature and have proved themselves to be in good agreement in most part of computational domain regions. The numerical simulations performed with the computer code enabled the study of the behaviour of the flow in the plasma torch and also study the effects of different swirl numbers on temperature and axial velocity of the plasma flow. The results demonstrated that the developed model is suitable to obtain a better understanding of the involved phenomena and also for the development and optimization of plasma torches.

  8. Computer simulation of shelf and stream profile geomorphic evolution resulting from eustasy and uplift

    SciTech Connect

    Johnson, R.M. )

    1993-04-01

    A two-dimensional computer simulation of shelf and stream profile evolution with sea level oscillation has been developed to illustrate the interplay of coastal and fluvial processes on uplifting continental margins. The shelf evolution portion of the simulation is based on the erosional model of Trenhaile (1989). The rate of high tide cliff erosion decreases as abrasion platform gradient decreases the sea cliff height increases. The rate of subtidal erosion decreases as the subtidal sea floor gradient decreases. Values are specified for annual wave energy, energy required to erode a cliff notch 1 meter deep, nominal low tidal erosion rate, and rate of removal of cliff debris. The values were chosen arbitrarily to yield a geomorphic evolution consistent with the present coast of northern California, where flights of uplifted marine terraces are common. The stream profile evolution simulation interfaces in real time with the shelf simulation. The stream profile consists of uniformly spaced cells, each representing the median height of a profile segment. The stream simulation results show that stream response to sea level change on an uplifting coast is dependent on the profile gradient near the stream mouth, relative to the shelf gradient. Small streams with steep gradients aggrade onto the emergent shelf during sea level fall and incise at the mountain front during sea level rise. Large streams with low gradients incise the emergent shelf during sea level fall and aggrade in their valleys during sea level rise.

  9. Improving the trust in results of numerical simulations and scientific data analytics

    SciTech Connect

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul; Peterka, Tom; Phillips, Carolyn; Snir, Marc; Wild, Stefan

    2015-04-30

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general

  10. Some results of a simulated test for administration of activity in nuclear medicine.

    PubMed

    Oropesa, P; Hernández, A T; Serra, R A; Varela, C; Woods, M J

    2006-04-01

    This paper describes the results obtained using a simulated test for administration of activity in nuclear medicine between 2002 and 2004. Measurements in the radionuclide calibrator are made during the different stages of the procedure. The test attempts to obtain supplementary information on the quality of the measurement, with the aim of evaluating in a more complete way the accuracy of the administered activity value compared with the prescribed one. The participants' performance has been assessed by means of a statistical analysis of the reported data. Dependences between several attributes of the simulated administration tests results are discussed. Specifically, the proportion of satisfactory results in the 2003-2004 period was found to be higher than in 2002. It reveals an improvement of the activity administration in the Cuban nuclear medicine departments since 2003. PMID:16303312

  11. Results of an A109 simulation validation and handling qualities study

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Orlandi, Diego; Bonaita, Giovanni; Barbieri, Sergio

    1989-01-01

    The results for the validation of a mathematical model of the Agusta A109 helicopter, and subsequent use of the model as the baseline for a handling qualities study of cockpit centerstick requirements, are described. The technical approach included flight test, non-realtime analysis, and realtime piloted simulation. Results of the validation illustrate a time- and frequency-domain approach to the model and simulator issues. The final A109 model correlates well with the actual aircraft with the Stability Augmentation System (SAS) engaged, but is unacceptable without the SAS because of instability and response coupling at low speeds. Results of the centerstick study support the current U.S. Army handling qualities requirements for centerstick characteristics.

  12. Results of an A109 simulation validation and handling qualities study

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Orlandi, Diego; Bonaita, Giovanni; Barbieri, Sergio

    1990-01-01

    The results for the validation of a mathematical model of the Agusta A109 helicopter, and subsequent use of the model as the baseline for a handling qualities study of cockpit centerstick requirements, are described. The technical approach included flight test, non-realtime analysis, and realtime piloted simulation. Results of the validation illustrate a time- and frequency-domain approach to the model and simulator issues. The final A109 model correlates well with the actual aircraft with the Stability Augmentation System (SAS) engaged, but is unacceptable without the SAS because of instability and response coupling at low speeds. Results of the centerstick study support the current U.S. Army handling qualities requirements for centerstick characteristics.

  13. Results of aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Campbell, Bryan A.; Melson, W. Edward, Jr.

    1990-01-01

    The NASA Langley Research Center has developed a large-scale ground testing capability for evaluating the effect of heavy rain on airfoil lift. The paper presents the results obtained at the Langley Aircraft Landing Dynamics Facility on a 10-foot cord NACA 64-210 wing section equipped with a leading-edge slat and double-slotted trailing-edge flap deflected to simulate landing conditions. Aerodynamic lift data were obtained with and without the rain simulation system turned on for an angle-of-attack range of 7.5 to 19.5 deg and for two rainfall conditions: 9 in/hr and 40 in/hr. The results are compared to and correlated with previous small-scale wind tunnel results for the same airfoil section. It appears that to first order, scale effects are not large and the wind tunnel research technique can be used to predict rain effects on airplane performance.

  14. Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using BISON

    SciTech Connect

    Novascone, S. R.; Spencer, B. W.; Andrs, D.; Williamson, R. L.; Hales, J. D.; Perez, D. M.

    2013-07-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa. (authors)

  15. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  16. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  17. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  18. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  19. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  20. Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study

    PubMed Central

    McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.

    2015-01-01

    Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939

  1. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    SciTech Connect

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  2. Examining the results of certain effects of high altitude on soldiers using modeling and simulation.

    PubMed

    von Tersch, Robert; Birch, Harry

    2009-10-01

    Operation Enduring Freedom conducted in the high mountains of Afghanistan posed new challenges for U.S. and coalition forces. The high mountains with elevations up to 25,000 feet and little to no road access limited the use of combat vehicles and some advanced weaponry. Small unit actions became the norm and soldiers experienced the effect of high elevation, where limited oxygen and its debilitating effects negatively impacted unacclimated soldiers. While the effects of high altitude on unacclimated soldiers are well documented, the results of those effects in a combat setting are not as well known. For this study, the authors focused on 3 areas: movement speed, response time, and judgment; used a state-of-the-art constructive modeling and simulation (M&S) tool; simulated a combat engagement with less capable unacclimated and fully capable acclimated soldiers; and captured the results, which scaled increased casualties for unacclimated and decreased casualties for acclimated soldiers. PMID:19891222

  3. Simulating Late Ordovician deep ocean O2 with an earth system climate model. Preliminary results.

    NASA Astrophysics Data System (ADS)

    D'Amico, Daniel F.; Montenegro, Alvaro

    2016-04-01

    The geological record provides several lines of evidence that point to the occurrence of widespread and long lasting deep ocean anoxia during the Late Ordovician, between about 460-440 million years ago (ma). While a series of potential causes have been proposed, there is still large uncertainty regarding how the low oxygen levels came about. Here we use the University of Victoria Earth System Climate Model (UVic ESCM) with Late Ordovician paleogeography to verify the impacts of paleogeography, bottom topography, nutrient loading and cycling and atmospheric concentrations of O2 and CO2 on deep ocean oxygen concentration during the period of interest. Preliminary results so far are based on 10 simulations (some still ongoing) covering the following parameter space: CO2 concentrations of 2240 to 3780 ppmv (~8x to 13x pre-industrial), atmospheric O2 ranging from 8% to 12% per volume, oceanic PO4 and NO3 loading from present day to double present day, reductions in wind speed of 50% and 30% (winds are provided as a boundary condition in the UVic ESCM). For most simulations the deep ocean remains well ventilated. While simulations with higher CO2, lower atmospheric O2 and greater nutrient loading generate lower oxygen concentration in the deep ocean, bottom anoxia - here defined as concentrations <10 μmol L-1 - in these cases is restricted to the high-latitue northern hemisphere. Further simulations will address the impact of greater nutrient loads and bottom topography on deep ocean oxygen concentrations.

  4. Induced current electrical impedance tomography system: experimental results and numerical simulations.

    PubMed

    Zlochiver, Sharon; Radai, M Michal; Abboud, Shimon; Rosenfeld, Moshe; Dong, Xiu-Zhen; Liu, Rui-Gang; You, Fu-Sheng; Xiang, Hai-Yan; Shi, Xue-Tao

    2004-02-01

    In electrical impedance tomography (EIT), measurements of developed surface potentials due to applied currents are used for the reconstruction of the conductivity distribution. Practical implementation of EIT systems is known to be problematic due to the high sensitivity to noise of such systems, leading to a poor imaging quality. In the present study, the performance of an induced current EIT (ICEIT) system, where eddy current is applied using magnetic induction, was studied by comparing the voltage measurements to simulated data, and examining the imaging quality with respect to simulated reconstructions for several phantom configurations. A 3-coil, 32-electrode ICEIT system was built, and an iterative modified Newton-Raphson algorithm was developed for the solution of the inverse problem. The RMS norm between the simulated and the experimental voltages was found to be 0.08 +/- 0.05 mV (<3%). Two regularization methods were implemented and compared: the Marquardt regularization and the Laplacian regularization (a bounded second-derivative regularization). While the Laplacian regularization method was found to be preferred for simulated data, it resulted in distinctive spatial artifacts for measured data. The experimental reconstructed images were found to be indicative of the angular positioning of the conductivity perturbations, though the radial sensitivity was low, especially when using the Marquardt regularization method. PMID:15005319

  5. Phase transition-like behavior of magnetospheric substorms: Global MHD simulation results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M. I.; Sharma, S. A.; Papadopoulos, K.; Goodrich, C. C.; Guzdar, P. N.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2003-01-01

    Using nonlinear dynamical techniques, we statistically investigate whether the simulated substorms from global magnetohydrodynamic (MHD) models have a combination of global and multiscale features, revealed in substorm dynamics by [2000] and featured the phase transition-like behavior. We simulate seven intervals of total duration of 280 hours from the data set used in the above works [, 1985]. We analyze the input-output (vBs-pseudo AL index) system obtained from the global MHD model and compare the results to those inferred from the original set (vBs-observed AL index). The analysis of the coupled vBs-pseudo AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs-observed AL index system. Although the comparison between observations and global MHD simulations for individual events may vary, the overall global transition pattern during the substorm cycle revealed by singular spectrum analysis (SSA) is statistically consistent between simulations and observations. The coupled vBs-pseudo AL index system also shows multiscale behavior (scale-invariant power law dependence) in SSA power spectrum. Besides, we find the critical exponent of the nonequilibrium transitions in the magnetosphere, which reflects the multiscale aspect of the substorm activity, different from power law frequency of autonomous systems. The exponent relates input and output parameters of the magnetosphere. We also discuss the limitations of the global MHD model in reproducing the multiscale behavior when compared to the real system.

  6. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation

    USGS Publications Warehouse

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.

    2011-01-01

    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  7. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results

    PubMed Central

    2015-01-01

    Background Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue. Methods Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue. Results Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen. Conclusions Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large

  8. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  9. PRELIMINARY RESULTS FROM A SIMULATION OF QUENCHED QCD WITH OVERL AP FERMIONS ON A LARGE LATTICE.

    SciTech Connect

    BERRUTO,F.GARRON,N.HOELBLING,D.LELLOUCH,L.REBBI,C.SHORESH,N.

    2003-07-15

    We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at {beta} = 6 on an 18{sup 3} x 64 lattice. We calculate quark propagators for a single source point and quark mass ranging from am{sub 4} = 0.03 to 0.75. We present here preliminary results based on the propagators for 60 gauge field configurations.

  10. Scanning L-Band Active Passive (SLAP) - Recent Results from an Airborne Simulator for SMAP

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Scanning L-band Active Passive (SLAP) is a recently-developed NASA airborne instrument specially tailored to simulate the new Soil Moisture Active Passive (SMAP) satellite instrument suite. SLAP conducted its first test flights in December, 2013 and participated in its first science campaign-the IPHEX ground validation campaign of the GPM mission-in May, 2014. This paper will present results from additional test flights and science observations scheduled for 2015.

  11. Femtosecond laser for glaucoma treatment: the comparison between simulation and experimentation results on ocular tissue removal

    NASA Astrophysics Data System (ADS)

    Hou, Dong Xia; Ngoi, Bryan K. A.; Hoh, Sek Tien; Koh, Lee Huat K.; Deng, Yuan Zi

    2005-04-01

    In ophthalmology, the use of femtosecond lasers is receiving more attention than ever due to its extremely high intensity and ultra short pulse duration. It opens the highly beneficial possibilities for minimized side effects during surgery process, and one of the specific areas is laser surgery in glaucoma treatment. However, the sophisticated femtosecond laser-ocular tissue interaction mechanism hampers the clinical application of femtosecond laser to treat glaucoma. The potential contribution in this work lies in the fact, that this is the first time a modified moving breakdown theory is applied, which is appropriate for femtosecond time scale, to analyze femtosecond laser-ocular tissue interaction mechanism. Based on this theory, energy deposition and corresponding thermal increase are studied by both simulation and experimentation. A simulation model was developed using Matlab software, and the simulation result was validated through in-vitro laser-tissue interaction experiment using pig iris. By comparing the theoretical and experimental results, it is shown that femtosecond laser can obtain determined ocular tissue removal, and the thermal damage is evidently reduced. This result provides a promising potential for femtosecond laser in glaucoma treatment.

  12. Transient thermal behaviour of a compressor rotor with ventilation: Test results under simulated engine conditions

    NASA Astrophysics Data System (ADS)

    Reile, E.; Radons, U.; Hennecke, D. K.

    1985-09-01

    The development of advanced compressors for modern aero-engines requires detailed knowledge of the transient thermal behavior of the rotor disks to enable accurate prediction of rotor life and, additionally, of the thermal growth of the rotor for the evaluation of tip clearances. In the quest for longer life and higher reliability of the parts as well as reduced clearances even at transient conditions, the designer has to be able to influence the thermal behavior of the rotor. A very effective way is to vent small amounts of air through the rotor cavities. The design of such a vented rotor is presented. The main emphasis is placed on a detailed description of a test rig specially built for this purpose. The testing was carried out under simulated engine conditions for a wide range of parameters. The results are compared with those obtained with a theoretical model derived from fundamental tests at the University of Sussex, where heat transfer in rotating cavities is investigated. Good agreement is observed. Some final tests were done in an engine. The results also exhibit good agreement with the rig results under simulated conditions, when the proper dimensionless parameters are considered, providing the validity of the simulation.

  13. Technical and physical challenges to achieve a regional simulation at multi-decadal scales: Application to the Bay of Biscay.

    NASA Astrophysics Data System (ADS)

    Theetten, Sébastien; Vandermeirsch, Frédéric; Charria, Guillaume

    2014-05-01

    With the aim to study the regional impact of the climate change on the ocean dynamics and its impact on ecosystem, we implemented the first 53-year long numerical hydrodynamical regional experiment of the Bay of Biscay with a spatial high resolution of 4 km with the MARS3D code. This configuration is a first step included in an on-going implementation process toward higher resolution configurations (~2 km). MARS3D is a sigma-coordinate code based on primitive equations that uses an ADI (Alternating Direction Implicit) scheme on the barotropic part and an efficient time scheme. Technical (parallelization and input/output management) and physical (open boundary conditions and atmospheric forcing) aspects had to be investigated to optimize the numerical experiment and to realize this 53-year long experiment with MARS3D on a dedicated supercomputer. The parallelization is based on a classical domain decomposition method that allows the use of high performance computing resources needed for such long simulations. This parallelization involves the use of MPI and OPENMP technology suitable for the scalar supercomputers. We present some performances of our configuration with respect to the chosen parallelization method and the domain decomposition. We demonstrate that using 768 processors is feasible with MARS3D and that it leads to a good balance between cpu time and elapsed time. Concerning the input/output management, the large amount of output files generated by different processors on a long integration period requires that the calculation task and the input/output management task are evenly distributed. Several strategies, including an innovative strategy that dedicates a set of processors for the calculation and another set of processors for the writing of outputs, have been evaluated for MARS3D and are presented. The numerical experiment requires external forcing fields adapted to open ocean boundaries and ocean-atmosphere interface. The z-coordinate global

  14. Phase Transition-like Behavior of Magnetospheric Substorms: Global MHD Simulation Results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Sitnov, M.; Sharma, A. S.; Papadopoulos, K.; Guzdar, P. N.; Goodrich, C. C.; Milikh, G. M.; Wiltberger, M. J.; Lyon, J. G.

    2001-12-01

    Because of their relevance to massive global energy loading and unloading, lots of observations and studies have been made for magnetic substorm events. Using nonlinear dynamical techniques, we investigate whether the simulated substorms from global MHD models have the non-equilibrium phase transition-like features revealed by \\markcite{Sitnov et al. [2000]}. We simulated 6 intervals of total duration of 240 hours from the same data set used in Sitnov et al. [2000]. We analyzed the input-output (vBs--pseudo-AL index) system obtained from the global MHD model and compared the results to those in \\markcite{Sitnov et al. [2000, 2001]}. The analysis of the coupled vBs--pseudo-AL index system shows the first-order phase transition map, which is consistent with the map obtained for the vBs--observed-AL index system from Sitnov et al. [2000]. The explanation lies in the cusp catastrophe model proposed by Lewis [1991]. Although, the comparison between observation and individual global MHD simulations may vary, the overall global transition pattern during the substorm cycle revealed by Singular Spectrum Analysis (SSA) is consistent between simulations and observations. This is an important validation of the global MHD simulations of the magnetosphere. The coupled vBs--pseudo-AL index system shows multi-scale behavior (scale-invarianet power-law dependence) in singular power spectrum. We found critical exponents of the non-equilibrium transitions in the magnetosphere, which reflect the multi-scale aspect of the substorm activity, different from power-law frequency of autonomous systems. The exponents relate input and output parameters of the magnetosphere and distinguish the second order phase transition model from the self-organized criticality model. We also discuss the limitations of the global MHD model in reproducing the multi-scale behavior when compared to the real system.

  15. Role of depleted flux tubes in steady magnetospheric convection: Results of RCM-E simulations

    NASA Astrophysics Data System (ADS)

    Yang, J.; Toffoletto, F. R.; Song, Y.

    2010-12-01

    We present results of a simulation of an idealized steady magnetospheric convection (SMC) event during steady southward IMF BZ using a version of the Rice Convection Model that is coupled to an equilibrium magnetic field solver (RCM-E) and compare that to a simulation of a substorm growth phase. In contrast to the 1-hour growth phase, the 5-hour SMC event is modeled by placing a plasma distribution with substantially depleted entropy parameter PV5/3 on the RCM's high-latitude boundary. We find that the modeled large-scale configuration on the nightside during the SMC event differs significantly from the growth phase simulation. First, in the magnetotail tailward of X ≈ -10 RE, the magnetic field is dipole-like associated with thick plasma sheet. Second, near geosynchronous orbit, the magnetic field is more stretched associated with the strongly enhanced partial ring current and the inner edge of the plasma sheet moves well inside geosynchronous orbit. Third, the electric field shows strong shielding or even overshielding during the SMC; while a penetration electric field emerges in the growth phase simulation. Fourth, the ground magnetogram calculation shows large horizontal magnetic field disturbances in a much thicker auroral zone which is mainly attributed to Hall currents. Meantime, fairly negative magnetic disturbance emerges in the mid and low latitudes which is mainly attributed to the partial ring current approximately extended to terminators. Contrary to previous studies, our simulation does not produce a deep BZ minimum during strong magnetospheric convection, which implies that the pressure balance inconsistency may be dramatically alleviated if the inner magnetosphere is continuously fed with under-populated flux tubes. We also suggest that strong magnetic field without BZ minimum in the plasma sheet may explain why SMCs can last for hours without a substorm expansion since certain instabilities may not build up to threshold in such a configuration.

  16. A three-phase series-parallel resonant converter -- analysis, design, simulation and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, L.

    1995-12-31

    A three-phase dc-to-dc series-parallel resonant converter is proposed and its operating modes for 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using constant current model and Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of 1 kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500 W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging PF mode for the entire load range and requires a narrow variation in switching frequency.

  17. Molecular simulation of aqueous electrolytes: Water chemical potential results and Gibbs-Duhem equation consistency tests

    NASA Astrophysics Data System (ADS)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R.

    2013-09-01

    This paper deals with molecular simulation of the chemical potentials in aqueous electrolyte solutions for the water solvent and its relationship to chemical potential simulation results for the electrolyte solute. We use the Gibbs-Duhem equation linking the concentration dependence of these quantities to test the thermodynamic consistency of separate calculations of each quantity. We consider aqueous NaCl solutions at ambient conditions, using the standard SPC/E force field for water and the Joung-Cheatham force field for the electrolyte. We calculate the water chemical potential using the osmotic ensemble Monte Carlo algorithm by varying the number of water molecules at a constant amount of solute. We demonstrate numerical consistency of these results in terms of the Gibbs-Duhem equation in conjunction with our previous calculations of the electrolyte chemical potential. We present the chemical potential vs molality curves for both solvent and solute in the form of appropriately chosen analytical equations fitted to the simulation data. As a byproduct, in the context of the force fields considered, we also obtain values for the Henry convention standard molar chemical potential for aqueous NaCl using molality as the concentration variable and for the chemical potential of pure SPC/E water. These values are in reasonable agreement with the experimental values.

  18. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  19. Pointing a ground antenna at a spinning spacecraft using conical scan - Simulation results

    NASA Technical Reports Server (NTRS)

    Mileant, Alexander; Peng, Ted

    1989-01-01

    The results are presented for an investigation of ground antenna pointing errors which are caused by fluctuations of the receiver AGC signal due to thermal noise and a spinning spacecraft. Transient responses and steady-state errors and losses are estimated using models of the digital Conscan (conical scan) loop, the FFT, and antenna characteristics. Simulation results are given for the on-going Voyager mission and for the upcoming Galileo mission, which includes a spinning spacecraft. The simulation predicts a 1 sigma pointing error of 0.5 to 2.0 mdeg for Voyager, assuming an AGC loop SNR of 35 to 30 dB with a scan period varying from 128 to 32 sec, respectively. This prediction is in agreement with the DSS 14 antenna Conscan performance of 1.7 mdeg for 32 sec scans as reported in earlier studies. The simulation of Galileo predicts 1 mdeg error with a 128 sec scan and 4 mdeg with a 32 sec scan under similar AGC conditions.

  20. Pointing a ground antenna at a spinning spacecraft using Conscan-simulation results

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Peng, T.

    1988-01-01

    The results are presented for an investigation of ground antenna pointing errors which are caused by fluctuations of the receiver AGC signal due to thermal noise and a spinning spacecraft. Transient responses and steady-state errors and losses are estimated using models of the digital Conscan (conical scan) loop, the FFT, and antenna characteristics. Simulation results are given for the on-going Voyager mission and for the upcoming Galileo mission, which includes a spinning spacecraft. The simulation predicts a 1 sigma pointing error of 0.5 to 2.0 mdeg for Voyager, assuming an AGC loop SNR of 35 to 30 dB with a scan period varying from 128 to 32 sec, respectively. This prediction is in agreement with the DSS 14 antenna Conscan performance of 1.7 mdeg for 32 sec scans as reported in earlier studies. The simulation of Galileo predicts 1 mdeg error with a 128 sec scan and 4 mdeg with a 32 sec scan under similar AGC conditions.

  1. Experimental and computer simulation results of the spot welding process using SORPAS software

    NASA Astrophysics Data System (ADS)

    Al-Jader, M. A.; Cullen, J. D.; Athi, N.; Al-Shamma'a, A. I.

    2009-07-01

    The highly competitive nature of the automotive industry drives demand for improvements and increased precision engineering in resistance spot welding. Currently there are about 4300 weld points on the average steel vehicle. Current industrial monitoring systems check the quality of the nugget after processing 15 cars, once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. This paper presents a simulation of the spot welding growth curves, along with a comparison to growth curves performed on an industrial spot welding machine. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. The first section in your paper

  2. Systematic coarse graining flowing polymer melts: thermodynamically guided simulations and resulting constitutive model.

    PubMed

    Iig, Patrick

    2011-01-01

    Complex fluids, such as polymers, colloids, liquid-crystals etc., show intriguing viscoelastic properties, due to the complicated interplay between flow-induced structure formation and dynamical behavior. Starting from microscopic models of complex fluids, a systematic coarse-graining method is presented that allows us to derive closed-form and thermodynamically consistent constitutive equations for such fluids. Essential ingredients of the proposed approach are thermodynamically guided simulations within a consistent coarse-graining scheme. In addition to this new type of multiscale simulations, we reconstruct the building blocks that constitute the thermodynamically consistent coarse-grained model. We illustrate the method for low-molecular polymer melts, which are subject to different imposed flow fields like planar shear and different elongational flows. The constitutive equation for general flow conditions we obtain shows rheological behavior including shear thinning, normal stress differences, and elongational viscosities in good agreement with reference results. PMID:21678766

  3. Using multidimensional Rasch to enhance measurement precision: initial results from simulation and empirical studies.

    PubMed

    Mok, Magdalena Mo Ching; Xu, Kun

    2013-01-01

    This study aimed to explore the effect on measurement precision of multidimensional, as compared with unidimensional, Rasch measurement for constructing measures from multidimensional Likert-type scales. Many educational and psychological tests are multidimensional but common practice is to ignore correlations among the latent traits in these multidimensional scales in the measurement process. These practices may have serious validity and reliability implications. This study made use of both empirical data from 208,083 students, and simulated data simulated by 24 systematic combinations, each replicated 1000 times, of three conditions, namely, sample size, degree of dimensionality, and scale length to compare unidimensional and multidimensional approaches and to identify effects of sample size, dimensionality and scale length on measurement precision. Results showed that the multidimensional Rasch approach yielded more precise estimates than did unidimensional approach if the two dimensions were strongly correlated. The effect was more pronounced for long scales. PMID:23442326

  4. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Hong, Kunlun; Liu, Emily; Liu, Yun; Porcar, L.; Smith, Gregory Scott; Wu, Bin; Egami, T; Smith, Sean C

    2012-01-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 (G4) polyelectrolyte polyamidoamine (PAMAM) starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, (r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work which provides a link between the neutron scattering experiment and MD computation. The simulations enable scattering calculations of not only the hydrocarbons, but also the contribution to the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we question the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  5. Preliminary Analysis and Simulation Results of Microwave Transmission Through an Electron Cloud

    SciTech Connect

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-12

    The electromagnetic particle-in-cell (PIC) code VORPAL is being used to simulate the interaction of microwave radiation through an electron cloud. The results so far showgood agreement with theory for simple cases. The study has been motivated by previous experimental work on this problem at the CERN SPS [1], experiments at the PEP-II Low Energy Ring (LER) at SLAC [4], and proposed experiments at the Fermilab Main Injector (MI). With experimental observation of quantities such as amplitude, phase and spectrum of the output microwave radiation and with support from simulations for different cloud densities and applied magnetic fields, this technique can prove to be a useful probe for assessing the presence as well as the densityof electron clouds.

  6. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  7. Computer simulation applied to jewellery casting: challenges, results and future possibilities

    NASA Astrophysics Data System (ADS)

    Tiberto, Dario; Klotz, Ulrich E.

    2012-07-01

    Computer simulation has been successfully applied in the past to several industrial processes (such as lost foam and die casting) by larger foundries and direct automotive suppliers, while for the jewelry sector it is a procedure which is not widespread, and which has been tested mainly in the context of research projects. On the basis of a recently concluded EU project, the authors here present the simulation of investment casting, using two different softwares: one for the filling step (Flow-3D®), the other one for the solidification (PoligonSoft®). A work on material characterization was conducted to obtain the necessary physical parameters for the investment (used for the mold) and for the gold alloys (through thermal analysis). A series of 18k and 14k gold alloys were cast in standard set-ups to have a series of benchmark trials with embedded thermocouples for temperature measurement, in order to compare and validate the software output in terms of the cooling curves for definite test parts. Results obtained with the simulation included the reduction of micro-porosity through an optimization of the feeding channels for a controlled solidification of the metal: examples of the predicted porosity in the cast parts (with metallographic comparison) will be shown. Considerations on the feasibility of applying the casting simulation in the jewelry sector will be reached, underlining the importance of the software parametrization necessary to obtain reliable results, and the discrepancies found with the experimental comparison. In addition an overview on further possibilities of application for the CFD in jewellery casting, such as the modeling of the centrifugal and tilting processes, will be presented.

  8. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    SciTech Connect

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual`s performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average.

  9. RESULTS OF CESIUM MASS TRANSFER TESTING FOR NEXT GENERATION SOLVENT WITH HANFORD WASTE SIMULANT AP-101

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2011-09-27

    SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L{trademark}. This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79{trademark} guanidine, and a diluent, Isopar L{trademark}. Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

  10. Achieving an Undetectable PSA After Radiotherapy for Biochemical Progression After Radical Prostatectomy Is an Independent Predictor of Biochemical Outcome-Results of a Retrospective Study

    SciTech Connect

    Wiegel, Thomas Lohm, Gunnar; Bottke, Dirk; Hoecht, Stefan; Miller, Kurt; Siegmann, Alessandra; Schostak, Martin; Neumann, Konrad; Hinkelbein, Wolfgang

    2009-03-15

    Purpose: Salvage radiotherapy (SRT) is commonly used to treat patients with biochemical failure after radical prostatectomy (RP). Retrospective series have demonstrated biochemical response in approximately 60-75% of patients, but only a significantly lower rate of patients achieves a response with a decrease of the prostate-specific antigen (PSA) to a value below the limits of detectability. Therefore, long-term response at 10 years is only about 20-25% in all of these patients. The purpose of this study was to determine prognostic factors with impact on achieving the undetectable PSA range after SRT and to define the role of this end point. Methods and Materials: Between 1997 and 2004, 162 patients received SRT at the Charite Universitaetsmedizin, Berlin. No patient had hormonal treatment before SRT and 90% of the patients (143) had a SRT dose of 66 Gy. We analyzed the impact of nine potential risk factors on achieving an undetectable PSA after RT and on biochemical relapse-free survival (bNED) after SRT. Results: Median follow-up time was 41.5 months and median PSA pre-RT was 0.33 ng/mL. Calculated bNED for 3.5 years was 54%. A total of 60% of the patients achieved an undetectable PSA after SRT. Univariate analysis demonstrated statistically significant predictors of biochemical progression after SRT: Gleason score (p = 0.01), PSA pre-SRT (p = 0.031), tumor stage (p = 0.047), and persistent detectable PSA after RT (p < 0.00005). In multivariate analysis, margin status (p = 0.017) and PSA pre-SRT (p = 0.002) were significant predictors of an undetectable PSA after SRT. The most significant independent predictor of bNED was 'PSA undetectable after RT' (p < 0.0005) with a hazard ratio of 8.4, thus leading to a calculated bNED at 3.5 years of 75% compared with only 18% for those patients, who did not achieve an undetectable PSA after SRT. The rate of severe Grade 3-4 side effects was below 2.5%. Conclusions: The study represents one of the largest retrospective

  11. Testing Friction Laws by Comparing Simulation Results With Experiments of Spontaneous Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Lu, X.; Lapusta, N.; Rosakis, A. J.

    2005-12-01

    Friction laws are typically introduced either based on theoretic ideas or by fitting laboratory experiments that reproduce only a small subset of possible behaviors. Hence it is important to validate the resulting laws by modeling experiments that produce spontaneous frictional behavior. Here we simulate experiments of spontaneous rupture transition from sub-Rayleigh to supershear done by Xia et al. (Science, 2004). In the experiments, two thin Homalite plates are pressed together along an inclined interface. Compressive load P is applied to the edges of the plates and the rupture is triggered by an explosion of a small wire. Xia et al. (2004) link the transition in their experiments to the Burridge-Andrews mechanism (Andrews, JGR, 1976) which involves initiation of a daughter crack in front of the main rupture. Xia et al. have measured transition lengths for different values of the load P and compared their results with numerical simulations of Andrews who used linear slip-weakening friction. They conclude that to obtain a good fit they need to assume that the critical slip of the slip-weakening law scales as P-1/2, as proposed by Ohnaka (JGR, 2003). Hence our first goal is to verify whether the dependence of the critical slip on the compressive load P is indeed necessary for a good fit to experimental measurements. To test that, we conducted simulations of the experiments by using boundary integral methodology in its spectral formulation (Perrin et al., 1995; Geubelle and Rice, 1995). We approximately model the wire explosion by temporary normal stress decrease in the region of the interface comparable to the size of the exploding wire. The simulations show good agreement of the transition length with the experimental results for different values of the load P, even though we keep the critical slip constant. Hence the dependence of the critical slip on P is not necessary to fit the experimental measurements. The inconsistency between Andrews' numerical results

  12. Experiments with encapsulation of Monte Carlo simulation results in machine learning models

    NASA Astrophysics Data System (ADS)

    Lal Shrestha, Durga; Kayastha, Nagendra; Solomatine, Dimitri

    2010-05-01

    Uncertainty analysis techniques based on Monte Carlo (MC) simulation have been applied in hydrological sciences successfully in the last decades. They allow for quantification of the model output uncertainty resulting from uncertain model parameters, input data or model structure. They are very flexible, conceptually simple and straightforward, but become impractical in real time applications for complex models when there is little time to perform the uncertainty analysis because of the large number of model runs required. A number of new methods were developed to improve the efficiency of Monte Carlo methods and still these methods require considerable number of model runs in both offline and operational mode to produce reliable and meaningful uncertainty estimation. This paper presents experiments with machine learning techniques used to encapsulate the results of MC runs. A version of MC simulation method, the generalised likelihood uncertain estimation (GLUE) method, is first used to assess the parameter uncertainty of the conceptual rainfall-runoff model HBV. Then the three machines learning methods, namely artificial neural networks, M5 model trees and locally weighted regression methods are trained to encapsulate the uncertainty estimated by the GLUE method using the historical input data. The trained machine learning models are then employed to predict the uncertainty of the model output for the new input data. This method has been applied to two contrasting catchments: the Brue catchment (United Kingdom) and the Bagamati catchment (Nepal). The experimental results demonstrate that the machine learning methods are reasonably accurate in approximating the uncertainty estimated by GLUE. The great advantage of the proposed method is its efficiency to reproduce the MC based simulation results; it can thus be an effective tool to assess the uncertainty of flood forecasting in real time.

  13. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  14. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  15. Effects of a free school breakfast programme on children's attendance, academic achievement and short-term hunger: results from a stepped-wedge, cluster randomised controlled trial

    PubMed Central

    Gorton, Delvina; Turley, Maria; Jiang, Yannan; Michie, Jo; Maddison, Ralph; Hattie, John

    2013-01-01

    Background Free school breakfast programmes (SBPs) exist in a number of high-income countries, but their effects on educational outcomes have rarely been evaluated in randomised controlled trials. Methods A 1-year stepped-wedge, cluster randomised controlled trial was undertaken in 14 New Zealand schools in low socioeconomic resource areas. Participants were 424 children, mean age 9±2 years, 53% female. The intervention was a free daily SBP. The primary outcome was children's school attendance. Secondary outcomes were academic achievement, self-reported grades, sense of belonging at school, behaviour, short-term hunger, breakfast habits and food security. Results There was no statistically significant effect of the breakfast programme on children's school attendance. The odds of children achieving an attendance rate <95% was 0.76 (95% CI 0.56 to 1.02) during the intervention phase and 0.93 (95% CI 0.67 to 1.31) during the control phase, giving an OR of 0.81 (95% CI 0.59 to 1.11), p=0.19. There was a significant decrease in children's self-reported short-term hunger during the intervention phase compared with the control phase, demonstrated by an increase of 8.6 units on the Freddy satiety scale (95% CI 3.4 to 13.7, p=0.001). There were no effects of the intervention on any other outcome. Conclusions A free SBP did not have a significant effect on children's school attendance or academic achievement but had significant positive effects on children's short-term satiety ratings. More frequent programme attendance may be required to influence school attendance and academic achievement. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR)—ACTRN12609000854235. PMID:23043203

  16. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  17. Flow-driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian; Naab, Thorsten; Walch, Stefanie

    2011-07-01

    The fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two-dimensional simulations of flow-driven cloud formation without self-gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code VINE and the Eulerian grid code PROTEUS. Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M⊙ pc-1, the clump mass function has an average slope of -0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid-based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high-density, low-temperature clumps as possible seeds for star formation.

  18. Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations - Results from numerical simulations

    USGS Publications Warehouse

    Scholl, M.A.

    2000-01-01

    Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence

  19. The Ten Commandments for Translating Simulation Results into Real-Life Performance

    ERIC Educational Resources Information Center

    Wenzler, Ivo

    2009-01-01

    Simulation designers are continuously facing the challenge of determining how much of the expected value the simulation has delivered to the client. Addressing this challenge is not easy, and it requires simulation designers to stretch their comfort zones. This article presents a ten-step approach for meeting simulation objectives and translating…

  20. The Mayfield method of estimating nesting success: A model, estimators and simulation results

    USGS Publications Warehouse

    Hensler, G.L.; Nichols, J.D.

    1981-01-01

    Using a nesting model proposed by Mayfield we show that the estimator he proposes is a maximum likelihood estimator (m.l.e.). M.l.e. theory allows us to calculate the asymptotic distribution of this estimator, and we propose an estimator of the asymptotic variance. Using these estimators we give approximate confidence intervals and tests of significance for daily survival. Monte Carlo simulation results show the performance of our estimators and tests under many sets of conditions. A traditional estimator of nesting success is shown to be quite inferior to the Mayfield estimator. We give sample sizes required for a given accuracy under several sets of conditions.

  1. Fluid Instabilities in the Crab Nebula Jet: Results from Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Striani, E.; Bodo, G.; Anjiri, M.

    2014-09-01

    We present an overview of high-resolution relativistic MHD numerical simulations of the Crab Nebula South-East jet. The models are based on hot and relativistic hollow outflows initially carrying a purely toroidal magnetic field. Our results indicate that weakly relativistic (γ˜ 2) and strongly magnetized jets are prone to kink instabilities leading to a noticeable deflection of the jet. These conclusions are in good agreement with the recent X-ray (Chandra) data of Crab Nebula South-East jet indicating a change in the direction of propagation on a time scale of the order of few years.

  2. Two-dimensional copolymers and multifractality: comparing perturbative expansions, Monte Carlo simulations, and exact results.

    PubMed

    von Ferber, C; Holovatch, Yu

    2002-04-01

    We analyze the scaling laws for a set of two different species of long flexible polymer chains joined together at one of their extremities (copolymer stars) in space dimension D=2. We use a formerly constructed field-theoretic description and compare our perturbative results for the scaling exponents with recent conjectures for exact conformal scaling dimensions derived by a conformal invariance technique in the context of D=2 quantum gravity. A simple Monte Carlo simulation brings about reasonable agreement with both approaches. We analyze the remarkable multifractal properties of the spectrum of scaling exponents. PMID:12005898

  3. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  4. Optical imaging of alpha emitters: simulations, phantom, and in vivo results

    NASA Astrophysics Data System (ADS)

    Boschi, Federico; Meo, Sergio Lo; Rossi, Pier Luca; Calandrino, Riccardo; Sbarbati, Andrea; Spinelli, Antonello E.

    2011-12-01

    There has been growing interest in investigating both the in vitro and in vivo detection of optical photons from a plethora of beta emitters using optical techniques. In this paper we have investigated an alpha particle induced fluorescence signal by using a commercial CCD-based small animal optical imaging system. The light emission of a 241Am source was simulated using GEANT4 and tested in different experimental conditions including the imaging of in vivo tissue. We believe that the results presented in this work can be useful to describe a possible mechanism for the in vivo detection of alpha emitters used for therapeutic purposes.

  5. Design and Simulation Results of Waveguide Bends Used in Debuncher Cooling System

    SciTech Connect

    Sun, Ding; /Fermilab

    2000-09-13

    This note is a document about design and simulation results of waveguide bends installed with the arrays in debuncher cooling upgrade. The main feature of these bends is that they are not traditional mitered bends or round bends. Instead, a cylinder is placed in the corner area of the bend. The reason for this design is purely to overcome some practical problems: (1) since these bends are very close to the slotted foil which serves as part of the waveguide array, it is very difficult to make good joint and contact if mitered bends are used, (2) assembly difficulty due to the location of these bends, and (3) limited space requires a compact design. Shown in Figure 1 is a schematic drawing of a bend. Dimensions of bends for each frequency band are listed in Table 1. Shown in Figure 2-5 are the simulation results using HFSS. One of the bends was fabricated with flanges on both ends and measured using a Network Analyzer. The HFSS result was confirmed by the measured data.

  6. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    This paper presents the results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt and Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  7. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  8. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  9. Real-gas simulation for the Shuttle Orbiter and planetary entry configurations including flight results

    NASA Technical Reports Server (NTRS)

    Calloway, R. L.

    1984-01-01

    By testing configurations in a gas (like CF4) which can produce high normal-shock density ratios, such as those encountered during hypersonic entry, certain aspects of real-gas effects can be simulated. Results from force-moment, shock-shape and oil flow visualization tests are presented for both the Shuttle Orbiter and a 45 deg sphere-cone in CF4 and air at M = 6, and comparisons are made with flight results. Pitching-moment coefficients measured on a Shuttle Orbiter model in CF4 showed a nose-up increment, compared with air results, that was almost identical to the difference between preflight predictions and flight in the high hypersonic regime. The drag coefficient measured in CF4 on the 45 deg sphere-cone, which is the same configuration used on the forebody of the Pioneer Venus entry vehicles, showed excellent agreement with flight data at M = 6.

  10. Influence of land use on rainfall simulation results in the Souss basin, Morocco

    NASA Astrophysics Data System (ADS)

    Peter, Klaus Daniel; Ries, Johannes B.; Hssaine, Ali Ait

    2013-04-01

    Situated between the High and Anti-Atlas, the Souss basin is characterized by a dynamic land use change. It is one of the fastest growing agricultural regions of Morocco. Traditional mixed agriculture is replaced by extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market. For the implementation of the land use change and further expansion of the plantations into marginal land which was former unsuitable for agriculture, land levelling by heavy machinery is used to plane the fields and close the widespread gullies. These gully systems are cutting deep between the plantations and other arable land. Their development started already over 400 years ago with the introduction of sugar production. Heavy rainfall events lead to further strong soil and gully erosion in this with 200 mm mean annual precipitation normally arid region. Gullies are cutting into the arable land or are re-excavating their old stream courses. On the test sites around the city of Taroudant, a total of 122 rainfall simulations were conducted to analyze the susceptibility of soils to surface runoff and soil erosion under different land use. A small portable nozzle rainfall simulator is used for the rainfall simulation experiments, quantifying runoff and erosion rates on micro-plots with a size of 0.28 m2. A motor pump boosts the water regulated by a flow metre into the commercial full cone nozzle at a height of 2 m. The rainfall intensity is maintained at about 40 mm h-1 for each of the 30 min lasting experiments. Ten categories of land use are classified for different stages of levelling, fallow land, cultivation and rangeland. Results show that mean runoff coefficients and mean sediment loads are significantly higher (1.4 and 3.5 times respectively) on levelled study sites compared to undisturbed sites. However, the runoff coefficients of all land use types are relatively equal and reach high median coefficients from 39 to 56 %. Only the

  11. SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Komatsu, E.; Sunyaev, R.

    2016-08-01

    We calculate the one-point probability density distribution functions (PDF) and the power spectra of the thermal and kinetic Sunyaev-Zeldovich (tSZ and kSZ) effects and the mean Compton Y parameter using the Magneticum Pathfinder simulations, state-of-the-art cosmological hydrodynamical simulations of a large cosmological volume of (896 Mpc/h)3. These simulations follow in detail the thermal and chemical evolution of the intracluster medium as well as the evolution of super-massive black holes and their associated feedback processes. We construct full-sky maps of tSZ and kSZ from the light-cones out to z = 0.17, and one realisation of 8°.8 × 8°.8 deep light-cone out to z = 5.2. The local universe at z < 0.027 is simulated by a constrained realisation. The tail of the one-point PDF of tSZ from the deep light-cone follows a power-law shape with an index of -3.2. Once convolved with the effective beam of Planck, it agrees with the PDF measured by Planck. The predicted tSZ power spectrum agrees with that of the Planck data at all multipoles up to l ≈ 1000, once the calculations are scaled to the Planck 2015 cosmological parameters with Ωm = 0.308 and σ8 = 0.8149. Consistent with the results in the literature, however, we continue to find the tSZ power spectrum at l = 3000 that is significantly larger than that estimated from the high-resolution ground-based data. The simulation predicts the mean fluctuating Compton Y value of bar{Y}=1.18× 10^{-6} for Ωm = 0.272 and σ8 = 0.809. Nearly half (≈5 × 10-7) of the signal comes from halos below a virial mass of 1013 M⊙/h. Scaling this to the Planck 2015 parameters, we find bar{Y}=1.57× {}10^{-6}.

  12. Simulating Gravity Changes in Topologically Realistic Driven Earthquake Fault Systems: First Results

    NASA Astrophysics Data System (ADS)

    Schultz, Kasey W.; Sachs, Michael K.; Heien, Eric M.; Rundle, John B.; Turcotte, Don L.; Donnellan, Andrea

    2016-03-01

    Currently, GPS and InSAR measurements are used to monitor deformation produced by slip on earthquake faults. It has been suggested that another method to accomplish many of the same objectives would be through satellite-based gravity measurements. The Gravity Recovery and Climate Experiment (GRACE) mission has shown that it is possible to make detailed gravity measurements from space for climate dynamics and other purposes. To build the groundwork for a more advanced satellite-based gravity survey, we must estimate the level of accuracy needed for precise estimation of fault slip in earthquakes. We turn to numerical simulations of earthquake fault systems and use these to estimate gravity changes. The current generation of Virtual California (VC) simulates faults of any orientation, dip, and rake. In this work, we discuss these computations and the implications they have for accuracies needed for a dedicated gravity monitoring mission. Preliminary results are in agreement with previous results calculated from an older and simpler version of VC. Computed gravity changes are in the range of tens of μGal over distances up to a few hundred kilometers, near the detection threshold for GRACE.

  13. Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results

    PubMed Central

    Jang, Neo W.; Zakrzewski, Aaron; Rossi, Christina; Dalecki, Diane; Gracewski, Sheryl

    2011-01-01

    Motivated by various clinical applications of ultrasound contrast agents within blood vessels, the natural frequencies of two bubbles in a compliant tube are studied analytically, numerically, and experimentally. A lumped parameter model for a five degree of freedom system was developed, accounting for the compliance of the tube and coupled response of the two bubbles. The results were compared to those produced by two different simulation methods: (1) an axisymmetric coupled boundary element and finite element code previously used to investigate the response of a single bubble in a compliant tube and (2) finite element models developed in comsol Multiphysics. For the simplified case of two bubbles in a rigid tube, the lumped parameter model predicts two frequencies for in- and out-of-phase oscillations, in good agreement with both numerical simulation and experimental results. For two bubbles in a compliant tube, the lumped parameter model predicts four nonzero frequencies, each asymptotically converging to expected values in the rigid and compliant limits of the tube material. PMID:22088008

  14. Investigation of short pulse effects in IR FELs and new simulation results

    NASA Astrophysics Data System (ADS)

    Asgekar, Vivek; Berden, Giel; Brunken, Marco; Casper, Lars; Genz, Harald; Grigore, Maria; Heßler, Christoph; Khodyachykh, Sergiy; Richter, Achim; van der Meer, Alex F. G.

    2003-07-01

    The Darmstadt IR FEL is designed to generate wavelengths between 3 and 10 μm and driven by the superconducting electron linear accelerator. The pulsed electron beam has a peak current of 2.7 A leading to a small signal gain of 5%. Currently, investigations of the energy transfer process inside the undulator are performed using the 1D time-dependent simulation code FAST1D-OSC. We present simulation results for the power vs. different desynchronization and tapering parameters as well as a comparison with experimental data from the S-DALINAC IR-FEL. Furthermore, a compact autocorrelation system assuring a background-free measurement of the optical pulse length is described. In a first test experiment at FELIX, the autocorrelator has been tested at wavelengths 5.7⩽λ⩽9.0 μm. The frequency doubling in a 2 mm-long ZnGeP 2-crystal resulted in a time resolution of 300 fs and a conversion efficiency of 5%.

  15. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China

    NASA Astrophysics Data System (ADS)

    Zhu, Gengshang; Zhang, Zhenguo; Wen, Jian; Zhang, Wei; Chen, Xiaofei

    2013-08-01

    The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.

  16. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  17. Computer simulation results for PCM/PM/NRZ receivers in nonideal channels

    NASA Technical Reports Server (NTRS)

    Anabtawi, A.; Nguyen, T. M.; Million, S.

    1995-01-01

    This article studies, by computer simulations, the performance of deep-space telemetry signals that employ the pulse code modulation/phase modulation (PCM/PM) technique, using nonreturn-to-zero data, under the separate and combined effects of unbalanced data, data asymmetry, and a band-limited channel. The study is based on measuring the symbol error rate performance and comparing the results to the theoretical results presented in previous articles. Only the effects of imperfect carrier tracking due to an imperfect data stream are considered. The presence of an imperfect data stream (unbalanced and/or asymmetric) produces undesirable spectral components at the carrier frequency, creating an imperfect carrier reference that will degrade the performance of the telemetry system. Further disturbance to the carrier reference is caused by the intersymbol interference created by the band-limited channel.

  18. Short-time dynamics of isotropic and anisotropic Bak-Sneppen model: extensive simulation results

    NASA Astrophysics Data System (ADS)

    Tirnakli, Ugur; Lyra, Marcelo L.

    2004-12-01

    In this work, the short-time dynamics of the isotropic and anisotropic versions of the Bak-Sneppen (BS) model has been investigated using the standard damage spreading technique. Since the system sizes attained in our simulations are larger than the ones employed in previous studies, our results for the dynamic scaling exponents are expected to be more accurate than the results of the existing literature. The obtained scaling exponents of both versions of the BS model are found to be greater than the ones given in previous works. These findings are in agreement with the recent claim of Cafiero et al. (Eur. Phys. J. B7 (1999) 505). Moreover, it is found that the short-time dynamics of the anisotropic model is only slightly affected by finite-size effects and the reported estimate of α≃0.53 can be considered as a good estimate of the true exponent in the thermodynamic limit.

  19. A three-phase series-parallel resonant converter -- analysis, design, simulation, and experimental results

    SciTech Connect

    Bhat, A.K.S.; Zheng, R.L.

    1996-07-01

    A three-phase dc-to-dc series-parallel resonant converter is proposed /and its operating modes for a 180{degree} wide gating pulse scheme are explained. A detailed analysis of the converter using a constant current model and the Fourier series approach is presented. Based on the analysis, design curves are obtained and a design example of a 1-kW converter is given. SPICE simulation results for the designed converter and experimental results for a 500-W converter are presented to verify the performance of the proposed converter for varying load conditions. The converter operates in lagging power factor (PF) mode for the entire load range and requires a narrow variation in switching frequency, to adequately regulate the output power.

  20. Multipacting simulation and test results of BNL 704 MHz SRF gun

    SciTech Connect

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.; Cullen, C. et al

    2012-05-20

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab, and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.

  1. Predictors and outcomes of sustained, intermittent or never achieving remission in patients with recent onset inflammatory polyarthritis: results from the Norfolk Arthritis Register

    PubMed Central

    Cook, Michael J.; Diffin, Janet; Scirè, Carlo A.; Lunt, Mark; MacGregor, Alex J.; Symmons, Deborah P. M.

    2016-01-01

    Objectives. Early remission is the current treatment strategy for patients with inflammatory polyarthritis (IP) and RA. Our objective was to identify baseline factors associated with achieving remission: sustained (SR), intermittent (IR) or never (NR) over a 5-year period in patients with early IP. Methods. Clinical and demographic data of patients with IP recruited to the Norfolk Arthritis Register (NOAR) were obtained at baseline and years 1, 2, 3 and 5. Remission was defined as no tender or swollen joints (out of 51). Patients were classified as NR or PR, respectively, if they were in remission at: no assessment or ⩾3 consecutive assessments after baseline, and IR otherwise. Ordinal regression and a random effects model, respectively, were used to examine the association between baseline factors, remission group and HAQ scores over time. Results. A total of 868 patients (66% female) were included. Of these, 54%, 34% and 12% achieved NR, IR and SR, respectively. In multivariate analysis, female sex (odds ratio, OR 0.47, 95% CI: 0.35, 0.63), higher tender joint count (OR = 0.94, 95% CI: 0.93, 0.96), higher HAQ (OR = 0.59, 95% CI: 0.48, 0.74), being obese (OR = 0.70, 95% CI: 0.50, 0.99), hypertensive (OR = 0.67, 95% CI: 0.50, 0.90) or depressed (OR = 0.74, 95% CI: 0.55, 1.00) at baseline were independent predictors of being in a lower remission group. IR and SR were associated with lower HAQ scores over time and lower DAS28 at year 5. Conclusion. Women with higher tender joint count and disability at baseline, depression, obesity and hypertension were less likely to achieve remission. This information could help when stratifying patients for more aggressive therapy. PMID:27220594

  2. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    SciTech Connect

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

  3. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.

    PubMed

    Bannwarth, M A; Grovermann, C; Schreinemachers, P; Ingwersen, J; Lamers, M; Berger, T; Streck, T

    2016-01-01

    Pesticide application rates are high and increasing in upland agricultural systems in Thailand producing vegetables, fruits and ornamental crops, leading to the pollution of stream water with pesticide residues. The objective of this study was to determine the maximum per hectare application rates of two widely used pesticides that would achieve non-hazardous pesticide concentrations in the stream water and to evaluate how farm household incomes would be affected if farmers complied with these restricted application rates. For this purpose we perform an integrated modeling approach of a hydrological solute transport model (the Soil and Water Assessment Tool, SWAT) and an agent-based farm decision model (Mathematical Programming-based Multi-Agent Systems, MPMAS). SWAT was used to simulate the pesticide fate and behavior. The model was calibrated to a 77 km(2) watershed in northern Thailand. The results show that to stay under a pre-defined eco-toxicological threshold, the current average application of chlorothalonil (0.80 kg/ha) and cypermethrin (0.53 kg/ha) would have to be reduced by 80% and 99%, respectively. The income effect of such reductions was simulated using MPMAS. The results suggest that if farm households complied with the application thresholds then their income would reduce by 17.3% in the case of chlorothalonil and by 38.3% in the case of cypermethrin. Less drastic income effects can be expected if methods of integrated pest management were more widely available. The novelty of this study is to combine two models from distinctive disciplines to evaluate pesticide reduction scenarios based on real-world data from a single study site. PMID:26431614

  4. Is There a Relationship between Physical Fitness and Academic Achievement? Positive Results from Public School Children in the Northeastern United States

    ERIC Educational Resources Information Center

    Chomitz, Virginia R.; Slining, Meghan M.; McGowan, Robert J.; Mitchell, Suzanne E.; Dawson, Glen F.; Hacker, Karen A.

    2009-01-01

    Objectives: To determine relationships between physical fitness and academic achievement in diverse, urban public school children. Methods: This cross-sectional study used public school data from 2004 to 2005. Academic achievement was assessed as a passing score on Massachusetts Comprehensive Assessment System (MCAS) achievement tests in…

  5. Late Pop III Star Formation During the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Norman, Michael L.; O’Shea, Brian W.; Wise, John H.

    2016-06-01

    We present results on the formation of Population III (Pop III) stars at redshift 7.6 from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich radiation transport hydrodynamics cosmological adaptive-mesh refinement simulations of high-redshift galaxy formation performed on the Blue Waters supercomputer. In a survey volume of about 220 comoving Mpc3, we found 14 Pop III galaxies with recent star formation. The surprisingly late formation of Pop III stars is possible due to two factors: (i) the metal enrichment process is local and slow, leaving plenty of pristine gas to exist in the vast volume; and (ii) strong Lyman–Werner radiation from vigorous metal-enriched star formation in early galaxies suppresses Pop III formation in (“not so”) small primordial halos with mass less than ˜3 × 107 M ⊙. We quantify the properties of these Pop III galaxies and their Pop III star formation environments. We look for analogs to the recently discovered luminous Ly α emitter CR7, which has been interpreted as a Pop III star cluster within or near a metal-enriched star-forming galaxy. We find and discuss a system similar to this in some respects, however, the Pop III star cluster is far less massive and luminous than CR7 is inferred to be.

  6. Statistics of dark matter substructure - II. Comparison of model with simulation results

    NASA Astrophysics Data System (ADS)

    van den Bosch, Frank C.; Jiang, Fangzhou

    2016-05-01

    We compare subhalo mass and velocity functions obtained from different simulations with different subhalo finders among each other, and with predictions from the new semi-analytical model presented in Paper I. We find that subhalo mass functions (SHMFs) obtained using different subhalo finders agree with each other at the level of ˜20 per cent, but only at the low-mass end. At the massive end, subhalo finders that identify subhaloes based purely on density in configuration space dramatically underpredict the subhalo abundances by more than an order of magnitude. These problems are much less severe for subhalo velocity functions (SHVFs), indicating that they arise from issues related to assigning masses to the subhaloes, rather than from detecting them. Overall the predictions from the semi-analytical model are in excellent agreement with simulation results obtained using the more advanced subhalo finders that use information in six-dimensional phase-space. In particular, the model accurately reproduces the slope and host-mass-dependent normalization of both the subhalo mass and velocity functions. We find that the SHMFs and SHVFs have power-law slopes of 0.86 and 2.77, respectively, significantly shallower than what has been claimed in several studies in the literature.

  7. Preparation, conduct, and experimental results of the AVR loss-of-coolant accident simulation test

    SciTech Connect

    Kruger, K.; Bergerfurth, A.; Burger, S.; Pohl, P.; Wimmers, M. ); Cleveland, J.C. )

    1991-02-01

    A loss-of-coolant accident (LOCA) is one of the most severe accidents for a nuclear power plant. To demonstrate inherent safety characteristics incorporated into small high-temperature gas-cooled reactor (HTGR) design, LOCA simulation tests have been conducted at the Arbeitsgemeinschaft Versuchsreaktor (AVR), the German pebble-bed-high-temperature reactor plant. The AVR is the only nuclear power plant ever to have been intentionally subjected to LOCA conditions without emergency cooling. This paper presents the planning and licensing activities including pretest predictions performed for the LOCA test are described, and the conduct of the test and experimental results. The LOCA test was planned to create conditions that would exist if a rapid LOCA occurred with the reactor operating at full power. The test demonstrated this reactor's safe response to an accident in which the coolant escapes from the reactor core and no emergency system is available to provide coolant flow to the core. The test is of special interest because it demonstrates the inherent safety features incorporated into optimized modular HTGR designs. The main LOCA test lasted for 5 days. After the test began, core temperatures increased for {approx}13 h and then gradually and continually decreased as the rate of heat dissipation from the core exceeded the simulated decay power. Throughout the test, temperatures remained below limiting values for the core and other reactor components.

  8. The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.

    2003-01-01

    We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.

  9. Simulated flight through JAWS wind shear - In-depth analysis results. [Joint Airport Weather Studies

    NASA Technical Reports Server (NTRS)

    Frost, W.; Chang, H.-P.; Elmore, K. L.; Mccarthy, J.

    1984-01-01

    The Joint Airport Weather Studies (JAWS) field experiment was carried out in 1982 near Denver. An analysis is presented of aircraft performance in the three-dimensional wind fields. The fourth dimension, time, is not considered. The analysis seeks to prepare computer models of microburst wind shear from the JAWS data sets for input to flight simulators and for research and development of aircraft control systems and operational procedures. A description is given of the data set and the method of interpolating velocities and velocity gradients for input to the six-degrees-of-freedom equations governing the motion of the aircraft. The results of the aircraft performance analysis are then presented, and the interpretation classifies the regions of shear as severe, moderate, or weak. Paths through the severe microburst of August 5, 1982, are then recommended for training and operational applications. Selected subregions of the flow field defined in terms of planar sections through the wind field are presented for application to simulators with limited computer storage capacity, that is, for computers incapable of storing the entire array of variables needed if the complete wind field is programmed.

  10. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6). Simulation Design and Preliminary Results

    SciTech Connect

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; Boucher, Olivier; English, J.; Irvine, Peter; Jones, Andrew; Lawrence, M. G.; Maccracken, Michael C.; Muri, Helene O.; Moore, John; Niemeier, Ulrike; Phipps, Steven; Sillmann, Jana; Storelvmo, Trude; Wang, Hailong; Watanabe, Shingo

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  11. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-06-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  12. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J. M.; Irvine, P. J.; Jones, A.; Lawrence, M. G.; MacCracken, M.; Muri, H.; Moore, J. C.; Niemeier, U.; Phipps, S. J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S.

    2015-10-01

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

  13. Results of transient simulations of a digital model of the Arikaree Aquifer near Wheatland, southeastern Wyoming

    USGS Publications Warehouse

    Hoxie, Dwight T.

    1979-01-01

    Revised ground-water pumpage data have been imposed on a ground-water flow model previously developed for the Arikaree aquifer in a 400 square-mile area in central Platte County, Wyo. Maximum permitted annual ground-water withdrawals of 750 acre-feet for industrial use were combined with three irrigation-pumping scenarios to predict the long-term effects on ground-water levels and streamflows. Total annual ground-water withdrawals of 8,806 acre-feet, 8,033 acre-feet, and 5,045 acre-feet were predicted to produce average water-level declines of 5 feet or more over areas of 99, 96, and 68 square miles, respectively, at the end of a 40-year simulation period. The first two pumping scenarios were predicted to produce average drawdowns of more than 50 feet over areas of 1.5 and 0.8 square miles, respectively, while the third scenario resulted in average drawdowns of less than 50 feet throughout the study area. In addition, these three pumping scenarios were predicted to cause streamflow reductions of 2.6, 2.0, and 1.4 cubic feet per second, respectively, in the Laramie River and 4.9, 4.7, and 3.7 cubic feet per second, respectively, in the North Laramie River at the end of the 40-year simulation period. (Kosco-USGS)

  14. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.

    PubMed

    Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi

    2016-08-01

    The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. PMID:27317328

  15. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  16. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results

    NASA Astrophysics Data System (ADS)

    Van Liedekerke, P.; Palm, M. M.; Jagiella, N.; Drasdo, D.

    2015-12-01

    In this paper we present an overview of agent-based models that are used to simulate mechanical and physiological phenomena in cells and tissues, and we discuss underlying concepts, limitations, and future perspectives of these models. As the interest in cell and tissue mechanics increase, agent-based models are becoming more common the modeling community. We overview the physical aspects, complexity, shortcomings, and capabilities of the major agent-based model categories: lattice-based models (cellular automata, lattice gas cellular automata, cellular Potts models), off-lattice models (center-based models, deformable cell models, vertex models), and hybrid discrete-continuum models. In this way, we hope to assist future researchers in choosing a model for the phenomenon they want to model and understand. The article also contains some novel results.

  17. Statistics of interacting networks with extreme preferred degrees: Simulation results and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.

    2012-02-01

    Network studies have played a central role for understanding many systems in nature - e.g., physical, biological, and social. So far, much of the focus has been the statistics of networks in isolation. Yet, many networks in the world are coupled to each other. Recently, we considered this issue, in the context of two interacting social networks. In particular, We studied networks with two different preferred degrees, modeling, say, introverts vs. extroverts, with a variety of ``rules for engagement.'' As a first step towards an analytically accessible theory, we restrict our attention to an ``extreme scenario'': The introverts prefer zero contacts while the extroverts like to befriend everyone in the society. In this ``maximally frustrated'' system, the degree distributions, as well as the statistics of cross-links (between the two groups), can depend sensitively on how a node (individual) creates/breaks its connections. The simulation results can be reasonably well understood in terms of an approximate theory.

  18. Comparison of theoretical and simulated performance results for sloppy-slotted Aloha signaling

    NASA Astrophysics Data System (ADS)

    Crozier, Stewart N.

    Sloppy-slotted Aloha refers to a form of random access signaling which allows slotted packets, with random timing errors, to spill over into adjacent slots. For the North American mobile satellite (MSAT) system, the two-way propagation delay variation is on the order of 40 milliseconds. The higher the signaling rate, or the shorter the packet length, the wider the timing error distribution, measured in packet lengths. With 192 transmission bits per packet, a 40 millisecond timing error corresponds to 2 packet lengths at 9600 bits per second. Approximate theoretical and simulated performance results are presented and compared for a mixed Gaussian discrete timing error distribution model. This model allows a fraction of the users to have corrected timing. It is found that the theoretical approximations are generally quite accurate. Where differences are observed, the theoretical approximations are always found to be pessimistic. The conclusion is that the theoretical approximations can be used with confidence as a conservative measure of performance.

  19. Solar flare model: Comparison of the results of numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Vashenyuk, E. V.; Podgorny, A. I.

    2009-12-01

    The electrodynamic flare model is based on numerical 3D simulations with the real magnetic field of an active region. An energy of ˜1032 erg necessary for a solar flare is shown to accumulate in the magnetic field of a coronal current sheet. The thermal X-ray source in the corona results from plasma heating in the current sheet upon reconnection. The hard X-ray sources are located on the solar surface at the loop foot-points. They are produced by the precipitation of electron beams accelerated in field-aligned currents. Solar cosmic rays appear upon acceleration in the electric field along a singular magnetic X-type line. The generation mechanism of the delayed cosmic-ray component is also discussed.

  20. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  1. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  2. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.

    2009-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  3. Biofilm formation and control in a simulated spacecraft water system - Two-year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1991-01-01

    The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  4. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  5. Inverse Comptonization in a Two Component Advective Flow: Results of a Monte Carlo simulation

    SciTech Connect

    Ghosh, Himadri; Chakrabarti, S. K.; Laurent, Philippe

    2008-10-08

    We compute the resultant spectrum due to multiple scattering of soft photons emitted from a Keplerian disk by thermal electrons inside a torus axisymmetrically placed around a black hole. In a two component advective flow model, the post-shock region is similar to a thick accretion disk and the pre-shock sub-keplerian flow is highly optically thin. As a preliminary run of the Monte Carlo simulation of the system, we assume the CENBOL to be a small (2-14r{sub g}) thick accretion disk without a cusp to allow bulk motion of the flow. Bulk Motion Comptonization (BMC) has also been added. We show that the spectral behaviour is very similar to what is predicted in Chakrabarti and Titarchuk (1995)

  6. Barred Galaxy Photometry: Comparing results from the Cananea sample with N-body simulations

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Gadotti, D. A.; Carrasco, L.; Bosma, A.; de Souza, R. E.; Recillas, E.

    2009-11-01

    We compare the results of the photometrical analysis of barred galaxies with those of a similar analysis from N-body simulations. The photometry is for a sample of nine barred galaxies observed in the J and K[s] bands with the CANICA near infrared (NIR) camera at the 2.1 m telescope of the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Sonora, Mexico. The comparison includes radial ellipticity profiles and surface brightness (density for the N-body galaxies) profiles along the bar major and minor axes. We find very good agreement, arguing that the exchange of angular momentum within the galaxy plays a determinant role in the evolution of barred galaxies.

  7. Simulated microgravity inhibits the proliferation of K562 erythroleukemia cells but does not result in apoptosis

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Xia, Bing; Xue, Ming; Zhang, Guang-Yao; Wang, Hong; Zhou, Hui-Min; Sun, Yan; Zhuang, Feng-Yuan

    2009-07-01

    Astronauts and experimental animals in space develop the anemia of space flight, but the underlying mechanisms are still unclear. In this study, the impact of simulated microgravity on proliferation, cell death, cell cycle progress and cytoskeleton of erythroid progenitor-like K562 leukemia cells was observed. K562 cells were cultured in NASA Rotary Cell Culture System (RCCS) that was used to simulate microgravity (at 15 rpm). After culture for 24 h, 48 h, 72 h, and 96 h, the cell densities cultured in RCCS were only 55.5%, 54.3%, 67.2% and 66.4% of the flask-cultured control cells, respectively. The percentages of trypan blue-stained dead cells and the percentages of apoptotic cells demonstrated no difference between RCCS-cultured cells and flask-cultured cells at every time points (from 12 h to 96 h). Compared with flask-cultured cells, RCCS culture induced an accumulation of cell number at S phase concomitant with a decrease at G0/G1 and G2/M phases at 12 h. But 12 h later (from 24 h to 60 h), the distribution of cell cycle phases in RCCS-cultured cells became no difference compared to flask-cultured cells. Consistent with the changes of cell cycle distribution, the levels of intercellular cyclins in RCCS-cultured cells changed at 12 h, including a decrease in cyclin A, and the increasing in cyclin B, D1 and E, and then (from 24 h to 36 h) began to restore to control levels. After RCCS culture for 12-36 h, the microfilaments showed uneven and clustered distribution, and the microtubules were highly disorganized. These results indicated that RCCS-simulated microgravity could induce a transient inhibition of proliferation, but not result in apoptosis, which could involve in the development of space flight anemia. K562 cells could be a useful model to research the effects of microgravity on differentiation and proliferation of hematopoietic cells.

  8. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  9. Results of Aging Tests of Vendor-Produced Blended Feed Simulant

    SciTech Connect

    Russell, Renee L.; Buchmiller, William C.; Cantrell, Kirk J.; Peterson, Reid A.; Rinehart, Donald E.

    2009-04-21

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is procuring through Pacific Northwest National Laboratory (PNNL) a minimum of five 3,500 gallon batches of waste simulant for Phase 1 testing in the Pretreatment Engineering Platform (PEP). To make sure that the quality of the simulant is acceptable, the production method was scaled up starting from laboratory-prepared simulant through 15-gallon vendor prepared simulant and 250-gallon vendor prepared simulant before embarking on the production of the 3500-gallon simulant batch by the vendor. The 3500-gallon PEP simulant batches were packaged in 250-gallon high molecular weight polyethylene totes at NOAH Technologies. The simulant was stored in an environmentally controlled environment at NOAH Technologies within their warehouse before blending or shipping. For the 15-gallon, 250-gallon, and 3500-gallon batch 0, the simulant was shipped in ambient temperature trucks with shipment requiring nominally 3 days. The 3500-gallon batch 1 traveled in a 70-75°F temperature controlled truck. Typically the simulant was uploaded in a PEP receiving tank within 24-hours of receipt. The first uploading required longer with it stored outside. Physical and chemical characterization of the 250-gallon batch was necessary to determine the effect of aging on the simulant in transit from the vendor and in storage before its use in the PEP. Therefore, aging tests were conducted on the 250-gallon batch of the vendor-produced PEP blended feed simulant to identify and determine any changes to the physical characteristics of the simulant when in storage. The supernate was also chemically characterized. Four aging scenarios for the vendor-produced blended simulant were studied: 1) stored outside in a 250-gallon tote, 2) stored inside in a gallon plastic bottle, 3) stored inside in a well mixed 5-L tank, and 4) subject to extended temperature cycling under summer temperature conditions in a gallon plastic bottle. The following

  10. Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.

  11. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  12. INPRES (intraoperative presentation of surgical planning and simulation results): augmented reality for craniofacial surgery

    NASA Astrophysics Data System (ADS)

    Salb, Tobias; Brief, Jakob; Welzel, Thomas; Giesler, Bjoern; Hassfeld, Steffan; Muehling, Joachim; Dillmann, Ruediger

    2003-05-01

    In this paper we present recent developments and pre-clinical validation results of our approach for augmented reality (AR, for short) in craniofacial surgery. A commercial Sony Glasstron display is used for optical see-through overlay of surgical planning and simulation results with a patient inside the operation room (OR). For the tracking of the glasses, of the patient and of various medical instruments an NDI Polaris system is used as standard solution. A complementary inside-out navigation approach has been realized with a panoramic camera. This device is mounted on the head of the surgeon for tracking of fiducials placed on the walls of the OR. Further tasks described include the calibration of the head-mounted display (HMD), the registration of virtual objects with the real world and the detection of occlusions in the object overlay with help of two miniature CCD cameras. The evaluation of our work took place in the laboratory environment and showed promising results. Future work will concentrate on the optimization of the technical features of the prototype and on the development of a system for everyday clinical use.

  13. CZT detectors used in different irradiation geometries: Simulations and experimental results

    SciTech Connect

    Fritz, Shannon G.; Shikhaliev, Polad M.

    2009-04-15

    The purpose of this work was to evaluate potential advantages and limitations of CZT detectors used in surface-on, edge-on, and tilted angle irradiation geometries. Simulations and experimental investigations of the energy spectrum measured by a CZT detector have been performed using different irradiation geometries of the CZT. Experiments were performed using a CZT detector with 10x10 mm{sup 2} size and 3 mm thickness. The detector was irradiated with collimated photon beams from Am-241 (59.5 keV) and Co-57 (122 keV). The edge-scan method was used to measure the detector response function in edge-on illumination mode. The tilted angle mode was investigated with the radiation beam directed to the detector surface at angles of 90 degree sign , 15 degree sign , and 10 degree sign . The Hecht formalism was used to simulate theoretical energy spectra. The parameters used for simulations were matched to experiment to compare experimental and theoretical results. The tilted angle CZT detector suppressed the tailing of the spectrum and provided an increase in peak-to-total ratio from 38% at 90 degree sign to 83% at 10 degree sign tilt angle for 122 keV radiation. The corresponding increase for 59 keV radiation was from 60% at 90 degree sign to 85% at 10 degree sign tilt angle. The edge-on CZT detector provided high energy resolution when the beam thickness was much smaller than the thickness of CZT. The FWHM resolution in edge-on illumination mode was 4.2% for 122 keV beam with 0.3 mm thickness, and rapidly deteriorated when the thickness of the beam was increased. The energy resolution of surface-on geometry suffered from strong tailing effect at photon energies higher than 60 keV. It is concluded that tilted angle CZT provides high energy resolution but it is limited to a 1D linear array configuration. The surface-on CZT provides 2D pixel arrays but suffers from tailing effect and charge build up. The edge-on CZT is considered suboptimal as it requires small beam

  14. Wolter X-Ray Microscope Computed Tomography Ray-Trace Model with Preliminary Simulation Results

    SciTech Connect

    Jackson, J A

    2006-02-27

    code, (5) description of the modeling code, (6) the results of a number of preliminary imaging simulations, and (7) recommendations for future Wolter designs and for further modeling studies.

  15. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these

  16. A rainfall simulation experiment on soil and water conservation measures - Undesirable results

    NASA Astrophysics Data System (ADS)

    Hösl, R.; Strauss, P.

    2012-04-01

    Sediment and nutrient inputs from agriculturally used land into surface waters are one of the main problems concerning surface water quality. On-site soil and water conservation measures are getting more and more popular throughout the last decades and a lot of research has been done within this issue. Numerous studies can be found about rainfall simulation experiments with different conservation measures tested like no till, mulching employing different types of soil cover, as well as sub soiling practices. Many studies document a more or less great success in preventing soil erosion and enhancing water quality by implementing no till and mulching techniques on farmland but few studies also indicate higher erosion rates with implementation of conservation tillage practices (Strauss et al., 2003). In May 2011 we conducted a field rainfall simulation experiment in Upper Austria to test 5 different maize cultivation techniques: no till with rough seedbed, no till with fine seedbed, mulching with disc harrow and rotary harrow, mulching with rotary harrow and conventional tillage using plough and rotary harrow. Rough seedbed refers to the seedbed preparation at planting of the cover crops. On every plot except on the conventionally managed one cover crops (a mix of Trifolium alexandrinum, Phacelia, Raphanus sativus and Herpestes) were sown in August 2010. All plots were rained three times with deionised water (<50 μS.cm-1) for one hour with 50mm.h-1 rainfall intensity. Surface runoff and soil erosion were measured. Additionally, soil cover by mulch was measured as well as soil texture, bulk density, penetration resistance, surface roughness and soil water content before and after the simulation. The simulation experiments took place about 2 weeks after seeding of maize in spring 2011. The most effective cultivation techniques for soil prevention expectedly proved to be the no till variants, mean erosion rate was about 0.1 kg.h-1, mean surface runoff was 29 l.h-1

  17. Initial quality performance results using a phantom to simulate chest computed radiography.

    PubMed

    Muhogora, Wilbroad; Padovani, Renato; Msaki, Peter

    2011-01-01

    The aim of this study was to develop a homemade phantom for quantitative quality control in chest computed radiography (CR). The phantom was constructed from copper, aluminium, and polymenthylmethacrylate (PMMA) plates as well as Styrofoam materials. Depending on combinations, the literature suggests that these materials can simulate the attenuation and scattering characteristics of lung, heart, and mediastinum. The lung, heart, and mediastinum regions were simulated by 10 mm x 10 mm x 0.5 mm, 10 mm x 10 mm x 0.5 mm and 10 mm x 10 mm x 1 mm copper plates, respectively. A test object of 100 mm x 100 mm and 0.2 mm thick copper was positioned to each region for CNR measurements. The phantom was exposed to x-rays generated by different tube potentials that covered settings in clinical use: 110-120 kVp (HVL=4.26-4.66 mm Al) at a source image distance (SID) of 180 cm. An approach similar to the recommended method in digital mammography was applied to determine the CNR values of phantom images produced by a Kodak CR 850A system with post-processing turned off. Subjective contrast-detail studies were also carried out by using images of Leeds TOR CDR test object acquired under similar exposure conditions as during CNR measurements. For clinical kVp conditions relevant to chest radiography, the CNR was highest over 90-100 kVp range. The CNR data correlated with the results of contrast detail observations. The values of clinical tube potentials at which CNR is the highest are regarded to be optimal kVp settings. The simplicity in phantom construction can offer easy implementation of related quality control program. PMID:21430855

  18. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  19. SIMULATION RESULTS OF RUNNING THE AGS MMPS, BY STORING ENERGY IN CAPACITOR BANKS.

    SciTech Connect

    MARNERIS, I.

    2006-09-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to equivalent maximum proton energy of 29 GeV. The AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-go00 Volts. The peak magnet power is 49.5 Mwatts. The power supply is fed from a motor/generator manufactured by Siemens. The motor is rated at 9 MW, input voltage 3 phase 13.8 KV 60 Hz. The generator is rated at 50 MVA its output voltage is 3 phase 7500 Volts. Thus the peak power requirements come from the stored energy in the rotor of the motor/generator. The rotor changes speed by about +/-2.5% of its nominal speed of 1200 Revolutions per Minute. The reason the power supply is powered by the Generator is that the local power company (LIPA) can not sustain power swings of +/- 50 MW in 0.5 sec if the power supply were to be interfaced directly with the AC lines. The Motor Generator is about 45 years old and Siemens is not manufacturing similar machines in the future. As a result we are looking at different ways of storing energy and being able to utilize it for our application. This paper will present simulations of a power supply where energy is stored in capacitor banks. The simulation program used is called PSIM Version 6.1. The control system of the power supply will also be presented. The average power from LIPA into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  20. Initial quality performance results using a phantom to simulate chest computed radiography

    PubMed Central

    Muhogora, Wilbroad; Padovani, Renato; Msaki, Peter

    2011-01-01

    The aim of this study was to develop a homemade phantom for quantitative quality control in chest computed radiography (CR). The phantom was constructed from copper, aluminium, and polymenthylmethacrylate (PMMA) plates as well as Styrofoam materials. Depending on combinations, the literature suggests that these materials can simulate the attenuation and scattering characteristics of lung, heart, and mediastinum. The lung, heart, and mediastinum regions were simulated by 10 mm x 10 mm x 0.5 mm, 10 mm x 10 mm x 0.5 mm and 10 mm x 10 mm x 1 mm copper plates, respectively. A test object of 100 mm x 100 mm and 0.2 mm thick copper was positioned to each region for CNR measurements. The phantom was exposed to x-rays generated by different tube potentials that covered settings in clinical use: 110-120 kVp (HVL=4.26-4.66 mm Al) at a source image distance (SID) of 180 cm. An approach similar to the recommended method in digital mammography was applied to determine the CNR values of phantom images produced by a Kodak CR 850A system with post-processing turned off. Subjective contrast-detail studies were also carried out by using images of Leeds TOR CDR test object acquired under similar exposure conditions as during CNR measurements. For clinical kVp conditions relevant to chest radiography, the CNR was highest over 90-100 kVp range. The CNR data correlated with the results of contrast detail observations. The values of clinical tube potentials at which CNR is the highest are regarded to be optimal kVp settings. The simplicity in phantom construction can offer easy implementation of related quality control program. PMID:21430855

  1. From Simulation to Real Robots with Predictable Results: Methods and Examples

    NASA Astrophysics Data System (ADS)

    Balakirsky, S.; Carpin, S.; Dimitoglou, G.; Balaguer, B.

    From a theoretical perspective, one may easily argue (as we will in this chapter) that simulation accelerates the algorithm development cycle. However, in practice many in the robotics development community share the sentiment that “Simulation is doomed to succeed” (Brooks, R., Matarić, M., Robot Learning, Kluwer Academic Press, Hingham, MA, 1993, p. 209). This comes in large part from the fact that many simulation systems are brittle; they do a fair-to-good job of simulating the expected, and fail to simulate the unexpected. It is the authors' belief that a simulation system is only as good as its models, and that deficiencies in these models lead to the majority of these failures. This chapter will attempt to address these deficiencies by presenting a systematic methodology with examples for the development of both simulated mobility models and sensor models for use with one of today's leading simulation engines. Techniques for using simulation for algorithm development leading to real-robot implementation will be presented, as well as opportunities for involvement in international robotics competitions based on these techniques.

  2. Urban Surface Network In Marseille: Network Optimization Using Numerical Simulations and Results

    NASA Astrophysics Data System (ADS)

    Pigeon, G.; Lemonsu, A.; Durand, P.; Masson, V.

    During the ESCOMPTE program (Field experiment to constrain models of atmo- spheric pollution and emissions transport) in Marseille between june and july 2001 an important device has been set up to describe the urban boundary layer over the built-up aera of Marseille. There was notably a network of 20 temperature and humid- ity sensors which has mesured the spatial and temporal variability of these parameters. Before the experiment the arrangement of the network had been optimized to get the maximum of information about these two varaibilities. We have worked on results of high resolution simulations containing the TEB scheme which represents the energy budgets associated with the gobal street geometry of the mesh. First, a qualitative analysis had enabled the identification of the characteristical phenomenons over the town of Marseille. There are narrows links beetween urban effects and local effects : marine advection and orography. Then, a quantitative analysis of the field has been developped. EOF (empirical orthogonal functions) have been used to characterised the spatial and temporal structures of the field evolution. Instrumented axis have been determined with all these results. Finally, we have choosen very carefully the locations of the instruments at the scale of the street to avoid that micro-climatic effects interfere with the meso-scale effect of the town. The recording of the mesurements, every 10 minutes, had started on the 12th of june and had finished on the 16th of july. We did not get any problem with the instrument and so all the period has been recorded every 10 minutes. The analysis of the datas will be led on different way. First, will be done a temporal study. We want to determine if the times when occur phenomenons are linked to the location in the town. We will interest particulary to the warming during the morning and the cooling during the evening. Then, we will look for correlation between the temperature and mixing ratio with the wind

  3. Simulation Results of the Huygens Probe Entry and Descent Trajectory Reconstruction Algorithm

    NASA Technical Reports Server (NTRS)

    Kazeminejad, B.; Atkinson, D. H.; Perez-Ayucar, M.

    2005-01-01

    Cassini/Huygens is a joint NASA/ESA mission to explore the Saturnian system. The ESA Huygens probe is scheduled to be released from the Cassini spacecraft on December 25, 2004, enter the atmosphere of Titan in January, 2005, and descend to Titan s surface using a sequence of different parachutes. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for "ground-truthing" Orbiter remote sensing measurements, it is essential that the probe entry and descent trajectory reconstruction be performed as early as possible in the postflight data analysis phase. The Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team (HSWT), is responsible for developing a methodology and performing the entry and descent trajectory reconstruction. This paper provides an outline of the trajectory reconstruction methodology, preliminary probe trajectory retrieval test results using a simulated synthetic Huygens dataset developed by the Huygens Project Scientist Team at ESA/ESTEC, and a discussion of strategies for recovery from possible instrument failure.

  4. LSP Simulation and Analytical Results on Electromagnetic Wave Scattering on Coherent Density Structures

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T.

    2014-09-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics (HEDP) and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present PIC simulation results on EM scattering on vortex type density structures using the LSP code and compare them with analytical results. Acknowledgement: This work was supported by the Air Force Research laboratory, the Air Force Office of Scientific Research, the Naval Research Laboratory and NNSA/DOE grant no. DE-FC52-06NA27616 at the University of Nevada at Reno.

  5. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively. PMID:24881370

  6. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  7. Instability of surface lenticular vortices: results from laboratory experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn

    2016-04-01

    We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.

  8. Simulation results of Pulse Shape Discrimination (PSD) for background reduction in INTEGRAL Spectrometer (SPI) germanium detectors

    NASA Technical Reports Server (NTRS)

    Slassi-Sennou, S. A.; Boggs, S. E.; Feffer, P. T.; Lin, R. P.

    1997-01-01

    Pulse Shape Discrimination (PSD) for background reduction will be used in the INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) imaging spectrometer (SPI) to improve the sensitivity from 200 keV to 2 MeV. The observation of significant astrophysical gamma ray lines in this energy range is expected, where the dominant component of the background is the beta(sup -) decay in the Ge detectors due to the activation of Ge nuclei by cosmic rays. The sensitivity of the SPI will be improved by rejecting beta(sup -) decay events while retaining photon events. The PSD technique will distinguish between single and multiple site events. Simulation results of PSD for INTEGRAL-type Ge detectors using a numerical model for pulse shape generation are presented. The model was shown to agree with the experimental results for a narrow inner bore closed end cylindrical detector. Using PSD, a sensitivity improvement factor of the order of 2.4 at 0.8 MeV is expected.

  9. Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Han, J. P.; Li, H.; Peng, Z.; Richardson, J. D.

    2014-08-01

    Quantitatively estimating the energy input from the solar wind into the magnetosphere on a global scale is still an observational challenge. We perform three-dimensional magnetohydrodynamic (MHD) simulations to derive the energy coupling function. Based on 240 numerical test runs, the energy coupling function is given by Ein=3.78×107nsw0.24Vsw1.47BT0.86[sin2.70(θ/2)+0.25]. We study the correlations between the energy coupling function and a wide variety of magnetospheric activity, such as the indices of Dst, Kp, ap, AE, AU, AL, the polar cap index, and the hemispheric auroral power. The results indicate that this energy coupling function gives better correlations than the ɛ function. This result is also applied to a storm event under northward interplanetary magnetic field conditions. About 13% of the solar wind kinetic energy is transferred into the magnetosphere and about 35% of the input energy is dissipated in the ionosphere, consistent with previous studies.

  10. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    NASA Astrophysics Data System (ADS)

    Cionni, I.; Eyring, V.; Lamarque, J. F.; Randel, W. J.; Stevenson, D. S.; Wu, F.; Bodeker, G. E.; Shepherd, T. G.; Shindell, D. T.; Waugh, D. W.

    2011-04-01

    ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23 W m-2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of -0.08 W m-2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of -0.05 W m-2, but which is within the stated range of -0.15 to +0.05 W m-2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m-2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in net

  11. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    NASA Astrophysics Data System (ADS)

    Cionni, I.; Eyring, V.; Lamarque, J. F.; Randel, W. J.; Stevenson, D. S.; Wu, F.; Bodeker, G. E.; Shepherd, T. G.; Shindell, D. T.; Waugh, D. W.

    2011-11-01

    ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23 W m-2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of -0.08 W m-2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of -0.05 W m-2, but which is within the stated range of -0.15 to +0.05 W m-2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1 W m-2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in net

  12. Explaining the Achievement Gap between Indigenous and Non-Indigenous Students: An Analysis of PISA 2009 Results for Australia and New Zealand

    ERIC Educational Resources Information Center

    Song, Steve; Perry, Laura B.; McConney, Andrew

    2014-01-01

    This study investigates the relative roles of home and school variables in accounting for achievement gaps between Indigenous and non-Indigenous students in Australia and New Zealand. Using data from the Programme for International Student Assessment [PISA] 2009, our findings show that achievement gaps between Indigenous and non-Indigenous…

  13. Effects of a Universally Free, In-Classroom School Breakfast Program: Results from the Second Year of the Maryland Meals for Achievement Evaluation. Interim Report.

    ERIC Educational Resources Information Center

    Murphy, J. Michael; Rankin, Emunah; Feeney, Kelly; Kenney, Leigh; Kleinman, Ron

    Noting that many children in the United States are not well nourished despite the recent economic boom, the state of Maryland began the Maryland Meals for Achievement (MMFA) program, a demonstration project to see if providing a classroom breakfast free to all students can improve student nutrition and academic achievement. This interim report…

  14. Large-Scale Student Assessment Studies Measure the Results of Processes of Knowledge Acquisition: Evidence in Support of the Distinction between Intelligence and Student Achievement

    ERIC Educational Resources Information Center

    Baumert, Jurgen; Ludtke, Oliver; Trautwein, Ulrich; Brunner, Martin

    2009-01-01

    Given the relatively high intercorrelations observed between mathematics achievement, reading achievement, and cognitive ability, it has recently been claimed that student assessment studies (e.g., TIMSS, PISA) and intelligence tests measure a single cognitive ability that is practically identical to general intelligence. The present article uses…

  15. The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron

    USGS Publications Warehouse

    Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.

    2014-01-01

    Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low

  16. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  17. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  18. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    surfaces to shift away from the equilibrium location. We apply a relative rotation of the fracture surfaces to preserve force equilibrium during each iteration. The results of the model are compared with flow-through experiments conducted on fractured limestone cores and on analogue rough-surfaced KDP-glass fractures. The fracture apertures are mapped before, during (for some) and after the experiments. These detailed aperture measurements are used as input to our new coupled model. The experiments cover a wide range of transport and reaction conditions; some exhibit permeability increase due to channel formation and others exhibit fracture closure due to deformation of contacting asperities. Simulation results predict these general trends as well as the small-scale details in regions of contacting asperities.n example of an aperture field under chemical and mechanical alterations. The color scale is in microns.

  19. Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland - Part I: Modelling framework and calibration results

    NASA Astrophysics Data System (ADS)

    Viviroli, Daniel; Zappa, Massimiliano; Schwanbeck, Jan; Gurtz, Joachim; Weingartner, Rolf

    2009-10-01

    SummaryWith the aim of calibrating a large number of catchments for a semi-distributed, process-based conceptual hydrological model, we introduce a straightforward yet robust automatic calibration procedure. Since identification of a global parameter optimum is not feasible in practical terms, the procedure presents a trade-off between computational time and algorithm complexity to identify, with reasonable effort, a parameter set that is well representative of the catchment's dynamics. In its standard mode, the calibration combines three efficiency scores which are evaluated both for the entire calibration period and in terms of their annual and monthly variations. These scores are furthermore assessed only in their relevant value range, producing a comprehensive overall acceptability score which is used to guide an iterative parameter search algorithm. An additional set of four flood-sensitive scores is added, thereby improving results in the peak-flow range. Calibration was done for 140 mesoscale (roughly 10-1000 km 2) catchments in Switzerland, using the hydrological modelling system PREVAH (Precipitation-Runoff-EVApotranspiration-HRU related model) in hourly time steps. For 49 representative catchments with long gauge records, a median Nash-Sutcliffe efficiency ( NSE) of 0.75 was achieved for the calibration period in standard mode. The limited loss in efficiency when moving to the validation period (median NSE: 0.72) proves the stability and representativity of the parameter sets identified, while a Monte-Carlo analysis underscores the effectiveness of our procedure. The Nash-Sutcliffe efficiencies for the additional flood calibration are slightly lower, but again almost equally high for the calibration (0.69) and the validation (0.67) period. Despite the concessions made to improve peak-flow results, the simulation's hydrological plausibility was not compromised. The ultimate goal of our study is flood estimation in ungauged Swiss catchments through

  20. Do tanning salons adhere to new legal regulations? Results of a simulated client trial in Germany.

    PubMed

    Möllers, Tobias; Pischke, Claudia R; Zeeb, Hajo

    2016-03-01

    In August 2009 and January 2012, two regulations were passed in Germany to limit UV exposure in the general population. These regulations state that no minors are allowed to use tanning devices. Personnel of tanning salons is mandated to offer counseling regarding individual skin type, to create a dosage plan with the customer and to provide a list describing harmful effects of UV radiation. Furthermore, a poster of warning criteria has to be visible and readable at all times inside the tanning salon. It is unclear whether these regulations are followed by employees of tanning salons in Germany, and we are not aware of any studies examining the implementation of the regulations at individual salons. We performed a simulated client study visiting 20 tanning salons in the city-state of Bremen in the year 2014, using a short checklist of criteria derived from the legal requirements, to evaluate whether legal requirements were followed or not. We found that only 20 % of the tanning salons communicated adverse health effects of UV radiation in visible posters and other materials and that only 60 % of the salons offered the required determination of the skin type to customers. In addition, only 60 % of the salons offered to complete the required dosage plan with their customers. To conclude, our results suggest that the new regulations are insufficiently implemented in Bremen. Additional control mechanisms appear necessary to ensure that consumers are protected from possible carcinogenic effects of excessive UV radiation. PMID:26364052

  1. Effect of interhemispheric currents on equivalent ionospheric currents in two hemispheres: Simulation results

    NASA Astrophysics Data System (ADS)

    Lyatskaya, Sonya; Lyatsky, Wladislaw; Zesta, Eftyhia

    2016-02-01

    In this research, we used numerical simulation to study the effect of interhemispheric field-aligned currents (IHCs), going between two conjugate ionospheres in two hemispheres, on the equivalent ionospheric currents (EICs). We computed the maps of these EICs in two hemispheres during summer-winter conditions, when the effect of the IHCs is especially significant. The main results may be summarized as follows. (1) In winter hemisphere, the IHCs may significantly exceed and be a substitute for the local R1 currents, and they may strongly affect the magnitude, location, and direction of the EICs in the nightside winter auroral ionosphere. (2) While in summer polar cap the EICs tend to flow sunward, and in winter polar cap the EICs turn toward dawn due to the effect of the IHCs. (3) The well-known reversal in the direction of the EICs in the vicinity of the midnight meridian, in winter hemisphere, is observed not at the polar caps boundary (as usually expected) but equatorward of this boundary in the region of the IHCs location. (4) The IHCs in winter hemisphere may be, in fact, not only a substitute for the R1 currents but also the major source of the Westward Auroral Electrojet, observed in both hemispheres during substorm activity.

  2. Simulation of natural corrosion by vapor hydration test: seven-year results

    SciTech Connect

    Luo, J.S.; Ebert, W.L.; Mazer, J.J.; Bates, J.K.

    1996-12-31

    We have investigated the alteration behavior of synthetic basalt and SRL 165 borosilicate waste glasses that had been reacted in water vapor at 70 {degrees}C for time periods up to seven years. The nature and extent of corrosion of glasses have been determined by characterizing the reacted glass surface with optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). Alteration in 70 {degrees}C laboratory tests was compared to that which occurs at 150-200 {degrees}C and also with Hawaiian basaltic glasses of 480 to 750 year old subaerially altered in nature. Synthetic basalt and waste glasses, both containing about 50 percent wt SiO{sub 2} were found to react with water vapor to form an amorphous hydrated gel that contained small amounts of clay, nearly identical to palagonite layers formed on naturally altered basaltic glass. This result implies that the corrosion reaction in nature can be simulated with a vapor hydration test. These tests also provide a means for measuring the corrosion kinetics, which are difficult to determine by studying natural samples because alteration layers have often spelled off the samples and we have only limited knowledge of the conditions under which alteration occurred.

  3. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  4. Transfer function approach based on simulation results for the determination of pod curves

    NASA Astrophysics Data System (ADS)

    Demeyer, S.; Jenson, F.; Dominguez, N.; Iakovleva, E.

    2012-05-01

    POD curves estimations are based on statistical studies of empirical data which are obtained thru costly and time consuming experimental campaigns. Currently, cost reduction of POD trials is a major issue. A proposed solution is to replace some of the experimental data required to determine the POD with model based results. Following this idea, the concept of Model Assisted POD (MAPOD) has been introduced first in the US in 2004 through the constitution of the MAPOD working group. One approach to Model Assisted POD is based on a transfer function which uses empirical data and models to transfer POD measured for one specific application to another related application. The objective of this paper is to show how numerical simulations could help to determine such transfer functions. A practical implementation of the approach to a high frequency eddy current inspection for fatigue cracks is presented. Empirical data is available for the titanium alloy plates. A model based transfer function is used to assess a POD curve for the inspection of aluminum components.

  5. Transient Simulation of the DLR M3.1 Testbench: Methods and First Results

    NASA Astrophysics Data System (ADS)

    Manfletti, C.; Sender, J.

    2009-01-01

    Analysis of transient phases in liquid rocket engines play a major role in the design of the engines, as well as in the configuration and tailoring of the transient phases themselves. Testing of existing as well as future rocket engines, must therefore consider transient aspects, such as pre-cooling, priming, as well as ignition both experimentally as well as numerically. The flow behaviour within the various engine components is strongly dictated by the existing pressure and temperature fields. Ideally the flow through the engine feed lines is a one phase-flow. This is however not necessarily the case and a two-phase flow may lead to drastic changes in the behaviour. The application of the program TLRE to the simulation of the DLR test bench M3.1 is presented. The focus lies on the two-phase flow associated phenomena and the numerical resolution of these phenomena with the implementation of the lumped parameter method (LPM). A brief introduction of the relevant LPM characteristics is given. This is followed by a description of the relevant and observed two-phase flow phenomena and regimes and the numerical solution method. In conclusion both the main results of the work performed so far, which highlights the importance of the measurement system and how this needs to be taken into account during analysis processes, and a future roadmap for subsequent program evolution and applications are outlined.

  6. Biofilm formation and control in a simulated spacecraft water system - Three year results

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Flanagan, David T.; Bruce, Rebekah J.; Mudgett, Paul D.; Carr, Sandra E.; Rutz, Jeffrey A.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1992-01-01

    Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. SEM indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm. Metals analyses reveal some corrosion in the iodinated system after 3 years of continuous exposure. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  7. Preliminary results for a two-dimensional simulation of the working process of a Stirling engine

    SciTech Connect

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    Stirling engines have several potential advantages over existing types of engines, in particular they can use renewable energy sources for power production and their performance meets the demands on the environmental security. In order to design Stirling Engines properly, and to put into effect their potential performance, it is important to more accurately mathematically simulate its working process. At present, a series of very important mathematical models are used for describing the working process of Stirling Engines and these are, in general, classified as models of three levels. All the models consider one-dimensional schemes for the engine and assume a uniform fluid velocity, temperature and pressure profiles at each plane of the internal gas circuit of the engine. The use of two-dimensional CFD models can significantly extend the capabilities for the detailed analysis of the complex heat transfer and gas dynamic processes which occur in the internal gas circuit, as well as in the external circuit of the engine. In this paper a two-dimensional simplified frame (no construction walls) calculation scheme for the Stirling Engine has been assumed and the standard {kappa}-{var{underscore}epsilon} turbulence model has been used for the analysis of the engine working process. The results obtained show that the use of two-dimensional CFD models gives the possibility of gaining a much greater insight into the fluid flow and heat transfer processes which occur in Stirling Engines.

  8. Circulation induced by subglacial discharge in glacial fjords: Results from idealized numerical simulations

    NASA Astrophysics Data System (ADS)

    Salcedo-Castro, Julio; Bourgault, Daniel; deYoung, Brad

    2011-09-01

    The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.

  9. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T; Ali, Jawad K

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems. PMID:25536436

  10. Wide Bandpass and Narrow Bandstop Microstrip Filters Based on Hilbert Fractal Geometry: Design and Simulation Results

    PubMed Central

    Mezaal, Yaqeen S.; Eyyuboglu, Halil T.; Ali, Jawad K.

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, −28 dB return loss and −0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, −0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems. PMID:25536436

  11. Personal values and crew compatibility: Results from a 105 days simulated space mission

    NASA Astrophysics Data System (ADS)

    Sandal, Gro M.; Bye, Hege H.; van de Vijver, Fons J. R.

    2011-08-01

    On a mission to Mars the crew will experience high autonomy and inter-dependence. "Groupthink", known as a tendency to strive for consensus at the cost of considering alternative courses of action, represents a potential safety hazard. This paper addresses two aspects of "groupthink": the extent to which confined crewmembers perceive increasing convergence in personal values, and whether they attribute less tension to individual differences over time. It further examines the impact of personal values for interpersonal compatibility. These questions were investigated in a 105-day confinement study in which a multinational crew ( N=6) simulated a Mars mission. The Portrait of Crew Values Questionnaire was administered regularly to assess personal values, perceived value homogeneity, and tension attributed to value disparities. Interviews were conducted before and after the confinement. Multiple regression analysis revealed no significant changes in value homogeneity over time; rather the opposite tendency was indicated. More tension was attributed to differences in hedonism, benevolence and tradition in the last 35 days when the crew was allowed greater autonomy. Three subgroups, distinct in terms of personal values, were identified. No evidence for "groupthink" was found. The results suggest that personal values should be considered in composition of crews for long duration missions.

  12. Convection-permitting WRF and TerrSysMP simulations for a European model domain - Implementation and initial results

    NASA Astrophysics Data System (ADS)

    Goergen, Klaus; Keune, Jessica; Gasper, Fabian; Shrestha, Prabhakar; Sulis, Mauro; Knist, Sebastian; Ohlwein, Christian; Kollet, Stefan; Simmer, Clemens; Vereecken, Harry

    2014-05-01

    model at about 6.2 km resolution, also nested into the EUR-11 domain from research groups of the Hans Ertel Centre for Weather Research (HErZ) branch on Climate Monitoring and Diagnostics of the German Weather Service (DWD). We show initial results of January and July simulations with a focus on precipitation events and boundary layer processes. A comparison is done to radar rainfall estimates and flux measurements and in case of WRF also to coarser resolution simulations. The models run on the massively parallel 28-rack 5.9 PFLOP IBM Blue Gene/Q system JUQUEEN of the Jülich Supercomputing Centre (JSC). A substantial effort in terms of application porting, tuning and optimisation is needed to efficiently operate geoscience codes on such highly scalable low-memory architectures. Only with large model domains and/or high spatial resolutions a good scaling behaviour seems achievable. TerrSysMP can meanwhile efficiently be run using the OASIS3-MCT coupler with over 32k processes.

  13. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  14. Feature Extraction from Simulations and Experiments: Preliminary Results Using a Fluid Mix Problem

    SciTech Connect

    Kamath, C; Nguyen, T

    2005-01-04

    Code validation, or comparing the output of computer simulations to experiments, is necessary to determine which simulation is a better approximation to an experiment. It can also be used to determine how the input parameters in a simulation can be modified to yield output that is closer to the experiment. In this report, we discuss our experiences in the use of image processing techniques for extracting features from 2-D simulations and experiments. These features can be used in comparing the output of simulations to experiments, or to other simulations. We first describe the problem domain and the data. We next explain the need for cleaning or denoising the experimental data and discuss the performance of different techniques. Finally, we discuss the features of interest and describe how they can be extracted from the data. The focus in this report is on extracting features from experimental and simulation data for the purpose of code validation; the actual interpretation of these features and their use in code validation is left to the domain experts.

  15. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  16. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; Von Huene, R.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  17. Innovative Hypofractionated Stereotactic Regimen Achieves Excellent Local Control with No Radiation Necrosis: Promising Results in the Management of Patients with Small Recurrent Inoperable GBM

    PubMed Central

    Pannullo, Susan C.; Minkowitz, Shlomo; Taube, Shoshana; Chang, Jenghwa; Parashar, Bhupesh; Christos, Paul; Wernicke, A.Gabriella

    2016-01-01

    Management of recurrent glioblastoma multiforme (GBM) remains a challenge. Several institutions reported that a single fraction of ≥ 20 Gy for small tumor burden results in excellent local control; however, this is at the expense of a high incidence of radiation necrosis (RN). Therefore, we developed a hypofractionation pattern of 33 Gy/3 fractions, which is a radiobiological equivalent of 20 Gy, with the aim to lower the incidence of RN. We reviewed records of 21 patients with recurrent GBM treated with hypofractionated stereotactic radiation therapy (HFSRT) to their 22 respective lesions. Sixty Gy fractioned external beam radiotherapy was performed as first-line treatment. Median time from primary irradiation to HFSRT was 9.6 months (range: 3.1 – 68.1 months). In HFSRT, a median dose of 33 Gy in 11 Gy fractions was delivered to the 80% isodose line that encompassed the target volume. The median tumor volume was 1.07 cm3 (range: 0.11 – 16.64 cm3). The median follow-up time after HFSRT was 9.3 months (range: 1.7 – 33.6 months). Twenty-one of 23 lesions treated (91.3%) achieved local control while 2/23 (8.7%) progressed. Median time to progression outside of the treated site was 5.2 months (range: 2.2 – 9.6 months). Progression was treated with salvage chemotherapy. Five of 21 patients (23.8%) were alive at the end of this follow-up; two patients remain disease-free. The remaining 16/21 patients (76.2%) died of disease. Treatment was well tolerated by all patients with no acute CTC/RTOG > Grade 2. There was 0% incidence of RN. A prospective trial will be underway to validate these promising results. PMID:27096136

  18. Innovative Hypofractionated Stereotactic Regimen Achieves Excellent Local Control with No Radiation Necrosis: Promising Results in the Management of Patients with Small Recurrent Inoperable GBM.

    PubMed

    Jia, Angela; Pannullo, Susan C; Minkowitz, Shlomo; Taube, Shoshana; Chang, Jenghwa; Parashar, Bhupesh; Christos, Paul; Wernicke, A Gabriella

    2016-01-01

    Management of recurrent glioblastoma multiforme (GBM) remains a challenge. Several institutions reported that a single fraction of ≥ 20 Gy for small tumor burden results in excellent local control; however, this is at the expense of a high incidence of radiation necrosis (RN). Therefore, we developed a hypofractionation pattern of 33 Gy/3 fractions, which is a radiobiological equivalent of 20 Gy, with the aim to lower the incidence of RN. We reviewed records of 21 patients with recurrent GBM treated with hypofractionated stereotactic radiation therapy (HFSRT) to their 22 respective lesions. Sixty Gy fractioned external beam radiotherapy was performed as first-line treatment. Median time from primary irradiation to HFSRT was 9.6 months (range: 3.1 - 68.1 months). In HFSRT, a median dose of 33 Gy in 11 Gy fractions was delivered to the 80% isodose line that encompassed the target volume. The median tumor volume was 1.07 cm3 (range: 0.11 - 16.64 cm3). The median follow-up time after HFSRT was 9.3 months (range: 1.7 - 33.6 months). Twenty-one of 23 lesions treated (91.3%) achieved local control while 2/23 (8.7%) progressed. Median time to progression outside of the treated site was 5.2 months (range: 2.2 - 9.6 months). Progression was treated with salvage chemotherapy. Five of 21 patients (23.8%) were alive at the end of this follow-up; two patients remain disease-free. The remaining 16/21 patients (76.2%) died of disease. Treatment was well tolerated by all patients with no acute CTC/RTOG > Grade 2. There was 0% incidence of RN. A prospective trial will be underway to validate these promising results. PMID:27096136

  19. Optimum Cycle Length and Discharge Burnup for Nuclear Fuel; Phase II: Results Achievable with Enrichments Greater than 5 w/o

    SciTech Connect

    J. Secker, et al

    2002-09-30

    The report evaluates increasing enrichment to achieve lower fuel cycle costs. Increasing enrichment 6 w/o does not reach the optimum point. Further increase is possible before the optimum will be reached.

  20. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  1. The simulation of optical diagnostics for crystal growth - Models and results

    NASA Astrophysics Data System (ADS)

    Banish, M. R.; Clark, R. L.; Kathman, A. D.; Lawson, S. M.

    A computer simulation of a Two Color Holographic Interferometric (TCHI) optical system was performed using a physical (wave) optics model. This model accurately simulates propagation through time-varying, 2-D or 3-D concentration and temperature fields as a wave phenomenon. The model calculates wavefront deformations that can be used to generate fringe patterns. This simulation modeled a proposed TriGlycine sulphate TGS flight experiment by propagating through the simplified onion-like refractive index distribution of the growing crystal and calculating the recorded wavefront deformation. The phase of this wavefront was used to generate sample interferograms that map index of refraction variation. Two such fringe patterns, generated at different wavelengths, were used to extract the original temperature and concentration field characteristics within the growth chamber. This proves feasibility for this TCHI crystal growth diagnostic technique. This simulation provides feedback to the experimental design process.

  2. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  3. STREAM CHANNELS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Stream channels of the Upper San Pedro with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  4. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  5. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.

  6. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  7. Design, Results, Evolution and Status of the ATLAS Simulation at Point1 Project

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Fazio, D.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Sedov, A.; Twomey, M. S.; Wang, F.; Zaytsev, A.

    2015-12-01

    During the LHC Long Shutdown 1 (LSI) period, that started in 2013, the Simulation at Point1 (Sim@P1) project takes advantage, in an opportunistic way, of the TDAQ (Trigger and Data Acquisition) HLT (High-Level Trigger) farm of the ATLAS experiment. This farm provides more than 1300 compute nodes, which are particularly suited for running event generation and Monte Carlo production jobs that are mostly CPU and not I/O bound. It is capable of running up to 2700 Virtual Machines (VMs) each with 8 CPU cores, for a total of up to 22000 parallel jobs. This contribution gives a review of the design, the results, and the evolution of the Sim@P1 project, operating a large scale OpenStack based virtualized platform deployed on top of the ATLAS TDAQ HLT farm computing resources. During LS1, Sim@P1 was one of the most productive ATLAS sites: it delivered more than 33 million CPU-hours and it generated more than 1.1 billion Monte Carlo events. The design aspects are presented: the virtualization platform exploited by Sim@P1 avoids interferences with TDAQ operations and it guarantees the security and the usability of the ATLAS private network. The cloud mechanism allows the separation of the needed support on both infrastructural (hardware, virtualization layer) and logical (Grid site support) levels. This paper focuses on the operational aspects of such a large system during the upcoming LHC Run 2 period: simple, reliable, and efficient tools are needed to quickly switch from Sim@P1 to TDAQ mode and back, to exploit the resources when they are not used for the data acquisition, even for short periods. The evolution of the central OpenStack infrastructure is described, as it was upgraded from Folsom to the Icehouse release, including the scalability issues addressed.

  8. Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.

  9. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    SciTech Connect

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-12-31

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at {approximately}40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations.

  10. Testing and Results of Human Metabolic Simulation Utilizing Ultrasonic Nebulizer Technology for Water Vapor Generation

    NASA Technical Reports Server (NTRS)

    Stubbe, Matthew; Curley, Su

    2010-01-01

    Life support technology must be evaluated thoroughly before ever being implemented into a functioning design. A major concern during that evaluation is safety. The ability to mimic human metabolic loads allows test engineers to evaluate the effectiveness of new technologies without risking injury to any actual humans. The main function of most life support technologies is the removal of carbon dioxide (CO2) and water (H2O) vapor. As such any good human metabolic simulator (HMS) will mimic the human body s ability to produce these items. Introducing CO2 into a test chamber is a very straightforward process with few unknowns so the focus of this particular new HMS design was on the much more complicated process of introducing known quantities of H2O vapor on command. Past iterations of the HMS have utilized steam which is very hard to keep in vapor phase while transporting and injecting into a test chamber. Also steam adds large quantities of heat to any test chamber, well beyond what an actual human does. For the new HMS an alternative approach to water vapor generation was designed utilizing ultrasonic nebulizers as a method for creating water vapor. Ultrasonic technology allows water to be vibrated into extremely tiny pieces (2-5 microns) and evaporate without requiring additional heating. Doing this process inside the test chamber itself allows H2O vapor generation without the unwanted heat and the challenging process of transporting water vapor. This paper presents the design details as well as results of all initial and final acceptance system testing. Testing of the system was performed at a range of known human metabolic rates in both sea-level and reduced pressure environments. This multitude of test points fully defines the systems capabilities as they relate to actual environmental systems testing.

  11. Isotonic contraction as a result of cooperation of sarcomeres--a model and simulation outcome.

    PubMed

    Wünsch, Z

    1996-01-01

    The molecular level of the functional structure of the contractile apparatus of cross-striated muscle has been mapped out almost minutely. Most authors accept the basic principles of the theory of sliding filaments and the theory of operation of molecular generators of force which, of course, are progressively updated by integrating new knowledge. The idea of the model delineated below does not contradict these theories, for it refers to another level of the system's hierarchy. The definition of the system, hereafter referred to Ideal Sarcomere (IS), takes into account the fact that, during isotonic contraction, a large number of not wholly independently working sarcomeres and molecular generators of force is active in a synergistic way. The shortening velocity of isotonically contracting IS is determined by the relation between quantities conveying different tasks of active generators of force and the influence of the system parameters. Although IS is derived from simple axiomatic predicates, it has properties which were not premediated in defining the system and which, in spite of this, correspond to some properties of the biological original. The equations of the system allow us to calculate the shortening velocity of 'isotonic contraction' and other variables and parameters and show, inter alia, an alternative way to derive and interpret the relations stated in Hill's force-velocity equation. The simulation results indicate that the macroscopic manifestations of isotonic contraction may be also contingent on the properties of the cooperating system of the multitude of sarcomeres, which also constitutes one part of the functional structure of muscle. PMID:8924648

  12. Development and simulation results of a sparsification and readout circuit for wide pixel matrices

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Giorgi, F.; Morsani, F.; Villa, M.

    2011-06-01

    In future collider experiments, the increasing luminosity and centre of mass energy are rising challenging problems in the design of new inner tracking systems. In this context we develop high-efficiency readout architectures for large binary pixel matrices that are meant to cope with the high-stressing conditions foreseen in the innermost layers of a tracker [The SuperB Conceptual Design Report, INFN/AE-07/02, SLAC-R-856, LAL 07-15, Available online at: http://www.pi.infn.it/SuperB]. We model and design digital readout circuits to be integrated on VLSI ASICs. These architectures can be realized with different technology processes and sensors: they can be implemented on the same silicon sensor substrate of a CMOS MAPS devices (Monolithic Active Pixel Sensor), on the CMOS tier of a hybrid pixel sensor or in a 3D chip where the digital layer is stacked on the sensor and the analog layers [V. Re et al., Nuc. Instr. and Meth. in Phys. Res. A, doi:10.1016/j.nima.2010.05.039]. In the presented work, we consider a data-push architecture designed for a sensor matrix of an area of about 1.3 cm 2 with a pitch of 50 microns. The readout circuit tries to take great advantage of the high density of in-pixel digital logic allowed by vertical integration. We aim at sustaining a rate density of 100 Mtrack ṡ s -1 ṡ cm -2 with a temporal resolution below 1 μs. We show how this architecture can cope with these stressing conditions presenting the results of Monte Carlo simulations.

  13. Correcting for Interstellar Scattering Delay in High-precision Pulsar Timing: Simulation Results

    NASA Astrophysics Data System (ADS)

    Palliyaguru, Nipuni; Stinebring, Daniel; McLaughlin, Maura; Demorest, Paul; Jones, Glenn

    2015-12-01

    Light travel time changes due to gravitational waves (GWs) may be detected within the next decade through precision timing of millisecond pulsars. Removal of frequency-dependent interstellar medium (ISM) delays due to dispersion and scattering is a key issue in the detection process. Current timing algorithms routinely correct pulse times of arrival (TOAs) for time-variable delays due to cold plasma dispersion. However, none of the major pulsar timing groups correct for delays due to scattering from multi-path propagation in the ISM. Scattering introduces a frequency-dependent phase change in the signal that results in pulse broadening and arrival time delays. Any method to correct the TOA for interstellar propagation effects must be based on multi-frequency measurements that can effectively separate dispersion and scattering delay terms from frequency-independent perturbations such as those due to a GW. Cyclic spectroscopy, first described in an astronomical context by Demorest (2011), is a potentially powerful tool to assist in this multi-frequency decomposition. As a step toward a more comprehensive ISM propagation delay correction, we demonstrate through a simulation that we can accurately recover impulse response functions (IRFs), such as those that would be introduced by multi-path scattering, with a realistic signal-to-noise ratio (S/N). We demonstrate that timing precision is improved when scatter-corrected TOAs are used, under the assumptions of a high S/N and highly scattered signal. We also show that the effect of pulse-to-pulse "jitter" is not a serious problem for IRF reconstruction, at least for jitter levels comparable to those observed in several bright pulsars.

  14. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect

    Innocenzi, V. De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  15. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  16. Simulating sulfur loss from asteroid surfaces as a result of space weathering

    NASA Astrophysics Data System (ADS)

    Kracher, A.; Sears, D.

    2003-04-01

    The NEAR Shoemaker spacecraft has found a lower than expected S/Si ratio on the surface of asteroid 433 Eros. Given that other element ratios are approximately chondritic, and that all known chondrite groups have S/Si ratio at least 3-10x higher than the NEAR data, it is unlikely that the low S abundance is a bulk property of Eros. Thus sulfur has apparently been lost from at least the top layer of the regolith. Possible sources for the energy required to either remove sulfur or transport it to deeper levels of the regolith are meteorite impact or solar wind exposure, or both. These phenomena are known to cause physical and chemical changes to lunar surface materials and are thought by some researchers to also occur on asteroids and to be responsible for the changes in asteroid spectra. The process is referred to as "space weathering". The effects of space weathering have been successfully simulated by exposure of regolith simulants to laser irradiation (simulating impacts) and ion beams (for solar wind). These experiments demonstrated the formation of submicroscopic Fe metal due to decomposition of Fe-bearing silicates. However, simulants used to date did not contain sulfide, an important constituent of chondrite meteorites and presumably asteroids. In sulfide-bearing regoliths decomposition of FeS as well as FeO would be expected. Experiments with sulfide-bearing simulants could shed light on the processes responsible for the low S/Si ratio on the surface of Eros. However, simulations of sulfur loss require more than simply performing the same experiments with a different simulant. The conditions of energy deposition have to be carefully adjusted so that they are a realistic proxy for the actual processes on asteroid surfaces. Also, the effects of regolith reworking need to be taken into account, since larger impacts can excavate deeper layers of regolith that were previously shielded from the effects of space weathering. Thus realistic simulations need to be

  17. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  18. Preliminary results of column experiments simulating nutrients transport in artificial recharge by treated wastewater

    NASA Astrophysics Data System (ADS)

    Leal, María; Meffe, Raffaella; Lillo, Javier

    2013-04-01

    the field site. Wastewater synthesized in the laboratory simulates the secondary effluent used for recharge activities in the Experimental Plant of Carrión de los Céspedes, Experimental results showed that ammonium and phosphates are clearly retarded when infiltrating through both materials (zeolite and palygorskite) as consequence of cation exchange and surface complexation processes. Indeed, after about 14 days from the beginning of the experiments the two compounds do not appear at the column effluent exhibiting a very strong retardation. Concerning nitrites and nitrates, no retardation is observed. Preliminary interpretation of the experimental results by means of the geochemical modeling code PHREEQ-C confirmed and quantified the importance of specific reactive processes affecting transport of nutrients through the applied reactive materials.

  19. Improving traffic noise simulations using space syntax: preliminary results from two roadway systems.

    PubMed

    M Dzhambov, Angel; D Dimitrova, Donka; H Turnovska, Tanya

    2014-09-01

    Noise pollution is one of the four major pollutions in the world. In order to implement adequate strategies for noise control, assessment of traffic-generated noise is essential in city planning and management. The aim of this study was to determine whether space syntax could improve the predictive power of noise simulation. This paper reports a record linkage study which combined a documentary method with space syntax analysis. It analyses data about traffic flow as well as field-measured and computer-simulated traffic noise in two Bulgarian agglomerations. Our findings suggest that space syntax might have a potential in predicting traffic noise exposure by improving models for noise simulations using specialised software or actual traffic counts. The scientific attention might need to be directed towards space syntax in order to study its further application in current models and algorithms for noise prediction. PMID:25222575

  20. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  1. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  2. Achieving Consensus for the Design and Delivery of an Online Intervention to Support Midwives in Work-Related Psychological Distress: Results From a Delphi Study

    PubMed Central

    Clyne, Wendy

    2016-01-01

    Background Some midwives are known to experience both professional and organizational sources of psychological distress, which can manifest as a result of the emotionally demanding midwifery work, and the traumatic work environments they endure. An online intervention may be one option midwives may engage with in pursuit of effective support. However, the priorities for the development of an online intervention to effectively support midwives in work-related psychological distress have yet to be explored. Objective The aim of this study was to explore priorities in the development of an online intervention to support midwives in work-related psychological distress. Methods A two-round online Delphi study was conducted. This study invited both qualitative and quantitative data from experts recruited via a scoping literature search and social media channels. Results In total, 185 experts were invited to participate in this Delphi study. Of all participants invited to contribute, 35.7% (66/185) completed Round 1 and of those who participated in this first round, 67% (44/66) continued to complete Round 2. Out of 39 questions posed over two rounds, 18 statements (46%) achieved consensus, 21 (54%) did not. Participants were given the opportunity to write any additional comments as free text. In total, 1604 free text responses were collected and categorized into 2446 separate statements of opinion, creating a total of 442 themes. Overall, participants agreed that in order to effectively support midwives in work-related psychological distress, online interventions should make confidentiality and anonymity a high priority, along with 24-hour mobile access, effective moderation, an online discussion forum, and additional legal, educational, and therapeutic components. It was also agreed that midwives should be offered a simple user assessment to identify those people deemed to be at risk of either causing harm to others or experiencing harm themselves, and direct them to

  3. Scanning L-Band Active Passive (SLAP)—FLIGHT Results from a New Airborne Simulator for Smap

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Faulkner, T.; Wu, A.; Patel, H.

    2014-12-01

    1. Introduction and BackgroundThis paper introduces a new NASA airborne instrument, the Scanning L-band Active Passive (SLAP), which is specially tailored to simulate SMAP. 2. Description of SLAPSLAP has both passive (radiometer) and active (radar) microwave L-band imaging capabilities. The radiometer observes at 1.4 GHz using duplicate front end hardware from the SMAP satellite radiometer. It also includes a duplicate of the digital backend development unit for SMAP, thus the novel Radio Frequency Interference (RFI) detection and mitigation features and algorithms for SMAP are duplicated with very high fidelity in SLAP. The digital backend provides 4-Stokes polarization capability. The real-aperture radar operates in the 1215-1300 MHz band with quad-pol capability. Radar and radiometer share one antenna via diplexers that are spare units from the Aquarius satellite instrument. 3. Flight ResultsSLAP's initial flights were conducted in Dec 2013 over the eastern shore of Maryland and successfully demonstrated radiometer imaging over 2 full SMAP 36x36 km grid cells at 1km resolution within 3 hrs, easily meeting the SMAP post-launch cal/val airborne mapping requirements. A second flight on the same day also demonstrated SLAP's quick-turn abilities and high-resolution/wide-swath capabilities with 200m resolution across a 1500m swath from 2000 ft AGL. Additional flights were conducted as part of the GPM iPHEX campaign in May, 2014. 4. ConclusionThis paper presents flight data and imagery, as well as details of the radiometer and radar performance and calibration. The paper will also describe the mission performance achievable on the King Air and other platforms.

  4. Scaling laws and simulation results for the self-organized critical forest-fire model

    NASA Astrophysics Data System (ADS)

    Clar, S.; Drossel, B.; Schwabl, F.

    1994-08-01

    We discuss the properties of a self-organized critical forest-fire model which has been introduced recently [B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992)]. We derive scaling laws and define critical exponents. The values of these critical exponents are determined by computer simulations in one to eight dimensions. The simulations suggest a critical dimension dc=6 above which the critical exponents assume their mean-field values. Changing the lattice symmetry and allowing trees to be immune against fire, we show that the critical exponents are universal.

  5. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  6. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  7. Summary of results of January climate simulations with the GISS coarse-mesh model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents.

  8. A simulator investigation of the influence of engine response characteristics on the approach and landing for an externally blown flap aircraft. Part 1: Description of the simulation and discussion of results

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Koenig, R. W.

    1973-01-01

    Investigation of the influence of engine response characteristics on approach and landing operations of a powered lift aircraft were carried out in a piloted ground-based simulator. The aircraft simulated was a four engine, externally-blown jet-flap configuration having an 80 pound wing loading and .56 thrust to weight ratio. Results indicate that for ideal operating conditions and minimal pilot reaction delay, substantial reductions in engine-out wave-off altitude increment and touchdown sink rate for engine-out landings can be achieved with the fast engine compared to the slow engine response. However, delays in pilot reaction of one to two seconds diminish the advantage of rapid thrust response. A need exists for some form of automatic cueing of the pilot or automatic engine control to enable the potential of rapid thrust response to be realized in improving safety in the event of an engine failure.

  9. A STOL airworthiness investigation using a simulation of an augmentor wing transport. Volume 1: Summary of results and airworthiness implications

    NASA Technical Reports Server (NTRS)

    Stapleford, R. L.; Heffley, R. K.; Hynes, C. S.; Scott, B. C.

    1974-01-01

    A simulator study of STOL airworthiness criteria was conducted using a model of an augmentor wing transport. The approach, flare and landing, go-around, and takeoff phases of flight were investigated. The results are summarized and possible implications with regard to airworthiness criteria are discussed. The results provide a data base for future STOL airworthiness requirements and a preliminary indication of potential problem areas. The results are also compared to the results from an earlier simulation of the Breguet 941S. Where possible, airworthiness criteria are proposed for consideration.

  10. Simulation and Gaming to Promote Health Education: Results of a Usability Test

    ERIC Educational Resources Information Center

    Albu, Mihai; Atack, Lynda; Srivastava, Ishaan

    2015-01-01

    Objective: Motivating clients to change the health behaviour, and maintaining an interest in exercise programmes, is an ongoing challenge for health educators. With new developments in technology, simulation and gaming are increasingly being considered as ways to motivate users, support learning and promote positive health behaviours. The purpose…

  11. Simulation results of liquid and plastic scintillator detectors for reactor antineutrino detection - A comparison

    NASA Astrophysics Data System (ADS)

    Kashyap, V. K. S.; Pant, L. M.; Mohanty, A. K.; Datar, V. M.

    2016-03-01

    A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring.

  12. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    SciTech Connect

    Sutherland, W A; Alamgir, M; Findlay, J A; Hwang, W S

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation.

  13. Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.

    2010-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.

  14. Onboard utilization of ground control points for image correction. Volume 2: Analysis and simulation results

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An approach to remote sensing that meets future mission requirements was investigated. The deterministic acquisition of data and the rapid correction of data for radiometric effects and image distortions are the most critical limitations of remote sensing. The following topics are discussed: onboard image correction systems, GCP navigation system simulation, GCP analysis, and image correction analysis measurement.

  15. Orbiter/shuttle carrier aircraft separation: Wind tunnel, simulation, and flight test overview and results

    NASA Technical Reports Server (NTRS)

    Homan, D. J.; Denison, D. E.; Elchert, K. C.

    1980-01-01

    A summary of the approach and landing test phase of the space shuttle program is given from the orbiter/shuttle carrier aircraft separation point of view. The data and analyses used during the wind tunnel testing, simulation, and flight test phases in preparation for the orbiter approach and landing tests are reported.

  16. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... simulate leachate generation as micrograms PCBs per liter of extract from a 100 gram sample of dry bulk product waste. Divide 100 grams by the grams in the sample and multiply this quotient by the number of micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample....

  17. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... simulate leachate generation as micrograms PCBs per liter of extract from a 100 gram sample of dry bulk product waste. Divide 100 grams by the grams in the sample and multiply this quotient by the number of micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample....

  18. 40 CFR 761.357 - Reporting the results of the procedure used to simulate leachate generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... simulate leachate generation as micrograms PCBs per liter of extract from a 100 gram sample of dry bulk product waste. Divide 100 grams by the grams in the sample and multiply this quotient by the number of micrograms PCBs per liter of extract to obtain the equivalent measurement from a 100 gram sample....

  19. Blood-Borne Markers of Fatigue in Competitive Athletes – Results from Simulated Training Camps

    PubMed Central

    Hecksteden, Anne; Skorski, Sabrina; Schwindling, Sascha; Hammes, Daniel; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2016-01-01

    Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover) have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength) at 3 time-points: after a run-in resting phase (d 1), after a 6-day induction of fatigue (d 8) and following a subsequent 2-day recovery period (d 11). Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue) which significantly regresses towards baseline until day 11 (Δrecovery). With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l), urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl), free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml) and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml). For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l) only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling and by CK

  20. Leached components from dental composites in oral simulating fluids and the resultant composite strengths.

    PubMed

    Lee, S Y; Huang, H M; Lin, C Y; Shih, Y H

    1998-08-01

    The aim of this study was to analyse the leached moieties of dental composites after storage in ethanol and organic acids of plaque and further evaluate the resultant effect on the diametral tensile strength (DTS) of the composites. Three commercial composites were used: Bis-GMA-based Z100, Bis-GMA/UDMA-based Heliomolar, and Bis-MPEPP-based Marathon One. The solutions used were: 99.9% acetic acid, 99% propionic acid and 75% ethanol. Specimens (4 mm diam. x 2 mm thick) were stored at 37 degrees C in 3 mL of solution for up to 30 days. Gas chromatography/mass spectrometry was used to characterize the leached moieties and DTS of the specimens after immersion was evaluated. Data were analysed using ANOVA and Tukey LSD test. The eluted substances were not all the same in different solutions and composites but mostly increased with immersion time, and included diluents (TEGDMA and decamethacrylate) and some additives, such as an ultra-violet stabilizer (TINUVINP), plasticizers (dicyclohexyl phthalate and bis(2-ethylhexyl) phthalate), initiator (triphenyl stibine), coupling agent (gamma-methacryloxypropyl trimethoxysilane), and phenyl benzoate. The chief polymerizing monomers were not found. More kinds of components were found in the acetic acid and ethanol groups studied. The fewest kinds and quantities of leached moieties were found for Bis-GMA specimens and then Bis-GMA/UDMA ones, most of which are diluent agents. Bis-MPEPP specimens leached the most substances, which were composed mostly of a short phenyl group chain structure. The BisGMA composite showed the highest DTS (54.8 +/- 5.7 MPa), which was not greatly affected by the length of storage. Bis-GMA/UDMA (36.2 +/- 6.8 MPa) and Bis-MPEPP (26.1 +/- 4.5 MPa) composites were significantly reduced (P < 0.05) after 30 days storage in the ethanol (35-50%), in the propionic acid (25-30%), and in the acetic acid (40-60%). Irreversible processes such as the leaching of components occur in fluids simulating an oral

  1. Blood-Borne Markers of Fatigue in Competitive Athletes - Results from Simulated Training Camps.

    PubMed

    Hecksteden, Anne; Skorski, Sabrina; Schwindling, Sascha; Hammes, Daniel; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2016-01-01

    Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover) have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength) at 3 time-points: after a run-in resting phase (d 1), after a 6-day induction of fatigue (d 8) and following a subsequent 2-day recovery period (d 11). Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue) which significantly regresses towards baseline until day 11 (Δrecovery). With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l), urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl), free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml) and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml). For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l) only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling and by CK

  2. Cross-National Comparisons of the Association between Student Motivation for Learning Mathematics and Achievement Linked with School Contexts: Results from TIMSS 2007

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2010-01-01

    The goals of this dissertation were as follows: (1) application of quantitative methods to large-scale databases, (2) investigation of relationships between student mathematics achievement and student motivational attitudes for learning mathematics at the macro level (i.e., national level) and at the micro level (i.e., student level), (3)…

  3. Coping Styles and Achievement: A Cross-National Study of School Children. Volume I of V Volumes: The Theory, Design, and Validation Results.

    ERIC Educational Resources Information Center

    Peck, Robert F.

    This study undertook to develop an improved conceptual system for explaining effective behavior; to build reliable measures of the components of that behavior; to develop and apply the measures internationally; and to validate the measures and concepts against objective criteria of achievement. An eight-nation team defined three sets of components…

  4. Principal Perceptions and Student Achievement in Reading in Korea, Mexico, and the United States: Educational Leadership, School Autonomy, and Use of Test Results

    ERIC Educational Resources Information Center

    Shin, Seon-Hi; Slater, Charles L.; Backhoff, Eduardo

    2013-01-01

    This study compared PISA 2009 student reading literacy scores with principal perceptions across three countries with varying levels of student performance: Korea, Mexico, and the United States. Seventy-five countries participated in PISA 2009, which measured 15-year-old children's reading achievement and principal perceptions. The study…

  5. The Effects of Research-Based Curriculum Materials and Curriculum-Based Professional Development on High School Science Achievement: Results of a Cluster-Randomized Trial

    ERIC Educational Resources Information Center

    Taylor, Joseph; Kowalski, Susan; Getty, Stephen; Wilson, Christopher; Carlson, Janet

    2013-01-01

    Effective instructional materials can be valuable interventions to improve student interest and achievement in science (National Research Council [NRC], 2007); yet, analyses indicate that many science instructional materials and curricula are fragmented, lack coherence, and are not carefully articulated through a sequence of grade levels (AAAS,…

  6. Who Are the Students Who May Qualify for an Alternate Assessment Based on Modified Academic Achievement Standards (AA-MAS)?: Focus Group Results. Synthesis Report 79

    ERIC Educational Resources Information Center

    Berndt, Sandra; Ebben, Barbara; Kubinski, Eva; Sim, Grant; Liu, Kristin; Lazarus, Sheryl; Thurlow, Martha; Christian, Elizabeth

    2011-01-01

    Beginning in 2007, federal regulations to two major education laws gave state departments of education the option to develop an alternate assessment based on modified achievement standards (AA-MAS) for some students with disabilities. The regulations stated that the AA-MAS was intended for students who were being instructed in the grade-level…

  7. Illinois Community College System Selected Programs and Services for Underrepresented Groups. Focus Area: Academic Achievement Promoting Positive Results and Highlighting Promising Practices

    ERIC Educational Resources Information Center

    Illinois Community College Board, 2005

    2005-01-01

    Through the Underrepresented Groups Report, community colleges have an opportunity to report on initiatives and strategies aimed at increasing participation and achievement among individuals with Disabilities, Women, and Minorities. Underrepresented Groups Report production is an important annual statutory responsibility (Public Act 85-283) for…

  8. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP

  9. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  10. Open Cherry Picker simulation results. [manned platform for satellite servicing from Shuttle

    NASA Technical Reports Server (NTRS)

    Nathan, C. A.

    1982-01-01

    The Open Cherry Picker (OCP) is a manned platform, mounted at the end of the Remote Manipulator System (RMS), which is used to enhance extravehicular activities. The objective of the simulation program described was to reduce the existing complexity of those OCP design features that are mandatory for initial Space Shuttle applications. The OCP development test article consists of a torque box, a rotating foot restraint, a rotating stanchion that houses handholds, and a tool storage section with an interface with payload modules. If the size or complexity of the payload increases, payload handling devices may be added at a later data. The simulations have shown that the crew can control the RMS from the Aft Flight Deck of the Shuttle, using voice commands from the EVA crewman. No need for a stabilizer was evident, and RMS dynamics due to crew-induced workloads were found to be minor.

  11. RHF RELAP5 Model and Preliminary Loss-Of-Offsite-Power Simulation Results for LEU Conversion

    SciTech Connect

    Licht, J. R.; Bergeron, A.; Dionne, B.; Thomas, F.

    2014-08-01

    The purpose of this document is to describe the current state of the RELAP5 model for the Institut Laue-Langevin High Flux Reactor (RHF) located in Grenoble, France, and provide an update to the key information required to complete, for example, simulations for a loss of offsite power (LOOP) accident. A previous status report identified a list of 22 items to be resolved in order to complete the RELAP5 model. Most of these items have been resolved by ANL and the RHF team. Enough information was available to perform preliminary safety analyses and define the key items that are still required. Section 2 of this document describes the RELAP5 model of RHF. The final part of this section briefly summarizes previous model issues and resolutions. Section 3 of this document describes preliminary LOOP simulations for both HEU and LEU fuel at beginning of cycle conditions.

  12. Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Observations in the Pacific Sector

    NASA Technical Reports Server (NTRS)

    Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.

    2012-01-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.

  13. RUSICA initial implementations: Simulation results of sandy shore evolution in Porto Cesareo, Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Di Gregorio, Salvatore; Gullace, Francesco; Gullı, Daniel; Lupiano, Valeria

    2016-06-01

    Beach recession is spreading in Mediterranean by effects of climatic change. RUSICA is a Cellular Automata model, that is in developing phase for simulating such a complex phenomenon, considering its main mechanisms: loose particles (sand, gravel, silt, clay, etc.) mobilization, suspension, deposit and transport, triggered by waves and currents. A simplified version of the model was implemented and applied to data, related to the sandy shore of Torre Lapillo (Porto Cesareo, Italy), in August 2010, where shore evolution was monitored, even if data quality and quantity aren't ideal in order to feed RUSICA. Simulations of different scenarios of stormy sea in that area evidenced the adequate performance of the model in capturing the main emergent features of the phenomenon in despite of the simplified approach.

  14. Preliminary experimental test results using 35 GHz offset fed reflector simulating surface pillows and aperture cables

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Young, W. R.

    1982-01-01

    The effects caused by reflector surface pillows and aperture cables on RF performance were determined. The test uses models that were designed to be replicas of a quad aperture at the proper F/D = 1.50 as provided in the LSST point design. Separate pillow models were machined from solid aluminum sections that simulated the surface contour pillows but on an exaggerated basis. The worse case pillow heights lamda/20 and lamda/5 were machined onto the precision reflector. In addition to the pillow effects, the scattering effects of aperture (Hoop/Column cables) cables were determined. Therefore, simulated quartz and graphite cables were tested with the smooth, lamda/20, and lamda/5 reflector models.

  15. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  16. Development of a six station knee wear simulator and preliminary wear results.

    PubMed

    Burgess, I C; Kolar, M; Cunningham, J L; Unsworth, A

    1997-01-01

    In order to assess the wear performance of different designs of total knee replacements (TKR), a six station multi-axis knee simulator has been designed, built and commissioned. The most important features of a knee simulator are representative angles of flexion-extension synchronized with a dynamically applied load, and a combination of rolling and sliding motion. The simulator typically applies flexion-extension of 0-65, anterior-posterior translation of up to 15 mm, a dynamic load of up to 5.0 kN, and operates at 1.0 Hz. The loads and motions are applied using computer controlled servohydraulic actuators and hence their profiles are easily modified. A preliminary wear test has been conducted using a Kinemax (Howmedica, United Kingdom) TKR. The test was conducted in 30 per cent bovine serum which was changed every 150,000 cycles, at which time the bearing surfaces were examined and the UHMWPE tibial component was weighed. Over eight million cycles, a tibial wear rate of 2.62 mg/10(6) cycles was measured. The mild wear observed was characterized by burnishing and slight scratching in the anterior posterior direction. These observations are broadly in line with both in vitro and ex vivo studies reported in the literature for this type of prosthesis. Delamination wear sometimes observed in vivo was not seen. PMID:9141889

  17. Development of a hydro kinetic river turbine with simulation and operational measurement results in comparison

    NASA Astrophysics Data System (ADS)

    Ruopp, A.; Ruprecht, A.; Riedelbauch, S.; Arnaud, G.; Hamad, I.

    2014-03-01

    The development of a hydro-kinetic prototype was shown including the compound structure, guide vanes, runner blades and a draft tube section with a steeply sloping, short spoiler. The design process of the hydrodynamic layout was split into three major steps. First the compound and the draft tube section was designed and the best operating point was identified using porous media as replacement for the guide vane and runner section (step one). The best operating point and the volume flux as well as the pressure drop was identified and used for the design of the guide vane section and the runner section. Both were designed and simulated independently (step two). In step three, all parts were merged in stationary simulation runs detecting peak power and operational bandwidth. In addition, the full scale demonstrator was installed in August 2010 and measured in the St. Lawrence River in Quebec supporting the average inflow velocity using ADCP (Acoustic Doppler Current Profiler) and the generator power output over the variable rotational speed. Simulation data and measurements are in good agreement. Thus, the presented approach is a suitable way in designing a hydro kinetic turbine.

  18. Evaluation of automated decision making methodologies and development of an integrated robotic system simulation: Study results

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelley, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The implementation of a generic computer simulation for manipulator systems (ROBSIM) is described. The program is written in FORTRAN, and allows the user to: (1) Interactively define a manipulator system consisting of multiple arms, load objects, targets, and an environment; (2) Request graphic display or replay of manipulator motion; (3) Investigate and simulate various control methods including manual force/torque and active compliance control; and (4) Perform kinematic analysis, requirements analysis, and response simulation of manipulamotion. Previous reports have described the algorithms and procedures for using ROBSIM. These reports are superseded and additional features which were added are described. They are: (1) The ability to define motion profiles and compute loads on a common base to which manipulator arms are attached; (2) Capability to accept data describing manipulator geometry from a Computer Aided Design data base using the Initial Graphics exchange Specification format; (3) A manipulator control algorithm derived from processing the TV image of known reference points on a target; and (4) A vocabulary of simple high level task commands which can be used to define task scenarios.

  19. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  20. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  1. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  2. Basin scale reactive-transport simulations of CO2 leakage and resulting metal transport in a shallow drinking water aquifer

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.; Maxwell, R. M.; Hammond, G. E.; Lichtner, P. C.

    2011-12-01

    Leakage of CO2 from underground storage formations into overlying aquifers will decrease groundwater pH resulting in a geochemical response of the aquifer. If metal containing aquifer minerals dissolve as a part of this response, there is a risk of exceeding regulatory limits set by the EPA. Risk assessment methods require a realistic prediction of the maximum metal concentration at wells or other points of exposure. Currently, these predictions are based on numerical reactive transport simulations of CO2 leaks. While previous studies have simulated galena dissolution as a source of lead to explore the potential for contamination of drinking water aquifers, it may be more realistic to simulate lead release from more common minerals that are known to contain trace amounts of metals, e.g. calcite. Model domains for these previous studies are often sub-km in scale or have very coarse grid resolution, due to computation limitations. In this study we simulate CO2 leakage into a drinking water aquifer using the massively parallel subsurface flow and reactive transport code PFLOTRAN. The regional model domain is 4km x 1km x 0.1 km. Even with fairly coarse grid spacing (~ 9 m x 9 m x 0.9 m), the simulations have > 49 million degrees of freedom, requiring the use of High-Performance Computing (HPC). Our simulations are run on Jaguar at Oak Ridge National Laboratory. Lead concentrations in extraction wells 3 km down gradient from a CO2 leak increase above background concentrations due to kinetic mineral dissolution along the flow path. Increases in aqueous concentrations are less when lead is allowed to sorb onto mineral surfaces. Surprisingly, lead concentration increases are greater in simulations where lead is present as a trace constituent in calcite (5% by volume) relative to simulations with galena (0.001% by volume) as the lead source. It appears that galena becomes oversaturated and begins to precipitate, a result observed in previous modeling studies, and its low

  3. Scientific bases, methods, and results of mathematical simulation and prediction of structure and behavior of petroleum geology systems

    SciTech Connect

    Buryakovsky, L.A. )

    1992-07-01

    This paper reports that the systems approach to geology is both a sophisticated ideology and a scientific method for investigation of very complicated geological systems. As applied to petroleum geology, it includes the methodological base and technology of mathematical simulation used for modeling geological systems: the systems that have been previously investigated and estimated by experimental data and/or field studies. Because geological systems develop in time, it is very important to simulate them as dynamic systems. The main tasks in the systems approach to petroleum geology are the numerical simulation of physical and reservoir properties of rocks, pore (geofluid) pressure in reservoir beds, and hydrocarbon resources. The results of numerical simulation are used for prediction of geological system structure and behavior in both studies and noninvestigated areas.

  4. Preliminary Results of Simulations and Field Investigations of the Performance of the WISDOM GPR of the ExoMars Rover

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Corbel, C.; Cais, P.; Pltettemeier, D.; Hamran, S. E.; Oyan, M.; Clifford, S.; Reineix, A.

    2009-04-01

    of 100cm. The typical grid-size for this 3D characterization is 5 m x 5 m. FDTD electromagntic simulations have been run on realistic Martian subsurface models to investigate the likely performances of the instrument once on Mars. In additiona, experi-mental field data was acquired during a 2008 mission to Svalabard, where the performance of the instrument in a permafrost environment was demonstrated. The results of that inves-tigation showed that WISDOM is capable of obtaining accurate data to depths in excess of 2-3 meters in ice-rich environments - successfully soundings through sediment layers, ice, and even into the underlying moraine, with sufficient spatial resolution to identify fine-scale layering within the intervening ice. Further results of these investigations will be presented at the meeting.

  5. Effects of dark matter substructures on gravitational lensing: results from the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Xu, D. D.; Mao, Shude; Wang, Jie; Springel, V.; Gao, Liang; White, S. D. M.; Frenk, Carlos S.; Jenkins, Adrian; Li, Guoliang; Navarro, Julio F.

    2009-09-01

    We use the high-resolution Aquarius simulations of the formation of Milky Way-sized haloes in the Λ cold dark matter cosmology to study the effects of dark matter substructures on gravitational lensing. Each halo is resolved with ~108 particles (at a mass resolution mp ~ 103 to 104h-1Msolar) within its virial radius. Subhaloes with masses msub >~ 105h-1Msolar are well resolved, an improvement of at least two orders of magnitude over previous lensing studies. We incorporate a baryonic component modelled as a Hernquist profile and account for the response of the dark matter via adiabatic contraction. We focus on the `anomalous' flux ratio problem, in particular on the violation of the cusp-caustic relation due to substructures. We find that subhaloes with masses less than ~108h-1Msolar play an important role in causing flux anomalies; such low-mass subhaloes have been unresolved in previous studies. There is large scatter in the predicted flux ratios between different haloes and between different projections of the same halo. In some cases, the frequency of predicted anomalous flux ratios is comparable to that observed for the radio lenses, although in most cases it is not. The probability for the simulations to reproduce the observed violations of the cusp lenses is ~10-3. We therefore conclude that the amount of substructure in the central regions of the Aquarius haloes is insufficient to explain the observed frequency of violations of the cusp-caustic relation. These conclusions are based purely on our dark matter simulations which ignore the effect of baryons on subhalo survivability.

  6. Ferrocyanide safety program: Results of relative humidity experiments using ferrocyanide waste simulants

    SciTech Connect

    King, C.V.

    1994-10-01

    To be categorized as conditionally safe, ferrocyanide tanks containing {ge} 8 wt% Na{sub 2}NiFe(CN){sub 6} on an energy equivalent basis (i.e., {ge} 115 cal/g) are required to contain some amount of water. These tests were conducted to determine the equilibrium moisture content of waste simulant at the conditions of 30% relative humidity and 25{degrees}C. This test report was prepared to disseminate data collected from these tests. These data are used to model the waste tank moisture contents and transport. These models can determine if the moisture in these tanks will drop below the defined safety limits.

  7. Aeolian weathering of Venusian surface materials - Preliminary results from laboratory simulations

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald; Tucker, David W.; Pollack, James B.

    1988-01-01

    An attempt is made to duplicate the atmospheric temperature, pressure, and approximate gas composition of all surface elevations on Venus by means of a simulator environment in which particles are impacted against rock targets as a way of studying planetary aeolian processes. While particles are abraded even at the low impact velocities envisioned for Venus, the same particles do not generate basaltic rock abrasion for impact velocities lower than 1 m/sec; comminution debris is instead transferred onto rock surfaces to form an accretion layer. These phenomena are seen as functions of the greater than 660 K temperatures encountered.

  8. Geologic results of the TMS survey over Mt. Emmons, Colorado. [Thematic Mapper Simulator

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Sadowski, R. M.

    1985-01-01

    In 1981, NASA conducted with an American company a cooperative study, involving the use of Thematic Mapper Simulator (TMS) data. The study was concerned with an area near Crested Butte, Colorado, which contains a known, but unmined, major molybdenum deposit. Detailed ground observations in the Mt. Emmons area demonstrated that the imagery was extremely effective for detection of geologically significant features. The imagery specifically delineated areas of ferric iron staining, seritization, and hornfelized rock. Attention is given to data acquisition and data processing, field work in 1982 and in 1983, the integration of gravity data, and costs.

  9. A STOL airworthiness investigation using a simulation of a deflected slipstream transport. Volume 1: Summary of results and airworthiness implications

    NASA Technical Reports Server (NTRS)

    Stapleford, R. L.; Heffley, R. K.; Rumold, R. C.; Hynes, C. S.; Scott, B. C.

    1974-01-01

    A simulator study of short takeoff and landing (STOL) aircraft was conducted using a model of a deflected slipstream transport aircraft. The subjects considered are: (1) the approach, (2) flare and landing, (3) go-around, and (4) takeoff phases of flight. The results are summarized and possible implications with regard to airworthiness criteria are discussed. A data base is provided for future STOL airworthiness requirements and a preliminary indication of potential problem areas is developed. Comparison of the simulation results with various proposed STOL criteria indicates significant deficiencies in many of these criteria.

  10. End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Hewasawam, Kuravi; Mendillo, Christopher B.; Cahoy, Kerri L.; Cook, Timothy A.; Finn, Susanna C.; Howe, Glenn A.; Kuchner, Marc J.; Lewis, Nikole K.; Marinan, Anne D.; Mawet, Dimitri; Chakrabarti, Supriya

    2015-09-01

    We describe a set of numerical approaches to modeling the performance of space flight high-contrast imaging payloads. Mission design for high-contrast imaging requires numerical wavefront error propagation to ensure accurate component specifications. For constructed instruments, wavelength and angle-dependent throughput and contrast models allow detailed simulations of science observations, allowing mission planners to select the most productive science targets. The PICTURE family of missions seek to quantify the optical brightness of scattered light from extrasolar debris disks via several high-contrast imaging techniques: sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment) and balloon flights of a visible nulling coronagraph, as well as a balloon flight of a vector vortex coronagraph (the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph, PICTURE-C). The rocket mission employs an on-axis 0.5m Gregorian telescope, while the balloon flights will share an unobstructed off-axis 0.6m Gregorian. This work details the flexible approach to polychromatic, end-to-end physical optics simulations used for both the balloon vector vortex coronagraph and rocket visible nulling coronagraph missions. We show the preliminary PICTURE-C telescope and vector vortex coronagraph design will achieve 10-8 contrast without post-processing as limited by realistic optics, but not considering polarization or low-order errors. Simulated science observations of the predicted warm ring around Epsilon Eridani illustrate the performance of both missions.

  11. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  12. Identification of Tryptic Peptides from Large Databases using Multiplexed Tandem Mass Spectrometry: Simulations and Experimental Results

    SciTech Connect

    Masselon, Christophe D. ); Pasa-Tolic, Ljiljana ); Lee, Sang-Won ); Li, Lingjun; Anderson, Gordon A. ); Harkewicz, Richard ); Smith, Richard D. )

    2003-07-01

    Multiplexed MS/MS was recently demonstrated as a means to increase the throughput of peptides identification in LC-MS/MS experiments. In this approach, a set of parent species is dissociated simultaneously and measured in a single spectrum (in the same manner that a single parent ion is conventionally studied), providing a gain in sensitivity and throughput proportional to the number of species that can be simultaneously addressed. In the present work, simulations performed using the Caenorhabditis elegans predicted proteome database show that multiplexed MS/MS data allow the identification of tryptic peptides from mixtures of up to 10 peptides from a single dataset with only 3 y or b fragments per peptide and a mass accuracy of 2.5 to 5 ppm. At this level of database and data complexity, 98% of the 500 peptides considered in the simulation were correctly identified. This compares favorably with the rates obtained for classical MS/MS at more modest mass measurement accuracy. LC-multiplexed FTICR MS/MS data obtained from a 66 kDa protein (bovine serum albumin) tryptic digest sample are presented to illustrate the approach, and confirm that peptides can be effectively identified from the C. elegans database to which the protein sequence had been appended.

  13. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  14. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  15. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  16. Whipple bumper shield results and CTH simulations at velocities in excess of 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. Jr.; Reinhart, W.D.; Miller, J.M.

    1992-09-01

    A series of experiments has been performed on the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities in excess of 10 km/s. Upon impact by a 0.67 g (0.87 mm thick) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris penetrates the substructure completely. However, when the mass of the flier plate is reduced to 0.33 g, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete penetration of the substructure by the subsequent debris cloud for a 0.87 g flier plate. The numerical simulations for a 0.33 g flier plate show a strong dependence on assumed impact geometry. For the assumption of a spherical projectile impact geometry, perforation of the substructure by the subsequent debris cloud is not predicted by CTH.

  17. Whipple bumper shield results and CTH simulations at velocities in excess of 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. Jr.; Reinhart, W.D.; Miller, J.M.

    1992-09-01

    A series of experiments has been performed on the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities in excess of 10 km/s. Upon impact by a 0.67 g (0.87 mm thick) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of [approximately]14 km/s and expands radially at a velocity of [approximately]7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris penetrates the substructure completely. However, when the mass of the flier plate is reduced to 0.33 g, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete penetration of the substructure by the subsequent debris cloud for a 0.87 g flier plate. The numerical simulations for a 0.33 g flier plate show a strong dependence on assumed impact geometry. For the assumption of a spherical projectile impact geometry, perforation of the substructure by the subsequent debris cloud is not predicted by CTH.

  18. From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X.

    2012-11-01

    In this work the possibility of modeling manufacturing ceramic products is analyzed through the application of transient thermography, holographic interferometry and digital speckle photography, in order to identify the subsurface defects characteristics. This integrated method could be used to understand the nature of heterogeneous materials (such as plastic, sponge simulating a void, wood, aluminum) potentially contained within ceramic materials, as well as to predict crack formation due to them. The paper presents the analysis of green ceramic tile containing defects of different types and sizes located at different depths. The finite element method is used for solving the problem of transient heat transfer occurring in experimental conditions. Unknown parameters of the numerical model (such as convective heat transfer coefficients and sample surface emissivity) were adjusted to obtain numerical simulation results as close as possible to those obtained experimentally. Similarities and differences between experimental and simulated data are analyzed and discussed. Possibilities for improving the results and further developments are proposed.

  19. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    SciTech Connect

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-05-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  20. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion