Science.gov

Sample records for achievement conceptual understanding

  1. Understanding Possibilities and Limitations of Abstract Chemical Representations for Achieving Conceptual Understanding

    ERIC Educational Resources Information Center

    Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine

    2014-01-01

    When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…

  2. Understanding Possibilities and Limitations of Abstract Chemical Representations for Achieving Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine

    2014-03-01

    When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge of abstract scientific MERs to see (a) how many, and what kind of ideas (propositions) learners remembered from these MERs and (b) what the impact of these ideas is on conceptual understanding of the content. Propositional analysis indicates that learners created flawed internal representations. The discussion analyses the potentials that the learners have in using abstract representations to increase their understanding of scientific information and possible effects of instruction.

  3. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    NASA Astrophysics Data System (ADS)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  4. A Confirmatory Structural Equation Model of Achievement Estimated by Dichotomous Attitudes, Interest, and Conceptual Understanding

    ERIC Educational Resources Information Center

    Kim, Minkee; Song, Jinwoong

    2010-01-01

    Many models in science education have tried to clarify the causal relationships of affective variables on student performance, by presenting theoretical models, exploratory SEM (structural equation models), and confirmatory SEM. Based on the literature, the recent AS-TI-CU model scrutinised the most robust stimuli of conceptual understanding (CU):…

  5. Defining Conceptual Understanding in General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  6. Determining Students' Conceptual Understanding Level of Thermodynamics

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  7. Learning environment, learning styles and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  8. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Hanson, Ruby

    2015-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  9. Young Children's Conceptual Understanding of Triangle

    ERIC Educational Resources Information Center

    Dagli, Ümmühan Yesil; Halat, Erdogan

    2016-01-01

    This study explored 5-6 year-old children's conceptual understanding of one geometric shape, the triangle. It focused on whether children could draw a triangle from memory, and identify triangles of different types, sizes, and orientations. The data were collected from 82 children attending state preschool programs through a one-on-one interview,…

  10. On Automatic Assessment and Conceptual Understanding

    ERIC Educational Resources Information Center

    Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu

    2015-01-01

    We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…

  11. Assessing Students' Conceptual Understanding of Solubility Equilibrium.

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2001-01-01

    Presents a problem on solubility equilibrium which involves macroscopic, microscopic, and symbolic levels of representation as a resource for the evaluation of students, and allows for assessment as to whether students have acquired an adequate conceptual understanding of the phenomenon. Also diagnoses difficulties with regard to previous…

  12. Teaching Mathematical Trade Topics for Conceptual Understanding.

    ERIC Educational Resources Information Center

    Larkin, Alan; Phillips, Keith

    This book is intended to assist trade and industrial education teachers in teaching mathematical trade topics in a way that will increase students' conceptual understanding of them. The first chapter provides an overview of the book's contents and suggests ways of using it. The next five chapters address the following aspects of using principles…

  13. Promoting Conceptual Understanding via Adaptive Concept Maps

    ERIC Educational Resources Information Center

    Moore, Jacob P.

    2013-01-01

    The purpose of this study is to explore the feasibility and effectiveness of a scalable concept map based navigation system for a digital textbook. A literature review has been conducted to identify possible methods to promote conceptual understanding in the context of a digital textbook, and these hypothesized solutions will be evaluated through…

  14. University student conceptual resources for understanding energy

    NASA Astrophysics Data System (ADS)

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-06-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy quantitatively. This research responds to a need for large-scale, resources-oriented research on students' conceptual understanding and has the potential to support the development of an underexplored dimension of pedagogical content knowledge-knowledge of student resources for understanding energy. Our aim is to promote instructor take-up of the resources theory of knowledge, and we suggest a number of ways in which instructors might capitalize on the resources we report.

  15. Evaluation of Students' Conceptual Understanding of Malaria

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-12-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students' understanding and identifying alternative conceptions with respect to malaria. Results showed that students' understanding of malaria was high for content, low for reasons, and limited and superficial for both content and reasons. The instrument revealed several common alternative conceptual understandings students' hold about malaria. The MalariaTT2 instrument developed could be used in classroom lessons for challenging alternative conceptions and enhancing conceptions of malaria.

  16. Conceptual Learning: Enhancing Student Understanding of Physiology

    NASA Astrophysics Data System (ADS)

    Waltz, Micah J.

    Students are leaving undergraduate science programs without the knowledge and skills they are expected to have. This is apparent in professional programs, such as medical and veterinary school, where students do not possess the critical thinking skills necessary to be successful. Physiology is a required discipline for these professional programs and often before, as a pre-requisite. Physiology classrooms are an excellent place to teach critical thinking skills because the content consists of integrated processes. Therefore, in one study, it was investigated whether focusing on physiological concepts improved student understanding of physiology in both a non-physiological science course, Invertebrate Zoology, and in an undergraduate physiology course. An educational intervention was used in Invertebrate Zoology, where students were exposed to human physiology concepts that were similar to comparative physiology concepts they had learned during the semester. A pre-/post-test was used to assess learning gains. In a second study, the use of multimedia file usage was correlated to student exam scores in a physiology course. This was done to see if providing additional study materials that focused on specific concepts improved student understanding, as assessed using exam scores. Overall these studies indicate that encouraging assimilation of new concepts that expand upon material from lecture may help students gain a more complete understanding of a concept. The integration of these concepts into pre-existing conceptual frameworks may serve to teach students valuable critical thinking skills such as evaluation of new ideas within their current understanding and synthesizing the new content with the existing information. Focusing on this type of conceptual learning may enable students to apply content knowledge and think through problems. Additionally, focusing on concepts may enable students to improve their understanding of material without being overwhelmed by

  17. Mathematical vs. conceptual understanding: Where do we draw the line?

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra; Aguilera, Nicholas

    2013-01-01

    This research involved high school physics students and how they learn to understand Newton's laws as they relate to falling bodies and projectile motion. Students in introductory, algebra-based, high school physics classes were evaluated based on their prior knowledge through a pretest, designed to assess their initial comprehension of the motion of falling bodies and projectiles. Groups were divided and taught separately with an emphasis on either mathematical derivation of equations, followed by brief conceptual discussions, or on thorough conceptual analysis, followed by a brief mathematical verification. After a posttest was given, an evaluation of the responses and explanations of each group of students was used to determine which method of instruction was more effective. Results indicate that after the conceptual group and math groups achieved similar scores on the pretest, the conceptual group obtained a slightly higher normalized gain of 25% on the posttest, compared to the mathematical group's normalized gain of 16% (unpaired two-tailed t-test P value for posttest results was 0.1037) and, while within standard deviations, also achieved higher overall scores on all posttest questions and higher normalized gains on all but one posttest question. Further, most students, even thoes in the mathematically-instructed group, were more inclined to give conceptually-based responses on postest questions than mathematically-based ones. In the context of this topic, the dominating difficulty for both groups was in analyzing two-dimensional projectile motion and, more specifically, the behavior of each onedimensional component of such motion.

  18. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that…

  19. Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play

    ERIC Educational Resources Information Center

    Denham, Andre

    2012-01-01

    This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…

  20. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  1. University Student Conceptual Resources for Understanding Energy

    ERIC Educational Resources Information Center

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-01-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy…

  2. Assessing Undergraduate Students' Conceptual Understanding and Confidence of Electromagnetics

    ERIC Educational Resources Information Center

    Leppavirta, Johanna

    2012-01-01

    The study examines how students' conceptual understanding changes from high confidence with incorrect conceptions to high confidence with correct conceptions when reasoning about electromagnetics. The Conceptual Survey of Electricity and Magnetism test is weighted with students' self-rated confidence on each item in order to infer how strongly…

  3. Understanding psychiatric institutionalization: a conceptual review

    PubMed Central

    2013-01-01

    Background Since Goffman’s seminal work on psychiatric institutions, deinstitutionalization has become a leading term in the psychiatric debate. It described the process of closure or downsizing of large psychiatric hospitals and the establishment of alternative services in the community. Yet, there is a lack of clarity on what exactly the concept of institutionalization means in present-day psychiatry. This review aims to identify the meaning of psychiatric institutionalization since the early 1960s to present-day. Method A conceptual review of institutionalization in psychiatry was conducted. Thematic analysis was used to synthesize the findings. Results Four main themes were identified in conceptualizing institutionalization: bricks and mortar of care institutions; policy and legal frameworks regulating care; clinical responsibility and paternalism in clinician-patient relationships; and patients’ adaptive behavior to institutionalized care. Conclusions The concept of institutionalization in psychiatry reflects four distinct themes. All themes have some relevance for the contemporary debate on how psychiatric care should develop and on the role of institutional care in psychiatry. PMID:23773398

  4. Effects of Conceptual Assignments and Conceptual Change Discussions on Students' Misconceptions and Achievement Regarding Force and Motion.

    ERIC Educational Resources Information Center

    Eryilmaz, Ali

    2002-01-01

    Investigates the effects of conceptual assignments and conceptual change discussions on high school students' achievement and misconceptions about force and motion. Analyzes pretest and posttest data from the Force Misconception and Force Achievement Tests (FMFAT). Discusses the effects on the conceptual change discussion on reducing…

  5. Prove It! Engaging Teachers as Learners to Enhance Conceptual Understanding

    ERIC Educational Resources Information Center

    Sweetland, Julie; Fogarty, Meghann

    2008-01-01

    Effective professional development engages, rather than bypasses, teacher thinking. This article describes strategies to heighten teachers' awareness of the difference between procedural knowledge and conceptual understanding. (Contains 6 figures.)

  6. The role of conceptual understanding in children's addition problem solving.

    PubMed

    Canobi, K H; Reeve, R A; Pattison, P E

    1998-09-01

    The study examined the relationship between children's conceptual understanding and addition problem-solving procedures. Forty-eight 6- to 8-year-olds solved addition problems and, in a 2nd task, were prompted to judge whether a puppet could use the arithmetic properties of one problem to solve the next problem. Relational properties between consecutive problems were manipulated to reflect aspects of additive composition, commutativity, and associativity principles. Conceptual understanding was assessed by the ability to spontaneously use such relational properties in problem solving (Task 1) and to recognize and explain them when prompted (Task 2). Results revealed that conceptual understanding was related to using order-indifferent, decomposition, and retrieval strategies and speed and accuracy in solving unrelated problems. The importance of conceptual understanding for addition development is discussed.

  7. Modelling Photosynthesis to Increase Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Pauline; Tronson, Deidre; Ritchie, Raymond J.

    2006-01-01

    Biology students in their first year at university have difficulty understanding the abstract concepts of photosynthesis. The traditional didactic lecture followed by practical exercises that show various macroscopic aspects of photosynthesis often do not help the students visualise or understand the submicroscopic (molecular-level) reactions that…

  8. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  9. Conceptual Understanding of Definite Integral with Geogebra

    ERIC Educational Resources Information Center

    Tatar, Enver; Zengin, Yilmaz

    2016-01-01

    This study aimed to determine the effect of a computer-assisted instruction method using GeoGebra on achievement of prospective secondary mathematics teachers in the definite integral topic and to determine their opinions about this method. The study group consisted of 35 prospective secondary mathematics teachers studying in the mathematics…

  10. Conceptual Mis(understandings) of Beginning Undergraduates.

    ERIC Educational Resources Information Center

    Galbraith, Peter; Haines, Christopher

    2000-01-01

    Proposes a taxonomy of three levels in increasing order of mathematical demand in order to understand a set of mathematical skills of some importance to beginning undergraduates in engineering and mathematics. Suggests that the constructed instrument is robust and the taxonomy used is effective. (Contains 22 references.) (Author/ASK)

  11. Evaluation of Students' Conceptual Understanding of Malaria

    ERIC Educational Resources Information Center

    Cheong, Irene Poh-Ai; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-01-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students'…

  12. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-04-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in science such as biotechnology. We report on an in-depth case study analysis of three undergraduate, non-science majors in a biotechnology course designed for non-biochemistry majors. We selected participants who performed above average and below average on the first in-class exam. Data from multiple sources—interviews, exams, and a concept instrument—were used to construct (a) individual profiles and (b) a cross-case analysis of our participants' conceptual development and epistemic beliefs from two different theoretical perspectives—Women's Ways of Knowing and the Reflective Judgment Model. Two independent trained researchers coded all case records independently for both theoretical perspectives, with resultant initial Cohen's kappa values above .715 (substantial agreement), and then reached consensus on the codes. Results indicate that a student with more sophisticated epistemology demonstrated greater conceptual understandings at the end of the course than a student with less sophisticated epistemology, even though the latter performed higher initially. Also a student with a less sophisticated epistemology and low initial conceptual performance does not demonstrate gains in their overall conceptual understanding. Results suggest the need for instructional interventions fostering epistemological development of learners in order to facilitate their conceptual growth.

  13. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  14. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  15. Elementary Teachers' Teaching for Conceptual Understanding: Learning from Action Research

    ERIC Educational Resources Information Center

    Kang, Nam-Hwa

    2007-01-01

    This study reports teachers' learning through action research on students' conceptual understanding. The study examined (a) the teachers' views about science teaching and learning, (b) the teachers' learning about their teaching practices and (c) the conditions that supported the teachers' learning through action research. A total of 14 elementary…

  16. Helping Secondary School Students Develop a Conceptual Understanding of Refraction

    ERIC Educational Resources Information Center

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-01-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students' conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and…

  17. Students' Attitudes toward and Conceptual Understanding of Chemical Instrumentation

    ERIC Educational Resources Information Center

    Miller, Larry S.; Nakhleh, Mary B.; Nash, John J.; Meyer, Jeanne A.

    2004-01-01

    Students' attitudes toward and conceptual understanding of chemical instrumentation is surveyed. The study shows that, in general, the students' attitudes toward using instrumentation in the lab is quite positive and they felt that using instrumentation in the lab allowed them not only to connect "chemistry" and the "real world", but also to…

  18. Explicit Argumentation Instruction to Facilitate Conceptual Understanding and Argumentation Skills

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda

    2014-01-01

    Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the…

  19. A CONCEPTUAL UNDERSTANDING OF LEAKAGE DURING SOIL-GAS SAMPLING

    EPA Science Inventory

    A heuristic model is developed to develop a conceptual understanding of leakage during soil-gas sampling. Leakage is shown to be simply a function of the permeability contrast between the formation and borehole and geometric factors. As the ratio of formation to borehole permea...

  20. Assessing Students' Conceptual Understanding after a First Course in Statistics

    ERIC Educational Resources Information Center

    delMas, Robert; Garfield, Joan; Ooms, Ann; Chance, Beth

    2007-01-01

    This paper describes the development of the CAOS test, designed to measure students' conceptual understanding of important statistical ideas, across three years of revision and testing, content validation, and reliability analysis. Results are reported from a large scale class testing and item responses are compared from pretest to posttest in…

  1. Facilitating Chemistry Teachers' Understanding of Alternative Interpretations of Conceptual Change

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2006-01-01

    Historians and philosophers of science have recognized the importance of controversies in the progress of science. The objective of this study was to facilitate in-service chemistry teachers' understanding of conceptual change based on alternative philosophical interpretations (controversies). Selected controversies formed part of the chemistry…

  2. Transforming Year 11's Conceptual Understanding of Change

    ERIC Educational Resources Information Center

    Fielding, Anna

    2015-01-01

    For all that history teachers appreciate the need to build substantive knowledge and conceptual understanding systematically over time, they are also likely to have experienced that sickening moment when they realise that a Year 11 pupil has somehow missed something fundamental. In Anna Fielding's case, her pupil's misconception was related to the…

  3. Facilitating Conceptual Change in Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2002-01-01

    Constructs a teaching strategy to facilitate conceptual change in freshman students' understanding of electrochemistry. Provides students with the correct response along with alternative responses (teaching experiments), producing a conflicting situation that is conducive to an equilibration of their cognitive structures. Concludes that the…

  4. Graduate Employability: A Conceptual Framework for Understanding Employers' Perceptions

    ERIC Educational Resources Information Center

    Cai, Yuzhuo

    2013-01-01

    This study provides a conceptual framework for understanding what employers think about the value of graduates with similar educational credentials in the workplace (their employability), using insights from the new institutionalism. In this framework, the development of employers' beliefs about graduates' employability is broken into a number of…

  5. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    ERIC Educational Resources Information Center

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-01-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in…

  6. Prior Knowledge Moderates Instructional Effects on Conceptual Understanding of Statistics

    ERIC Educational Resources Information Center

    Leppink, Jimmie; Broers, Nick J.; Imbos, Tjaart; van der Vleuten, Cees P. M.; Berger, Martijn P. F.

    2012-01-01

    This study investigated the effects of different teaching and learning methods for statistics for 2 levels of prior knowledge on cognitive load, propositional knowledge, and conceptual understanding. Teaching methods were whether or not to provide students with propositional information, and learning strategies were self-explaining the learning…

  7. From Human Activity to Conceptual Understanding of the Chain Rule

    ERIC Educational Resources Information Center

    Jojo, Zingiswa Mybert Monica; Maharaj, Aneshkumar; Brijlall, Deonarain

    2013-01-01

    This article reports on a study which investigated first year university engineering students' construction of the definition of the concept of the chain rule in differential calculus at a University of Technology in South Africa. An APOS (Action-Process-Objects-Schema) approach was used to explore conceptual understanding displayed by students in…

  8. Impact of Animation on Assessment of Conceptual Understanding in Physics

    ERIC Educational Resources Information Center

    Dancy, Melissa H.; Beichner, Robert

    2006-01-01

    This study investigates the effect of computer animation on assessment and the conditions under which animation may improve or hinder assessment of conceptual understanding in physics. An instrument was developed by replacing static pictures and descriptions of motion with computer animations on the Force Concept Inventory, a commonly used pencil…

  9. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    ERIC Educational Resources Information Center

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  10. Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.

    PubMed

    Ondobaka, Sasha; de Lange, Floris P; Wittmann, Marco; Frith, Chris D; Bekkering, Harold

    2015-09-01

    Recent accounts of understanding goal-directed action underline the importance of a hierarchical predictive architecture. However, the neural implementation of such an architecture remains elusive. In the present study, we used functional neuroimaging to quantify brain activity associated with predicting physical movements, as they were modulated by conceptual-expectations regarding the purpose of the object involved in the action. Participants observed object-related actions preceded by a cue that generated both conceptual goal expectations and movement goal predictions. In 2 tasks, observers judged whether conceptual or movement goals matched or mismatched the cue. At the conceptual level, expected goals specifically recruited the posterior cingulate cortex, irrespectively of the task and the perceived movement goal. At the movement level, neural activation of the parieto-frontal circuit, including inferior frontal gyrus and the inferior parietal lobe, reflected unpredicted movement goals. Crucially, this movement prediction error was only present when the purpose of the involved object was expected. These findings provide neural evidence that prior conceptual expectations influence processing of physical movement goals and thereby support the hierarchical predictive account of action processing. PMID:24663382

  11. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  12. A helpful way to conceptualize and understand reenactments.

    PubMed

    Levy, M S

    1998-01-01

    Attempts to understand the purpose and the etiology of reenactments can lead to confusion because reenactments can occur for a variety of reasons. At times, individuals actively reenact past traumas as a way to master them. However, in other cases, reenactments occur inadvertently and result from the psychological vulnerabilities and defensive strategies characteristic of trauma survivors. This article offers a means to conceptualize and understand the many ways in which reenactments can occur. Psychotherapeutic strategies are offered to help individuals integrate past traumas and decrease their chances of becoming involved in destructive reenactments. PMID:9631344

  13. Understanding Co-development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    NASA Astrophysics Data System (ADS)

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-04-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.

  14. A Functional Conceptualization of Understanding Science in the News

    NASA Astrophysics Data System (ADS)

    Anderson, Megan M.

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it mean to understand science in the news? Surprisingly few have asked this question, or considered the significance of its answer. This dissertation steps away from issues of science teaching and learning to examine the nature of understanding science in the news itself. My work consolidates past scholarship from the multiple fields concerned with the relationship between science and society to produce a theoretical model of understanding science in the news as a complex, multidimensional process that involves an understanding of science as well as journalism. This thesis begins by exploring the relationship between the understanding implicit in understanding science in the news and understanding science. Many assume these two ways of knowing are one in the same. To rebut this assumption, I examine the types of knowledge necessary for understanding science and understanding science in the news. I then use the literature devoted to scientific literacy to show how past research has imagined the knowledge necessary to understand science in the news. Next, I argue that one of the principle difficulties with these conceptualizations is that they define science in the news in essentially the same terms as science. They also, I suggest, oversimplify how and why public interacts with science in the news. This dissertation concludes with a proposal for one way we might think about understanding science in the news on its own terms rather than those of understanding science. This dissertation attempts to connect two fields of research that rarely intersect, despite their multiple common interests: science education and mass communication. It considers the notion of

  15. Understanding Eating Disorders in Elite Gymnastics: Ethical and Conceptual Challenges.

    PubMed

    Tan, Jacinta Oon Ai; Calitri, Raff; Bloodworth, Andrew; McNamee, Michael J

    2016-04-01

    Eating disorders and disordered eating are more common in high performance sports than the general population, and particularly so in high performance aesthetic sports. This paper presents some of the conceptual difficulties in understanding and diagnosing eating disorders in high performance gymnasts. It presents qualitative and quantitative data from a study designed to ascertain the pattern of eating disorder symptoms, depressive symptoms and levels of self-esteem among national and international level gymnasts from the UK in the gymnastic disciplines of sport acrobatics, tumbling, and rhythmic gymnastics. PMID:26832977

  16. Understanding Eating Disorders in Elite Gymnastics: Ethical and Conceptual Challenges.

    PubMed

    Tan, Jacinta Oon Ai; Calitri, Raff; Bloodworth, Andrew; McNamee, Michael J

    2016-04-01

    Eating disorders and disordered eating are more common in high performance sports than the general population, and particularly so in high performance aesthetic sports. This paper presents some of the conceptual difficulties in understanding and diagnosing eating disorders in high performance gymnasts. It presents qualitative and quantitative data from a study designed to ascertain the pattern of eating disorder symptoms, depressive symptoms and levels of self-esteem among national and international level gymnasts from the UK in the gymnastic disciplines of sport acrobatics, tumbling, and rhythmic gymnastics.

  17. To Master or Perform? Exploring Relations between Achievement Goals and Conceptual Change Learning

    ERIC Educational Resources Information Center

    Ranellucci, John; Muis, Krista R.; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M.

    2013-01-01

    Background: Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. Aims: To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Sample and Method:…

  18. Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course?

    NASA Astrophysics Data System (ADS)

    Ridenour, J.; Feldman, G.; Teodorescu, R.; Medsker, L.; Benmouna, N.

    2013-01-01

    Developing competency in problem solving and enhancing conceptual understanding are primary objectives in introductory physics, and many techniques and tools are available to help instructors achieve them. Pedagogically, we use an easy-to-implement intervention, the ACCESS protocol, to develop and assess problem-solving skills in our SCALE-UP classroom environment for algebra-based physics. Based on our research and teaching experience, an important question has emerged: while primarily targeting improvements in problem-solving and cognitive development, is it necessary that conceptual understanding be compromised? To address this question, we gathered and analyzed information about student abilities, backgrounds, and instructional preferences. We report on our progress and give insights into matching the instructional tools to student profiles in order to achieve optimal learning in group-based active learning. The ultimate goal of our work is to integrate individual student learning needs into a pedagogy that moves students closer to expert-like status in problem solving.

  19. Confirmability and Disconfirmability of Traits Related to Conceptualizations of Achievement.

    ERIC Educational Resources Information Center

    Sadowski, Cyril J.; Grah, Charles R.

    Recent discussions of achievement motivation hade introduced the notion of achievement orientations. Achievement orientations are constructs which reflect differences in defining success, standards of performance, and preferences for types of achievement tasks. This study investigated the perceived prevalence and evidence-to-inference links of…

  20. Writing for Understanding: The Effect of Using Informational Writing on Student Science Achievement

    ERIC Educational Resources Information Center

    Parson, Atiya

    2013-01-01

    The purpose of this quantitative study was to investigate whether or not informational writing in the science curriculum would impact fifth grade students' science achievement and conceptual understanding. The population of this study came from a metropolitan school district in the state of Georgia for school year 2012-2013. The quantitative data…

  1. Understanding Co-Development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    ERIC Educational Resources Information Center

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-01-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…

  2. Introductory College Chemistry Students' Understanding of Stoichiometry: Connections between Conceptual and Computational Understandings and Instruction.

    ERIC Educational Resources Information Center

    Wolfer, Adam J.; Lederman, Norman G.

    Many studies of college chemistry students have found a gap between students' success in solving computational chemistry problems and their success in solving conceptual chemistry problems. This paper examines college students' understanding of the concept of stoichiometry, the particulate nature of matter, and chemistry problem solving. This…

  3. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  4. Helping secondary school students develop a conceptual understanding of refraction

    NASA Astrophysics Data System (ADS)

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-07-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students’ conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and refraction occur. The use of ray diagrams can be useful in (a) the teacher modelling a correct explanation to a situation where refraction occurs and (b) for students to create as they practice other examples. This paper includes eight examples of increasing complexity that use a cognitive apprenticeship cycle approach to scaffold student learning. The first examples (rock fish, floating penny) are shown and a solution is modeled using a ray diagram. Three more examples (bent pencil, dropping an item in water, sunrise/sunset) are presented for students to practice, with each becoming more sophisticated. Three assessment exercises are then provided (two dots, three coins, broken tube).

  5. Impact of animation on assessment of conceptual understanding in physics

    NASA Astrophysics Data System (ADS)

    Dancy, Melissa H.; Beichner, Robert

    2006-06-01

    This study investigates the effect of computer animation on assessment and the conditions under which animation may improve or hinder assessment of conceptual understanding in physics. An instrument was developed by replacing static pictures and descriptions of motion with computer animations on the Force Concept Inventory, a commonly used pencil and paper test. Both quantitative and qualitative data were collected. The animated and static versions of the test were given to students and the results were statistically analyzed. Think-aloud interviews were also conducted to provide additional insight into the statistical findings. We found that good verbal skills tended to increase performance on the static version but not on the animated version of the test. In general, students had a better understanding of the intent of the question when viewing an animation and gave an answer that was more indicative of their actual understanding, as reflected in separate interviews. In some situations this led students to the correct answer and in others it did not. Overall, we found that animation can improve assessment under some conditions by increasing the validity of the instrument.

  6. Impact of Animation on Assessment of Conceptual Understanding in Physics

    NASA Astrophysics Data System (ADS)

    Dancy, Melissa H.

    2007-04-01

    This study investigates the effect of computer animation on assessment and the conditions under which animation may improve or hinder assessment of conceptual understanding in physics. An instrument was developed by replacing static pictures and descriptions of motion with computer animations on the Force Concept Inventory, a commonly used pencil and paper test. Both quantitative and qualitative data were collected. The animated and static versions of the test were given to students and the results were statistically analyzed. Think-aloud interviews were also conducted to provide additional insight into the statistical findings. We found that good verbal skills tended to increase performance on the static version but not on the animated version of the test. In general, students had a better understanding of the intent of the question when viewing an animation and gave an answer that was more indicative of their actual understanding, as reflected in separate interviews. In some situations this led students to the correct answer and in others it did not. Overall, we found that animation can improve assessment under some conditions by increasing the validity of the instrument.

  7. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    ERIC Educational Resources Information Center

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  8. Effects of Conceptual Systems and Instructional Methods on General Chemistry Laboratory Achievement.

    ERIC Educational Resources Information Center

    Jackman, Lance E.; And Others

    1990-01-01

    The purpose of this study was to examine the effects of three instructional methods and conceptual systems orientation on achievement in a freshman general chemistry laboratory course. Traditional approach, learning cycle, and computer simulations are discussed. (KR)

  9. Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian M.

    2006-12-01

    In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.

  10. Understanding medical symptoms: a conceptual review and analysis.

    PubMed

    Malterud, Kirsti; Guassora, Ann Dorrit; Graungaard, Anette Hauskov; Reventlow, Susanne

    2015-12-01

    The aim of this article is to present a conceptual review and analysis of symptom understanding. Subjective bodily sensations occur abundantly in the normal population and dialogues about symptoms take place in a broad range of contexts, not only in the doctor's office. Our review of symptom understanding proceeds from an initial subliminal awareness by way of attribution of meaning and subsequent management, with and without professional involvement. We introduce theoretical perspectives from phenomenology, semiotics, social interactionism, and discourse analysis. Drew Leder's phenomenological perspectives deal with how symptom perception occurs when any kind of altered balance brings forward a bodily attention. Corporeality is brought to explicit awareness and perceived as sensations. Jesper Hoffmeyer's biosemiotic perspectives provide access to how signs are interpreted to attribute meaning to the bodily messages. Symptom management is then determined by the meaning of a symptom. Dorte E. Gannik's concept "situational disease" explains how situations can be reviewed not just in terms of their potential to produce signs or symptoms, but also in terms of their capacity to contain symptoms. Disease is a social and relational phenomenon of containment, and regulating the situation where the symptoms originate implies adjusting containment. Discourse analysis, as presented by Jonathan Potter and Margaret Wetherell, provides a tool to notice the subtle ways in which language orders perceptions and how language constructs social interaction. Symptoms are situated in culture and context, and trends in modern everyday life modify symptom understanding continuously. Our analysis suggests that a symptom can only be understood by attention to the social context in which the symptom emerges and the dialogue through which it is negotiated.

  11. Understanding medical symptoms: a conceptual review and analysis.

    PubMed

    Malterud, Kirsti; Guassora, Ann Dorrit; Graungaard, Anette Hauskov; Reventlow, Susanne

    2015-12-01

    The aim of this article is to present a conceptual review and analysis of symptom understanding. Subjective bodily sensations occur abundantly in the normal population and dialogues about symptoms take place in a broad range of contexts, not only in the doctor's office. Our review of symptom understanding proceeds from an initial subliminal awareness by way of attribution of meaning and subsequent management, with and without professional involvement. We introduce theoretical perspectives from phenomenology, semiotics, social interactionism, and discourse analysis. Drew Leder's phenomenological perspectives deal with how symptom perception occurs when any kind of altered balance brings forward a bodily attention. Corporeality is brought to explicit awareness and perceived as sensations. Jesper Hoffmeyer's biosemiotic perspectives provide access to how signs are interpreted to attribute meaning to the bodily messages. Symptom management is then determined by the meaning of a symptom. Dorte E. Gannik's concept "situational disease" explains how situations can be reviewed not just in terms of their potential to produce signs or symptoms, but also in terms of their capacity to contain symptoms. Disease is a social and relational phenomenon of containment, and regulating the situation where the symptoms originate implies adjusting containment. Discourse analysis, as presented by Jonathan Potter and Margaret Wetherell, provides a tool to notice the subtle ways in which language orders perceptions and how language constructs social interaction. Symptoms are situated in culture and context, and trends in modern everyday life modify symptom understanding continuously. Our analysis suggests that a symptom can only be understood by attention to the social context in which the symptom emerges and the dialogue through which it is negotiated. PMID:26597868

  12. Understanding Genetics: Analysis of Secondary Students' Conceptual Status

    ERIC Educational Resources Information Center

    Tsui, Chi-Yan; Treagust, David F.

    2007-01-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a…

  13. Understanding Nursing Home Worker Conceptualizations about Good Care

    ERIC Educational Resources Information Center

    Chung, Gawon

    2013-01-01

    This study explored how direct care workers in nursing homes conceptualize good care and how their conceptualizations are influenced by external factors surrounding their work environment and the relational dynamics between them and residents. Study participants were drawn from a local service employees' union, and in-depth interviews were…

  14. Crafting an International Study of Students' Conceptual Understanding of Astronomy

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Bretones, P. S.; McKinnon, D.; Schleigh, S.; Slater, T. F.; Astronomy, Center; Education Research, Physics

    2013-01-01

    Large international investigations into the learning of science, such as the TIMSS and PISA studies, have been enlightening with regard to effective instructional practices. Data from these studies revealed weaknesses and promising practices within nations' educational systems, with evidence to suggest that these studies have led to international reforms in science education. However, these reforms have focused on the general characteristics of teaching and learning across all sciences. While extraordinarily useful, these studies have provided limited insight for any given content domain. To date, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. This paper describes our motivations for a coordinated, multinational study of astronomy understanding. First, reformed education is based upon knowing the preexisting knowledge state of our students. The data from this study will be used to assist international astronomy education and public outreach (EPO) professionals in their efforts to improve practices across global settings. Second, while the US astronomy EPO community has a long history of activity, research has established that many practices are ineffective in the face of robust misconceptions (e.g.: seasons). Within an international sample we hope to find subpopulations that do not conform to our existing knowledge of student misconceptions, leading us to cultural or educational practices that hint at alternative, effective means of instruction. Finally, it is our hope that this first venture into large-scale disciplinary collaboration will help us to craft a set of common languages and practices, building capacity and leading toward long-term cooperation across the international EPO community. This project is sponsored and managed by the Center for Astronomy & Physics Education Research (CAPER), in collaboration with members of the International Astronomical Union-Commission 46. We are actively

  15. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    ERIC Educational Resources Information Center

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  16. Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills

    NASA Astrophysics Data System (ADS)

    Seda Cetin, Pinar

    2014-01-01

    Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the effects of argumentation-based chemistry lessons on pre-service science teachers' understanding of reaction rate concepts, their quality of argumentation, and their consideration of specific reaction rate concepts in constructing an argument. Moreover, students' perceptions of argumentation lessons were explored. Sample: There were 116 participants (21 male and 95 female), who were pre-service first-grade science teachers from a public university. The participants were recruited from the two intact classes of a General Chemistry II course, both of which were taught by the same instructor. Design and methods: In the present study, non-equivalent control group design was used as a part of quasi-experimental design. The experimental group was taught using explicit argumentation activities, and the control group was instructed using traditional instruction. The data were collected using a reaction rate concept test, a pre-service teachers' survey, and the participants' perceptions of the argumentation lessons questionnaire. For the data analysis, the Wilcoxon Signed Rank Test, the Mann-Whitney U-test and qualitative techniques were used. Results: The results of the study indicated that an argumentation-based intervention caused significantly better acquisition of scientific reaction rate-related concepts and positively impacted the structure and complexity of pre-service teachers' argumentation. Moreover, the majority of the participants reported positive feelings toward argumentation activities. Conclusions: As students are encouraged to state and support their view in the chemistry classroom when studying reaction rate, it was

  17. Comparing and Combining Real and Virtual Experimentation: An Effort to Enhance Students' Conceptual Understanding of Electric Circuits

    ERIC Educational Resources Information Center

    Zacharia, Z. C.

    2007-01-01

    The purpose of this study was to investigate value of combining Real Experimentation (RE) with Virtual Experimentation (VE) with respect to changes in students' conceptual understanding of electric circuits. To achieve this, a pre-post comparison study design was used that involved 88 undergraduate students. The participants were randomly assigned…

  18. The Effect of Distributed Practice on Students' Conceptual Understanding of Statistics

    ERIC Educational Resources Information Center

    Bude, Luc; Imbos, Tjaart; van de Wiel, Margaretha W.; Berger, Martijn P.

    2011-01-01

    In this study the effect of the reduced distribution of study activities on students' conceptual understanding of statistics is investigated in a quasi-experiment. Conceptual understanding depends on coherent and error free knowledge structures. Students need time to construct such knowledge structures. A curriculum reform at our university…

  19. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    ERIC Educational Resources Information Center

    Anderson, Janice L.; Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data…

  20. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    ERIC Educational Resources Information Center

    Dumais, Nancy; Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses…

  1. Mapping Conceptual Understanding of Algebraic Concepts: An Exploratory Investigation Involving Grade 8 Chinese Students

    ERIC Educational Resources Information Center

    Jin, Haiyue; Wong, Khoon Yoong

    2015-01-01

    Conceptual understanding is a major aim of mathematics education, and concept map has been used in non-mathematics research to uncover the relations among concepts held by students. This article presents the results of using concept map to assess conceptual understanding of basic algebraic concepts held by a group of 48 grade 8 Chinese students.…

  2. Enhancing Students' Understanding of Photosynthesis and Respiration in Plant through Conceptual Change Approach

    ERIC Educational Resources Information Center

    Yenilmez, Ayse; Tekkaya, Ceren

    2006-01-01

    This study investigated the effectiveness of combining conceptual change text and discussion web strategies on students' understanding of photosynthesis and respiration in plants. Students' conceptual understanding of photosynthesis and respiration in plants was measured using the two-tier diagnostic test developed by Haslam and Treagust (1987,…

  3. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    ERIC Educational Resources Information Center

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  4. Probing Students' Understanding of Some Conceptual Themes in General Relativity

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    This work is an attempt to see how physics undergraduates view the basic ideas of general relativity when they are exposed to the topic in a standard introductory course. Since the subject is conceptually and technically difficult, we adopted a "case studies" approach, focusing in depth on about six students who had just finished a one semester…

  5. Perspectives on Information Literacy: A Framework for Conceptual Understanding

    ERIC Educational Resources Information Center

    Addison, Colleen; Meyers, Eric

    2013-01-01

    Information literacy, 40 years since the term was coined, remains a conceptually contested aspect of library and information science research. This paper uses a review of the literature related to the concept of information literacy to identify three different perspectives, their historical origins, and connection to library and information…

  6. Achieving intersubjective understanding: examples from an occupational therapy treatment session.

    PubMed

    Crepeau, E B

    1991-11-01

    Occupational therapists, like other health care professionals, must balance their application of treatment techniques with an understanding of their patients' life experiences. This paper reviews the literature from interpretive and medical sociology regarding the interplay between professional power and the achievement of an understanding of another person. It analyzes how an occupational therapist, during a single treatment session, enters into her patient's life-world and simultaneously controls and manages the treatment process. The concepts of knowledge schemata (the expectations and beliefs people bring to a situation) and footings (the shifts in alignment, or focus, that occur during interaction) are central to this analysis. The process of achieving a balance between professional power and an understanding of the patient's experience may be fostered in education and in clinical supervision through increased emphasis on the importance of understanding the values and beliefs of patients and on the development and refinement of interactive skills.

  7. On the Impact of Formative Assessment on Student Motivation, Achievement, and Conceptual Change

    ERIC Educational Resources Information Center

    Yin, Yue; Shavelson, Richard J.; Ayala, Carlos C.; Ruiz-Primo, Maria Araceli; Brandon, Paul R.; Furtak, Erin Marie; Tomita, Miki K.; Young, Donald B.

    2008-01-01

    Formative assessment was hypothesized to have a beneficial impact on students' science achievement and conceptual change, either directly or indirectly by enhancing motivation. We designed and embedded formatives assessments within an inquiry science unit. Twelve middle-school science teachers with their students were randomly assigned either to…

  8. Changing scientific reasoning and conceptual understanding in college students

    NASA Astrophysics Data System (ADS)

    Pyper, Brian A.

    2012-02-01

    Data from several years and several different classes have shown that Lawson test scores do not change much over the course of a single semester and are strongly correlated with FCI gains. So what does change Lawson scores? We have new data that we think shows that more interaction with materials that demand reasoning (and not just clicker questions and end of chapter Homework problems) improves reasoning ability and subsequently conceptual development.

  9. Understanding the Change Styles of Teachers to Improve Student Achievement

    ERIC Educational Resources Information Center

    Bigby, Arlene May Green

    2009-01-01

    The topic of this dissertation is the understanding of teacher change styles to improve student achievement. Teachers from public schools in a state located in the northern plains were surveyed regarding their Change Styles (preferred approaches to change) and flexibility scores. The results were statistically analyzed to determine if there were…

  10. Longitudinal Conceptual Change in Students' Understanding of Thermal Equilibrium: An Examination of the Process of Conceptual Restructuring

    ERIC Educational Resources Information Center

    Clark, Douglas B.

    2006-01-01

    This research analyzes students' conceptual change across a semester in an 8th-grade thermodynamics curriculum. Fifty students were interviewed 5 times during their 8th-grade semester and then again preceding their 10th- and 12th-grade years to follow their subsequent progress. The interview questions probed students' understanding of…

  11. Effects of concept maps and dialogue journals on bilingual students' conceptual understanding in science

    NASA Astrophysics Data System (ADS)

    McFall, Rebecca E.

    1999-11-01

    The purpose of this study was to determine the effect of using concept maps or dialogue journals on bilingual students' conceptual understanding in science. Three fourth grade classes, which included 60 students, using the Science and Technology for Children, Plant Growth and Development unit participated in the study. The vocabulary knowledge and conceptual understanding of bilingual and native English students in three treatment groups were compared. The study was conducted over a three month period. The three treatment groups consisted of (1) a control group using only the Science and Technology for Children, Plant Growth and Development unit, (2) the concept map treatment group, and (3) the dialogue journal treatment group. Student achievement was measured using a pretest and a posttest. Significant differences in the pretest and posttest scores were found for all three treatment groups. The concept map treatment group scored significantly higher than the dialogue journal and control groups on the posttest. The use of concept maps was found to be highly effective for both native English and bilingual students.

  12. A Functional Conceptualization of Understanding Science in the News

    ERIC Educational Resources Information Center

    Anderson, Megan M.

    2012-01-01

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it "mean" to understand science…

  13. Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Selcuk, Gamze Sezgin

    2015-01-01

    In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A…

  14. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  15. Constraints on Conceptual Change: How Elementary Teachers' Attitudes and Understanding of Conceptual Change Relate to Changes in Students' Conceptions

    NASA Astrophysics Data System (ADS)

    Fulmer, Gavin W.

    2013-11-01

    Like their students, teachers may hold a variety of naïve conceptions that have been hypothesized to limit their ability to support students' learning. This study examines whether changes in elementary students' conceptions are related to their teachers' content knowledge, attitudes, and understanding of conceptual change. The study takes place in the context of the adoption of a new unit on seasonal change in which students build and use sundials to observe seasonal differences in the apparent motion of the Sun across the sky. A mixed-method approach is used. Data sources include pre- and post-tests for students and teacher interviews and questionnaires. Results indicate that changes in students' conceptions may be related to their teachers' knowledge of the content, attitudes toward science, and understanding of conceptual change. One teacher had low attitude toward science and limited knowledge of conceptual change. After instruction, her students' responses became less accurate but more homogeneous than before instruction. The other teacher had high attitude and moderate knowledge of conceptual change. Her students showed gains from pre- to post-test, including responses that were more scientifically accurate than the teachers' initial answers.

  16. Exploring Students' Conceptual Understanding of the Averaging Algorithm.

    ERIC Educational Resources Information Center

    Cai, Jinfa

    1998-01-01

    Examines 250 sixth-grade students' understanding of arithmetic average by assessing their understanding of the computational algorithm. Results indicate that the majority of the students knew the "add-them-all-up-and-divide" averaging algorithm, but only half of the students were able to correctly apply the algorithm to solve a…

  17. Writing to Promote and Assess Conceptual Understanding in College Algebra

    ERIC Educational Resources Information Center

    Gay, A. Susan; Peterson, Ingrid

    2014-01-01

    Concept-focused quiz questions required College Algebra students to write about their understanding. The questions can be viewed in three broad categories: a focus on sense-making, a focus on describing a mathematical object such as a graph or an equation, and a focus on understanding vocabulary. Student responses from 10 classes were analyzed.…

  18. The Conceptual Understanding of Sound by Students with Visual Impairments

    ERIC Educational Resources Information Center

    Wild, Tiffany A.; Hilson, Margilee P.; Hobson, Sally M.

    2013-01-01

    Introduction: The purpose of the study presented here was to understand and describe the misconceptions of students with visual impairments about sound and instructional techniques that may help them to develop a scientific understanding. Methods: Semistructured interview-centered pre-and posttests were used to identify the students' conceptual…

  19. Teaching Care Ethics: Conceptual Understandings and Stories for Learning

    ERIC Educational Resources Information Center

    Rabin, Colette; Smith, Grinell

    2013-01-01

    An ethic of care acknowledges the centrality of the role of caring relationships in moral education. Care ethics requires a conception of "care" that differs from the quotidian use of the word. In order to teach care ethics more effectively, this article discusses four interrelated ways that teachers' understandings of care differ…

  20. A Conceptual Understanding of Employability: The Employers' View in Rwanda

    ERIC Educational Resources Information Center

    Bamwesiga, Penelope Mbabazi

    2013-01-01

    Many governments believe that investing in human capital should increase citizens' employability, which is why it is often presented as a solution to the problems of knowledge-based economies and societies, rising unemployment rates and economic competiveness. The aim of this study is to understand employers' views regarding the employability of…

  1. Secondary Students' Conceptual Understanding of Engineering as a Field

    ERIC Educational Resources Information Center

    Montfort, Devlin B.; Brown, Shane; Whritenour, Victoria

    2013-01-01

    Researchers have long been interested in how to recruit and retain more and more diverse students into engineering programs. One consistent challenge in this research is understanding the impacts of interventions from the point of view of the student, and how their preconceptions may influence that effectiveness. This study investigated how…

  2. Lectures and Simulation Laboratories to Improve Learners' Conceptual Understanding

    ERIC Educational Resources Information Center

    Brophy, Sean P.; Magana, Alejandra J.; Strachan, Alejandro

    2013-01-01

    We studied the use of online molecular dynamics simulations (MD) to enhance student abilities to understand the atomic processes governing plastic deformation in materials. The target population included a second-year undergraduate engineering course in the School of Materials Engineering at Purdue University. The objectives of the study were to…

  3. Conceptual Understanding in Social Education. ACER Research Monograph No. 45.

    ERIC Educational Resources Information Center

    Doig, Brian; And Others

    This report describes the results of a 1992 survey of students' economic, geographical, cultural, historical, and political understandings in the state of Victoria (Australia). The conception of some 2,900 students in Years 5 and 9 in government, Catholic and independent schools are investigated and described. The survey is one of a series of…

  4. Computer Simulations and Clear Observations Do Not Guarantee Conceptual Understanding

    ERIC Educational Resources Information Center

    Renken, Maggie D.; Nunez, Narina

    2013-01-01

    Evidence for cognitive benefits of simulated versus physical experiments is unclear. Seventh grade participants (n = 147) reported their understanding of two simple pendulum problems (1) before conducting an experiment, (2) immediately following experimentation, and (3) after a 12-week delay. "Problem type" was manipulated within…

  5. Demonstration Assessment: Measuring Conceptual Understanding and Critical Thinking with Rubrics.

    ERIC Educational Resources Information Center

    Radford, David L.; And Others

    1995-01-01

    Presents the science demonstration assessment as an authentic- assessment technique to assess whether students understand basic science concepts and can use them to solve problems. Uses rubrics to prepare students for the assessment and to assign final grades. Provides examples of science demonstration assessments and the scoring of rubrics in the…

  6. On the Conceptual Understanding of the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    Foong, S. K.; Lee, P.; Wong, D.; Chee, Y. P.

    2010-07-01

    We attempt an in-depth literature review that focuses on some finer aspects of the photoelectric effect that will help build a more coherent understanding of the phenomenon. These include the angular distribution of photoelectrons, multi-photon photoelectron emission and the work function in the photoelectric equation as being that associated with the collector rather than the emitter. We attempt to explain the intricacies of the related concepts in a way that is accessible to teachers and students at the Singapore GCE A-level or pre-university level.

  7. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    NASA Astrophysics Data System (ADS)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  8. Measuring the development of conceptual understanding in chemistry

    NASA Astrophysics Data System (ADS)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  9. Enhancing Pre-Service Elementary Teachers' Conceptual Understanding of Solution Chemistry with Conceptual Change Text

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard Kevin

    2007-01-01

    This paper reports on the use of a constructivist-based pedagogy to enhance understanding of some features of solution chemistry. Pre-service science teacher trainees' prior knowledge about the dissolution of salts and sugar in water were elicited by the use of a simple diagnostic tool. The test revealed widespread alternative conceptions. These…

  10. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    ERIC Educational Resources Information Center

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-01-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high…

  11. Testing the Development of Student Conceptual and Visualization Understanding in Quantum Mechanics through the Undergraduate Career.

    ERIC Educational Resources Information Center

    Cataloglu, E.; Robinett, R. W.

    2002-01-01

    Describes an assessment instrument designed to test conceptual and visual understanding of quantum theory, probe various aspects of student understanding of some core ideas of quantum mechanics, and investigate how students develop over the undergraduate curriculum. (Contains 52 references.) (Author/YDS)

  12. A Conceptual Change Teaching Strategy To Facilitate High School Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Chacon, Eleazar

    2003-01-01

    Describes a study that used a teaching strategy based on two teaching experiments which could facilitate students' conceptual understanding of electrochemistry. Involves two sections (n=29 and n=28) of 10th grade high school students in Venezuela. Concludes that the teaching experiments facilitated student understanding of electrochemistry.…

  13. Subject- and Experience-Bound Differences in Teachers' Conceptual Understanding of Sustainable Development

    ERIC Educational Resources Information Center

    Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.

    2014-01-01

    This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of…

  14. Facilitating Conceptual Change in Ninth Grade Students' Understanding of Human Circulatory System Concepts

    ERIC Educational Resources Information Center

    Alkhawaldeh, Salem A.

    2007-01-01

    The purpose of this study was to investigate the effectiveness of the conceptual change text oriented instruction over traditionally designed instruction on ninth grade students' understanding of the human circulatory system concepts, and their retention of this understanding. The subjects of this study consist of 73 ninth grade female students…

  15. Bridging the Educational Research-Teaching Practice Gap: Conceptual Understanding, Part 2--Assessing and Developing Student Knowledge

    ERIC Educational Resources Information Center

    Schonborn, Konrad J.; Anderson, Trevor R.

    2008-01-01

    The first paper in this two-part miniseries on conceptual understanding discussed expert and novice conceptual knowledge, the multifaceted nature of conceptual understanding, and the cognitive skills essential for constructing it. This second article presents examples of instruments for the assessment and development of five facets of conceptual…

  16. Teaching algorithmic problem solving or conceptual understanding: Role of developmental level, mental capacity, and cognitive style

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Robinson, William R.

    1993-06-01

    It has been shown previously that many students solve chemistry problems using only algorithmic strategies and do not understand the chemical concepts on which the problems are based. It is plausible to suggest that if the information is presented in differing formats, the cognitive demand of a problem changes. The main objective of this study is to investigate the degree to which cognitive variables, such as developmental level, mental capacity, and disembedding ability explain student performance on problems which: (1) could be addressed by algorithms or (2) require conceptual understanding. All conceptual problems used in this study were based on a figurative format. The results obtained show that in all four problems requiring algorithmic strategies, developmental level of the students is the best predictor of success. This could be attributed to the fact that these are basically computational problems, requiring mathematical transformations. Although all three problems requiring conceptual understanding had an important aspect in common (the figurative format), in all three the best predictor of success is a different cognitive variable. It was concluded that: (1) the ability to solve computational problems (based on algorithms) is not the major factor in predicting success in solving problems that require conceptual understanding; (2) solving problems based on algorithmic strategies requires formal operational reasoning to a certain degree; and (3) student difficulty in solving problems that require conceptual understanding could be attributed to different cognitive variables.

  17. Conceptualizing, Understanding, and Predicting Responsible Decisions and Quality Input

    NASA Astrophysics Data System (ADS)

    Wall, N.; PytlikZillig, L. M.

    2012-12-01

    In areas such as climate change, where uncertainty is high, it is arguably less difficult to tell when efforts have resulted in changes in knowledge, than when those efforts have resulted in responsible decisions. What is a responsible decision? More broadly, when it comes to citizen input, what is "high quality" input? And most importantly, how are responsible decisions and quality input enhanced? The aim of this paper is to contribute to the understanding of the different dimensions of "responsible" or "quality" public input and citizen decisions by comparing and contrasting the different predictors of those different dimensions. We first present different possibilities for defining, operationalizing and assessing responsible or high quality decisions. For example, responsible decisions or quality input might be defined as using specific content (e.g., using climate change information in decisions appropriately), as using specific processes (e.g., investing time and effort in learning about and discussing the issues prior to making decisions), or on the basis of some judgment of the decision or input itself (e.g., judgments of the rationale provided for the decisions, or number of issues considered when giving input). Second, we present results from our work engaging people with science policy topics, and the different ways that we have tried to define these two constructs. In the area of climate change specifically, we describe the development of a short survey that assesses exposure to climate information, knowledge of and attitudes toward climate change, and use of climate information in one's decisions. Specifically, the short survey was developed based on a review of common surveys of climate change related knowledge, attitudes, and behaviors, and extensive piloting and cognitive interviews. Next, we analyze more than 200 responses to that survey (data collection is currently ongoing and will be complete after the AGU deadline), and report the predictors of

  18. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    PubMed Central

    Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings. PMID:25185222

  19. Using a conceptual flow, inquiry based learning, and language development to yield enduring understanding in science

    NASA Astrophysics Data System (ADS)

    Gunderson, Angelica E.

    This project was designed to incorporate three curriculum development strategies that have been created to increase student achievement in various content areas. Conceptual flow design, the 5E Instructional Model, and English language development strategies were used to create a seventh grade Genetics Unit. The unit was evaluated by three external experts and carried out in two seventh grade classrooms in an effort to assess its effectiveness. Based on the evaluators' feedback, the initial conceptual flow and lessons were found to be inconsistent and confusing. Overall, the organization of this unit seemed to support student achievement. The conceptual flow and the lesson layout of the unit were revised based on the evaluation data. All revisions and the established protocols will serve as models for further science curriculum development in the Norwalk-La Mirada Unified School District.

  20. Deepening conceptual understanding in the high school AP biology classroom using engagement tools and techniques

    NASA Astrophysics Data System (ADS)

    Vincent, Dusti Jean

    Instructing students within a curriculum framework based on conceptual understanding requires a shift from a lecture-style, teacher-centered delivery method to one that is student-centered and inquiry-driven. A challenge with this shift is holding students accountable to preparing for course materials so that class time can be spent exploring the content in more depth through class discussions, experiential and laboratory exercises, and modeling. Three components were implemented in an AP Biology classroom of 39 students to increase engagement and accountability. These components were short readings with corresponding tutorials, formative assessments called ConcepTests, and reflective writing. Student participation in these components was measured. Conceptual understanding of biology was evaluated with a pre-test at the beginning of the term and measured again with a post-test. A Project-Based Learning (PBL) assessment was also implemented to further engage students and provide a way for students to apply their understanding to solving a real-world problem. Students demonstrated significant gains in conceptual understanding through the concept and PBL assessment. Participation in the components ranged from 73% to 86%, but it was difficult to show a positive correlation between participation and conceptual understanding.

  1. Supporting Lower-Achieving Seven- and Eight-Year-Old Children with Place Value Understandings

    ERIC Educational Resources Information Center

    Bailey, Judy

    2015-01-01

    Children can sometimes appear to understand a concept such as place value without really having a deep understanding. Judy Bailey stresses the importance of listening carefully to children to identify their current understandings and then building on them systematically, using a range of materials, to promote a deep conceptual understanding. This…

  2. Facilitating conceptual change in students’ understanding of concepts related to pressure

    NASA Astrophysics Data System (ADS)

    Ozkan, Gulbin; Sezgin Selcuk, Gamze

    2016-09-01

    The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.

  3. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein.

    PubMed

    Schoneberger, T

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event.

  4. Understanding the nature of science through the historical development of conceptual models

    NASA Astrophysics Data System (ADS)

    Metz, Donald J.

    Understanding the nature of science has been a common goal in science education for years and continues to hold a distinct place in the recently developed Pan-Canadian science framework. Although the nature of science is often prominent in the front end of such reform documents, the implementation of these goals is presumed to be taught implicitly with the delivery of knowledge outcomes. Research strongly indicates that most students have naive conceptions about the nature of science. Surprisingly, research also clearly shows that science teachers do not fare much better, and that when they do possess adequate understanding of the nature of science it does not significantly influence their behaviour in the classroom. Norm Lederman (1998), one of the leading scholars in this field, describes two approaches advocated by curriculum reform documents to address the nature of science outcomes. The first approach suggests that students can achieve nature of science outcomes by "doing science", the second suggests that history of science can enhance students' understanding of the nature of science. While Lederman advocates the use of the history of science, he argues that these approaches are not effective when used implicitly. He recommends that an explicit approach be used (planned for, taught, assessed), but so far there have been no studies which employ this technique beyond short lessons or limited case histories. This thesis advocates an explicit approach to teaching the nature of science using the historical development of conceptual models. The research study of this thesis integrated the historical development of conceptual models with the traditional content found in a typical grade ten chemistry curriculum. Participants in the research were 74 senior 2 (grade 10) science students from four different classes in three different schools in the province of Manitoba. Prior to, and after instruction, students wrote Lederman's VNOS nature of science test. The tests

  5. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they

  6. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  7. Exploring the Impact of Argumentation on Pre-Service Science Teachers' Conceptual Understanding of Chemical Equilibrium

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Dogan, Alev

    2016-01-01

    This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…

  8. Combining Scaffolding for Content and Scaffolding for Dialogue to Support Conceptual Breakthroughs in Understanding Probability

    ERIC Educational Resources Information Center

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    In this paper, we explore the relationship between scaffolding, dialogue, and conceptual breakthroughs, using data from a design-based research study that focuses on the development of understanding of probability in 10-12 year old students. The aim of the study is to gain insight into how the combination of scaffolding for content using…

  9. Three Phase Ranking Framework for Assessing Conceptual Understanding in Algebra Using Multiple Representations

    ERIC Educational Resources Information Center

    Panasuk, Regina M.

    2010-01-01

    Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…

  10. Supporting Conceptual Understandings of and Pedagogical Practice in Technology through a Website in New Zealand

    ERIC Educational Resources Information Center

    Fox-Turnbull, Wendy; O'Sullivan, Gary

    2013-01-01

    This article reports on the up-date and development of an on-line resource to support of teachers' conceptual understandings and pedagogical practice in New Zealand. Techlink is a website dedicated to supporting technology teachers, students and those with an interest in technology education. This research documents part of a Ministry of Education…

  11. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  12. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  13. Riding the Mathematical Merry-Go-Round to Foster Conceptual Understanding of Angle

    ERIC Educational Resources Information Center

    Tzur, Ron; Clark, Matthew R.

    2006-01-01

    This article presents playful activities for fostering students' conceptual understanding of angle--a root concept in mathematics--that revolve around the Mathematical Merry-Go-Round game. The authors focus on activities for two reasons. On one hand, NCTM's Principles and Standards for School Mathematics (2000) stresses the central role of student…

  14. Development of a Measurement Instrument to Assess Students' Electrolyte Conceptual Understanding

    ERIC Educational Resources Information Center

    Lu, Shanshan; Bi, Hualin

    2016-01-01

    To assess students' conceptual understanding levels and diagnose alternative frameworks of the electrolyte concept, a measurement instrument was developed using the Rasch model. This paper reports the use of the measurement instrument to assess 559 students from grade 10 to grade 12 in two cities. The results provided both diagnostic and summative…

  15. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    ERIC Educational Resources Information Center

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  16. Using Portfolios To Assess Students' Conceptual Understanding of Flotation and Buoyancy.

    ERIC Educational Resources Information Center

    Erduran, Sibel; Duschl, Richard A.

    The research described in this paper investigates the use of portfolio assessment techniques in middle school science classrooms. It explores how alternative assessment frameworks, such as portfolios, can be used by the classroom teacher and the students as an indicator of students' conceptual understanding and to facilitate changes in science…

  17. Argumentation and Students' Conceptual Understanding of Properties and Behaviors of Gases

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Pabuccu, Aybuke; Cetin, Pinar Seda; Kaya, Ebru

    2012-01-01

    The purpose of this study was to explore the impact of argumentation-based pedagogy on college students' conceptual understanding of properties and behaviors of gases. The sample consists of 108 students (52 in the control group and 56 in the intervention group) drawn from 2 general chemistry college courses taught by the same instructor. Data…

  18. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    ERIC Educational Resources Information Center

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  19. Improving the Conceptual Understanding in Kinematics Subject Matter with Hypertext Media Learning and Formal Thinking

    ERIC Educational Resources Information Center

    Manurung, Sondang R.; Mihardi, Satria

    2016-01-01

    The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…

  20. Towards a Novel Conceptual Framework for Understanding Mergers in Higher Education

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Pinheiro, Rómulo; Geschwind, Lars; Aarrevaara, Timo

    2016-01-01

    This paper tries to develop a conceptual framework for a comprehensive understanding of the merger process, which is regarded as a matter of institutionalization of organizational innovation. In the framework, a number of factors affecting merger process or institutionalization of merger are identified, such as those related to environmental…

  1. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  2. The Effect of Conceptual Change Texts Oriented Instruction on Students' Understanding of the Solubility Equilibrium Concept

    ERIC Educational Resources Information Center

    Onder, Ismail; Geban, Omer

    2006-01-01

    The present study aimed to investigate the effect of conceptual change texts oriented instruction on 10th grade students' understanding of solubility equilibrium concept. The misconceptions related to solubility equilibrium concept were obtained through interviews with high school chemistry teachers and related literature. The data were obtained…

  3. Understanding and Theorizing the Role of Culture in the Conceptualizations of Successful Aging and Lifelong Learning

    ERIC Educational Resources Information Center

    Tam, Maureen

    2014-01-01

    Successful aging and lifelong learning are value-laden concepts that are culturally determined. To this effect, people with different value systems and cultural backgrounds may perceive and understand these two concepts differently, resulting in different definitions and conceptualizations by people in diverse cultural contexts. There have been…

  4. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    ERIC Educational Resources Information Center

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  5. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  6. The Effect of Enriched Learning Environments on the Conceptual Understanding of Students: "The Erosion and Landslide"

    ERIC Educational Resources Information Center

    Çoruhlu, Tülay Senel; Bilgin, Arzu Kirman; Nas, Sibel Er

    2016-01-01

    The aim of this research is to investigate the effect of enriched learning environments which have been developed in the framework of the "erosion and landslide" concepts on the conceptual understanding of students. A quasi-experimental method has been used in this research. The sample consists of 40 students. 5th grade students (aged…

  7. Chinese and Australian Children's Understandings of the Earth: A Cross Cultural Study of Conceptual Development

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-01-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province,…

  8. It's Rather like Learning a Language: Development of Talk and Conceptual Understanding in Mechanics Lessons

    ERIC Educational Resources Information Center

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research…

  9. Effect of Instruction Based on Conceptual Change Activities on Students' Understanding of Static Electricity Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…

  10. Using Art-Based Chemistry Activities to Improve Students' Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Danipog, Dennis L.; Ferido, Marlene B.

    2011-01-01

    This study aimed to determine the effects of art-based chemistry activities (ABCA) on high school students' conceptual understanding in chemistry. The study used the pretest-posttest control group design. A total of 64 third-year high school students from two different chemistry classes participated in the study. One class was exposed to art-based…

  11. Effect of Current Electricity Simulation Supported Learning on the Conceptual Understanding of Elementary and Secondary Teachers

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy

    2011-01-01

    This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…

  12. Supporting Conceptual Change in School Science: A Possible Role for Tacit Understanding

    ERIC Educational Resources Information Center

    Howe, Christine; Devine, Amy; Tavares, Joana Taylor

    2013-01-01

    When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the…

  13. Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems

    ERIC Educational Resources Information Center

    Dahsah, Chanyah; Coll, Richard K.

    2007-01-01

    Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…

  14. Effectiveness of Conceptual Change Instruction on Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study investigated the differential effects of two modes of instructional program (conceptual change oriented and traditionally designed) and gender difference on students' understanding of heat and temperature concepts, and their attitudes toward science as a school subject. The subjects of this study consisted of 72 seventh grade students…

  15. Effect of Conceptual Change Oriented Instruction on Students' Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    This study explores the effectiveness of conceptual change oriented instruction and standard science instruction and contribution of logical thinking ability on seventh grade students' understanding of heat and temperature concepts. Misconceptions related to heat and temperature concepts were determined by related literature on this subject.…

  16. Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Hondrich, A. Lena; Büttner, Gerhard; Hertel, Silke; Klieme, Eckhard; Kunter, Mareike; Lühken, Arnim; Adl-Amini, Katja; Djakovic, Sanna-K.; Mannel, Susanne; Naumann, Alexander; Hardy, Ilonca

    2015-01-01

    A cognitive and a guidance dimension can describe the support of students' conceptual understanding in inquiry-based science education. The role of guidance for student learning has been intensively discussed. Furthermore, inquiry learning may pose particular challenges to students with low language proficiency. The present intervention in primary…

  17. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  18. The Positive and Negative Effects of Science Concept Tests on Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Yeh, Ting-Kuang; Barufaldi, James P.

    2010-01-01

    This study explored the phenomenon of testing effect during science concept assessments, including the mechanism behind it and its impact upon a learner's conceptual understanding. The participants consisted of 208 high school students, in either the 11th or 12th grade. Three types of tests (traditional multiple-choice test, correct concept test,…

  19. Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding

    ERIC Educational Resources Information Center

    Herrington, Deborah G.; Yezierski, Ellen J.

    2014-01-01

    The recent revisions to the advanced placement (AP) chemistry curriculum promote deep conceptual understanding of chemistry content over more rote memorization of facts and algorithmic problem solving. For many teachers, this will mean moving away from traditional worksheets and verification lab activities that they have used to address the vast…

  20. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  1. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    ERIC Educational Resources Information Center

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices…

  2. Effectiveness of Conceptual Change Text Oriented Instruction on Students' Understanding of Cellular Respiration Concepts.

    ERIC Educational Resources Information Center

    Cakir, Ozlem S.; Yuruk, Nejla; Geban, Omer

    The purpose of the study is to compare the effectiveness of conceptual change text oriented instruction and traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from the 4 classes of a high school.…

  3. Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Cakirt, Ozlem S.; Geban, Omer; Yuruk, Nejla

    2002-01-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from four classes of a high school. Two of the classes…

  4. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    NASA Astrophysics Data System (ADS)

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-08-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high school students' understandings of complex systems components and whether an agent-based simulation could improve their understandings. Pretest and posttest essays were coded for changes in six components to determine whether students showed more expert thinking about the complex system of the Chesapeake Bay watershed. Results showed significant improvement for the components Emergence ( r = .26, p = .03), Order ( r = .37, p = .002), and Tradeoffs ( r = .44, p = .001). Implications include that the experiential nature of the simulation has the potential to support conceptual change for some complex systems components, presenting a promising option for complex systems instruction.

  5. The Influence of Computer-Assisted Instruction on Students' Conceptual Understanding of Chemical Bonding and Attitude toward Chemistry: A Case for Turkey

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2008-01-01

    In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…

  6. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability To Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1998-01-01

    Reports on a study that constructs a Lakatosian teaching strategy that can facilitate conceptual change in students' understanding of chemical equilibrium. Results indicate that the experimental group performed better on tests. Contains 81 references. (DDR)

  7. Can an egg-dropping race enhance students' conceptual understanding of air resistance?

    NASA Astrophysics Data System (ADS)

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-03-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are misconceptions even among undergraduate physics students about how air resistance is affected by the mass and size of falling objects. A study was carried out in Hong Kong to explore Grade 6 students' (aged 11-12) conceptions of air resistance with respect to falling objects of different size and mass, and whether the subjects showed any change in their conceptual understanding after participating in an egg-dropping race. The findings show that students had a wide range of conceptions, which could be characterized into different levels. Their conceptions seem rather robust, and more structured interventions are required to bring about changes in students' conceptual understanding of air resistance.

  8. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A multiple comparative case study

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Colette Oliver, Mary; Venville, Grady Jane

    2012-04-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high, medium and low socio-economic status in Hunan Province, central south China (n = 135) and three schools of similar socio-economic status in Western Australia (n = 120). The students' understanding was assessed by a science quiz, developed from past Trends in Mathematics and Science Study science released items for primary children. In-depth interviews were carried out to further explore children's conceptual understanding of living things, the Earth and floating and sinking. The results revealed that Year 3 children from schools of similar socio-economic status in the two countries had similar conceptual understandings of life science, earth science and physical science. Further, in both countries, the higher the socio-economic status of the school, the better the students performed on the science quiz and in interviews. Some idiosyncratic strengths and weaknesses were observed, for example, Chinese Year 3 children showed relative strength in classification of living things, and Australian Year 3 children demonstrated better understanding of floating and sinking, but children in both countries were weak in applying and reasoning with complex concepts in the domain of earth science. The results raise questions about the value of providing a science curriculum in early childhood if it does not make any difference to students' conceptual understanding of science.

  9. Bridging the educational research-teaching practice gap: Conceptual understanding, part 1: The multifaceted nature of expert knowledge.

    PubMed

    Anderson, Trevor R; Schönborn, Konrad J

    2008-07-01

    The term "conceptual understanding" has been used rather loosely over the years in educational practice, with a tendency to focus on a few aspects of an extremely complex phenomenon. In this first article of a two-part miniseries on conceptual understanding, we describe the nature of expert (versus novice) knowledge and show how the conceptual understanding of experts is multifaceted in nature requiring competence in a wide range of cognitive skills. We then discuss five such facets of conceptual understanding that require competence in the cognitive skills of memorization, integration, transfer, analogical reasoning, and system thinking. We also argue for the importance of explicitly teaching and assessing such facets of understanding as part of all molecular life science curricula so as to better prepare our students to become experts in the field. Examples of the assessment tasks that can be used to promote the development of multifaceted conceptual understanding in students are presented in Part 2 of this series.

  10. Teaching for conceptual change: An intervention to promote deeper understanding of diffusion and osmosis

    NASA Astrophysics Data System (ADS)

    Berg, Cheryl

    Emergent processes are distinguished from non-emergent processes on the basis of the qualitative relationships among the agents' interactions and the causal relationships between the agents' interactions and the pattern. Research suggests students often have robust misconceptions about emergent processes (such as diffusion) because they do not have the mental model to interpret these processes This study investigates the extent to which a domain-general understanding of emergent processes can help provide students with an enhanced understanding of diffusion and osmosis This is a quasi-experimental study using non-equivalent groups design to compare the treatment and control groups. Sixty-six community college students enrolled in an introductory biology course comprised the participants. Students' prior knowledge about emergent processes, diffusion, and osmosis were assessed by pre-tests. The treatment group received the intervention -- an instructional module about the differences between scientific processes that are emergent versus processes that are non-emergent. The control group did not receive the intervention but received the process assessment to determine incoming knowledge about scientific processes and any gains in knowledge about scientific processes. Both groups received the same specific content instruction about diffusion and osmosis, which was derived from the regular and established curriculum for the course. Both groups were given post-tests to assess whether they learned the concepts, and whether they were able to achieve a deep understanding that resulted in a comprehension of the transport of substances across cell membranes and how that might be applied in particular health-related situations. Data were analyzed using t-tests and analysis of variance. No statistically significant differences were found between the two groups based on the learning measures Limitations include sample restrictions and not taking into account individual ability

  11. Chinese and Australian children's understandings of the Earth: a cross cultural study of conceptual development

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-06-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.

  12. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  13. The effects of the laboratory on college students' understanding of evolution: Implications for conceptual change

    NASA Astrophysics Data System (ADS)

    Holtman, Lorna Benita

    This study investigated eighty junior and senior college students' understanding of evolutionary biology concepts in lecture-only and lecture-laboratory settings. The evolution lab stressed the processes of evolution, and involved simulations, experiments, discussions, report writing, and reading. Test scores do not reveal everything about the actual process of learning in the laboratory. This study examined conceptual change patterns over a period of one semester using in-depth interviews with eight participants. The study revealed that the lecture-laboratory group performed better than the lecture-only group on certain shared items on the objective examination. The interview participants showed various patterns of conceptual change; that is, holistic (wholesale and cascade), fragmented, and dual constructions. Dual constructions and wholesale conceptual changes were the most common types of conceptual change patterns observed. Laboratory work in evolution allowed students to grapple with their alternative conceptions for abstract evolutionary concepts. They made use of the opportunities for cognitive conflict provided by the lab sessions. Some students adhered to their initial alternative conceptions which constrained the provision of scientific explanations for the biological problems. Examples of alternative conceptions are a young earth, rejection of macroevolution, and Lamarckian conceptions. The belief system of one student strongly influenced her retention of alternative conceptions, although she had done the laboratory course. However, two other students (one a lecture-lab participant) who held similar religious beliefs were able to develop a better understanding of evolution. Strong religious beliefs do not always preclude a good understanding of evolution. This study revealed a direct, positive relationship between students' understanding of evolutionary concepts and their understanding of the nature of science. The observation was true for both lecture

  14. The Effect of Directive Tutor Guidance on Students' Conceptual Understanding of Statistics in Problem-Based Learning

    ERIC Educational Resources Information Center

    Bude, Luc; van de Wiel, Margaretha W. J.; Imbos, Tjaart; Berger, Martijn P. F.

    2011-01-01

    Background: Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning…

  15. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    ERIC Educational Resources Information Center

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  16. Bridging the Educational Research-Teaching Practice Gap. Conceptual Understanding, Part 1: The Multifaceted Nature of Expert Knowledge

    ERIC Educational Resources Information Center

    Anderson, Trevor R.; Schonborn, Konrad J.

    2008-01-01

    The term "conceptual understanding" has been used rather loosely over the years in educational practice, with a tendency to focus on a few aspects of an extremely complex phenomenon. In this first article of a two-part miniseries on conceptual understanding, we describe the nature of expert (versus novice) knowledge and show how the conceptual…

  17. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    ERIC Educational Resources Information Center

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  18. Enhancing Pre-Service Elementary School Teachers' Understanding of Essential Science Concepts through a Reflective Conceptual Change Model

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Brown, Clara Lee

    2010-01-01

    This study explored the impact of a reflective teaching method on pre-service elementary teachers' conceptual understanding of the lunar phases, reasons for seasons, and simple electric circuits. Data were collected from 40 pre-service elementary teachers about their conceptual understanding of the lunar phases, reasons for seasons and day…

  19. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Students' Understanding of the Human Circulatory System.

    ERIC Educational Resources Information Center

    Sungur, Semra; Tekkaya, Ceren; Geban, Omer

    2001-01-01

    Investigates the contribution of conceptual change texts accompanied by concept mapping instruction to 10th-grade students' understanding of the human circulatory system. Indicates that the conceptual change texts accompanied by concept mapping instruction produced a positive effect on students' understanding of concepts. Concludes that students…

  20. Learning in friendship groups: developing students’ conceptual understanding through social interaction

    PubMed Central

    Senior, Carl; Howard, Chris

    2014-01-01

    The role that student friendship groups play in learning was investigated here. Employing a critical realist design, two focus groups on undergraduates were conducted to explore their experience of studying. Data from the “case-by-case” analysis suggested student-to-student friendships produced social contexts which facilitated conceptual understanding through discussion, explanation, and application to “real life” contemporary issues. However, the students did not conceive this as a learning experience or suggest the function of their friendships involved learning. These data therefore challenge the perspective that student groups in higher education are formed and regulated for the primary function of learning. Given these findings, further research is needed to assess the role student friendships play in developing disciplinary conceptual understanding. PMID:25309488

  1. A multidimensional conceptual framework for understanding HIV/AIDS as a chronic long-term illness.

    PubMed

    Mitchell, Christopher G; Linsk, Nathan L

    2004-07-01

    New treatment advances have radically altered the course of HIV illness and created new challenges for HIV-affected individuals, families, and communities. This article provides a conceptual framework for understanding HIV in the multiple contexts of the client's culture, strengths, life course, and biomedical progression. The article concludes with a discussion of HIV prevention and treatment adherence as key focal points for social workers and their clients.

  2. Supporting Conceptual Change in School Science: A possible role for tacit understanding

    NASA Astrophysics Data System (ADS)

    Howe, Christine; Devine, Amy; Tavares, Joana Taylor

    2013-03-01

    When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the understanding displayed when reasoning. Noting that tacit understanding is engaged when events are judged as natural or non-natural, the paper is concerned with software that: (a) requires direction and speed of falling objects to be predicted, i.e. a typical science reasoning task that engages conceptual knowledge; (b) presents simulations of predicted motion in the expectation that its naturalness or non-naturalness would be recognised. An evaluation study is reported where children aged 8-12 years worked with the software in contexts that typify computer use in classrooms, i.e. individually under adult guidance (n = 44 children) or in pairs with a classmate (n = 48 children). They were observed while they did this. Reasoning about object fall was assessed via change from individual pre-tests administered prior to software usage to individual post-tests administered a few weeks afterwards. The children who worked with the software showed greater pre- to post-test gains in conceptual understanding than control children (n = 47 children), who lacked software experience. The gains were especially marked for the children who worked in pairs. The approach taken is contrasted with traditional approaches to conceptual change in school science, e.g. strategies that rely upon classroom experiments.

  3. K-12 Teacher Understanding of Energy Conservation: Conceptual Metaphor, Dissipation, and Degradation

    NASA Astrophysics Data System (ADS)

    Daane, Abigail R.

    In K-12 educational settings, conservation of energy is typically presented in two ways: the conservation of energy principle (energy is neither created nor destroyed) and the sociopolitical need to conserve energy (we guard against energy being used up). These two meanings of conservation typically remain disconnected from each other and can appear contradictory, even after instruction. In an effort to support teachers in building robust understandings of energy from their existing knowledge, I designed a study to investigate the productive ideas in K-12 teachers' conversations about energy. A micro-analysis of discourse, gestures, and artifacts of professional development courses revealed teachers' productive ideas about three aspects of energy: conceptual metaphor, dissipation and degradation. In learning about energy, K-12 teachers come to use conceptual metaphors in their own language and value attending to students' metaphorical language as a means of formative assessment. Teachers' conversations about dissipation suggest that apparent difficulties with energy conservation may have their roots in a strong association between forms of energy (thermal) and their perceptible indicators (warmth). Teachers address this challenge by employing an exaggeration strategy to locate the dissipated thermal energy, making the energy indicator perceptible. Finally, teachers' unprompted statements about sociopolitical aspects of energy are related to both statements from the NGSS and aspects of energy degradation. I conclude that energy conservation can be better taught and learned in K-12 Education by: 1) understanding and applying conceptual metaphors about energy in K-12 settings, 2) using prior experiences to better understand dissipative energy processes involving imperceptible thermal energy, thereby understanding how energy conservation applies in all situations, and 3) connecting productive ideas about sociopolitical aspects of energy to canonical physics. Keywords

  4. Using conceptual maps to assess students' climate change understanding and misconceptions

    NASA Astrophysics Data System (ADS)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  5. Understanding the Gap in Mathematics Achievement of Malaysian Students

    ERIC Educational Resources Information Center

    Ismail, Noor Azina

    2009-01-01

    Of 46 countries that participated in the Trends in International Mathematics and Science Study in 2003 (I. V. S. Mullis, M. O. Martin, E. J. Gonzalez, & S. J. Chrostowski, 2004), Malaysia was ranked 10th in international scores of mathematics achievement for 8th-grade students. The present author aimed to examine the importance of students' home…

  6. Orchestrating student discourse opportunities and listening for conceptual understandings in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Kinard, Melissa Grass

    Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could

  7. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  8. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    NASA Astrophysics Data System (ADS)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  9. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework

    PubMed Central

    2013-01-01

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu’s organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women’s choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals. PMID:24215446

  10. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework.

    PubMed

    Behruzi, Roxana; Hatem, Marie; Goulet, Lise; Fraser, William; Misago, Chizuru

    2013-11-11

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu's organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women's choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals.

  11. Social interaction and conceptual understanding in computer-based physics instruction

    NASA Astrophysics Data System (ADS)

    Hoffman, Beth A.

    1997-08-01

    This investigation of conceptual understanding in computer-based physics instruction found that preconceptions are powerful predictors of performance; pair composition is related to paired, but not individualized performance; and efficient partner resolution strategies lead to improved performance. Seventy-six high school physics students were pretested individually and paired on the basis of similarity or difference in their initial level of conceptions. Pairs performed a series of computer-based exercises, after which students were individually posttested. Students' self-reports and researcher observations measured the nature and frequency of social interaction in which their pair engaged. Students who began with a more sophisticated understanding of force and motion performed significantly better than those with low Pretest scores. Those with initially lower scores improved more after instruction, but their Posttest scores rarely surpassed the scores of those who started out higher. Lower scoring students were dominated by higher scoring partners during paired learning. Pairs' performance measures therefore reflected the conceptions of the higher level student. Conversely, individual performance measures following paired instruction were unrelated to a partner's ability level. Pairing students by ability level did not affect performance except in the context of the pair. Results imply that educators need not pair students by ability level when their goal is to improve the individual's performance. Students with the most efficient resolution strategies performed significantly better than those whose resolution strategies were less sophisticated. Conflicts were constructive or destructive depending on how they were resolved. The ability to effectively negotiate solutions was associated with higher achievement, implying that educators consider training students to hone their resolution skills prior to collaborative instruction. Computer-based instruction is a

  12. Toward the conceptual and quantitative understanding of biosolids conditioning: the gel approach.

    PubMed

    Dursun, Derya; Dentel, Steven K

    2009-01-01

    Proper chemical conditioning of wastewater solids is crucial for both operational and economic reasons, but the process has defied satisfactory description to date, in either conceptual or quantitative terms. In this research, a new conceptual model of biosolids structure--likening it to a colloidal gel--was assessed as a means of interpreting conditioning mechanisms. The basis of the gel approach lies in the colligative properties that are altered by lowering of the solvent chemical potential by introducing a solute. Results indicate that inorganic conditioners form precipitates and complexes thus collapsing the gel network and forming particulates, whereas organic polymers lead to heterogeneous collapse with limited diffusion inside the gel. A gel model, based on the osmotic pressure, was found reasonably successful in defining the conditioning efficacy of biosolids. Beyond the model's fundamental value, these results validate a new way of understanding how conditioning and dewatering operate, which should help to improve the selection and optimization of these processes.

  13. A conceptual framework for understanding the association between school bullying victimization and substance misuse.

    PubMed

    Hong, Jun Sung; Davis, Jordan P; Sterzing, Paul R; Yoon, Jina; Choi, Shinwoo; Smith, Douglas C

    2014-11-01

    This article reviews current research findings and presents a conceptual framework for better understanding the relationship between bullying victimization (hereafter referred to as victimization) and substance misuse (hereafter referred to as SM) among adolescents. Although victimization and SM may appear to be separate problems, research suggests an intriguing relationship between the 2. We present a brief, empirical overview of the direct association between victimization and adolescent SM, followed by a proposed conceptual framework that includes co-occurring risk factors for victimization and SM within family, peer, and school and community contexts. Next, we discuss potential mediators linking victimization and SM, such as internalizing problems, traumatic stress, low academic performance, and school truancy and absence. We then identify potential moderating influences of age, gender and sex, social supports, and school connectedness that could amplify or abate the association between victimization and SM. Finally, we discuss practice and policy implications.

  14. A Conceptual Framework for Understanding the Association between School Bullying Victimization and Substance Misuse

    PubMed Central

    Hong, Jun Sung; Davis, Jordan P.; Sterzing, Paul R.; Yoon, Jina; Choi, Shinwoo; Smith, Douglas C.

    2014-01-01

    This article reviews current research findings and presents a conceptual framework for better understanding the relationship between bullying victimization (hereafter referred to as victimization) and substance misuse (hereafter referred to as SM) among adolescents. Although victimization and SM may appear to be separate problems, research suggests an intriguing relationship between the two. We present a brief, empirical overview of the direct association between victimization and adolescent SM, followed by a proposed conceptual framework that includes co-occurring risk factors for victimization and SM within family, peer, and school/community contexts. Next, we discuss potential mediators linking victimization and SM, such as internalizing problems, traumatic stress, low academic performance, and school truancy/absence. We then identify potential moderating influences of age, gender/sex, social supports, and school connectedness that could amplify or abate the association between victimization and SM. Finally, we discuss practice and policy implications. PMID:25545436

  15. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  16. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  17. From the Achievement Gap to the Education Debt: Understanding Achievement in U.S. Schools

    ERIC Educational Resources Information Center

    Ladson-Billings, Gloria

    2006-01-01

    The "achievement gap" is one of the most talked-about issues in U.S. education. The term refers to the disparities in standardized test scores between Black and White, Latina/o and White, and recent immigrant and White students. This article argues that a focus on the gap is misplaced. Instead, we need to look at the "education debt" that has…

  18. Scaffolding software: How does it influence student conceptual understanding and motivation?

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p < .05), the searching features hits and the students' self-efficacy for learning and performance (r = .553, p < .01), the collaborative features hits and the students' essay performance scores (r = .519, p < .05) and the

  19. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    NASA Astrophysics Data System (ADS)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  20. Integrating Resource-Based and Person-Based Approaches to Understanding Wealth Effects on School Achievement

    ERIC Educational Resources Information Center

    Destin, Mesmin

    2013-01-01

    Wealth and assets have a reliable positive relationship with the achievement outcomes of students. Various approaches to understanding student achievement may inform the understanding of how wealth seems to influence children's educational experiences. This paper describes several perspectives from the student achievement literature within the…

  1. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics

    NASA Astrophysics Data System (ADS)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  2. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    NASA Astrophysics Data System (ADS)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  3. Understanding Starts in the Mesocosm: Conceptual metaphor as a framework for external representations in science teaching

    NASA Astrophysics Data System (ADS)

    Niebert, Kai; Gropengiesser, Harald

    2015-04-01

    In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on the assumption that understanding is embodied. Embodied understanding arises from recurrent bodily and social experience with our environment. As our perception is adapted to a medium-scale dimension, our embodied conceptions originate from this mesocosmic scale. With respect to this epistemological principle, we distinguish between micro-, meso- and macrocosmic phenomena. We use these insights to analyse how external representations of phenomena in the micro- and macrocosm can foster learning when they (a) address the students' learning demand by affording a mesocosmic experience or (b) assist reflection on embodied conceptions by representing their image schematic structure. We base our considerations on empirical evidence from teaching experiments on phenomena from the microcosm (microbial growth and signal conduction in neurons) and the macrocosm (greenhouse effect and carbon cycle). We discuss how the theory of conceptual metaphor can inform the development of external representations.

  4. Co-development of Conceptual Understanding and Critical Attitude: Analyzing texts on radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Décamp, N.; Viennot, L.

    2015-08-01

    This research documents the impact of a teaching interview aimed at developing a critical attitude in students, and focused on a particular topic: radiocarbon dating. This teaching interview is designed to observe students' reaction to limited written explanations of the phenomenon under study, and their possible frustration or intellectual satisfaction in relation to these texts. We aim to document the possible link between students' developing conceptual understanding of a topic and their ability to express their frustration when presented with very incomplete explanations, or their intellectual satisfaction when presented with complete explanation. As a side product, we intend to observe some of their a priori ideas concerning this topic. Ten teaching interviews conducted with fourth-year University students were recorded, transcribed and coded. Beyond a series of results concerning students' a priori understanding of the domain, the analysis of the interviews suggests that, when students are presented with texts of increasing completeness and discuss these with the interviewer, their critical reactions evolve in time in a very specific way. We propose a tentative model for this co-evolution of student conceptual command and critical stance. The discussion bears on possible interpretations for the 'anesthesia of judgment' observed in most students at the beginning of the interview, and for a few of them throughout the discussion. Keeping in mind the 'competence vs concepts' current alternative, the conditions that seem to free students' critical potential are analyzed in relation to their evolving command of the topic and their degree of intellectual satisfaction.

  5. Understanding HIV-related posttraumatic stress disorder in South Africa: a review and conceptual framework.

    PubMed

    Young, Charles

    2011-06-01

    A number of epidemiological studies have attempted to measure the prevalence of HIV-related posttraumatic stress disorder (PTSD) in sub-Saharan Africa. A systematic review of the literature identified eight relevant studies that put current estimates of the prevalence of HIV-related PTSD between 4.2% and 40%. Even the lower estimates suggest that PTSD in response to the trauma of being diagnosed and living with HIV is a significant mental health burden. However, a conceptual framework to advance our understanding of the prevalence and phenomenology of HIV-related PTSD is lacking. This article argues that the Ehlers & Clark (2000) cognitive model of PTSD provides a useful conceptual framework for understanding HIV-related PTSD in South Africa. The model emphasises the role of trauma appraisals in the development and maintenance of PTSD, which can also be usefully applied to some of the other psychological disorders associated with HIV infection. The model appears to fit some of the important research findings, and it offers insights into the relationships between HIV-related PTSD and other psychological disorders, HIV stigma, the high prevalence of non-HIV traumatic events, occasional problems with the delivery of antiretroviral drugs in the South African public health service, the unpredictable course of HIV illness, and the quality of HIV testing and counselling. Implications for individual treatment strategies and broader public health interventions are briefly discussed.

  6. Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.

    PubMed

    DeCaro, Marci S

    2016-10-01

    An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.

  7. The Positive and Negative Effects of Science Concept Tests on Student Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Yeh, Ting-Kuang; Barufaldi, James P.

    2010-01-01

    This study explored the phenomenon of testing effect during science concept assessments, including the mechanism behind it and its impact upon a learner's conceptual understanding. The participants consisted of 208 high school students, in either the 11th or 12th grade. Three types of tests (traditional multiple-choice test, correct concept test, and incorrect concept test) related to the greenhouse effect and global warming were developed to explore the mechanisms underlining the test effect. Interview data analyzed by means of the flow-map method were used to examine the two-week post-test consequences of taking one of these three tests. The results indicated: (1) Traditional tests can affect participants' long-term memory, both positively and negatively; in addition, when students ponder repeatedly and think harder about highly distracting choices during a test, they may gradually develop new conceptions; (2) Students develop more correct conceptions when more true descriptions are provided on the tests; on the other hand, students develop more misconceptions while completing tests in which more false descriptions of choices are provided. Finally, the results of this study revealed a noteworthy phenomenon that tests, if employed appropriately, may be also an effective instrument for assisting students' conceptual understanding.

  8. Constraints on Conceptual Change: How Elementary Teachers' Attitudes and Understanding of Conceptual Change Relate to Changes in Students' Conceptions

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.

    2013-01-01

    Like their students, teachers may hold a variety of naïve conceptions that have been hypothesized to limit their ability to support students' learning. This study examines whether changes in elementary students' conceptions are related to their teachers' content knowledge, attitudes, and understanding of conceptual change. The study…

  9. Analysis of Physical Science Textbooks for Conceptual Frameworks on Acids, Bases and Neutralization: Implications for Students' Conceptual Understanding.

    ERIC Educational Resources Information Center

    Erduran, Sibel

    Eight physical science textbooks were analyzed for coverage on acids, bases, and neutralization. At the level of the text, clarity and coherence of statements were investigated. The conceptual framework for this topic was represented in a concept map which was used as a coding tool for tracing concepts and links present in textbooks. Cognitive…

  10. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p < .05) was between the saving/viewing features hits and the students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p < 0.01) was between the searching features hits and the students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship

  11. It's Rather like Learning a Language: Development of talk and conceptual understanding in mechanics lessons

    NASA Astrophysics Data System (ADS)

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research goal was to investigate and understand how students develop an understanding of the concept of force and how they use and understand the term 'force'. Therefore, we make relation to the research field of students' preconceptions and the field of second language learning. Two classes of students (N = 47) were videotaped during a time period of nine lessons, each transcribed and analysed using a category system. Additional data were obtained via written tasks, logs kept by the students, and tests. The detailed analysis of the talk and the results of the tests indicate that students face difficulties in using the term 'force' scientifically similar to those in a foreign language instruction. Vygotsky already recognised a relationship between learning in science and learning a language. In this paper, important aspects of this relationship are discussed based upon empirical data. We conclude that in some respects it might be useful to make reference to the research related to language learning when thinking about improving science education. In particular, according to Selinker's concept of interlanguage describing language-learning processes within language instruction, the language used by the students during physics lessons can be viewed as a 'scientific interlanguage'.

  12. Why should I care? Engaging students in conceptual understanding using global context to develop social attitudes.

    NASA Astrophysics Data System (ADS)

    Forder, S. E.; Welstead, C.; Pritchard, M.

    2014-12-01

    A glance through the Harvard Business Review reveals many suggestions and research pieces reviewing sales and marketing techniques. Most educators will be familiar with the notion that making accurate first impressions and being responsive, whilst maintaining pace is critical to engaging an audience. There are lessons to be learnt from industry that can significantly impact upon our teaching. Eisenkraft, in his address to the NSTA, proposed four essential questions. This presentation explores one of those questions: 'Why should I care?', and discusses why this question is crucial for engaging students by giving a clear purpose for developing their scientific understanding. Additionally, this presentation explores how The ISF Academy has adapted the NGSS, using the 14 Grand Engineering Challenges and the IB MYP, to provide current, authentic global contexts, in order to give credibility to the concepts, understandings and skills being learnt. The provision of global contexts across units and within lessons supports a platform for students to have the freedom to explore their own sense of social responsibility. The Science Department believes that planning lessons with tasks that elaborate on the student's new conceptualisations, has helped to transfer the student's new understanding into social behavior beyond the classroom. Furthermore, extension tasks have been used to transfer conceptual understanding between different global contexts.

  13. Gestures and metaphors as indicators of conceptual understanding of sedimentary systems

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.; Herrera, J. S.

    2012-12-01

    Understanding the geometry and evolution of sedimentary systems and sequence stratigraphy is crucial to the development of geoscientists and engineers working in the petroleum industry. There is a wide variety of audiences within industry who require relatively advanced instruction in this area of geoscience, and there is an equally wide array of approaches to teaching this material in the classroom and field. This research was undertaken to develop a clearer picture of how conceptual understanding in this area of sedimentary geology grows as a result of instruction and how instructors can monitor the completeness and accuracy of student thinking and mental models. We sought ways to assess understanding that did not rely on model-specific jargon but rather was based in physical expression of basic processes and attributes of sedimentary systems. Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture, (e.g. giving directions, describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image-schemas as a source of concept representation for students' learning of sedimentary processes. In order to explore image schemas that lie in student explanations, we focused our analysis on four core ideas about sedimentary systems that involve sea level change and sediment deposition, namely relative sea level, base level, and sea-level fluctuations and resulting basin geometry and sediment deposition changes. The study included 25 students from three U.S. Midwestern universities. Undergraduate and graduate-level participants were enrolled in senior-level undergraduate courses in sedimentology and stratigraphy. We used semi-structured interviews and videotaping for data collection. We coded the data to focus on deictic, iconic, and metaphoric gestures, and coded interview transcripts for linguistic metaphors using the

  14. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon

    2016-06-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life cycle of plants, in four grade 4 classrooms (age 10) taught by three teachers constitute the data for this study. Students' written explanations were subjected to a combination of content and linguistic analysis. The linguistic analysis was conducted using selected analytical tools from the systemic functional linguistics framework. A diversity of linguistic resources and meanings were identified from the students' explanations, which reveal the extent to which the students were able to employ linguistic resources to construct written scientific explanations and the challenges involved. Both content and linguistic analyses also illuminate patterns of language use that are significant for realising scientific meanings. Finally, a comparison is made in the use of linguistic resources between the students' explanations and the instructional language to highlight possible links. This comparison reveals that the teachers' expectations of the students' written explanations were seldom reflected in their oral questioning or made explicit during the instruction. The findings of this study suggest that a focus on conceptual development is not sufficient in itself to foster students' ability to construct explanations. Pedagogical implications involving the support needed by primary students to construct scientific explanations are discussed.

  15. The Impact of the History of Physics on Student Attitude and Conceptual Understanding of Physics

    NASA Astrophysics Data System (ADS)

    Garcia, Sarah; Hankins, April; Sadaghiani, Homeyra

    2010-10-01

    The purpose of this study is to investigate student learning of Newtonian Mechanics through the study of its history and the development of the relevant ideas since the time of ancient Greece. The hypothesis is that not only will students learn the basic concepts of mechanics, but also will develop a more positive attitude and appreciation for physics. To assess the students' conceptual understanding, we administer Force Concept Inventory (FCI) and for the measurement of student attitude change, we employed the Colorado Learning Attitudes about Science Survey (CLASS); both were given as pre and post-tests. Additionally, at the end of the quarter, a survey was given out to see how students perceived the different course components and which ones they found helpful in their learning. This paper will present our preliminary results on such a study.

  16. Gender differences in conceptual understanding of Newtonian mechanics: a UK cross-institution comparison

    NASA Astrophysics Data System (ADS)

    Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R.

    2013-03-01

    We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps.

  17. How online learning modules can improve the representational fluency and conceptual understanding of university physics students

    NASA Astrophysics Data System (ADS)

    Hill, M.; Sharma, M. D.; Johnston, H.

    2015-07-01

    The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware

  18. An improved conceptual understanding of snowmelt and groundwater dynamics in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Sproles, Eric; Hevia, Andres; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The contribution of snowmelt to groundwater has long been recognized as an important component of the hydrological cycle in semi-arid northern central Chile (29°-32°S). Despite its importance as a water resource, this transition to groundwater remains poorly understood. Climatically, the High Cordillera in northern central Chile receives approximately 10 times as much annual precipitation as the valley bottoms, falling almost exclusively as snow above 3500 m during the winter months. Geologically, the High Cordillera is characterized by steep topography and a highly dissected landscape underlain by bedrock. Groundwater stores in the mountain headwaters are assumed to be constrained to the valley bottoms. The current working hypothesis of watershed processes in the High Cordillera describes fluxes of spring melt moving through the hillslope via local flowpaths to valley aquifers that recharge streams throughout the headwater reaches. Previous studies in the region indicate Pre-Cordilleran aquifers, located in lower elevation dry ephemeral valleys, are hydrologically disconnected from the High Cordillera. These watersheds have no seasonal snowpack, and recharge occurs primarily during infrequent rain events. These isolated Pre-Cordilleran aquifers serve as an important water resource for rural residents and infrastructure. We present stable isotope, geochemical, and groundwater level data from the wet El Niño winter of 2015 that suggests a topographically disconnected aquifer in the Pre-Cordillera received considerable recharge from High Cordillera snowmelt. These novel findings are indicative of deep groundwater flow paths between the Pre- and High Cordillera during the wet winter and spring of 2015, and improve the conceptual understanding of hydrological processes in the region. Additionally, these results will directly benefit groundwater management in the Pre-Cordillera and better inform modeling efforts in the High Cordillera. While this study is limited to

  19. Conceptual mis(understandings) of fractions: From area models to multiple embodiments

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Clements, M. A. (Ken); Ellerton, Nerida F.

    2015-06-01

    Area-model representations seem to have been dominant in the teaching and learning of fractions, especially in primary school mathematics curricula. In this study, we investigated 40 fifth grade children's understandings of the unit fractions, , and , represented through a variety of different models. Analyses of pre-teaching test and interview data revealed that although the participants were adept at partitioning regional models, they did not cope well with questions for which unit fractions were embodied in non-area-model scenarios. Analyses of post-teaching test and interview data indicated that after their participation in an instructional intervention designed according to Dienes' (1960) dynamic principle, the students' performances on tests improved significantly, and their conceptual understandings of unit fractions developed to the point where they could provide reasonable explanations of how they arrived at solutions. Analysis of retention data, gathered more than 3 months after the teaching intervention, showed that the students' newly found understandings had, in most cases, been retained.

  20. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  1. Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry

    NASA Astrophysics Data System (ADS)

    Daubenmire, Paul L.

    which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.

  2. Ecophysiology of marine fish recruitment: A conceptual framework for understanding interannual variability

    NASA Astrophysics Data System (ADS)

    Neill, William H.; Miller, John M.; Van Der Veer, Henk W.; Winemiller, Kirk O.

    Present data and our application of logic do not permit confident rejection of the null hypothesis: Interannual variation in recruitment of marine fishes (typified by certain flatfishes) is independent of ecophysiological factors. Our inability to reject this hypothesis reflects not its likely validity, but rather a lack of conceptual structure and appropriate data for realistic evaluation of alternative hypotheses. Therefore, in this paper, we set aside as presently intractable the problem of understanding in any generalizable way the specific effects of environment on interannual variation in marine fish recruitment. Instead, we return to a conceptual scheme first proposed almost 50 years ago by F.E.J. Fry for considering effects of environmental factors on the physiology of fishes. We first extend this scheme to population-level responses, including recruitment, and then even further, to community/ecosystem-level responses. Fry supposed that all of environment can be resolved into five classes of physiological effects—controlling (which set the pace of metabolism), limiting (which constrain maximum metabolism), lethal (which completely interdict metabolism), masking (which increase obligatory metabolic work), and directive (which release and unload metabolism by guiding enviroregulatory responses). We suggest that corresponding effects can be recognized at the levels both of population and community/ecosystem. The key analogy is that environment operates on individuals through metabolism, on populations through recruitment, and on communities/ecosystems through abiotic and biotic diversification. In the context of marine-fish populations, we propose that scope for population increase is the difference between maximum and maintenance recruitment to the spawning stock. Maintenance recruitment is the product of critical spawner density and spawner mortality rate; this product varies with environment as the resultant of controlling effects on the metabolism of

  3. Conceptual understanding of climate change with a globally resolved energy balance model

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar; Flöter, Janine

    2011-12-01

    The future climate change projections are essentially based on coupled general circulation model (CGCM) simulations, which give a distinct global warming pattern with arctic winter amplification, an equilibrium land-sea warming contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the Intergovernmental Panel on Climate Change (IPCC) predictions, the conceptual understanding of these predicted structures of climate change and the causes of their uncertainties is very difficult to reach if only based on these highly complex CGCM simulations. In the study presented here we will introduce a very simple, globally resolved energy balance (GREB) model, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the strongly simplified energy balance models and the fully coupled 4-dimensional complex CGCMs. It provides a fast tool for the conceptual understanding and development of hypotheses for climate change studies, which shall build a basis or starting point for more detailed studies of observations and CGCM simulations. It is based on the surface energy balance by very simple representations of solar and thermal radiation, the atmospheric hydrological cycle, sensible turbulent heat flux, transport by the mean atmospheric circulation and heat exchange with the deeper ocean. Despite some limitations in the representations of the basic processes, the models climate sensitivity and the spatial structure of the warming pattern are within the uncertainties of the IPCC models simulations. It is capable of simulating aspects of the arctic winter amplification, the equilibrium land-sea warming contrast and the inter-hemispheric warming gradient with good agreement to the IPCC models in amplitude and structure. The results give some insight into the understanding of the land-sea contrast and the polar amplification. The GREB model suggests that the regional inhomogeneous

  4. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding Within an Inquiry-Based Science Setting

    NASA Astrophysics Data System (ADS)

    Haug, Berit S.; Ødegaard, Marianne

    2014-10-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the students' level of word knowledge manifested in their talk. In this framework, highly developed knowledge of a word is conceptual knowledge. This includes understanding how the word is situated within a network of other words and ideas. The results suggest that students' level of word knowledge develops toward conceptual knowledge when the students are required to apply the key concepts in their talk throughout all phases of inquiry. When the students become familiar with the key concepts through the initial inquiry activities, the students use the concepts as tools for furthering their conceptual understanding when they discuss their ideas and findings. However, conceptual understanding is not promoted when teachers do the talking for the students, rephrasing their responses into the correct answer or neglecting to address the students' everyday perceptions of scientific phenomena.

  5. The effect of the use of concept maps on community college students' conceptual understanding of biology course content

    NASA Astrophysics Data System (ADS)

    Wells, Franklin Brian

    Purpose of the study. The major purpose of this study was to measure the change, if any, in students' conceptual understanding of biology course content using concept maps (experimental) or a standard lecture format (control). In addition, the effectiveness of the use of concept maps as advance organizers was measured according to the various subgroups of cognitive development level, age, ethnicity, gender, class time, and educational background. A final concern was the relationships between conceptual understanding of biology course content and the students' cognitive development level. Procedure. A quasi-experimental design was used to conduct the study during a sixteen-week semester. The study was conducted during the fall, 1997, semester at a community college using 190 students enrolled in General Biology 1406. Major data were collected using a pretest, posttest, and the Test of Logical Thinking. Data were treated through the application of analysis of covariance, Pearson product-moment correlation, and the Fisher Z-transformation technique. Findings. The findings of this investigation were as follows: (1) Concept maps used as advance organizers had a significant effect on student conceptual understanding of biology course content. (2) The use of concept maps as advance organizers had a significant effect on student conceptual understanding of biology when students are classified according to their cognitive developmental level, age, gender, major, course time, and educational background. (3) A significant relationship between cognitive developmental level and conceptual understanding was also found. Conclusions. The use of concept maps, as advance Organizers, is an effective method for improving student learning in general biology classes. A positive relationship exists between students' cognitive developmental level and conceptual understanding.

  6. First-Year Medical Students' Conceptual Understanding of and Resistance to Conceptual Change Concerning the Central Cardiovascular System

    ERIC Educational Resources Information Center

    Mikkila-Erdmann, Mirjamaija; Sodervik, Ilona; Vilppu, Henna; Kaapa, Pekka; Olkinuora, Erkki

    2012-01-01

    Medical students often have initial understanding concerning medical domains, such as the central cardiovascular system (CCVS), when they enter the study programme. These notions may to some extent be in conflict with scientific understanding, which can be seen as a challenge for medical teaching. Hence, the purpose of this study was to analyse…

  7. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  8. Moving toward a holistic conceptual framework for understanding healthy aging among gay men.

    PubMed

    Halkitis, Perry N; Kapadia, Farzana; Ompad, Danielle C; Perez-Figueroa, Rafael

    2015-01-01

    In the last four decades, we have witnessed vast and important transitions in the social, economic, political, and health contexts of the lived experiences of gay men in the United States. This dynamic period, as evidenced most prominently by the transition of the gay rights movement to a civil rights movement, has shifted the exploration of gay men's health from one focusing primarily on HIV/AIDS into a mainstream consideration of the overall health and wellbeing of gay men. Against this backdrop, aging gay men in the United States constitute a growing population, for whom further investigations of health states and health-related disparities are warranted. In order to advance our understanding of the health and wellbeing of aging gay men, we outline here a multilevel, ecosocial conceptual framework that integrates salient environmental, social, psychosocial, and sociodeomgraphic factors into sets of macro-, meso-, and micro-level constructs that can be applied to comprehensively study health states and health care utilization in older gay men.

  9. Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Lee, K. M.

    2006-06-01

    Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.

  10. Moving toward a holistic conceptual framework for understanding healthy aging among gay men.

    PubMed

    Halkitis, Perry N; Kapadia, Farzana; Ompad, Danielle C; Perez-Figueroa, Rafael

    2015-01-01

    In the last four decades, we have witnessed vast and important transitions in the social, economic, political, and health contexts of the lived experiences of gay men in the United States. This dynamic period, as evidenced most prominently by the transition of the gay rights movement to a civil rights movement, has shifted the exploration of gay men's health from one focusing primarily on HIV/AIDS into a mainstream consideration of the overall health and wellbeing of gay men. Against this backdrop, aging gay men in the United States constitute a growing population, for whom further investigations of health states and health-related disparities are warranted. In order to advance our understanding of the health and wellbeing of aging gay men, we outline here a multilevel, ecosocial conceptual framework that integrates salient environmental, social, psychosocial, and sociodeomgraphic factors into sets of macro-, meso-, and micro-level constructs that can be applied to comprehensively study health states and health care utilization in older gay men. PMID:25492304

  11. Effects of Directed Learning Groups upon Students' Ability to Understand Conceptual Ideas

    ERIC Educational Resources Information Center

    Johnson, Karen Gabrielle; Galluzzo, Benjamin Jason

    2014-01-01

    Mathematical modeling and directed learning groups were employed in a terminal mathematics course to encourage university students to conceptualize real-world mathematics problems. Multiple assessments were utilized to determine whether students' conceptual development is enhanced by participating in directed learning groups conducted in a…

  12. Soy Mujer!: A Case Study for Understanding Latina Achievement in Higher Education

    ERIC Educational Resources Information Center

    Stephens, Elizabeth

    2012-01-01

    Latinas are one of fastest growing segments of the population in the United States, which clearly shows a need to better understand and support education for Latinas within higher education. This study sought to understand the process for and experience of Latinas' academic achievement within higher education. The study focused particularly…

  13. The Influence of Perceived Poverty and Academic Achievement on School Counselor Conceptualization

    ERIC Educational Resources Information Center

    Hutchison, Brian

    2011-01-01

    This analog study presented 173 practicing school counselors with one of four case scenarios depicting a student new to their school. Each scenario manipulated one of two levels of the independent variables, which were perceived poverty and academic achievement. Main effects indicate that participants rated students as more attractive counseling…

  14. Conceptual Understanding of Science Teacher Candidates Regarding the Reason for Measurement and Evaluation and for Determining Learning Change

    ERIC Educational Resources Information Center

    Kurnaz, Mehmet Altan

    2014-01-01

    Determining the learning quality and the role of measurement and evaluation are accepted as part of the duties and responsibilities of teachers and operators in structured teaching programs. This qualitative case study research examined teacher candidates' conceptual understanding of the reasons for measurement and evaluation and for…

  15. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    ERIC Educational Resources Information Center

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  16. Middle School Students' Conceptual Understanding of Equations: Evidence From Writing Story Problems. WCER Working Paper No. 2009-3

    ERIC Educational Resources Information Center

    Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.

    2009-01-01

    This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…

  17. An Investigation of Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Solution Concepts

    ERIC Educational Resources Information Center

    Pinarbasi, Tacettin; Canpolat, Nurtac; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The…

  18. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  19. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  20. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    ERIC Educational Resources Information Center

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  1. Exploring the Usefulness of Two Conceptual Frameworks for Understanding How Organizational Factors Influence Innovation Implementation in Cancer Care

    ERIC Educational Resources Information Center

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors…

  2. Effects of Conceptual Change and Traditional Confirmatory Simulations on Pre-Service Teachers' Understanding of Direct Current Circuits

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    The objective of this research is to investigate the effects of simulations based on conceptual change conditions (CCS) and traditional confirmatory simulations (TCS) on pre-service elementary school teachers' understanding of direct current electric circuits. The data was collected from a sample consisting of 89 students; 48 students in the…

  3. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    ERIC Educational Resources Information Center

    Artun, Huseyin; Costu, Bayram

    2013-01-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…

  4. The Effects of Grouping and Instructional Strategies on Conceptual Understanding and Critical Thinking Skills in the Secondary Biology Classroom.

    ERIC Educational Resources Information Center

    Duffy, Maryellen; Zeidler, Dana L.

    The purpose of this study was to investigate and describe selected instructional strategies (traditional and constructivist) and grouping practices (homogeneous and heterogeneous) on conceptual understanding and critical thinking skills in biology classrooms in three high schools. The context of the study was the teaching and learning of plant…

  5. The Impact of Problem-Based Learning on Engineering Students' Beliefs about Physics and Conceptual Understanding of Energy and Momentum

    ERIC Educational Resources Information Center

    Sahin, Mehmet

    2010-01-01

    The purpose of this paper is to investigate the impact of problem-based learning (PBL) on freshmen engineering students' beliefs about physics and physics learning (referred to as epistemological beliefs) and conceptual understanding of physics. The multiple-choice test of energy and momentum concepts and the Colorado learning attitudes about…

  6. The Effects of Students' Cognitive Styles on Conceptual Understandings and Problem-Solving Skills in Introductory Mechanics

    ERIC Educational Resources Information Center

    Ates, Salih; Cataloglu, Erdat

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen students' Field depended or field independent (FD/FI) cognitive style, conceptual understandings, and problem solving skills in mechanics. The sample consisted of 213 freshmen (female = 111, male = 102; age range 17-21) who were enrolled in an introductory physics…

  7. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  8. Teaching to the Test…or Testing to Teach: Exams Requiring Higher Order Thinking Skills Encourage Greater Conceptual Understanding

    ERIC Educational Resources Information Center

    Jensen, Jamie L.; McDaniel, Mark A.; Woodard, Steven M.; Kummer, Tyler A.

    2014-01-01

    In order to test the effect of exam-question level on fostering student conceptual understanding, low-level and high-level quizzes and exams were administered in two sections of an introductory biology course. Each section was taught in a high-level inquiry based style but was assigned either low-level questions (memory oriented) on the quizzes…

  9. The Effectiveness of Peer Instruction and Structured Inquiry on Conceptual Understanding of Force and Motion: A Case Study from Thailand

    ERIC Educational Resources Information Center

    Suppapittayaporn, Decha; Emarat, Narumon; Arayathanitkul, Kwan

    2010-01-01

    This study proposed to investigate the effectiveness of learning activities based on a conceptual change theoretical framework by embedding a peer instruction method with structured inquiry (PISI) on tenth grade students' understanding of force and motion concepts. This teaching method was compared to the existing traditional instruction (TI).…

  10. Impacts of Multi-Representational Instruction on High School Students' Conceptual Understandings of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Adadan, Emine; Irving, Karen E.; Trundle, Kathy C.

    2009-01-01

    This quasi-experimental study examined 42 high school introductory chemistry students' conceptual understandings of the particulate nature of matter (PNM) before and immediately after instruction. Two groups of students, who were taught by the same teacher, received one of two possible instructional interventions: Reform-Based Teaching (RBT) or…

  11. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  12. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, 'Southwest') since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality. The synthesis consists of three major components: 1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report). 2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants. 3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination. Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  13. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    NASA Astrophysics Data System (ADS)

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime

  14. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    NASA Astrophysics Data System (ADS)

    Al Khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-04-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature and interviews with teachers regarding their observations of students' difficulties. The test was administrated as pre-test, post-test, and delayed post-test to a total of 70 eleventh-grade students in two classes of the same high school in an urban area, taught by the same teacher. The experimental group was a class of 34 students who received conceptual change texts accompanied by concept mapping instruction. A class of 36 students comprised the control group who received traditional instruction. Besides treatment, previous understanding and logical thinking ability were other independent variables involved in this study. The results showed that logical thinking, treatment, previous understanding of cellular respiration concepts each made a statistically significant contribution to the variation in students' understanding of cellular respiration concepts. The result also showed that conceptual change texts accompanied by concept mapping instruction was significantly better than traditional instruction in retention of this understanding.

  15. Representing Chemistry: How Instructional Use of Symbolic, Microscopic, and Macroscopic Mode Influences Student Conceptual Understanding in Chemistry

    NASA Astrophysics Data System (ADS)

    Wood, Lorelei

    Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had

  16. Conceptual framework for understanding the bidirectional links between food insecurity and HIV/AIDS1234

    PubMed Central

    Young, Sera L; Cohen, Craig R; Kushel, Margot B; Tsai, Alexander C; Tien, Phyllis C; Hatcher, Abigail M; Frongillo, Edward A; Bangsberg, David R

    2011-01-01

    Food insecurity, which affects >1 billion people worldwide, is inextricably linked to the HIV epidemic. We present a conceptual framework of the multiple pathways through which food insecurity and HIV/AIDS may be linked at the community, household, and individual levels. Whereas the mechanisms through which HIV/AIDS can cause food insecurity have been fairly well elucidated, the ways in which food insecurity can lead to HIV are less well understood. We argue that there are nutritional, mental health, and behavioral pathways through which food insecurity leads to HIV acquisition and disease progression. Specifically, food insecurity can lead to macronutrient and micronutrient deficiencies, which can affect both vertical and horizontal transmission of HIV, and can also contribute to immunologic decline and increased morbidity and mortality among those already infected. Food insecurity can have mental health consequences, such as depression and increased drug abuse, which, in turn, contribute to HIV transmission risk and incomplete HIV viral load suppression, increased probability of AIDS-defining illness, and AIDS-related mortality among HIV-infected individuals. As a result of the inability to procure food in socially or personally acceptable ways, food insecurity also contributes to risky sexual practices and enhanced HIV transmission, as well as to antiretroviral therapy nonadherence, treatment interruptions, and missed clinic visits, which are strong determinants of worse HIV health outcomes. More research on the relative importance of each of these pathways is warranted because effective interventions to reduce food insecurity and HIV depend on a rigorous understanding of these multifaceted relationships. PMID:22089434

  17. Does using active learning in thermodynamics lectures improve students’ conceptual understanding and learning experiences?

    NASA Astrophysics Data System (ADS)

    Georgiou, H.; Sharma, M. D.

    2015-01-01

    Encouraging ‘active learning’ in the large lecture theatre emerges as a credible recommendation for improving university courses, with reports often showing significant improvements in learning outcomes. However, the recommendations are based predominantly on studies undertaken in mechanics. We set out to examine those claims in the thermodynamics module of a large first year physics course with an established technique, called interactive lecture demonstrations (ILDs). The study took place at The University of Sydney, where four parallel streams of the thermodynamics module were divided into two streams that experienced the ILDs and two streams that did not. The programme was first implemented in 2011 to gain experience and refine logistical matters and repeated in 2012 with approximately 500 students. A validated survey, the thermal concepts survey, was used as pre-test and post-test to measure learning gains while surveys and interviews provided insights into what the ‘active learning’ meant from student experiences. We analysed lecture recordings to capture the time devoted to different activities in a lecture, including interactivity. The learning gains were in the ‘high gain’ range for the ILD streams and ‘medium gain’ for the other streams. The analysis of the lecture recordings showed that the ILD streams devoted significantly more time to interactivity while surveys and interviews showed that students in the ILD streams were thinking in deep ways. Our study shows that ILDs can make a difference in students’ conceptual understanding as well as their experiences, demonstrating the potential value-add that can be provided by investing in active learning to enhance lectures.

  18. Can achievement emotions be used to better understand motivation, learning, and performance in medical education?

    PubMed

    Artino, Anthony R; Holmboe, Eric S; Durning, Steven J

    2012-01-01

    In this article, we consider an emergent theory of human emotion. The overarching purpose of the article is to introduce medical education researchers to the notion of achievement emotions and provide a brief overview of how this work can inform the theory, research, and practice of medical education. First, we define achievement emotions and describe one of the leading contemporary theories of achievement emotions, control-value theory (Pekrun R. 2006. The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educ Psychol Rev 18:315-341.). Next, we distinguish between different types of achievement emotions, their proximal causes, and their consequences for motivation, learning, and performance, and we discuss several implications for educational practice. Finally, we end with a call for more research on achievement emotions in medical education to facilitate our understanding of emotions and their impact on important educational outcomes.

  19. A conceptual framework for understanding the mental health impacts of oil spills: lessons from the Exxon Valdez oil spill.

    PubMed

    Palinkas, Lawrence A

    2012-01-01

    This paper introduces a conceptual framework for understanding and responding to the currently unfolding social and psychological impacts of the Deepwater Horizon oil spill. Drawing from the concept of corrosive communities and its relationship to theories of conservation of resources, cognitive activation, and risk and resilience, the conceptual model identifies three levels or tiers of impacts: biopsychosocial impacts that are direct consequences of the contamination of the physical environment; interpersonal impacts that are direct consequences of the biopsychosocial impacts; and intrapersonal or psychological impacts that are consequences of both the biopsychosocial and the interpersonal impacts. The model is then evaluated in light of research conducted in the aftermath of the Exxon Valdez oil spill as well as studies of other manmade disasters, and offers a set of testable hypotheses that predict likely impacts of the Deepwater Horizon oil spill. The conceptual framework may be used to identify strategies to develop community resilience and target specific services to prevent and mitigate these adverse effects.

  20. Measuring enactment of innovations and the factors that affect implementation and sustainability: moving toward common language and shared conceptual understanding.

    PubMed

    Century, Jeanne; Cassata, Amy; Rudnick, Mollie; Freeman, Cassie

    2012-10-01

    This article describes research that focuses on the concern that researchers are unable to fully realize the potential value of their collective efforts because they do not have shared conceptual or operational tools for communicating assumptions, ideas, research strategies, or findings with others outside, or even within their disciplines. This research, through the lens of measuring implementation of educational programs, has taken steps toward bringing researchers' varied pictures of understanding into a coherent landscape. This article describes a conceptual framework for describing aspects of implementation, a conceptual framework for describing the factors that affect implementation, and tools for measuring each. It describes the challenges addressed in the development of these approaches, and the application of these approaches to current studies in education and other fields in the social sciences. In doing so, it demonstrates that meaningful communication between researchers and accumulation of knowledge across fields is possible, and necessary. PMID:22948708

  1. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    NASA Astrophysics Data System (ADS)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 < 0.05), and (2) There is an interaction between the scientific-based constructivist learning approach with an initial competence (high and low) on the ability of concept of understanding and mathematical power (F = 5.259; p =0.033 < 0,05). Observations and in-depth interviews with students, shows that the construction of mathematical power of students have influenced the thinking of students in problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  2. Effects of Problem-Based Learning on University Students' Epistemological Beliefs about Physics and Physics Learning and Conceptual Understanding of Newtonian Mechanics

    ERIC Educational Resources Information Center

    Sahin, Mehmet

    2010-01-01

    This study investigated the effects of problem-based learning on students' beliefs about physics and physics learning and conceptual understanding of Newtonian mechanics. The study further examines the relationship between students' beliefs about physics and their conceptual understanding of mechanics concepts. Participants were 124 Turkish…

  3. Providing Early Childhood Teachers with Opportunities to Understand Diversity and the Achievement Gap

    ERIC Educational Resources Information Center

    Meece, Darrell; Wingate, Kimberly O'Kelley

    2010-01-01

    High quality teaching--providing children with support, feedback, and positive communication--is associated with closing the achievement gap between minority and majority children. It is important for students in teacher preparation programs to understand changes in curricular approaches to diversity--from the color-blind approach, to…

  4. College Students' Achievement and Understanding of Experimental and Theoretical Probability: The Role of Tasks

    ERIC Educational Resources Information Center

    Papaieronymou, Irini

    2012-01-01

    This study examined the role of particular tasks implemented through two instructional methods on college students' "achievement" and understanding of probability. A mixed methods design that utilized a pre-test and post-test was used. This included treatment and control groups, each comprised of students in three sections of an…

  5. Cultural Connections: Promoting Self-Esteem, Achievement, and Multicultural Understanding through Distance Learning.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Murphy, Karen; Davis, Trina

    This case study focused on the effects of collaborative activities between two teachers and their students. The authors explored the effectiveness of distance learning for adolescents in promoting self-esteem, achievement, and multicultural understanding. In Cultural Connections, diverse students across Texas collaborated on multicultural…

  6. Schooled and Community Numeracies: Understanding Social Factors and "Under-Achievement" in Numeracy.

    ERIC Educational Resources Information Center

    Baker, D. A.; Street, B. V.; Tomlin, A.

    This is a discussion of research in the 'Schooled and Community numeracies focus within the Leverhulme funded Low Educational Achievement in Numeracy Research Programme. The intentions of the research in this focus are to seek explanations for underachievement in numeracy that derive from understandings of mathematics as social. We wanted to…

  7. Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    ERIC Educational Resources Information Center

    Tastan, Ozgecan; Yalcinkaya, Eylem; Boz, Yezdan

    2008-01-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental…

  8. Developing Conceptual Understanding of Mechanical Advantage through the Use of Lego Robotic Technology

    ERIC Educational Resources Information Center

    Chambers, Joan M.; Carbonaro, Mike; Murray, Hana

    2008-01-01

    Science educators advocate hands on experiences and the use of manipulatives as important for children's conceptual development. Consequently, the utilisation of "Lego" robotic technologies in teaching and learning has become more prevalent in school science classrooms. It is important to investigate their value as educational tools, particularly…

  9. Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System

    ERIC Educational Resources Information Center

    Gazit, Elhanan; Yair, Yoav; Chen, David

    2005-01-01

    This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…

  10. Aspects of Children's Conceptual Understanding Reflected in the Use of Language and Terminology

    ERIC Educational Resources Information Center

    Malandrakis, George N.

    2011-01-01

    This research is a high-resolution analysis of grade 6 (ages 11-12) children's interview transcripts about the operation of power stations, before and after teaching. The focus of the study was on how children's conceptual development is built at a discursive level, namely how language is used to express changes in their thoughts. The theoretical…

  11. The Life Course Perspective on Drug Use: A Conceptual Framework for Understanding Drug Use Trajectories

    ERIC Educational Resources Information Center

    Hser, Yih-Ing; Longshore, Douglas; Anglin, M. Douglas

    2007-01-01

    This article discusses the life course perspective on drug use, including conceptual and analytic issues involved in developing the life course framework to explain how drug use trajectories develop during an individual's lifetime and how this knowledge can guide new research and approaches to management of drug dependence. Central concepts…

  12. Conceptual Level of Understanding about Sound Concept: Sample of Fifth Grade Students

    ERIC Educational Resources Information Center

    Bostan Sarioglan, Ayberk

    2016-01-01

    In this study, students' conceptual change processes related to the sound concept were examined. Study group was comprises of 325 fifth grade middle school students. Three multiple-choice questions were used as the data collection tool. At the data analysis process "scientific response", "scientifically unacceptable response"…

  13. Understanding Starts in the Mesocosm: Conceptual Metaphor as a Framework for External Representations in Science Teaching

    ERIC Educational Resources Information Center

    Niebert, Kai; Gropengiesser, Harald

    2015-01-01

    In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on…

  14. A Conceptual Guide to Natural History Museum Visitors' Understanding of Evolution

    ERIC Educational Resources Information Center

    Evans, E. Margaret; Spiegel, Amy N.; Gram, Wendy; Frazier, Brandy N.; Tare, Medha; Thompson, Sarah; Diamond, Judy

    2010-01-01

    Museum visitors are an ideal population for assessing the persistence of the conceptual barriers that make it difficult to grasp Darwinian evolutionary theory. In comparison with other members of the public, they are more likely to be interested in natural history, have higher education levels, and be exposed to the relevant content. If museum…

  15. Building Conceptual Understanding in a Remedial College Mathematics Classroom: A Study of Effectiveness

    ERIC Educational Resources Information Center

    Bachman, Rachel Marie

    2013-01-01

    This study investigated the effectiveness of two remedial mathematics courses that aimed to (a) present topics conceptually, (b) construct adequate schemata, and (c) introduce students to the culture of mathematics. The topics covered during the two courses were word problems, equivalence, variables and expressions, equations and inequalities, and…

  16. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Artun, Hüseyin; Coştu, Bayram

    2013-02-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting of ten two-tier questions of which an explanatory part was integral. Individual interviews were conducted with six prospective teachers at the end of the implementation of the unit using four questions. Test scores were analyzed quantitatively and qualitatively. Post-instructional interviews were analyzed qualitatively. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences between pre- and post- and delayed post-test ( p < 0.05). A qualitative analysis of the prospective teachers' explanations in the two-tier questions revealed changes in their ideas overtime. Both quantitative and qualitative analyses suggest that the teaching activities promoted students' conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching activities based on 5E model enabled students to retain their new conceptual understanding.

  17. The use of mobile devices as means of data collection in supporting elementary school students' conceptual understanding about plants

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy

    2016-03-01

    The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of pollination/fertilization, and the interrelationship between animals and plants, more than students' use of traditional means of data collection. For this purpose, we designed a pre-post experimental design study with two conditions: one in which participants used a mobile device for data collection and another using traditional means (e.g. sketching and note-taking). The sample comprised 48 fourth graders (24 in each condition), who studied the flower, its parts, and their functions. A conceptual test was administered to assess students' understanding before and after instruction. Moreover, the students' science notebooks and accompanying artifacts were used as a data source for examining students' progress during the study's intervention. The conceptual test and notebook data were analyzed statistically, whereas we used open coding for the artifacts. Findings revealed that using mobile devices for data collection enhanced students' conceptual understanding more than using traditional means of data collection.

  18. Enhancing student teachers' epistemological beliefs about models and conceptual understanding through a model-based inquiry process

    NASA Astrophysics Data System (ADS)

    Soulios, Ioannis; Psillos, Dimitris

    2016-05-01

    In this study we present the structure and implementation of a model-based inquiry teaching-learning sequence (TLS) integrating expressive, experimental and exploratory modelling pedagogies in a cyclic manner, with the aim of enhancing primary education student teachers' epistemological beliefs about the aspects, nature, purpose and change of models as well as their conceptual understanding of light phenomena related to properties of optical fibres. The subjects were 16 prospective primary teachers involved in modelling activities, employing both hands-on experiments and computer modelling activities, based on the application of the ray model. Student teachers were tested before and after the implementation of the TLS by semi-structured interviews and a written questionnaire. Results show that before the TLS most students adopted epistemologically naïve realistic beliefs about models, whereas after the TLS there was an overall significant transition from naïve to more sophisticated epistemological beliefs, as well as significant improvements in their conceptual knowledge about light phenomena. Nevertheless, the relation between epistemological beliefs and conceptual understanding seems to be aspect-dependent, so our evidence suggests that more educational effort is required in order to establish a coherent relationship between them.

  19. An Investigation of Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Solution Concepts

    NASA Astrophysics Data System (ADS)

    Pinarbaşi; , Tacettin; Canpolat, Nurtaç; Bayrakçeken, Samih; Geban, Ömer

    2006-12-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The sample of this study consisted of 87 undergraduate students from two classes enrolled in an introductory chemistry course. One of the classes was assigned randomly to the control group, and the other class were assigned randomly to the experimental group. During teaching the topic of solution concepts in the chemistry curriculum, a conceptual change text-oriented instruction was applied in the experimental group whereas traditional instruction was followed in the control group. The results showed that the students in the experimental group performed better with respect to solution concepts. In addition, it has been found that there was no significant difference between the attitudes of students in the experimental and control groups towards chemistry.

  20. The effect of learning styles and attitude on preservice elementary teachers' conceptual understanding of chemistry and the nature of matter in a simulation-based learning environment

    NASA Astrophysics Data System (ADS)

    Al-Jaroudi, Mo H.

    This causal-comparative descriptive study investigated the achievement of pre-service elementary teachers taking an introductory physical science course that integrates inquiry-based instruction with computer simulations. The study was intended to explore if pre-service elementary teachers with different attitudes towards science as well as students with different learning styles would benefit differentially. Four research questions including four hypotheses were developed. The first major question consist of four specific hypothesis that addressed preservice elementary teachers' learning styles (Active/Reflective, Sensing/Intuitive, Visual/Verbal, and Sequential/Global) and their conceptual understanding of chemistry and the particulate nature of matter in a science class which use hands-on learning integrated with computer based simulated activities. The second major question pertained to the relationship between preservice teachers learning science and chemistry and their attitude towards science. The third major question related to preservice elementary teachers science and chemistry achievement gain scores and attitude average affected by their learning styles. Finally, the fourth question pertained to the dissipation or the minimization of preservice elementary teachers' science and chemistry misconceptions over the course of study. Three instruments were given to preservice elementary teachers in three different classes: pretest/posttest for the science conceptual understanding examination, and pretest-only for the science attitude and learning styles instruments. Total usable science attitude surveys returned was 67 out of 70. The overall average mean was 3.13 (SD = .51) on a five point scale. Total return of science achievement instrument was 65, with a total mean test score (quantitative and qualitative together) of 6.38 (SD = 3.05) on the pretest, with a post test mean of 9.06 (SD = 4.19). Results revealed no statistically significant achievement gain

  1. Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Mockler, Eva M.; O'Loughlin, Fiachra E.; Bruen, Michael

    2016-05-01

    Increasing pressures on water quality due to intensification of agriculture have raised demands for environmental modeling to accurately simulate the movement of diffuse (nonpoint) nutrients in catchments. As hydrological flows drive the movement and attenuation of nutrients, individual hydrological processes in models should be adequately represented for water quality simulations to be meaningful. In particular, the relative contribution of groundwater and surface runoff to rivers is of interest, as increasing nitrate concentrations are linked to higher groundwater discharges. These requirements for hydrological modeling of groundwater contribution to rivers initiated this assessment of internal flow path partitioning in conceptual hydrological models. In this study, a variance based sensitivity analysis method was used to investigate parameter sensitivities and flow partitioning of three conceptual hydrological models simulating 31 Irish catchments. We compared two established conceptual hydrological models (NAM and SMARG) and a new model (SMART), produced especially for water quality modeling. In addition to the criteria that assess streamflow simulations, a ratio of average groundwater contribution to total streamflow was calculated for all simulations over the 16 year study period. As observations time-series of groundwater contributions to streamflow are not available at catchment scale, the groundwater ratios were evaluated against average annual indices of base flow and deep groundwater flow for each catchment. The exploration of sensitivities of internal flow path partitioning was a specific focus to assist in evaluating model performances. Results highlight that model structure has a strong impact on simulated groundwater flow paths. Sensitivity to the internal pathways in the models are not reflected in the performance criteria results. This demonstrates that simulated groundwater contribution should be constrained by independent data to ensure results

  2. Effects of Problem-Based Learning on University Students' Epistemological Beliefs About Physics and Physics Learning and Conceptual Understanding of Newtonian Mechanics

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2010-06-01

    This study investigated the effects of problem-based learning on students' beliefs about physics and physics learning and conceptual understanding of Newtonian mechanics. The study further examines the relationship between students' beliefs about physics and their conceptual understanding of mechanics concepts. Participants were 124 Turkish university students (PBL = 55, traditional = 69) enrolled in a calculus-based introductory physics class. Students' beliefs about physics and physics learning and their physics conceptual understanding were measured with the Colorado Learning Attitudes about Science Survey (CLASS) and the Force Concept Inventory (FCI), respectively. Repeated measures analysis of variance of how PBL influence beliefs and conceptual understanding were performed. The PBL group showed significantly higher conceptual learning gains in FCI than the traditional group. PBL approach showed no influence on students' beliefs about physics; both groups displayed similar beliefs. A significant positive correlation was found between beliefs and conceptual understanding. Students with more expert-like beliefs at the beginning of the semester were more likely to obtain higher conceptual understanding scores at the end of the semester. Suggestions are presented regarding the implementation of the PBL approach.

  3. The Effects of Common Knowledge Construction Model Sequence of Lessons on Science Achievement and Relational Conceptual Change

    ERIC Educational Resources Information Center

    Ebenezer, Jazlin; Chacko, Sheela; Kaya, Osman Nafiz; Koya, Satya Kiran; Ebenezer, Devairakkam Luke

    2010-01-01

    The purpose of this study was to investigate the effects of the Common Knowledge Construction Model (CKCM) lesson sequence, an intervention based both in conceptual change theory and in Phenomenography, a subset of conceptual change theory. A mixed approach was used to investigate whether this model had a significant effect on 7th grade students'…

  4. Understanding and Reversing Underachievement, Low Achievement, and Achievement Gaps among High-Ability African American Males in Urban School Contexts

    ERIC Educational Resources Information Center

    Ford, Donna Y.; Moore, James L., III

    2013-01-01

    This article focuses on the achievement gap, with attention devoted to underachievement and low achievement among African American males in urban school contexts. More specifically, the article explains problems and issues facing or confronting these Black male students in urban education settings. A central part of this discussion is grounded in…

  5. Understanding the impact of special health care needs on early school functioning: a conceptual model.

    PubMed

    O'Connor, M; Howell-Meurs, S; Kvalsvig, A; Goldfeld, S

    2015-01-01

    Children with special health care needs (SHCN) have or are at increased risk for a chronic condition that necessitates more health and related supports than their peers. While it is generally accepted that these children are at risk for school failure, the mechanisms through which SHCN impact on children's experiences (and therefore opportunities to intervene) at school are still relatively poorly understood. Based on the current literature, this paper provides a conceptual framework to guide further discussion of this issue in research, policy and practice. Evidence from the literature was reviewed and existing frameworks examined. We propose that SHCN impact on four interrelated domains of children's functioning: (1) body functions and structures; (2) activities of daily living; (3) social participation; and (4) educational participation. Children's functioning is further influenced by risk and protective factors that can be identified at the level of the child, family and service systems. Together, these processes contribute to shaping either positive or negative trajectories of school functioning. The mechanisms influencing school experiences for children with special health care needs are complex, with opportunities for positive interventions at a range of levels. The proposed conceptual model provides an accessible tool for guiding discussion of the support needs of this vulnerable population.

  6. Understanding the impact of special health care needs on early school functioning: a conceptual model.

    PubMed

    O'Connor, M; Howell-Meurs, S; Kvalsvig, A; Goldfeld, S

    2015-01-01

    Children with special health care needs (SHCN) have or are at increased risk for a chronic condition that necessitates more health and related supports than their peers. While it is generally accepted that these children are at risk for school failure, the mechanisms through which SHCN impact on children's experiences (and therefore opportunities to intervene) at school are still relatively poorly understood. Based on the current literature, this paper provides a conceptual framework to guide further discussion of this issue in research, policy and practice. Evidence from the literature was reviewed and existing frameworks examined. We propose that SHCN impact on four interrelated domains of children's functioning: (1) body functions and structures; (2) activities of daily living; (3) social participation; and (4) educational participation. Children's functioning is further influenced by risk and protective factors that can be identified at the level of the child, family and service systems. Together, these processes contribute to shaping either positive or negative trajectories of school functioning. The mechanisms influencing school experiences for children with special health care needs are complex, with opportunities for positive interventions at a range of levels. The proposed conceptual model provides an accessible tool for guiding discussion of the support needs of this vulnerable population. PMID:24912552

  7. Effect of cooperative learning strategies on student verbal interactions and achievement during conceptual change instruction in 10th grade general science

    NASA Astrophysics Data System (ADS)

    Lonning, Robert A.

    This study evaluated the effects of cooperative learning on students' verbal interaction patterns and achievement in a conceptual change instructional model in secondary science. Current conceptual change instructional models recognize the importance of student-student verbal interactions, but lack specific strategies to encourage these interactions. Cooperative learning may provide the necessary strategies. Two sections of low-ability 10th-grade students were designated the experimental and control groups. Students in both sections received identical content instruction on the particle model of matter using conceptual change teaching strategies. Students worked in teacher-assigned small groups on in-class assignments. The experimental section used cooperative learning strategies involving instruction in collaborative skills and group evaluation of assignments. The control section received no collaborative skills training and students were evaluated individually on group work. Gains on achievement were assessed using pre- and posttreatment administrations of an investigator-designed short-answer essay test. The assessment strategies used in this study represent an attempt to measure conceptual change. Achievement was related to students' ability to correctly use appropriate scientific explanations of events and phenomena and to discard use of naive conceptions. Verbal interaction patterns of students working in groups were recorded on videotape and analyzed using an investigator-designed verbal interaction scheme. The targeted verbalizations used in the interaction scheme were derived from the social learning theories of Piaget and Vygotsky. It was found that students using cooperative learning strategies showed greater achievement gains as defined above and made greater use of specific verbal patterns believed to be related to increased learning. The results of the study demonstrated that cooperative learning strategies enhance conceptual change instruction. More

  8. An examination of how middle school science teachers conduct collaborative inquiry and reflection about students' conceptual understanding

    NASA Astrophysics Data System (ADS)

    Todd-Gibson, Christine

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the teachers' ability to engage in collaborative inquiry. Observational, written, and interview data were collected from observations of teachers' face-to-face meetings and reflections, individual interviews, a focus group interview, and online reflections. The results of this study revealed that collaborative inquiry is a form of professional development that includes answering curricular questions through observation, communication, action, and reflection. This approach was developed and implemented by middle school science teachers. The premise of an inquiry is based on a need with students. Middle school science teachers came to consensus about actions to affect students' conceptual understanding, took action as stated, and shared their reflections of the actions taken with consideration to current and upcoming school activities. Activities involved teachers brainstorming and sharing with one another, talking about how the variables were merged into their curriculum, and how they impacted students' conceptual understanding. Teachers valued talking with one another about science content and pedagogy, but did find the inquiry portion of the approach to require more development. The greatest challenge to conducting collaborative inquiry and reflection was embedding teacher inquiry within a prescribed inquiry that was already being conducted by the Sundown School District. Collaborative inquiry should be structured so that it meets the needs of teachers in order to attend to the needs of students. A conducive atmosphere for collaborative inquiry and reflection is one in which administrators make the process mandatory and

  9. The effect of using a structured reading framework on middle school students' conceptual understanding within the Science Writing Heuristic approach

    NASA Astrophysics Data System (ADS)

    Jang, Jeong Yoon

    2011-12-01

    This study was designed to investigate the impact of using a Structured Reading Framework within the Science Writing Heuristic approach on a summary writing task, and how this framework is related to the development of students' conceptual understanding in the summary writing task. A quasi-experimental design with sixth and seventh grade students taught by two teachers in the middle school was used. Each teacher had four classes with two classes using the Structured Reading Framework (treatment) and the other two classes used the original reading framework (control). A total of 170 students participated in the study, with 83 in the control group (four classes) and 87 in the treatment group (four classes). All students used the SWH student templates to guide their written work and completed these templates during the SWH investigations of each unit. After completing the SWH investigations, both groups of students were asked to complete the summary writing task at the end of each unit. This process was replicated for each of the two units. All student writing samples collected were scored using an analytical framework and scoring matrices developed for the study. A total of 588 writing samples were included in the statistical analysis. Results indicated that the treatment group who used the Structured Reading Framework performed significantly better on the Summary Writing task than the control group. The results suggest that the using of the Structured Reading Framework in prompting and guiding the reading activities within the SWH approach have an impact on the development of conceptual understanding. In addition, it appears that the Structured Reading Framework impacted the development of conceptual understanding in the Summary Writing task by providing a scaffold to assist students' knowledge construction.

  10. [Empowerment in prevention and health promotion--a critical conceptual evaluation of basic understanding, dimensions and assessment problems].

    PubMed

    Kliche, T; Kröger, G

    2008-12-01

    Empowerment is an important concept in health care, but despite its prevalence it seems to be more of a buzz word. Thus, a conceptual review on empowerment in prevention and health promotion was carried out. 62 German and international theoretical contributions, reviews and studies were incorporated, covering the fields of prevention, care and therapy, rehabilitation, health-care research, nursing and work-related stress. The analysis revealed eight main dimensions of empowerment: (1) shared decision-making, (2) self-efficacy, (3) social support and social capital, (4) skills and competences, (5) health care utilisation, (6) goal setting and attainment, (7) reflexive thought and (8) innovation. Their empirical assessment can be carried out on a micro-, meso-, or macro-level. Three distinct basic conceptual notions emerged from the analysis, each applying its own specific research questions and measurement instruments: clinical, organizational-professional and political understanding of "empowerment". Therefore, these three specific conceptual notions should each be developed and tested separately, in particular in reviews, and empirical studies should embrace all eight subdimensions. PMID:19085666

  11. A conceptual framework for understanding the mental health impacts of oil spills: lessons from the Exxon Valdez oil spill.

    PubMed

    Palinkas, Lawrence A

    2012-01-01

    This paper introduces a conceptual framework for understanding and responding to the currently unfolding social and psychological impacts of the Deepwater Horizon oil spill. Drawing from the concept of corrosive communities and its relationship to theories of conservation of resources, cognitive activation, and risk and resilience, the conceptual model identifies three levels or tiers of impacts: biopsychosocial impacts that are direct consequences of the contamination of the physical environment; interpersonal impacts that are direct consequences of the biopsychosocial impacts; and intrapersonal or psychological impacts that are consequences of both the biopsychosocial and the interpersonal impacts. The model is then evaluated in light of research conducted in the aftermath of the Exxon Valdez oil spill as well as studies of other manmade disasters, and offers a set of testable hypotheses that predict likely impacts of the Deepwater Horizon oil spill. The conceptual framework may be used to identify strategies to develop community resilience and target specific services to prevent and mitigate these adverse effects. PMID:22913496

  12. Effects of the Physical Laboratory versus the Virtual Laboratory in Teaching Simple Electric Circuits on Conceptual Achievement and Attitudes Towards the Subject

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ercan, Orhan

    2015-01-01

    Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…

  13. Using Formal Embedded Formative Assessments Aligned with a Short-Term Learning Progression to Promote Conceptual Change and Achievement in Science

    ERIC Educational Resources Information Center

    Yin, Yue; Tomita, Miki K.; Shavelson, Richard J.

    2014-01-01

    This study examined the effect of learning progression-aligned formal embedded formative assessment on conceptual change and achievement in middle-school science. Fifty-two sixth graders were randomly assigned to either an experimental group or a control group. Both groups were taught about sinking and floating by the same teacher with identical…

  14. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  15. Conceptual Tools for Understanding Nature - Proceedings of the 3rd International Symposium

    NASA Astrophysics Data System (ADS)

    Costa, G.; Calucci, M.

    1997-04-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Some Limits of Science and Scientists * Three Limits of Scientific Knowledge * On Features and Meaning of Scientific Knowledge * How Science Approaches the World: Risky Truths versus Misleading Certitudes * On Discovery and Justification * Thought Experiments: A Philosophical Analysis * Causality: Epistemological Questions and Cognitive Answers * Scientific Inquiry via Rational Hypothesis Revision * Probabilistic Epistemology * The Transferable Belief Model for Uncertainty Representation * Chemistry and Complexity * The Difficult Epistemology of Medicine * Epidemiology, Causality and Medical Anthropology * Conceptual Tools for Transdisciplinary Unified Theory * Evolution and Learning in Economic Organizations * The Possible Role of Symmetry in Physics and Cosmology * Observational Cosmology and/or other Imaginable Models of the Universe

  16. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    SciTech Connect

    Wang, Zhehui

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  17. Transformation and Contextualisation: Conceptualising Students' Conceptual Understandings of Threshold Concepts in Calculus

    ERIC Educational Resources Information Center

    Scheja, Max; Pettersson, Kerstin

    2010-01-01

    Research on student learning in higher education suggests that threshold concepts within various disciplines have the capacity to transform students' understanding. The present study explores students' understanding in relation to particular threshold concepts in mathematics--integral and limit--and tries to clarify in what sense developing an…

  18. Patterns of Individual Differences in Conceptual Understanding and Arithmetical Skill: A Meta-Analysis

    ERIC Educational Resources Information Center

    Gilmore, Camilla K.; Papadatou-Pastou, Marietta

    2009-01-01

    Some theories from cognitive psychology and mathematics education suggest that children's understanding of mathematical concepts develops together with their knowledge of mathematical procedures. However, previous research into children's understanding of the inverse relationship between addition and subtraction suggests that there are individual…

  19. From Headline to Hard Grind: The Importance of Understanding Public Administration in Achieving Health Outcomes

    PubMed Central

    O’Flynn, Janine

    2016-01-01

    Many public policy programs fail to translate ambitious headlines to on-the-ground action. The reasons for this are many and varied, but for public administration and management scholars a large part of the gap between ambition and achievement is the challenge associated with the operation of the machinery of government itself, and how it relates to the other parties that it relies on to fulfill these outcomes. In their article, Carey and Friel set out key reasons why public health scholars should seek to better understand important ideas in public administration. In commenting on their contribution, I draw out two critical questions that are raised by this discussion: (i) what are boundaries and what forms do they take? and (ii) why work across boundaries? Expanding on these key questions extends the points made by Carey and Friel on the importance of understanding public administration and will better place public health scholars and practitioners to realise health outcomes. PMID:27694672

  20. The impact of science notebook writing on ELL and low-SES students' science language development and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Huerta, Margarita

    This quantitative study explored the impact of literacy integration in a science inquiry classroom involving the use of science notebooks on the academic language development and conceptual understanding of students from diverse (i.e., English Language Learners, or ELLs) and low socio-economic status (low-SES) backgrounds. The study derived from a randomized, longitudinal, field-based NSF funded research project (NSF Award No. DRL - 0822343) targeting ELL and non-ELL students from low-SES backgrounds in a large urban school district in Southeast Texas. The study used a scoring rubric (modified and tested for validity and reliability) to analyze fifth-grade school students' science notebook entries. Scores for academic language quality (or, for brevity, language ) were used to compare language growth over time across three time points (i.e., beginning, middle, and end of the school year) and to compare students across categories (ELL, former ELL, non-ELL, and gender) using descriptive statistics and mixed between-within subjects analysis of variance (ANOVA). Scores for conceptual understanding (or, for brevity, concept) were used to compare students across categories (ELL, former ELL, non-ELL, and gender) in three domains using descriptive statistics and ANOVA. A correlational analysis was conducted to explore the relationship, if any, between language scores and concept scores for each group. Students demonstrated statistically significant growth over time in their academic language as reflected by science notebook scores. While ELL students scored lower than former ELL and non-ELL students at the first two time points, they caught up to their peers by the third time point. Similarly, females outperformed males in language scores in the first two time points, but males caught up to females in the third time point. In analyzing conceptual scores, ELLs had statistically significant lower scores than former-ELL and non-ELL students, and females outperformed males in

  1. The Role of Cognitive, Metacognitive, and Motivational Variables in Conceptual Change: Preservice Early Childhood Teachers' Conceptual Understanding of the Cause of Lunar Phases

    ERIC Educational Resources Information Center

    Sackes, Mesut

    2010-01-01

    This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…

  2. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a “hub-and-spokes” perspective

    PubMed Central

    Chiou, Rocco

    2014-01-01

    Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This “inducer-to-concurrent” nexus is

  3. Three Dimensional Response Spectrum Soil Structure Modeling Versus Conceptual Understanding To Illustrate Seismic Response Of Structures

    SciTech Connect

    Touqan, Abdul Razzaq

    2008-07-08

    Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is 'a dynamic punch', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction.

  4. Conceptual Understanding of Screen Media Parenting: Report of a Working Group

    PubMed Central

    Hingle, Melanie; Chuang, Ru-Jye; Gorely, Trish; Hinkley, Trina; Jago, Russell; Lanigan, Jane; Pearson, Natalie; Thompson, Darcy A.

    2013-01-01

    Abstract Screen media (television, computers, and videogames) use has been linked to multiple child outcomes, including obesity. Parents can be an important influence on children's screen use. There has been an increase in the number of instruments available to assess parenting in feeding and physical activity contexts, however few measures are available to assess parenting practices regarding children's screen media use. A working group of screen media and parenting researchers convened at the preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity (ISBNPA) annual meeting, “Parenting Measurement: Current Status and Consensus Reports,” to identify and prioritize issues in assessing screen media parenting practices. The group identified that screen media use can pose different risks for children, depending on their age and developmental stage, across physiologic, psychosocial, and development outcomes. With that in mind, a conceptual framework of how parents may influence their child's screen-viewing behaviors was proposed to include the screen media content, context of viewing, and amount viewed. A research agenda was proposed to prioritize a validation of the framework and enhance the ability of researchers to best assess parenting influences across the three domains of content, context and amount of children's screen media use. PMID:23944919

  5. Katatonia: a new conceptual understanding of catatonia and a new rating scale.

    PubMed

    Carroll, Brendan T; Kirkhart, Rob; Ahuja, Niraj; Soovere, Ilo; Lauterbach, Edward C; Dhossche, Dirk; Talbert, Rebecca

    2008-12-01

    MODERN PSYCHIATRIC NOSOLOGIES SEPARATE CATATONIA ALONG THE LINES OF PRESUMED ETIOLOGY: bipolar, major depression, schizophrenia, and/or due to a general medical condition. Catatonic signs have always possessed significant diagnostic, therapeutic, and prognostic value. Kahlbaum's description of this syndrome in his monograph "Katatonia" included careful documentation of phenomenology. Kahlbaum selected the term katatonia to describe "tension insanity." He felt that the neuromotor signs were more important than the content of delusions (e.g. megalomania). While he felt that he was describing a unitary illness, he did identify mood disturbance, psychosis, and medical factors in this new illness.(1) In modern times, the term catatonia has become limited to describe a specifier of neuropsychiatric illnesses.The authors of this article feel that the term katatonia should be used to describe a group of neuropsychiatric illnesses presenting with catatonic signs. This may prevent the misconception that "catatonia is schizophrenia" and improve the detection of katatonia in patients. Specifically, katatonia is also observed in mood disorders, general medical conditions, and pervasive developmental disorders. The literature also supports the view of Dr. Leo Kanner and his description for neuromotor and neuropsychiatric signs in autistic disorder. This scale is named in honor of Dr. Kanner. It was developed by the authors and includes some of Dr. Kanner's core concepts. This paper will identify the clinical features of katatonia and introduce the KANNER scale (see Appendix 1) to improve conceptualization, detection, and measurement of this important clinical syndrome.

  6. Young people and health: towards a new conceptual framework for understanding empowerment.

    PubMed

    Spencer, Grace

    2014-01-01

    In recent times, empowerment has become the focus of much work with young people amidst increasing concerns about their health. Empowerment is often offered as a 'solution' to such concerns, with the uncritical assumption being made that empowerment unproblematically results in positive health outcomes. While much of the health promotion literature advocates 'empowerment', it often does so without offering a clear conceptualisation of the word itself or indeed addressing the thorny theoretical tensions surrounding the concept's root word of power. In light of this omission, this article offers a more theoretically informed conceptualisation of empowerment and considers the relationship to young people's health. This article outlines a more dynamic and generative conceptualisation of empowerment than hitherto articulated in the literature, informed by Lukes' multidimensional perspective of power. Drawing on findings from an ethnographic study on empowerment and young people's health, this article develops six conceptually distinct forms of empowerment (impositional, dispositional, concessional, oppositional, normative and transformative). Data were collected from 55 young men and women aged 15-16 years through group discussions, individual interviews and observational work in a school and surrounding community settings in England. Crucially, these six new forms of empowerment capture and synthesise individual, structural and ideological elements of power that differentially, and sometimes inconsistently, shape the possibilities for young people's empowerment. Of significance is the way in which these different forms of empowerment intersect to (re)produce relations of power and may offer different possibilities for health promotion.

  7. Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity.

    PubMed

    de Souza Machado, Anderson Abel; Spencer, Kate; Kloas, Werner; Toffolon, Marco; Zarfl, Christiane

    2016-01-15

    Metal pollution is a global problem in estuaries due to the legacy of historic contamination and currently increasing metal emissions. However, the establishment of water and sediment standards or management actions in brackish systems has been difficult because of the inherent transdisciplinary nature of estuarine processes. According to the European Commission, integrative comprehension of fate and effects of contaminants in different compartments of these transitional environments (estuarine sediment, water, biota) is still required to better establish, assess and monitor the good ecological status targeted by the Water Framework Directive. Thus, the present study proposes a holistic overview and conceptual model for the environmental fate of metals and their toxicity effects on aquatic organisms in estuaries. This includes the analysis and integration of biogeochemical processes and parameters, metal chemistry and organism physiology. Sources of particulate and dissolved metal, hydrodynamics, water chemistry, and mechanisms of toxicity are discussed jointly in a multidisciplinary manner. It is also hypothesized how these different drivers of metal behaviour might interact and affect metal concentrations in diverse media, and the knowledge gaps and remaining research challenges are pointed. Ultimately,estuarine physicochemical gradients, biogeochemical processes, and organism physiology are jointly coordinating the fate and potential effects of metals in estuaries, and both realistic model approaches and attempts.

  8. Disciplinary Literacies and Learning to Read for Understanding: A Conceptual Framework of Core Processes and Constructs

    ERIC Educational Resources Information Center

    Goldman, Susan R.; Britt, M. Anne; Brown, Willard; Cribb, Gayle; George, MariAnne; Greenleaf, Cynthia; Lee, Carol D.; Shanahan, Cynthia

    2016-01-01

    This paper presents a framework and methodology for designing learning goals targeted at what students need to know and be able to do in order to attain high levels of literacy and achievement in three disciplinary areas--literature, science, and history. For each discipline, a team of researchers, teachers, and specialists in that discipline…

  9. Disciplinary Literacies and Learning to Read for Understanding: A Conceptual Framework for Disciplinary Literacy

    ERIC Educational Resources Information Center

    Goldman, Susan R.; Britt, M. Anne; Brown, Willard; Cribb, Gayle; George, MariAnne; Greenleaf, Cynthia; Lee, Carol D.; Shanahan, Cynthia

    2016-01-01

    This article presents a framework and methodology for designing learning goals targeted at what students need to know and be able to do in order to attain high levels of literacy and achievement in three disciplinary areas--literature, science, and history. For each discipline, a team of researchers, teachers, and specialists in that discipline…

  10. Reading for Deep Understanding: Knowledge Building and Conceptual Artifacts in Secondary English

    ERIC Educational Resources Information Center

    Nachowitz, Marc

    2012-01-01

    The purpose of this design-based experiment is two-fold: to see if classroom pedagogies can be developed to improve student achievement in English literature as well as prepare them for 21st Century literacies. Applying Bereiter and Scardamalia's theory of Knowledge Building to English curricula, this experiment tracked the progress of a…

  11. Evolution in action in the classroom: Engaging students in scientific practices to develop a conceptual understanding of natural selection

    NASA Astrophysics Data System (ADS)

    Johnson, Wendy Renae

    Public understanding and acceptance of the theory of evolution in the United States is not commensurate with its acceptance in the scientific community and its role as the central organizing principle of the biological sciences. There are a multitude of factors that affect student understanding of the theory of evolution documented in the literature including the proposition that understanding of evolution is intimately linked to understanding the nature of science. This study describes the development, implementation, and assessment of learning activities that address the process of natural selection and the scientific methodology that illuminates these mechanisms. While pre and post-test scores were higher for students in an Advanced Placement Biology course than students in a general biology course, similar learning gains were observed in both groups. Learning gains were documented in understanding the random nature of mutations and their importance to the process of natural selection, explaining selection as a competitive advantage of one variation over another type and specifically linking this to reproductive success, and in connecting inheritance, variation, and selection to explain the process of natural selection. Acceptance of the scientific validity of the theory of evolution as measured by the Measure of Acceptance of the Theory of Evolution (MATE) Instrument also increased significantly in both groups over the course of the school year. These findings suggest that the sequence of activities implemented in this study promote conceptual change about the nature of science and the process of evolution by natural selection in students.

  12. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    ERIC Educational Resources Information Center

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  13. Promoting Conceptual Understanding of Chemical Representations: Students' Use of a Visualization Tool in the Classroom.

    ERIC Educational Resources Information Center

    Wu, Hsin-kai; Krajcik, Joseph S.; Soloway, Elliot

    This study investigated how students develop their understanding of chemical representations with the aid of a visualizing tool, eChem, that allows them to build molecular models and simultaneously view multiple representations. Multiple sources of data were collected with the participation of high school students (n=71) over a six-week period.…

  14. Growth in Ecological Concept Development and Conceptual Understanding in Teacher Education: The Discerning Teacher

    ERIC Educational Resources Information Center

    Puk, Tom; Stibbards, Adam

    2011-01-01

    In a previous study, Puk and Stibbards (2010) demonstrated that a cohort of teacher candidates entering into an ecological literacy, Bachelor of Education program had very immature understanding of complex ecological concepts. Specifically, written definitions were either absent entirely, very vague, or missing essential criterial attributes, as…

  15. Argumentation Practices in Classroom: Pre-Service Teachers' Conceptual Understanding of Chemical Equilibrium

    ERIC Educational Resources Information Center

    Kaya, Ebru

    2013-01-01

    This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of…

  16. Developing Conceptual Understandings of the Capacity to Aspire for Higher Education

    ERIC Educational Resources Information Center

    Prodonovich, Samuel; Perry, Laura B.; Taggart, Andrew

    2014-01-01

    This paper reviews research and theory relating to aspirations for higher education as a cultural capacity. Understanding the social and cultural dimensions of aspirations for higher education is important as they are increasingly becoming part of social commentary and more recently educational policy, research and practice. This paper synthesises…

  17. Urban High School Students' Critical Science Agency: Conceptual Understandings and Environmental Actions around Climate Change

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Vaughn, Meredith Houle

    2012-01-01

    This study investigates how the enactment of a climate change curriculum supports students' development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum…

  18. When a Bilingual Child Describes Living Things: An Analysis of Conceptual Understandings from a Language Perspective

    NASA Astrophysics Data System (ADS)

    Salleh, Romaizah; Venville, Grady J.; Treagust, David F.

    2007-07-01

    With increasing numbers of students learning science through a second language in many school contexts, there is a need for research to focus on the impact language has on students’ understanding of science concepts. Like other countries, Brunei has adopted a bilingual system of education that incorporates two languages in imparting its curriculum. For the first three years of school, Brunei children are taught in Malay and then for the remainder of their education, instruction is in English. This research is concerned with the influence that this bilingual education system has on children’s learning of science. The purpose was to document the patterns of Brunei students’ developing understandings of the concepts of living and non-living things and examine the impact in the change in language as the medium of instruction. A cross-sectional case study design was used in one primary school. Data collection included an interview ( n = 75), which consisted of forced-response and semi-structured interview questions, a categorisation task and classroom observation. Data were analysed quantitatively and qualitatively. The results indicate that the transition from Malay to English as the language of instruction from Primary 4 onwards restricted the students’ ability to express their understandings about living things, to discuss related scientific concepts and to interpret and analyse scientific questions. From a social constructivist perspective these language factors will potentially impact on the students’ cognitive development by limiting the expected growth of the students’ understandings of the concepts of living and non-living things.

  19. Developing Children's Conceptual Understanding of Area Measurement: A Curriculum and Teaching Experiment

    ERIC Educational Resources Information Center

    Huang, Hsin-Mei E.; Witz, Klaus G.

    2011-01-01

    The present study examined the effectiveness of three instructional treatments which had different combinations of mathematical elements regarding 2-dimensional (2-D) geometry and area measurement for developing 4th-grade children's understanding of the formulas for area measurement and their ability to solve area measurement problems.…

  20. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    ERIC Educational Resources Information Center

    Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole

    2011-01-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…

  1. Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies

    NASA Astrophysics Data System (ADS)

    Chiu, Mei-Hung; Lin, Jing-Wen

    2005-04-01

    For the past two decades, a growing amount of research has shown that the use of analogies in science teaching and learning promotes meaningful understanding of complex scientific concepts (Gentner, [1983]; Glynn, [1989]; Harrison & Treagust, [1993]; Wong, [1993]). This article presents a study in which multiple analogies were used as scaffolding to link students' prior understanding of daily life events to knowledge of the scientific domain. The study was designed to investigate how multiple analogies influence student learning of a complex scientific concept: the electric circuit. We used several analogies in a set of learning materials to present the concepts of parallel and series circuits. Thirty-two fourth graders participated in this study and were randomly assigned to four groups. The four groups were named nonanalogy (control), single analogy, similar analogies, and complementary analogies, according to the materials they used in this study. The results demonstrated that using analogies not only promoted profound understanding of complex scientific concepts (such as electricity), but it also helped students overcome their misconceptions of these concepts. In particular, we found that the reason the students had difficulty understanding the concept of electricity was because of their ontological presupposition of the concept. Implications for teaching and learning are discussed.

  2. Promoting Fourth Graders' Conceptual Change of Their Understanding of Electric Current via Multiple Analogies

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Lin, Jing-Wen

    2005-01-01

    For the past two decades, a growing amount of research has shown that the use of analogies in science teaching and learning promotes meaningful understanding of complex scientific concepts (Gentner, [1983]; Glynn, [1989]; Harrison & Treagust, [1993]; Wong, [1993]). This article presents a study in which multiple analogies were used as scaffolding…

  3. Can an Egg-Dropping Race Enhance Students' Conceptual Understanding of Air Resistance?

    ERIC Educational Resources Information Center

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-01-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are…

  4. Approaches to Biology Teaching and Learning: Understanding the Wrong Answers--Teaching toward Conceptual Change

    ERIC Educational Resources Information Center

    Tanner, Kimberly; Allen, Deborah

    2005-01-01

    Underpinning science education reform movements in the last 20 years--at all levels and within all disciplines--is an explicit shift in the goals of science teaching from students simply creating a knowledge base of scientific facts to students developing deeper understandings of major concepts within a scientific discipline. For example, what use…

  5. Digital Library Archaeology: A Conceptual Framework for Understanding Library Use through Artifact-Based Evaluation

    ERIC Educational Resources Information Center

    Nicholson, Scott

    2005-01-01

    Archaeologists have used material artifacts found in a physical space to gain an understanding about the people who occupied that space. Likewise, as users wander through a digital library, they leave behind data-based artifacts of their activity in the virtual space. Digital library archaeologists can gather these artifacts and employ inductive…

  6. Arguments, Contradictions, Resistances, and Conceptual Change in Students' Understanding of Atomic Structure.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo

    2002-01-01

    Reports on a study aimed at facilitating freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. Hypothesizes that classroom discussions based on arguments/counterarguments of the heuristic principles on which these scientists based their atomic models can facilitate students'…

  7. The Effect of Conceptual Diagrams on Aviation Mechanics' Technical Systems Understanding.

    ERIC Educational Resources Information Center

    Satchwell, Richard E.; Johnson, Scott D.

    A quasi-experimental study explored the effect of functional flow diagrams on technical system understanding. An individualized field training package which contained schematic diagrams that illustrated an aircraft's electrical system was complimented with functional flow diagrams. In a 4-week treatment, a control group of 10 students enrolled in…

  8. Addressing Challenges to Public Understanding of Science: Epistemic Cognition, Motivated Reasoning, and Conceptual Change

    ERIC Educational Resources Information Center

    Sinatra, Gale M.; Kienhues, Dorothe; Hofer, Barbara K.

    2014-01-01

    Science is of critical importance to daily life in a knowledge society and has a significant influence on many everyday decisions. As scientific problems increase in their number and complexity, so do the challenges facing the public in understanding these issues. Our objective is to focus on 3 of those challenges: the challenge of reasoning about…

  9. Threshold Concepts in Geographical Information Systems: A Step towards Conceptual Understanding

    ERIC Educational Resources Information Center

    Srivastava, Sanjeev Kumar

    2013-01-01

    Threshold concepts are those transformative concepts in a discipline that are often difficult to understand when first encountered, but when mastered they transform students, both epistemologically and ontologically in relation to the discipline. Using the characteristics of threshold concepts, existing curricula and summative content analysis of…

  10. A Conceptual Model for Understanding Self-Directed Learning in Online Environments

    ERIC Educational Resources Information Center

    Song, Liyan; Hill, Janette R.

    2007-01-01

    Research indicates that online learning often situates control of implementation with the learner. Recently, scholars have turned attention to the importance of self-directed learning (SDL) skills for online learning environments. Existing frameworks for understanding SDL focus primarily on process and personal attributes in face-to-face settings.…

  11. Teaching Algorithmic Problem Solving or Conceptual Understanding: Role of Developmental Level, Mental Capacity, and Cognitive Style.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Robinson, William R.

    It has been shown previously that many students solve chemistry problems using only algorithmic strategies and do not understand the chemical concepts on which the problems are based. It is plausible to suggest that if the information is presented in differing formats the cognitive demand of a problem changes. The main objective of this study…

  12. Blending Physical and Virtual Manipulatives: An Effort to Improve Students' Conceptual Understanding through Science Laboratory Experimentation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharia, Zacharias C.

    2012-01-01

    This study aimed to investigate the effect of experimenting with physical manipulatives (PM), virtual manipulatives (VM), and a blended combination of PM and VM on undergraduate students' understanding of concepts in the domain of "Light and Color." A pre-post comparison study design was used for the purposes of this study that involved 70…

  13. When a Bilingual Child Describes Living Things: An Analysis of Conceptual Understandings from a Language Perspective

    ERIC Educational Resources Information Center

    Salleh, Romaizah; Venville, Grady J.; Treagust, David F.

    2007-01-01

    With increasing numbers of students learning science through a second language in many school contexts, there is a need for research to focus on the impact language has on students' understanding of science concepts. Like other countries, Brunei has adopted a bilingual system of education that incorporates two languages in imparting its…

  14. Conceptual Understandings of Seasonal Change by Middle School Students with Visual Impairments

    ERIC Educational Resources Information Center

    Wild, Tiffany A.; Trundle, Kathy Cabe

    2010-01-01

    The purpose of this study was to understand and describe the misconceptions of students with visual impairments about seasonal change. Students who participated in traditional instruction exhibited alternative conceptions before and after instruction, whereas those who participated in inquiry-based instruction had alternative conceptions before…

  15. Integrating Intrusive and Non-intrusive Characterization Methods To Achieve A Conceptual Site Model For The SLDA FUSRAP

    SciTech Connect

    Durham, L.A.; Peterson, J.M.; Frothingham, D.G.; Frederick, W.T.; Lenart, W.

    2008-07-01

    trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders. (authors)

  16. Integrating intrusive and nonintrusive characterization methods to achieve a conceptual site model for the SLDA FUSRAP site - 8265.

    SciTech Connect

    Durham, L. A.; Peterson, J. M.; Frothingham, D. G.; Frederick, W. T.; Lenart, W.; Environmental Science Division; U. S. Army Corps of Engineers, Pittsburg District; U. S. Army Corps of Engineers, Buffalo District

    2008-01-01

    data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders.

  17. Towards an Understanding of the Conceptual Underpinnings of Agile Development Methodologies

    NASA Astrophysics Data System (ADS)

    Nerur, Sridhar; Cannon, Alan; Balijepally, Venugopal; Bond, Philip

    While the growing popularity of agile development methodologies is undeniable, there has been little systematic exploration of its intellectual foundation. Such an effort would be an important first step in understanding this paradigm's underlying premises. This understanding, in turn, would be invaluable in our assessment of current practices as well as in our efforts to advance the field of software engineering. Drawing on a variety of sources, both within and outside the discipline, we argue that the concepts underpinning agile development methodologies are by no means novel. In the tradition of General Systems Theory this paper advocates a transdisciplinary examination of agile development methodologies to extend the intellectual boundaries of software development. This is particularly important as the field moves beyond instrumental processes aimed at satisfying mere technical considerations.

  18. Socioscientific Issues: A Path Towards Advanced Scientific Literacy and Improved Conceptual Understanding of Socially Controversial Scientific Theories

    NASA Astrophysics Data System (ADS)

    Pinzino, Dean William

    This thesis investigates the use of socioscientific issues (SSI) in the high school science classroom as an introduction to argumentation and socioscientific reasoning, with the goal of improving students' scientific literacy (SL). Current research is reviewed that supports the likelihood of students developing a greater conceptual understanding of scientific theories as well as a deeper understanding of the nature of science (NOS), through participation in informal and formal forms of argumentation in the context of SSI. Significant gains in such understanding may improve a student's ability to recognize the rigor, legitimacy, and veracity of scientific claims and better discern science from pseudoscience. Furthermore, students that participate in significant SSI instruction by negotiating a range of science-related social issues can make significant gains in content knowledge and develop the life-long skills of argumentation and evidence-based reasoning, goals not possible in traditional lecture-based science instruction. SSI-based instruction may therefore help students become responsible citizens. This synthesis also suggests that that the improvements in science literacy and NOS understanding that develop from sustained engagement in SSI-based instruction will better prepare students to examine and scrutinize socially controversial scientific theories (i.e., evolution, global warming, and the Big Bang).

  19. Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics

    NASA Astrophysics Data System (ADS)

    Bresler Freidenreich, Hava; Golan Duncan, Ravit; Shea, Nicole

    2011-11-01

    Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc. Genetic literacy entails understanding three interrelated models: a genetic model that describes patterns of genetic inheritance, a meiotic model that describes the process by which genes are segregated into sex cells, and a molecular model that describes the mechanisms that link genotypes to phenotypes within an individual. Currently, much of genetics instruction, especially in terms of the molecular model, occurs at the high school level, and we know little about the ways in which middle school students can reason about these models. Furthermore, we do not know the extent to which carefully designed instruction can help younger students develop coherent and interrelated understandings in genetics. In this paper, we discuss a research study aimed at elucidating middle school students' abilities to reason about the three genetic models. As part of our research, we designed an eight-week inquiry unit that was implemented in a combined sixth- to eighth-grade science classroom. We describe our instructional design and report results based on an analysis of written assessments, clinical interviews, and artifacts of the unit. Our findings suggest that middle school students are able to successfully reason about all three genetic models.

  20. The effects of a conceptual change coupled-inquiry cycle investigation on student understanding of the independence of mass in rolling motion on an incline plane

    NASA Astrophysics Data System (ADS)

    Rowley, Eric Noel

    The Conceptual Change Coupled-Inquiry Cycle is designed to incorporate learning cycle, inquiry, and conceptual change instructional models. The purpose of this study was to examine the impact of the Conceptual Change Coupled-Inquiry Cycle on first-year, high school students' misconceptions of Newton's Laws and incline motion. This study was a mixed-method, quasi-experimental study with both quantitative and qualitative data analyses. Student notebook and test data were collected and analyzed in this study. Quantitative and qualitative analytical methods were utilized in the analysis of these data. A Stuart-Maxwell chi-square was used to assess the quantitative significance of changes in student conceptual understanding of incline motion at each phase of the Conceptual Change Coupled-Inquiry Cycle. Qualitative analysis of the notebooks provided important support of the quantitative findings. Results indicate that students report a better understanding of incline motion and Newton's Laws as a result of completing a Conceptual Change Coupled-Inquiry Cycle investigation. Furthermore, quantitative analysis of the notebooks, using the Stuart-Maxwell chi-square test, indicate significant increases in student understanding of Newton's Laws and incline motion, at the alpha = 0.05 level. Analysis of student test data was largely inconclusive. This study indicates the Conceptual Change Coupled-Inquiry Cycle helps students better understand incline motion and Newton's Laws. Significant decreases in the number of students reporting misconceptions about incline motion were evident. Evidence suggests the Conceptual Change Coupled-Inquiry Cycle is an effective learning cycle and that it can improve student understanding of science concepts.

  1. Achieving Millennium Development Goals for Health: Building Understanding, Trust and Capacity to Respond

    PubMed Central

    Larson, Heidi J.

    2007-01-01

    Biomedical interventions promise achievement of health-related Millennium Development Goals provided social-, capacity- and knowledge-based constraints to scaling up and reaching marginalized people at risk, are addressed, and balance between prevention and treatment is struck. We argue for a new approach: multi-stakeholder capacity building and learning for empowerment: MuSCLE. MuSCLE is used as a way to frame three systemic weaknesses in traditional health science and policy approaches: 1) a lack of engagement with people at risk to build a collective understanding of the contexts of health problems; 2) a lack of multi-criteria evaluation of alternative interventions; and 3) a lack of attention paid to integrated capacity building. The MuSCLE framework responds in three ways: 1) Participatory assessment of the ecological, socio-cultural, economic and political contexts of health, identifying priorities using risk and vulnerability science, and modeling drivers; 2) Selection among intervention alternatives that makes ecological, socio-cultural, economic and political tradeoffs transparent; and 3) Integrated capacity building for sustainable and adaptive interventions. Literature and field lessons support the argument, and guidelines are set down. A MuSCLE approach argues for a transformation in health science and policy in order to achieve Millennium Development Goals for health. PMID:17399849

  2. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    NASA Astrophysics Data System (ADS)

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-08-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from use of such a tool: students are often taught a list of concepts and a separate list of parameters for mathematical equations. The link between the two can be elusive. While wet-lab experimentation is the proven approach to developing this link, in silico simulation can provide a means of acquiring important insight and understanding within a time frame and at a cost that cannot be achieved otherwise. We suggest that simulations and their representation of laboratory experiments in the classroom can become a key component in student achievement by helping to develop a student's positive attitude towards science and his or her creativity in scientific inquiry. We present results of two simulation experiments that validate against data taken from current literature. We follow with a classroom example demonstrating how this tool can be seamlessly integrated within the traditional pharmacology learning experience.

  3. Conceptual Metaphor and the Study of Conceptual Change: Research synthesis and future directions

    NASA Astrophysics Data System (ADS)

    Amin, Tamer G.

    2015-04-01

    Many of the goals of research on conceptual metaphor in science education overlap with the goals of research on conceptual change. The relevance of a conceptual metaphor perspective to the study of conceptual change has already been discussed. However, a substantial body of literature on conceptual metaphor in science education has now emerged. This work has not yet been synthesized or related explicitly to the goals of conceptual change research. This paper first presents a broad sketch of the study of conceptual change, characterizing the goals of this body of work, its contributions to date, and identifying open questions. Next, the literature on conceptual metaphor in science education is reviewed against this background. The review clarifies the natural theoretical connections between the conceptual metaphor perspective and the phenomenon of conceptual change. It then examines the contributions made by the literature on conceptual metaphor in science education to the goals of research on conceptual change-namely, characterizing student conceptions, identifying obstacles to learning, understanding the process of conceptual change, and designing productive pedagogical strategies that could achieve conceptual change. The paper concludes with a discussion of further avenues for research into conceptual change, suggested by adopting a conceptual metaphor perspective.

  4. Toward a better understanding of the future of the solo medical practitioner in health care industry: a conceptual review.

    PubMed

    Erdem, S A; Lacombe, B

    1998-01-01

    Even a brief conceptual review of the current developments in the health care industry indicates that the future of independent medical practitioners is rather challenging. It may be necessary for these parties to pursue proactive and aggressive marketing strategies to be able to compete with the managed care organizations. Accordingly, this paper outlines some of the current trends in health care marketing as they relate to the ongoing changes to which solo medical practitioners need to respond. It is hoped that the review of the issues raised in this paper can provide an initial basis for a better understanding of some of the challenges to come up with more comprehensive and effective strategy decisions.

  5. Classroom Note: Computational and Conceptual Understanding of the Connections among Standard Deviations, Z-Scores, and Normal Distributions

    ERIC Educational Resources Information Center

    Reyes, Melissa Lopez

    2003-01-01

    A structure for learning the connections among standard deviations, z-scores, and normal distributions is presented. The components of this structure are classified into intuitive or previously learned conceptual knowledge, computational knowledge, and formalized conceptual knowledge. (Contains 1 figure.)

  6. An exploratory study into students' conceptual understanding of acid/base principles associated with chemical buffer systems

    NASA Astrophysics Data System (ADS)

    MacGowan, Catherine Elizabeth

    The overall objective of this research project was to provide an insight into students' conceptual understanding of acid/base principles as it relates to the comprehension and correct application of scientific concepts during a problem-solving activity. The difficulties experienced learning science and in developing appropriate problem-solving strategies most likely are predetermined by students' existing conceptual and procedural knowledge constructs; with the assimilation of newly acquired knowledge hindering or aiding the learning process. Learning chemistry requires a restructuring of content knowledge which will allow the individual to assemble and to integrate his/her own perception of science with instructional knowledge. The epistemology of constructivism, the theoretical grounding for this research project, recognizes the student's role as an active participant in the learning process. The study's design was exploratory in nature and descriptive in design. The problem-solving activity, the preparation of a chemical buffer solution at pH of 9, was selected and modified to reflect and meet the study's objective. Qualitative research methods (i.e., think aloud protocols, retrospective interviews, survey questionnaires such as the Scale of Intellectual Development (SID), and archival data sources) were used in the collection and assessment of data. Given its constructivist grounding, simplicity, and interpretative view of knowledge acquisition and learning of collegiate aged individuals, the Perry Intellectual and Ethical Development Model (1970) was chosen as the applied model for evaluation student cognition. The study's participants were twelve traditional college age students from a small, private liberal arts college. All participants volunteered for the project and had completed or were completing a general college chemistry course at the time of the project. Upon analysis of the data the following observations and results were noted: (1) students

  7. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    NASA Astrophysics Data System (ADS)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  8. Development of a student-centered instrument to assess middle school students' conceptual understanding of sound

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2014-06-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound has material properties, and sound has process properties. The final SCII consists of 71 statements that respondents rate as either true or false and also indicate their confidence on a five-point scale. Administration to 355 middle school students resulted in a Cronbach alpha of 0.906, suggesting a high reliability. In addition, the average percentage of students' answers to statements that associate sound with material properties is significantly higher than the average percentage of statements associating sound with process properties (p <0.001). The SCII is a valid and reliable tool that can be used to determine students' conceptions of sound.

  9. Understanding the paranoid psychosis of James: Use of the repertory grid technique for case conceptualization

    PubMed Central

    García-Mieres, Helena; Ochoa, Susana; Salla, Marta; López-Carrilero, Raquel; Feixas, Guillem

    2016-01-01

    In this paper we illustrate the potential of the repertory grid technique as an instrument for case formulation and understanding of the personal perception and meanings of people with a diagnosis of psychotic disorders. For this purpose, the case of James is presented: A young man diagnosed with schizophrenia and personality disorder, with severe persecutory delusions and other positive symptoms that have not responded to antipsychotic medication, as well with depressive symptomatology. His case was selected because of the way his symptoms are reflected in his personal perception of self and others, including his main persecutory figure, in the different measures that result from the analysis of his repertory grid. Some key clinical hypotheses and possible targets for therapy are discussed. PMID:27679779

  10. Understanding the paranoid psychosis of James: Use of the repertory grid technique for case conceptualization

    PubMed Central

    García-Mieres, Helena; Ochoa, Susana; Salla, Marta; López-Carrilero, Raquel; Feixas, Guillem

    2016-01-01

    In this paper we illustrate the potential of the repertory grid technique as an instrument for case formulation and understanding of the personal perception and meanings of people with a diagnosis of psychotic disorders. For this purpose, the case of James is presented: A young man diagnosed with schizophrenia and personality disorder, with severe persecutory delusions and other positive symptoms that have not responded to antipsychotic medication, as well with depressive symptomatology. His case was selected because of the way his symptoms are reflected in his personal perception of self and others, including his main persecutory figure, in the different measures that result from the analysis of his repertory grid. Some key clinical hypotheses and possible targets for therapy are discussed.

  11. Understanding the paranoid psychosis of James: Use of the repertory grid technique for case conceptualization.

    PubMed

    García-Mieres, Helena; Ochoa, Susana; Salla, Marta; López-Carrilero, Raquel; Feixas, Guillem

    2016-09-22

    In this paper we illustrate the potential of the repertory grid technique as an instrument for case formulation and understanding of the personal perception and meanings of people with a diagnosis of psychotic disorders. For this purpose, the case of James is presented: A young man diagnosed with schizophrenia and personality disorder, with severe persecutory delusions and other positive symptoms that have not responded to antipsychotic medication, as well with depressive symptomatology. His case was selected because of the way his symptoms are reflected in his personal perception of self and others, including his main persecutory figure, in the different measures that result from the analysis of his repertory grid. Some key clinical hypotheses and possible targets for therapy are discussed.

  12. Understanding the paranoid psychosis of James: Use of the repertory grid technique for case conceptualization.

    PubMed

    García-Mieres, Helena; Ochoa, Susana; Salla, Marta; López-Carrilero, Raquel; Feixas, Guillem

    2016-09-22

    In this paper we illustrate the potential of the repertory grid technique as an instrument for case formulation and understanding of the personal perception and meanings of people with a diagnosis of psychotic disorders. For this purpose, the case of James is presented: A young man diagnosed with schizophrenia and personality disorder, with severe persecutory delusions and other positive symptoms that have not responded to antipsychotic medication, as well with depressive symptomatology. His case was selected because of the way his symptoms are reflected in his personal perception of self and others, including his main persecutory figure, in the different measures that result from the analysis of his repertory grid. Some key clinical hypotheses and possible targets for therapy are discussed. PMID:27679779

  13. Conceptual Understanding of Students in an Upper Division Space Physics Course

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Oppenheim, M.

    2006-12-01

    The Astronomy Department of Boston University offers both an upper division undergraduate and a graduate level introductory course in space physics. These are taught by faculty affiliated with both the Center for Space Physics and the Astronomy Department. These courses typically cover phenomena in that occur in the solar corona, solar wind, and the magnetospheres and atmospheres of planets and comets. Topics also include, Solar System plasma physics, magnetic storms, measurement techniques, and space weather affects. In the spring of 2006, a preliminary analysis was conducted of the students' understanding of selected concepts in space physics. This work consisted of multiple-choice pre/post tests and a series of interviews with student volunteers. As part of the tests students were asked to gauge their relative confidence in their answers on a 0-4 Likert Scale. This analysis gives some insight into students' prior knowledge regarding space physics concepts. Results from pretest and interviews showed that students had a particular weakness in their understanding of particle motions in simple field configurations. This is surprising since these students should have typically both an introductory and upper division E&M course. In addition, the results showed misconceptions regarding the structure of the interplanetary magnetic field, the source region of auroral particles, and the relationship between magnetospheric currents and magnetic fields. Post test showed improvement in areas that were of focus in the course, particularly with respect to motion of charged particles in fields. The results of this work are intended to direct future studies and curricular development.

  14. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    PubMed

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges. PMID:23792915

  15. Understanding enabling capacities for managing the 'wicked problem' of nonpoint source water pollution in catchments: a conceptual framework.

    PubMed

    Patterson, James J; Smith, Carl; Bellamy, Jennifer

    2013-10-15

    Nonpoint source (NPS) water pollution in catchments is a 'wicked' problem that threatens water quality, water security, ecosystem health and biodiversity, and thus the provision of ecosystem services that support human livelihoods and wellbeing from local to global scales. However, it is a difficult problem to manage because water catchments are linked human and natural systems that are complex, dynamic, multi-actor, and multi-scalar in nature. This in turn raises questions about understanding and influencing change across multiple levels of planning, decision-making and action. A key challenge in practice is enabling implementation of local management action, which can be influenced by a range of factors across multiple levels. This paper reviews and synthesises important 'enabling' capacities that can influence implementation of local management action, and develops a conceptual framework for understanding and analysing these in practice. Important enabling capacities identified include: history and contingency; institutional arrangements; collaboration; engagement; vision and strategy; knowledge building and brokerage; resourcing; entrepreneurship and leadership; and reflection and adaptation. Furthermore, local action is embedded within multi-scalar contexts and therefore, is highly contextual. The findings highlight the need for: (1) a systemic and integrative perspective for understanding and influencing change for managing the wicked problem of NPS water pollution; and (2) 'enabling' social and institutional arenas that support emergent and adaptive management structures, processes and innovations for addressing NPS water pollution in practice. These findings also have wider relevance to other 'wicked' natural resource management issues facing similar implementation challenges.

  16. Effects of California community college students' gender, self-efficacy, and attitudes and beliefs toward physics on conceptual understanding of Newtonian mechanics

    NASA Astrophysics Data System (ADS)

    Said, Asma

    Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.

  17. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    ERIC Educational Resources Information Center

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  18. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    ERIC Educational Resources Information Center

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  19. Elementary pre-service teachers' conceptual understanding of dissolving: a Vygotskian concept development perspective

    NASA Astrophysics Data System (ADS)

    Harrell, Pamela; Subramaniam, Karthigeyan

    2015-09-01

    Background and purpose: The purpose of this study was to investigate and identify the nature and the interrelatedness of pre-service teachers' misconceptions and scientific concepts for explaining dissolving before, during, and after a 5E learning cycle lesson on dissolving, the intervention. Sample, design, and methods: Guided by Vygotsky's theory of concept development, the study focused specifically on the spontaneous, and spontaneous pseudo-concepts held by the 61 elementary pre-service teachers during a 15-week science methods course. Data included concept maps, interview transcripts, written artifacts, drawings, and narratives, and were thematically analyzed to classify concepts and interrelatedness. Results: Results of the study showed that spontaneous pseudo-concepts (1) dominated pre-service teachers' understandings about dissolving throughout the study, and (2) were simply associated with scientific concepts during and after the intervention. Conclusion: Collectively, the results indicated that the pre-service teachers' did not acquire a unified system of knowledge about dissolving that could be characterized as abstract, generalizable, and hierarchical. Implications include the need for (1) familiarity with pre-service teachers' prior knowledge about science content; (2) a variety of formative assessments to assess their misconceptions; (3) emphasizing the importance of dialectical method for concept development during instruction; and (4) skillful content instructors.

  20. Conceptual Change and Science Achievement Related to a Lesson Sequence on Acids and Bases Among African American Alternative High School Students: A Teacher's Practical Arguments and the Voice of the "Other"

    NASA Astrophysics Data System (ADS)

    Wood, Lynda Charese

    The study of teaching and learning during the period of translating ideals of reform into classroom practice enables us to understand student-teacher-researcher symbiotic learning. In line with this assumption, the purpose of this study is threefold:(1) observe effects of the Common Knowledge Construction Model (CKCM), a conceptual change inquiry model of teaching and learning, on African American students' conceptual change and achievement; (2) observe the shift in teacher's practical arguments; and (3) narrate the voice of "the Other" about teacher professional learning. This study uses retrospective data from a mixed-method approach consisting of Phenomenography, practical arguments and story-telling. Data sources include audio-recordings of a chemistry teacher's individual interviews of her students' prior- and post-intervention conceptions of acids and bases; results of Acid-Base Achievement Test (ABA-T); video-recordings of a chemistry teacher's enactment of CKCM acid-base lesson sequence; audio-recordings of teacher-researcher reflective discourse using classroom video-clips; teacher interviews; and teacher and researcher personal reflective journals. Students' conceptual changes reflect change in the number of categories of description; shift in language use from everyday talk to chemical talk; and development of a hierarchy of chemical knowledge. ABA-T results indicated 17 students in the experimental group achieved significantly higher scores than 22 students in the control group taught by traditional teaching methods. The teacher-researcher reflective discourse about enactment of the CKCM acid-base lesson sequence reveals three major shifts in teacher practical arguments: teacher inadequate preparedness to adequate preparedness; lack of confidence to gain in confidence; and surface learning to deep learning. The developing story uncovers several aspects about teaching and learning of African American students: teacher caring for the uncared; cultivating

  1. A novel conceptual framework for understanding the mechanism of adherence to long term therapies

    PubMed Central

    Reach, Gérard

    2008-01-01

    The World Health Organization claimed recently that improving patient adherence to long term therapies would be more beneficial than any biomedical progress. First, however, we must understand its mechanisms. In this paper I propose a novel approach using concepts elaborated in a field rarely explored in medicine, the philosophy of mind. While conventional psychological models (eg, the Health Belief Model) provide explanations and predictions which have only a statistical value, the philosophical assumption that mental states (eg, beliefs) are causally efficient (mental causation) can provide the basis for a causal theory of health behaviors. This paper shows that nonadherence to long term therapies can be described as the medical expression of a philosophical concept, that is, weakness of will. I use philosophical explanations of this concept to suggest a mechanistic explanation of nonadherence. I propose that it results from the failure of two principles of rationality. First, a principle of continence, described by the philosopher Donald Davidson in his explanation of weakness of will. This principle exhorts us to act after having considered all available arguments and according to which option we consider best. However, patients conforming to this principle of continence should rationally be nonadherent. Indeed, when patients face a choice between adherence and nonadherence, they must decide, in general, between a large, but delayed reward (eg, health) and a small, but immediate reward (eg, smoking a cigarette). According to concepts elaborated by George Ainslie and Jon Elster, the force of our desires is strongly influenced by the proximity of reward. This inter-temporal choice theory on one hand, and the mere principle of continence on the other, should therefore lead to nonadherence. Nevertheless, adherence to long term therapies is possible, as a result of the intervention of an additional principle, the principle of foresight, which tells us to give

  2. GLAMOR – OR HOW WE ACHIEVED A COMMON UNDERSTANDING ON THE DECREASE OF GLASS DISSOLUTION KINETICS

    SciTech Connect

    Van Iseghem, Pierre; Aerstens, Marc; Gin, Stephane; Deneele, Dimitri; Grambow, Bernd; Strachan, Denis M.; McGrail, B. Peter; Wicks, George G.

    2009-10-01

    The objective of the EC funded GLAMOR project was to achieve a common understanding of the processes that control the decrease of the dissolution rate of high-level waste glass in water when silica becomes saturated. Is the affinity controlled concept, or the protective layer concept dominating? The following steps were taken: (1) review of the literature, (2) selection of an experimental dataset, and selection of the models r(t) and GM2003, and (3) application by the GLAMOR partners of the models to the datasets. The main focus has been on dissolution tests in pure water at different values of surface to volume and pH. Some of the main conclusions were: (1) both affinity and protective layer concepts must be considered in the interpretation of the rate decreasing stage, (2) the residual dissolution rate observed beyond the silica saturation stage is far more important in view of the long-term performance of the glass, and deserves more attention in future R&D. GLAMOR also discussed in detail the modelling parameters such as the silica saturation concentration, the silica diffusion coefficient, the silica retention factor in the reaction layer, and the water diffusion coefficient.

  3. Exploring the usefulness of two conceptual frameworks for understanding how organizational factors influence innovation implementation in cancer care.

    PubMed

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors important to the successful implementation of innovations in health care settings; (2) discuss each in relation to the literature; and (3) briefly demonstrate how each may be applied to 3 initiatives involving the implementation of a specific innovation-synoptic reporting tools-in cancer care. Synoptic reporting tools capture information from diagnostic tests, surgeries, and pathology examinations in a standardized, structured manner and contain only the information necessary for patient care. The frameworks selected were the Promoting Action on Research Implementation in Health Services framework and an organizational framework of innovation implementation; these frameworks arise from different disciplines (nursing and management, respectively). The constructs from each framework are examined in relation to the literature, with each construct applied to synoptic reporting tool implementation to demonstrate how each may be used to inform both practice and research in this area. By improving our understanding of existing frameworks, we enhance our ability to more effectively study and target implementation processes.

  4. Exploring the usefulness of two conceptual frameworks for understanding how organizational factors influence innovation implementation in cancer care.

    PubMed

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors important to the successful implementation of innovations in health care settings; (2) discuss each in relation to the literature; and (3) briefly demonstrate how each may be applied to 3 initiatives involving the implementation of a specific innovation-synoptic reporting tools-in cancer care. Synoptic reporting tools capture information from diagnostic tests, surgeries, and pathology examinations in a standardized, structured manner and contain only the information necessary for patient care. The frameworks selected were the Promoting Action on Research Implementation in Health Services framework and an organizational framework of innovation implementation; these frameworks arise from different disciplines (nursing and management, respectively). The constructs from each framework are examined in relation to the literature, with each construct applied to synoptic reporting tool implementation to demonstrate how each may be used to inform both practice and research in this area. By improving our understanding of existing frameworks, we enhance our ability to more effectively study and target implementation processes. PMID:23512560

  5. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi

  6. Using Confirmatory Factor Analysis to Understand Executive Control in Preschool Children: Sources of Variation in Emergent Mathematic Achievement

    ERIC Educational Resources Information Center

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2011-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and…

  7. "I feel smart": The dynamic interaction between three learning theories, reading skills and conceptual understandings in an eighth-grade science action research study

    NASA Astrophysics Data System (ADS)

    Gooch, Kim Renee

    The long-term goal of this study was to increase the researcher's knowledge in curriculum content, curriculum design, and implementation, as well as teaching methodologies in the content areas for urban African American middle school students. The purpose of this specific study was to develop, implement and evaluate a reading in the content areas science curriculum designed to increase conceptual abilities, reading skills, and individual learning for eighth grade-students in urban schools. The research question that drove the goal and purpose of this study was as follows: How does the theory and practice of accelerated learning, multiple intelligences, and brain-based learning integrated with specific components of reading in the content area impact urban, middle school African American students' conceptual understanding of eighth-grade science? The student participants in this study were 16 African American students in the eighth grade who had below-grade reading achievement (third-grade level on district standardized tests), who were overage for middle school, yet still in the eighth grade, and who had failed the district's eighth grade science curriculum. This was an action-oriented research study that utilized a mixed methodology of qualitative and quantitative data collection. The quantitative data collection consisted of pre and post tests, surveys with yes/no responses, and graphs. The qualitative data collection consisted of surveys with written responses, and a focus group. The major finding from this study was that the dynamic interaction of the theories (accelerated learning, multiple intelligences, and brain-based learning integrated with specific components of reading in the content area) put into practice through the Michigan Framework Curriculum had a significant impact on student learning as evidenced by the MAT-7 standardized test scores. Qualitative findings indicated that this dynamic interaction of theories put into practice worked to create a

  8. How Do Pre-Service Teachers Picture Various Electromagnetic Phenomenon? A Qualitative Study of Pre-Service Teachers' Conceptual Understanding of Fundamental Electromagnetic Interaction

    ERIC Educational Resources Information Center

    Beer, Christopher P.

    2010-01-01

    This study analyzes the nature of pre-service teachers' conceptual models of various electromagnetic phenomena, specifically electrical current, electrical resistance, and light/matter interactions. This is achieved through the students answering the three questions on electromagnetism using a free response approach including both verbal and…

  9. A conceptual framework for understanding HIV risk behavior in the context of supporting fertility goals among HIV-serodiscordant couples.

    PubMed

    Crankshaw, Tamaryn L; Matthews, Lynn T; Giddy, Janet; Kaida, Angela; Ware, Norma C; Smit, Jennifer A; Bangsberg, David R

    2012-12-01

    Integrated reproductive health services for people living with HIV must address their fertility intentions. For HIV-serodiscordant couples who want to conceive, attempted conception confers a substantial risk of HIV transmission to the uninfected partner. Behavioral and pharmacologic strategies may reduce HIV transmission risk among HIV-serodiscordant couples who seek to conceive. In order to develop effective pharmaco-behavioral programs, it is important to understand and address the contexts surrounding reproductive decision-making; perceived periconception HIV transmission risk; and periconception risk behaviors. We present a conceptual framework to describe the dynamics involved in periconception HIV risk behaviors in a South African setting. We adapt the Information-Motivation-Behavioral Skill Model of HIV Preventative Behavior to address the structural, individual and couple-level determinants of safer conception behavior. The framework is intended to identify factors that influence periconception HIV risk behavior among serodiscordant couples, and therefore to guide design and implementation of integrated and effective HIV, reproductive health and family planning services that support reproductive decision-making.

  10. A Study of General Education Astronomy Students' Understandings of Cosmology. Part I. Development and Validation of Four Conceptual Cosmology Surveys

    ERIC Educational Resources Information Center

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2011-01-01

    This is the first in a series of five articles describing a national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we describe the process by which we designed four new surveys to assess general education astronomy students' conceptual cosmology knowledge. These surveys focused…

  11. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  12. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  13. Student Achievement in Identified Workforce Clusters: Understanding Factors that Influence Student Success

    ERIC Educational Resources Information Center

    D'Amico, Mark M.; Morgan, Grant B.; Robertson, Thashundray C.

    2011-01-01

    This study blends elements from two South Carolina Technical College System initiatives--Achieving the Dream and a workforce cluster strategy. Achieving the Dream is a national non-profit organization created to help technical and community college students succeed, particularly low-income students and students of color. This initiative, combined…

  14. Understanding Mathematics Achievement: An Analysis of the Effects of Student and Family Factors

    ERIC Educational Resources Information Center

    Goforth, Kate; Noltemeyer, Amity; Patton, Jon; Bush, Kevin R.; Bergen, Doris

    2014-01-01

    Educators are increasingly recognising the importance of improving students' mathematics achievement. Much of the current research focuses on the impact of instructional variables on mathematics achievement. The goal of this study was to examine the influence of less researched variables--family and student factors. Participants were 747…

  15. Understanding Science Achievement Gaps by Race/Ethnicity and Gender in Kindergarten and First Grade

    ERIC Educational Resources Information Center

    Curran, F. Chris; Kellogg, Ann T.

    2016-01-01

    Disparities in science achievement across race and gender have been well documented in secondary and postsecondary school; however, the science achievement gap in the early years of elementary school remains understudied. We present findings from the recently released Early Childhood Longitudinal Study, Kindergarten Class of 2010-2011 that…

  16. How Do Relationships Influence Student Achievement? Understanding Student Performance from a General, Social Psychological Standpoint

    ERIC Educational Resources Information Center

    Aspelin, Jonas

    2012-01-01

    This article explores the influence of relationships on student achievement by examining empirical evidence and by adopting a social psychological theory. Initially, the issue is addressed from a national, Swedish context. Thereafter, two general questions are raised: (1) What is the influence of relationships on student achievement, according to…

  17. Long-Term Follow Up of CSRP: Understanding Students' Academic Achievement Post-Treatment

    ERIC Educational Resources Information Center

    Lennon, Jaclyn M.; Li-Grining, Christine; Raver, C. Cybele; Pess, Rachel A.

    2011-01-01

    In this poster presentation, the authors examine the impact of Chicago School Readiness Project (CSRP) on students' academic achievement in elementary school. First, they provide upper- and lower-bound estimates of the impact of CSRP on students' academic achievement, taking into account their subsequent nonrandom selection into higher versus…

  18. Understanding Rural Student Achievement: Identifying Instructional and Organizational Differences between Rural and Nonrural Schools.

    ERIC Educational Resources Information Center

    Lee, Jaekyung; McIntire, Walter G.

    National math assessment data from 3,112 eighth-grade students in 123 schools were used to determine whether location (rural versus nonrural) affects student achievement when related student and school-level factors are taken into account. Findings indicate that rural schools outperformed nonrural schools in math achievement and that the…

  19. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university in Ankara…

  20. Evaluation of the Effects of Argumentation Based Science Teaching on 5th Grade Students' Conceptual Understanding of the Subjects Related to "Matter and Change"

    ERIC Educational Resources Information Center

    Çinar, Derya; Bayraktar, Sule

    2014-01-01

    The aim of this study is to evaluate the effects of Argumentation Based Science Teaching on 5th grade students' conceptual understanding of the subjects related to "Matter and Change". This research is a qualitative research and its design is a multiple (compare) case study. In this study, semi-structured interviews related to the…

  1. Evaluation of the Effects of Argumentation Based Science Teaching on 5th Grade Students' Conceptual Understanding of the Subjects Related to "Matter and Change"

    ERIC Educational Resources Information Center

    Çinar, Derya; Bayraktar, Sule

    2014-01-01

    The aim of this study is to evaluate the effects of Argumentation Based Science Teaching on 5th grade students' conceptual understanding of the subjects related to "Matter and Change". This research is a qualitative research and its design is a multiple (compare) case study. In this study, semi-structured interviews related to the…

  2. Students' Communicative Resources in Relation to Their Conceptual Understanding--The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-01-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated…

  3. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The…

  4. Effect of Animation Enhanced Conceptual Change Texts on 6th Grade Students' Understanding of the Particulate Nature of Matter and Transformation During Phase Changes

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2011-01-01

    In this study, the effect of animation enhanced conceptual change texts (CCT-CA) on grade 6 students' understanding of the particulate nature of matter (PNM) and transformation during the phase changes was investigated. A quasi-experimental design and one control group (CG, N = 25) and one experimental group (EG, N = 26) were used. While the…

  5. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  6. The Effects of Writing-to-Learn Activities on Elementary Students' Conceptual Understanding: Learning about Force and Motion through Writing to Older Peers

    ERIC Educational Resources Information Center

    Chen, Ying-Chih; Hand, Brian; McDowell, Leah

    2013-01-01

    This quasi-experimental and pre/posttest study was designed to examine whether fourth-grade students who engaged in collaboratively writing letters to 11th-grade students performed better on tests of conceptual understanding of a unit on force and motion than students who did not. The participants included 835 fourth-grade students and 416…

  7. The Effects of Field Dependent/Field Independent Cognitive Styles and Motivational Styles on Students' Conceptual Understanding about Direct Current Circuits

    ERIC Educational Resources Information Center

    Karaçam, Sedat; Digilli Baran, Azize

    2015-01-01

    The purpose of this study is to investigate the effects of Field Dependent (FD)/Field Independent (FI) cognitive styles and motivational styles on high school students' conceptual understandings about direct current circuit concepts. The participants of this study consisted of 295 high school students (male = 127, female = 168) who were enrolled…

  8. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  9. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    ERIC Educational Resources Information Center

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  10. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  11. Assessing the Development of Chemistry Students' Conceptual and Visual Understanding of Dimensional Analysis via Supplemental Use of Web-Based Software

    ERIC Educational Resources Information Center

    Ellis, Jennifer T.

    2013-01-01

    This study was designed to evaluate the effects of a proprietary software program on students' conceptual and visual understanding of dimensional analysis. The participants in the study were high school general chemistry students enrolled in two public schools with different demographics (School A and School B) in the Chattanooga, Tennessee,…

  12. Understanding and Achieving Quality in Sure Start Children's Centres: Practitioners' Perspectives

    ERIC Educational Resources Information Center

    Cottle, Michelle

    2011-01-01

    This article focuses on some of the issues that shape understandings of professional practice in the rapidly expanding context of children's centres in England. Drawing on data from an ESRC-funded project exploring practitioners' understandings of quality and success, the perspectives of 115 practitioners working in 11 Sure Start Children's…

  13. Understanding the Elements of Operational Reliability: A Key for Achieving High Reliability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2010-01-01

    This viewgraph presentation reviews operational reliability and its role in achieving high reliability through design and process reliability. The topics include: 1) Reliability Engineering Major Areas and interfaces; 2) Design Reliability; 3) Process Reliability; and 4) Reliability Applications.

  14. Using confirmatory factor analysis to understand executive control in preschool children: sources of variation in emergent mathematic achievement

    PubMed Central

    Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize

    2010-01-01

    Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child’s social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. PMID:21676089

  15. Links for Academic Learning (LAL): A Conceptual Model for Investigating Alignment of Alternate Assessments Based on Alternate Achievement Standards

    ERIC Educational Resources Information Center

    Flowers, Claudia; Wakeman, Shawnee; Browder, Diane M.; Karvonen, Meagan

    2009-01-01

    This article describes an alignment procedure, called Links for Academic Learning (LAL), for examining the degree of alignment of alternate assessments based on alternate achievement standards (AA-AAS) to grade-level content standards and instruction. Although some of the alignment criteria are similar to those used in general education…

  16. Understanding motivational structures that differentially predict engagement and achievement in middle school science

    NASA Astrophysics Data System (ADS)

    Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn

    2016-01-01

    Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the relationships among motivational factors, engagement, and achievement in middle school science (grades 6-8). Data were obtained from middle school students in the United States (N = 2094). The theoretical relationships among motivational constructs, including self-efficacy, and three types of goal orientations (mastery, performance approach, and performance avoid) were tested. The results showed that motivation is best modeled as distinct intrinsic and extrinsic factors; lending evidence that external, performance based goal orientations factor separately from self-efficacy and an internal, mastery based goal orientation. Second, a model was tested to examine how engagement mediated the relationships between intrinsic and extrinsic motivational factors and science achievement. Engagement mediated the relationship between intrinsic motivation and science achievement, whereas extrinsic motivation had no relationship with engagement and science achievement. Implications for how classroom practice and educational policy emphasize different student motivations, and in turn, can support or hinder students' science learning are discussed.

  17. Understanding Motivational Structures That Differentially Predict Engagement and Achievement in Middle School Science

    ERIC Educational Resources Information Center

    Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn

    2016-01-01

    Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the…

  18. Understanding the Low Mathematics Achievement of Chilean Students: A Cross-National Analysis Using TIMSS Data

    ERIC Educational Resources Information Center

    Ramirez, Maria-Jose

    2006-01-01

    The low performance of Chile in the TIMSS 1998/99 international study of mathematics and science achievement was a great disappointment for that country. To investigate the likely causes for low performance in mathematics, this study (1) compared Chile to three countries and one large school system that had similar economic conditions but superior…

  19. Understanding the Low Mathematics Achievement of Chilean Students: A Cross-National Analysis Using TIMSS Data

    ERIC Educational Resources Information Center

    Ramirez, Maria Jose

    2004-01-01

    The low performance of Chile in the TIMSS 1999 international study of mathematics and science achievement was a great disappointment. To investigate the likely causes for low performance in mathematics, this study 1) compared Chile to three countries and one large school system that had comparable economic conditions but superior mathematics…

  20. Enhancing Inquiry, Understanding, and Achievement in an Astronomy Multimedia Learning Environment

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Zuiker, Steven J.; Anderson, Kate T.; Hickey, Daniel T.

    2006-01-01

    As an example of design-based research, this study refined an assessment strategy for simultaneously enhancing inquiry-based learning and supporting achievement on conventional assessment measures. "Astronomy Village[R]: Investigating the Universe[TM]" is a software program designed to engage secondary science students in authentic and…

  1. Teacher Perceptions about Diversity and the Achievement Gap: Understanding the Discursive Construction of Whiteness

    ERIC Educational Resources Information Center

    Padilla Vigil, Virginia

    2013-01-01

    Teacher perceptions about diversity and the achievement gap were examined. Participants were alternative teacher licensure candidates at the student teaching phase of their preparation program. Two-hour individual, in-depth, and semi-structured interviews were conducted with each of the participants. Additionally, the participants participated in…

  2. Understanding Community College Students' Learning Styles and the Link to Academic Achievement

    ERIC Educational Resources Information Center

    Peters, Kathleen

    2012-01-01

    Learning styles have been an area of interest in educational psychology for many decades. However, community college students have been overlooked in learning styles research. To enhance teacher efficacy and student success, it is important to continue to evaluate the relationship between learning styles and academic achievement. The purpose of…

  3. Understanding the Relationship between Perfectionism and Achievement Motivation in Gifted College Students

    ERIC Educational Resources Information Center

    Speirs-Neumeister, Kristie L.

    2004-01-01

    This study is a slice of an overarching research investigation of perfectionism in gifted college students. Utilizing a qualitative interview design, this study examined how gifted college students scoring high on 1 of 2 different dimensions of-perfectionism (socially prescribed or self-oriented) perceived their achievement motivation. Findings…

  4. Understanding Achievement Differences between Schools in Ireland--Can Existing Data-Sets Help?

    ERIC Educational Resources Information Center

    Gilleece, Lorraine

    2014-01-01

    Recent years have seen an increased focus on school accountability in Ireland and calls for greater use to be made of student achievement data for monitoring student outcomes. In this paper, it is argued that existing data-sets in Ireland offer limited potential for the value-added modelling approaches used for accountability purposes in many…

  5. Understanding Student Goal Orientation Tendencies to Predict Student Performance: A 2x2 Achievement Goal Orientation

    ERIC Educational Resources Information Center

    Miller, Mark Alan

    2013-01-01

    The study tested the 2X2 model of the Achievement Goal Orientation (AGO) theory in a military technical training environment while using the Air Force Officers Qualifying Test's academic aptitude score to control for the differences in the students' academic aptitude. The study method was quantitative and the design was correlational.…

  6. Gender and Achievement--Understanding Gender Differences and Similarities in Mathematics Assessment.

    ERIC Educational Resources Information Center

    Zhang, Liru; Manon, Jon

    The primary objective of this study was to investigate overall patterns of gender differences and similarities of test performance in mathematics. To achieve that objective, observed test scores on the Delaware standards-based assessment were analyzed to examine: (1) gender differences and similarities across grades 3, 5, 8 and 10 over 2 years;…

  7. Bridging the Gap: Fraction Understanding Is Central to Mathematics Achievement in Students from Three Different Continents

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Schneider, Michael; Xin, Ziqiang; Siegler, Robert S.

    2015-01-01

    Numerical understanding and arithmetic skills are easier to acquire for whole numbers than fractions. The "integrated theory of numerical development" posits that, in addition to these differences, whole numbers and fractions also have important commonalities. In both, students need to learn how to interpret number symbols in terms of…

  8. Models and Moves: Focusing on Dimensions of Causal Complexity To Achieve Deeper Scientific Understanding.

    ERIC Educational Resources Information Center

    Perkins, David N.; Grotzer, Tina A.

    This paper presents the results of a research project based on the Understandings of Consequence Project. This study motivated students to engage in inquiry in science classrooms. The complexity of the models is divided into four categories--underlying causality, relational causality, probabilistic causality, and emergent causality--and provides…

  9. A Study of Achievement, Understanding of Science, and Teacher Role Perception in Various Groups of the Nebraska Physical Science Project.

    ERIC Educational Resources Information Center

    Wilson, Douglas J.

    The purpose of this study was to compare the effects of various teaching practices and classroom organizational patterns upon achievement and understanding of science of students studying materials of the Nebraska Physical Science Project (NPSP), an integrated chemistry-physics course, and to investigate these practices and patterns and the role…

  10. Exploring and Understanding the Benefits of Tutoring Software on Urban Students' Science Achievement: What Are Baltimore City Practitioners' Perspectives?

    ERIC Educational Resources Information Center

    Pinder, Patrice Juliet

    2008-01-01

    Historically, very little research that meets the scientifically based standards as defined by the No Child Left Behind Act has been conducted on the effectiveness of educational technology on student achievement. The purpose of this study was to explore and seek to understand urban city teachers' perspectives on the benefits or effects of…

  11. Influence of Students' Understanding and Goal Commitment on Academic Achievement in Introductory Technology in Akwa Ibom State, Nigeria

    ERIC Educational Resources Information Center

    Akpan, Godwin A.; Mbaba, Uduak G.; Udofia, Aniefiok E.

    2012-01-01

    The study examined the influence of students' understanding and goal commitment on their academic achievement in Introductory Technology in secondary schools in Akwa Ibom State, Nigeria. An ex-post facto survey design was used and a random sample of 2,500 junior secondary three (13-14 years old) students from a population of 48,302 JSS three…

  12. Social jetlag, academic achievement and cognitive performance: Understanding gender/sex differences.

    PubMed

    Díaz-Morales, Juan F; Escribano, Cristina

    2015-01-01

    Adolescents in high school suffer from circadian misalignment, undersleeping on weekdays and oversleeping on weekends. Since high schools usually impose early schedules, adolescents suffer from permanent social jetlag (SJL) and thus are a suitable population to study the effects of SJL on both academic and cognitive performance. In this study, 796 adolescents aged 12-16 years reported information about their sleep habits, morningness-eveningness (M-E), cognitive abilities and grade point average (GPA). Time in bed on both weekdays and weekends was not related to cognitive abilities, and only time in bed on weekdays was related to academic achievement. SJL was negatively related to academic achievement, cognitive abilities (except for vocabulary and verbal fluency abilities) and general cognitive ability (g), whereas M-E was slightly positively related to academic achievement and marginally negatively related to inductive reasoning. Results separated by sex/gender indicated that SJL may be more detrimental to girls' performance, as it was negatively related to a greater number of cognitive abilities and GPA.

  13. Conceptual database modeling: a method for enabling end users (radiologists) to understand and develop their information management applications.

    PubMed

    Hawkins, H; Young, S K; Hubert, K C; Hallock, P

    2001-06-01

    As medical technology advances at a rapid pace, clinicians become further and further removed from the design of their own technological tools. This is particularly evident with information management. For radiologists, clinical histories, patient reports, and other pertinent information require sophisticated tools for data handling. However, as databases grow more powerful and sophisticated, systems require the expertise of programmers and information technology personnel. The radiologist, the clinician end-user, must maintain involvement in the development of system tools to insure effective information management. Conceptual database modeling is a design method that serves to bridge the gap between the technological aspects of information management and its clinical applications. Conceptual database modeling involves developing information systems in simple language so that anyone can have input into the overall design. This presentation describes conceptual database modeling, using object role modeling, as a means by which end-users (clinicians) may participate in database development.

  14. Understanding the Positive Role of Neighborhood Socioeconomic Advantage in Achievement: The Contribution of the Home, Child Care and School Environments

    PubMed Central

    Dupéré, Véronique; Leventhal, Tama; Crosnoe, Robert; Dion, Éric

    2011-01-01

    The goal of this study was to examine the mechanisms underlying associations between neighborhood socioeconomic advantage and children’s achievement trajectories between 54 months and 15 years old. Results of hierarchical linear growth models based on a diverse sample of 1,364 children indicate that neighborhood socioeconomic advantage was non-linearly associated with youths’ initial vocabulary and reading scores, such that the presence of educated, affluent professionals in the neighborhood had a favorable association with children’s achievement among those in less advantaged neighborhoods until it leveled off at moderate levels of advantage. A similar tendency was observed for math achievement. The quality of the home and child care environments as well as school advantage partially explained these associations. The findings suggest that multiple environments need to be considered simultaneously for understanding neighborhood-achievement links. PMID:20822235

  15. Effects of Conceptual Change Texts and Laboratory Experiments on Fourth Grade Students' Understanding of Matter and Change Concepts

    ERIC Educational Resources Information Center

    Durmus, Jale; Bayraktar, Sule

    2010-01-01

    The purpose of this study was to investigate whether conceptual change texts and laboratory experiments are effective in overcoming misconceptions and whether the concepts were acquired permanently when these methods were utilized. In this study, we addressed some topics from the "Matter and Change" unit in science and technology class of…

  16. Understanding Conceptual Development along the Implicit-Explicit Dimension: Looking through the Lens of the Representational Redescription Model

    ERIC Educational Resources Information Center

    Cheung, Chi-Ngai; Wong, Wan-Chi

    2011-01-01

    This study examined conceptual changes in children in the dimension of explicitness through the lens of the representational redescription model (A. Karmiloff-Smith, 1986, 1992). The 4- to 9-year-old participants (N = 24) had to balance blocks on a narrow support in one task and predict whether the blocks could be balanced in another task. In…

  17. The Rise and Run of a Computational Understanding of Slope in a Conceptually Focused Bilingual Algebra Class

    ERIC Educational Resources Information Center

    Zahner, William

    2015-01-01

    This paper uses a multilevel analysis of mathematical reasoning rooted in Cultural Historical Activity Theory to examine how mathematical discourse and student reasoning about linear functions developed across 3 weeks in a ninth grade bilingual algebra class. Despite the teacher's expertise teaching with a conceptual focus, and her stated…

  18. Contribution of the Priming Paradigm to the Understanding of the Conceptual Developmental Shift from 5 to 9 Years of Age

    ERIC Educational Resources Information Center

    Perraudin, Sandrine; Mounoud, Pierre

    2009-01-01

    We conducted three experiments to study the role of instrumental (e.g. "knife-bread") and categorical (e.g. "cake-bread") relations in the development of conceptual organization with a priming paradigm, by varying the nature of the task (naming--Experiment 1--or categorical decision--Experiments 2 and 3). The participants were 5-, 7- and…

  19. Effectiveness of the Conceptual Change Texts Accompanied by Concept Maps about Students' Understanding of the Molecules Carrying Genetical Information

    ERIC Educational Resources Information Center

    Tastan, Ibrahim; Dikmenli, Musa; Cardak, Osman

    2008-01-01

    This study aims to investigate the effects of concept maps, together with conceptual change texts, given to 11th grade students' on the subject of molecules carrying genetical information. The semistructured individual interviews were conducted with 5 upper class students to find misconceptions related to the subject. A success test was developed…

  20. Conceptual Optics

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    1997-11-01

    Conceptual Physics courses are a staple of the curriculum in many colleges and universities. Such courses stress the development of conceptual understanding without appeal to calculational demonstration of that understanding. We have developed a Conceptual Optics course with a similar thrust but a more focused subject matter: the study of light. The course differs from similar courses typically titled Light or Color in that it attempts to cover most topics taught in more conventional optics courses rather than sampling from the variety of topics among those falling under the optics rubric. The course features an extramural laboratory in which student teams are given equipment, a lab manual, and a notebook and are expected to perform various optics experiments in everyday surroundings. This and other features of the course will be discussed.

  1. The impact of participation in a study abroad programme on students' conceptual understanding of community health nursing in a developing country.

    PubMed

    Inglis, A; Rolls, C; Kristy, S

    1998-10-01

    A pilot study was undertaken to ascertain the changes in conceptual understanding that resulted from participation in a study abroad programme in Chiang Mai in Thailand of a small group of Australian final year nursing students. Students' conceptual understandings were measured by means of open-ended interviews based on a case study scenario describing health conditions in a hypothetical Thai village. Students were asked to imagine that they had been appointed to work as a community health nurse in the village and describe how they would undertake the task. Shifts in understanding were detected by interviewing the participants before, during and after their participation in the programme and comparing their responses. The results of this limited study indicated that the impact of participation in the programme was less than expected. Furthermore, the factors of which students tended to show greatest awareness were those about which they had been briefed prior to departure. Nevertheless participants reported they had learnt much from their experiences. It is suggested that the discrepancy between the evidence provided by interview data and students' self-reports may be explained by participation having resulted primarily in the acquisition of the tacit rather than conceptual knowledge.

  2. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes.

    PubMed

    Overcash, Justin M; Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2015-02-01

    Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes. PMID:25596822

  3. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes.

    PubMed

    Overcash, Justin M; Aryan, Azadeh; Myles, Kevin M; Adelman, Zach N

    2015-02-01

    Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.

  4. Stories of Success: Understanding Academic Achievement of Hispanic Students in Science

    NASA Astrophysics Data System (ADS)

    Harris, Amanda

    A review of the literature shows that there is much evidence to suggest the challenges facing Hispanic students in American public schools. Hispanic enrollment in K--12 public schools has increased from 6 to 19% in the last thirty years, yet schools have not made adequate adjustments to accommodate this changing population. Issues such as remedial tracking and cultural differences have led to low high school graduate rates for Hispanic students and inequities in schooling experiences (Gay, 2000). Particularly in the area of science, Hispanic students struggle with academic success (Cole & Espinoza, 2008). Despite these obstacles, some Hispanic students are academically successful (Rochin & Mello, 2007; Merisotis & Kee, 2006). This dissertation tells the stories of these Hispanic students who have been successful in science in secondary public schools. This study followed a grounded theory methodology and utilized individual interviews to collect data about Hispanics who have demonstrated achievement in the area of science. Through the analysis of these interviews, factors were identified which may have contributed to the success of these Hispanics in the field of science. Implications for future practice in public schools are also discussed.

  5. Acting Out and Lighting Up: Understanding the Links among School Misbehavior, Academic Achievement, and Cigarette Use. Monitoring the Future Occasional Paper 46.

    ERIC Educational Resources Information Center

    Bryant, Alison L.; Schulenberg, John; Bachman, Jerald G.; O'Malley, Patrick M.; Johnston, Lloyd D.

    Relations among academic achievement, school bonding, school misbehavior, and cigarette use from eighth to twelfth grade were examined in two national and panel samples of youth from the Monitoring the Future project (N=3,056). A series of competing conceptual models developed a priori was tested using structural equation modeling (SEM). The…

  6. Using the Conceptual Change Instruction To Improve Learning.

    ERIC Educational Resources Information Center

    Alparslan, Cem; Tekkaya, Ceren; Geban, Omer

    2003-01-01

    Investigates the effect of conceptual change instruction on grade 11 students' understanding of respiration. The Respiration Concept Test was developed and used to test students' misconceptions. Results indicate that the conceptual change instruction that explicitly addressed students' misconceptions produced significantly greater achievement in…

  7. An analysis of the nature of students' metaconceptual processes and the effectiveness of metaconceptual teaching practices on students' conceptual understanding of force and motion

    NASA Astrophysics Data System (ADS)

    Yuruk, Nejla

    This study had three aims: (1) to investigate the effectiveness of facilitating students' metaconceptual processes, (2) to examine the durability of the impact of metaconceptual teaching on students' conceptual understanding of force and motion, and (3) to gain insight into the nature of metaconceptual processes as the students participated in the metaconceptual teaching activities. In examining the nature of students' metaconceptual processes, the purpose was to tease apart and categorize the types of metaconceptual processes, portray the trends within each type of metaconceptual process and describe the characteristics and the content of the metaconceptual processes related to students' ideas that changed throughout the metaconceptual teaching interventions. A multi-method research design that incorporated experimental and case study designs was employed. While the experimental group was exposed to metaconceptual teaching interventions, in the control group the same science content was taught by tradition instruction. The research was conducted in the two classrooms of a physics teacher. Participants of this study who were enrolled in one of the two physics classes involved 45 grade eleven and grade twelve high school students. In order to study the nature of students' metaconceptual processes, three students from the experimental group were selected based on their background in physics and their pre-instructional conceptual understanding of force and motion. While data of three students were used to describe the characteristics and trends within each type of metaconceptual process, data of two students were used for an in-depth analysis of their metaconceptual processes about their ideas of force and one-dimensional motion. Data from a variety of sources were collected to assess students' conceptual understanding of force and motion and their metaconceptual processes. In order to assess students' conceptual understanding of force and motion, Force Concept

  8. Perceptions of competence, implicit theory of ability, perception of motivational climate, and achievement goals: a test of the trichotomous conceptualization of endorsement of achievement motivation in the physical education setting.

    PubMed

    Cury, F; Da Fonséca, D; Rufo, M; Sarrazin, P

    2002-08-01

    To test and extend the conceptualization of the endorsement of achievement goals in the physical education setting Mastery, Performance-approach, and Performance-approach goals, Perception of the physical education competence, Implicit theory about sport ability, and Perception of the motivational climate were assessed among 682 boys attending five French schools. Analysis indicated that (1) Performance-approach goals were positively associated with perception of physical education Competence, Entity beliefs about sport ability, the Performance dimension of the motivational climate, and negatively associated with Incremental beliefs about sport ability. (2) Mastery goals were positively associated with perception of physical education Competence, Incremental beliefs about sport ability, the Mastery dimension of the motivational climate, and negatively associated with the Performance dimension of the motivational climate. Also, (3) Performance-avoidance goals were positively associated with Entity beliefs about sport ability and the Performance dimension of the motivational climate; these goals were negatively associated with Incremental beliefs about sport ability and perception of physical education Competence. These results clearly attested to the validity of the trichotomous model in the physical education setting.

  9. Understanding behaviour to inform water supply management in developed nations--a review of literature, conceptual model and research agenda.

    PubMed

    Hurlimann, Anna; Dolnicar, Sara; Meyer, Petra

    2009-10-01

    Water is a scarce resource in many parts of the developed world. Two solutions are possible to address water scarcity: conservation of existing resources, or the further production of water from new sources e.g. through recycling of wastewater or desalination of seawater. However, the main hurdle to implementation of many of these solutions is often viewed as a lack of public willingness to adopt these alternative water behaviours. Research in this area is therefore crucial. Yet, and possibly due to the interdisciplinary nature of such research, there is currently no comprehensive overview of what has been done before. This study fills this gap by (1) choosing a general consumer behaviour perspective as a starting point, (2) developing a conceptual model of research required in the area of water-related public acceptance studies, (3) identifying eight key water-related behaviours which require future research attention, and (4) reviewing which areas of the conceptual model have been investigated in the past by conducting an extensive literature review of water-related social science research. The review established that the majority of work which has been conducted is located at the cross-roads of personal characteristics and behavioural intentions. Significant gaps exist in relation to researching the adoption of a wide range of demand-side water behaviours. This indicates a dominance of supply-side solutions in social-research exploration. The review identifies a number of research needs including: the exploration of actual adoption of water-related behaviours (rather than behavioural intentions); and to widen the scope of water behaviour enquiry to include more demand-side solutions. Given the increasing scarcity of water in many areas of the world, addressing these identified gaps will be of significant importance. Thus our model informs the social-research agenda for water policy.

  10. Understanding

    ERIC Educational Resources Information Center

    Buxkemper, Andra C.; Hartfiel, D. J.

    2003-01-01

    There is no common agreement on the meaning of the word "understand". However, there is agreement on what students should be able to do with material they understand. Bloom et al. discuss kinds of tasks a student should be able to do, provided that the student understands. In a similar way, Biggs and Collis provide a taxonomy intended to evaluate…

  11. A cross-age study of students' conceptual understanding of interdependency in seed dispersal, pollination, and food chains using a constructivist theoretical framework

    NASA Astrophysics Data System (ADS)

    Smith, Shirley Mccraw

    2003-06-01

    The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.

  12. Understanding groundwater - students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program

    NASA Astrophysics Data System (ADS)

    Unterbruner, Ulrike; Hilberg, Sylke; Schiffl, Iris

    2016-06-01

    Education on the subject of groundwater is crucial for sustainability. Nevertheless, international studies with students across different age groups have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Drawing from international research, a multimedia learning program Zwischen Regenwolke und Wasserhahn (between the rain cloud and the tap) was developed, which incorporates specific insights from the fields of conceptual change research, multimedia research, and the model of educational reconstruction. The effectiveness of the learning program was ascertained by means of two studies with Austrian seventh grade pupils as well as teacher-training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge of groundwater were determined in a pre- and post-test. The pupils and students greatly benefitted from working through the learning software independently. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results indicate that theory-guided multimedia learning programs can play an important role in the transfer of research results to classroom settings, especially in science education.

  13. Understanding groundwater - students' pre-conceptions and conceptual change by a theory-guided multimedia learning program

    NASA Astrophysics Data System (ADS)

    Unterbruner, U.; Hilberg, S.; Schiffl, I.

    2015-11-01

    Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.

  14. Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring.

    PubMed

    Simon, Erwan; Choi, Sung-Deuk; Park, Min-Kyu

    2016-11-01

    Forest fires are a well-known source of polycyclic aromatic hydrocarbons (PAHs). After forest fires, residual ash above a soil layer can be highly contaminated with PAHs. However, little is known about the fate of these contaminants, particularly about their susceptibility to be transferred deeper into underlying soil or downstream during rainfall events. In this study, meteorological conditions, organic carbon (OC) content, and the 16 US-EPA priority PAHs in unburnt control soil, burnt soil, and ash were monitored for 16 months after a forest fire. Whereas the ash was significantly contaminated with PAHs, the levels of PAHs in the underlying burnt soil were similar to those of the control soil. In the ash bed, the levels of PAHs normalized by OC also decreased. Neither PAHs nor OC lost from the ash bed was substantially transferred to the underlying soil. Instead, significant amounts of PAHs in the ash bed were likely removed by surface runoff. Light PAHs were dominantly emitted from the forest fire, but they showed higher decreasing rates with total precipitation. These findings were explained by a conceptual model for the fate of PAHs, involving four distinct processes related to precipitation and two states of the ash bed.

  15. Considering daily mobility for a more comprehensive understanding of contextual effects on social inequalities in health: a conceptual proposal.

    PubMed

    Shareck, Martine; Frohlich, Katherine L; Kestens, Yan

    2014-09-01

    Despite growing interest in integrating people׳s daily mobility into contextual studies of social inequalities in health, the links between daily mobility and health inequalities remain inadequately conceptualised. This conceptual proposal anchors the relationship between daily mobility and contextual influences on social inequalities in health into the concept of mobility potential, which encompasses the opportunities and places individuals can choose (or are constrained) to access. Mobility potential is realized as actual mobility through agency. Being shaped by socially-patterned personal and geographic characteristics, mobility potential is unequally distributed across social groups. Social inequalities in realized mobility may thus result. We discuss pathways by which these may contribute to contextual influences on social inequalities in health. One pathway is reflected in disadvantaged groups encountering more fast-food outlets during their daily activities, which may relate to their higher risk of unhealthy eating. This proposal lays the bases for empirical research explicitly testing hypotheses regarding the contribution of daily mobility to social inequalities in health. PMID:25103785

  16. Considering daily mobility for a more comprehensive understanding of contextual effects on social inequalities in health: a conceptual proposal.

    PubMed

    Shareck, Martine; Frohlich, Katherine L; Kestens, Yan

    2014-09-01

    Despite growing interest in integrating people׳s daily mobility into contextual studies of social inequalities in health, the links between daily mobility and health inequalities remain inadequately conceptualised. This conceptual proposal anchors the relationship between daily mobility and contextual influences on social inequalities in health into the concept of mobility potential, which encompasses the opportunities and places individuals can choose (or are constrained) to access. Mobility potential is realized as actual mobility through agency. Being shaped by socially-patterned personal and geographic characteristics, mobility potential is unequally distributed across social groups. Social inequalities in realized mobility may thus result. We discuss pathways by which these may contribute to contextual influences on social inequalities in health. One pathway is reflected in disadvantaged groups encountering more fast-food outlets during their daily activities, which may relate to their higher risk of unhealthy eating. This proposal lays the bases for empirical research explicitly testing hypotheses regarding the contribution of daily mobility to social inequalities in health.

  17. [Greek medical science and its understanding of physis, as conceptualized in the Hippocratic Treatise De Natura Hominis].

    PubMed

    Imai, Masahiro

    2005-01-01

    It has often been claimed the Greek medical science has its origin in the rational explanation of the world among the early Greek philosophers that constituted their inquiry into nature. However, there were doctors who made an attempt to establish medical science as existing independently of any philosophical intrusion. This can be elucidated through the analysis of the medical term physis, conceptualized, among others, in the well-known treatise in the Hippocratic Corpus, entitled De Natura Hominis (NH). In NH, the Hippocratic doctor criticizes the philosophical anthropology and medical theory, which hold that human nature comes into being emergently from single elemental stuff such as Air, Water etc, or from a single humor. His own view of human nature claims that the four humors (blood, phlegm, yellow bile and black bile) constitute the nature (physis) of human body. The human body has its natural powers inherently for preserving health, and, if anything does harm to it, it functions autonomously for restoring its normal condition. In this context, the term physis denotes what determines the normality of the body, in which its humoral constituents remain harmonized with each other. THrough the conception of physis, applied principally to the body, the human body will be demarcated as the physical or material aspect of human nature, as opposed to the monistic view of human nature, which has not drawn a categorical distinction between the material and the non-material.

  18. Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring.

    PubMed

    Simon, Erwan; Choi, Sung-Deuk; Park, Min-Kyu

    2016-11-01

    Forest fires are a well-known source of polycyclic aromatic hydrocarbons (PAHs). After forest fires, residual ash above a soil layer can be highly contaminated with PAHs. However, little is known about the fate of these contaminants, particularly about their susceptibility to be transferred deeper into underlying soil or downstream during rainfall events. In this study, meteorological conditions, organic carbon (OC) content, and the 16 US-EPA priority PAHs in unburnt control soil, burnt soil, and ash were monitored for 16 months after a forest fire. Whereas the ash was significantly contaminated with PAHs, the levels of PAHs in the underlying burnt soil were similar to those of the control soil. In the ash bed, the levels of PAHs normalized by OC also decreased. Neither PAHs nor OC lost from the ash bed was substantially transferred to the underlying soil. Instead, significant amounts of PAHs in the ash bed were likely removed by surface runoff. Light PAHs were dominantly emitted from the forest fire, but they showed higher decreasing rates with total precipitation. These findings were explained by a conceptual model for the fate of PAHs, involving four distinct processes related to precipitation and two states of the ash bed. PMID:27368087

  19. Achieving Healthy School Siting and Planning Policies: Understanding Shared Concerns of Environmental Planners, Public Health Professionals, and Educators

    PubMed Central

    Cohen, Alison

    2013-01-01

    Policy decisions regarding the quality of the physical school environment—both, school siting and school facility planning policies—are often considered through the lens of environmental planning, public health, or education policy, but rarely through all three. Environmental planners consider environmental justice issues on a local level and/or consider the regional impact of a school. Public health professionals focus on toxic exposures and populations particularly vulnerable to negative health outcomes. Educators and education policymakers emphasize investing in human capital of both students and staff. By understanding these respective angles and combining these efforts around the common goals of achieving adequacy and excellence, we can work towards a regulatory system for school facilities that recognizes children as a uniquely vulnerable population and seeks to create healthier school environments in which children can learn and adults can work. PMID:20359991

  20. Conceptual Change about Outer Space: How Does Informal Training Combined with Formal Teaching Affect Seventh Graders' Understanding of Gravitation?

    ERIC Educational Resources Information Center

    Frappart, Sören; Frède, Valérie

    2016-01-01

    Concepts relating to outer space are difficult to grasp because we lack direct experience of this environment. We analysed students' understanding of gravitation on Earth and beyond by testing the effect of training on it. In a pretest (T1), 28 seventh graders answered a questionnaire about space concepts. They all then underwent the same formal…

  1. An Investigation into Chemical Engineering Students' Understanding of the Mole and the Use of Concrete Activities To Promote Conceptual Change.

    ERIC Educational Resources Information Center

    Case, Jennifer M.; Fraser, Duncan M.

    1999-01-01

    Describes an investigation of first-year chemical engineering students' understanding of the mole concept. Finds that a series of activities designed to provide students with visual or experiential points of reference for the mole concept had a strong positive effect on student misconceptions. Contains 16 references. (Author/WRM)

  2. Fostering High School Students' Conceptual Understandings about Seasons: The Design of a Technology-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Hsu, Ying-Shao; Wu, Hsin-Kai; Hwang, Fu-Kwun

    2008-01-01

    The purpose of this study is to understand in what ways a technology-enhanced learning (TEL) environment supports learning about the causes of the seasons. The environment was designed to engage students in five cognitive phases: Contextualisation, Sense making, Exploration, Modeling, and Application. Seventy-five high school students participated…

  3. Enhancing Grade 10 Thai Students' Stoichiometry Understanding and Ability to Solve Numerical Problems via a Conceptual Change Perspective

    ERIC Educational Resources Information Center

    Dahsah, Chanyah; Coll, Richard K.; Sung-ong, Sunan; Yutakom, Naruemon; Sanguanruang, Sudjit

    2008-01-01

    The international literature suggests students frequently resort to the use of formulae when solving stoichiometry problems without understanding the concepts. In prior work we identified Thai student alternative conceptions and ability to solve numerical problem for stoichiometry. The results indicate that many Thai students also hold alternative…

  4. Evolution of the Students' Conceptual Understanding in the Case of a Teaching Sequence in Mechanics: Concept of Interaction

    ERIC Educational Resources Information Center

    Küçüközer, Asuman

    2006-01-01

    This study aims to better understand the construction of the meaning of physics concepts in mechanics during a teaching sequence at the upper secondary school level. In the teaching sessions, students were introduced to the concepts of interaction and force. During this teaching sequence the models called "interactions" and "laws of…

  5. The Virtual Solar System Project: Developing Conceptual Understanding of Astronomical Concepts through Building Three-Dimensional Computational Models.

    ERIC Educational Resources Information Center

    Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.

    2002-01-01

    Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…

  6. Representing Chemistry: How Instructional Use of Symbolic, Microscopic, and Macroscopic Mode Influences Student Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Wood, Lorelei

    2013-01-01

    Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in…

  7. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    ERIC Educational Resources Information Center

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of…

  8. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    ERIC Educational Resources Information Center

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  9. How to achieve synergy between medical education and cognitive neuroscience? An exercise on prior knowledge in understanding.

    PubMed

    Ruiter, Dirk J; van Kesteren, Marlieke T R; Fernandez, Guillen

    2012-05-01

    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of prior knowledge in understanding plays a strategic role in both medical education and cognitive neuroscience it is used as a central element in our discussion. A critical condition for the acquisition of new knowledge is the existence of prior knowledge, which can be built in a mental model or schema. Formation of schemas is a central event in student-centered active learning, by which mental models are constructed and reconstructed. These theoretical considerations from cognitive psychology foster scientific discussions that may lead to salient issues and questions for research with cognitive neuroscience. Cognitive neuroscience attempts to understand how knowledge, insight and experience are established in the brain and to clarify their neural correlates. Recently, evidence has been obtained that new information processed by the hippocampus can be consolidated into a stable, neocortical network more rapidly if this new information fits readily into a schema. Opportunities for medical education and medical education research can be created in a fruitful dialogue within an educational multidisciplinary platform. In this synergetic setting many questions can be raised by educational scholars interested in evidence-based education that may be highly relevant for integrative research and the further development of medical education.

  10. PRA and Conceptual Design

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  11. Aging in the Shadow of Violence: A Phenomenological Conceptual Framework for Understanding Elderly Women Who Experienced Lifelong IPV.

    PubMed

    Band-Winterstein, Tova

    2015-01-01

    This article suggests a heuristic framework for understanding elderly women's "lived experience" of lifelong intimate partner violence (IPV). This framework is based on the phenomenological qualitative studies of 31 women, aged 60-83, using a semistructured interview guide. From the results, a matrix emerged built on two axes. The first axis consists of three phenomenological dimensions: suffering, a "ticking clock," and life wisdom. The second axis consists of four themes that emerged from the content analysis: loneliness, regret, being in a state of waiting, and being a living monument to perpetual victimhood. The practical implications of these phenomenological findings are then discussed.

  12. On Being in the Wrong Place: The Role of Children’s Conceptual Understanding and Ballgame Experience when Judging a Football Player’s Offside Position

    PubMed Central

    Lange-Küttner, Christiane; Bosco, Giorgia

    2016-01-01

    We investigated the role of children’s conceptual understanding and ballgame experience when judging whether a football player is in an offside position, or not. In the offside position, a player takes advantage of being behind the defence line of the opposing team and just waits for the ball to arrive in order to score a goal. We explained the offside rule to 7- and 9-year-old children with a Subbuteo setup. They produced drawings of an offside position until it was correct (drawing to criterion). Thereafter, children judged whether a designated player was in an offside position in a computerized task. Like adults, also children found it easier to judge when a player was in a wrong rather than a right place. Only when including frequency of ballgame practice in the analysis it was revealed that boys were better independently of age as they judged the offside position more systematically. PMID:27713857

  13. Conceptual and operational understanding of learning for sustainability: a case study of the beef industry in north-eastern Australia.

    PubMed

    Lankester, Ally J

    2013-04-15

    Extensive attention has been given to understanding learning processes that foster sustainability. Despite this focus there is still limited knowledge of learning processes that create changes in perspectives and practices. This paper aims to increase understanding of learning processes in the context of sustainability and refers to the beef industry in north-eastern Australia. A framework based on adult learning theories was developed and used to analyse the what, why and how of beef producers' learning to improve land condition. Twenty-eight producers were interviewed face-to-face and another 91 participated in a telephone survey. Most beef producers were motivated to learn due to perceived problems with existing practices and described mainly learning new skills and techniques to improve production. Beef producers main learning sources were their own experiences, observing others' practices and sharing experiences with peers and family members. Results showed that organised collective learning, adversity and active experimentation with natural resource management skills and techniques can facilitate critical reflection of practices, questioning of the self, others and cultural norms and an enhanced sense of environmental responsibility.

  14. Thoughts on some outstanding issues in the physics of equilibrium wetting and conceptual understanding of contact lines

    NASA Astrophysics Data System (ADS)

    Sefiane, K.

    2011-08-01

    Equilibrium wetting is a fundamental phenomenon, relevant to many scientific areas. Since the pioneering work on equilibrium wetting of Thomas Young (1805) [1], researchers strived to advance our understanding of this fundamental problem. Despite its apparent simplicity, equilibrium wetting phenomenon still holds many unanswered questions and represents a challenge to modern physicists and engineers. The relationship between quantities amenable to measurements, like macroscopic wetting contact angle, and other surface ener- gies and physical properties remains to be fully elucidated. Wetting is a physical problem which spans over two length scales, inner region ("microscopic") length scale and outer region ("macroscopic"). The three-phase contact line, where the macroscopic region meets the micro- scopic one, and underlying surface forces, represents a challenge to fully understand and model. In this paper, a brief review of the basics of wetting and existing concepts is first presented. Then two important questions are discussed in the light of the latest experimental findings: first the relevance of the continuum concept when describing interfaces near the three-phase contact line, and second the effect of adsorption on interfacial energies and its use to explain some interesting observations like the dependence of equilibrium contact angle on pressure and size of droplets. These recent observations raise some fundamental questions about how the three-phase contact line is conceptualised.

  15. Understanding and eliminating racial inequalities in women's health in the United States: the role of the weathering conceptual framework.

    PubMed

    Geronimus, A T

    2001-01-01

    I emphasize 3 features of racial inequality in women's health: It is greatest during young and middle adulthood; in some instances its severity is far greater than national comparisons suggest; and excessive levels of chronic morbidity and disability are widespread among African-American women, regardless of socioeconomic position. I propose that the weathering framework better captures these aspects of health inequality than do developmental models or those that focus on the role of poverty or individual unhealthy behaviors alone. Instead, weathering suggests that African-American women experience early health deterioration as a consequence of the cumulative impact of repeated experience with social, economic, or political exclusion. This includes the physical cost of engaging actively to address structural barriers to achievement and well-being. The weathering framework can be applied to research, to clinical and public health practice, and to social policy and political action.

  16. Understanding the experience of place: Expanding methods to conceptualize and measure community integration of persons with serious mental illness

    PubMed Central

    Townley, Greg; Kloos, Bret; Wright, Patricia A.

    2008-01-01

    Community integration research explores community contexts and factors that encourage or hinder individuals with serious mental illness (SMI) from actively participating in community life. This research agenda can be advanced by using mixed-methods that better document the relationships between contextual factors and individual experience. Two such methods were applied to a mixed-methods study of 40 adults with SMI living in independent housing in the Southeastern United States. Their contextualized experiences of community integration were measured by applying innovative participatory mapping and Geographic Information Systems (GIS) mapping techniques. Use of these methods in conjunction with one another facilitated the creation of activity spaces, which can measure geographic accessibility and help to represent an individual's experience of place and degree of mobility. The utility of these newly applied methods for better understanding community integration for persons with SMI is explored and implications for using these measures in research and practice are discussed. PMID:19062326

  17. Conceptual understanding of social capital in a First Nations community: a social determinant of oral health in children

    PubMed Central

    Salehyar, Mohammad H.; Keenan, Louanne; Patterson, Steven; Amin, Maryam

    2015-01-01

    Objectives The purpose of the study was: (a) to better understand the concept of social capital and its potential role in oral health of children in a First Nations community and (b) to identify the strengths and resources in terms of social capital and a health promotion model that the community has at its disposal to address its oral health issues. Methods In this qualitative case study, participants were purposively selected in a First Nations community: Seven individual interviews and two focus groups involving 18 parents/care givers were selected. Putnam's concept of social capital guided all the interviews. The interviews were recorded and transcribed verbatim. Thematic analysis was employed using the NVivo software. Results The community was close-knit and seemed to have strong moral fibre, which encouraged members to help each other. A strong bonding social capital was also found among the members, especially inside the clans (families). A need for improvement in bridging social capital that would help the community to reach external resources was observed. While members of the community were actively involved in religious rituals and cultural ceremonies, more efforts seemed to be required to recruit volunteers for other events or programs. Active engagement of community members in any program requires that members be given a voice as well as some ownership of the process. Mobilizing or building community's social capital can play a role when planning future interventions. Conclusions A better understanding of social capital may enhance the community's investment and efforts by reinforcing healthy oral behaviours and improving access to external resources. With more dynamic collaboration, it may be possible to create more sustainable community-based oral health promotion programs. PMID:25623814

  18. Chiropractic physicians: toward a select conceptual understanding of bureaucratic structures and functions in the health care institution

    PubMed Central

    Fredericks, Marcel; Kondellas, Bill; Hang, Lam; Fredericks, Janet; Ross, Michael WV

    2011-01-01

    Objective The purpose of this article is to present select concepts and theories of bureaucratic structures and functions so that chiropractic physicians and other health care professionals can use them in their respective practices. The society-culture-personality model can be applied as an organizational instrument for assisting chiropractors in the diagnosis and treatment of their patients irrespective of locality. Discussion Society-culture-personality and social meaningful interaction are examined in relationship to the structural and functional aspects of bureaucracy within the health care institution of a society. Implicit in the examination of the health care bureaucratic structures and functions of a society is the focus that chiropractic physicians and chiropractic students learn how to integrate, synthesize, and actualize values and virtues such as empathy, integrity, excellence, diversity, compassion, caring, and understanding with a deep commitment to self-reflection. Conclusion It is essential that future and current chiropractic physicians be aware of the structural and functional aspects of an organization so that chiropractic and other health care professionals are able to deliver care that involves the ingredients of quality, affordability, availability, accessibility, and continuity for their patients. PMID:22693481

  19. The Relationship Between Certain Structure-of-Intellect Abilities and Achievement in a Selected Sequence From the Conceptually Oriented Program in Elementary Science.

    ERIC Educational Resources Information Center

    Ukens, Leon Lynn

    Reported is a study to determine the proper sequencing of the Conceptually Oriented Program in Elementary Science (COPES) on the basis of structure-of-intellect (SI) abilities, provide science teachers with some insight into the kinds of instructional strategies that could be used and help the teacher decide on the timing of particular…

  20. Understanding consumption-related sucralose emissions - A conceptual approach combining substance-flow analysis with sampling analysis.

    PubMed

    Neset, Tina-Simone Schmid; Singer, Heinz; Longrée, Philipp; Bader, Hans-Peter; Scheidegger, Ruth; Wittmer, Anita; Andersson, Jafet Clas Martin

    2010-07-15

    This paper explores the potential of combining substance-flow modelling with water and wastewater sampling to trace consumption-related substances emitted through the urban wastewater. The method is exemplified on sucralose. Sucralose is a chemical sweetener that is 600 times sweeter than sucrose and has been on the European market since 2004. As a food additive, sucralose has recently increased in usage in a number of foods, such as soft drinks, dairy products, candy and several dietary products. In a field campaign, sucralose concentrations were measured in the inflow and outflow of the local wastewater treatment plant in Linköping, Sweden, as well as upstream and downstream of the receiving stream and in Lake Roxen. This allows the loads emitted from the city to be estimated. A method consisting of solid-phase extraction followed by liquid chromatography and high resolution mass spectrometry was used to quantify the sucralose in the collected surface and wastewater samples. To identify and quantify the sucralose sources, a consumption analysis of households including small business enterprises was conducted as well as an estimation of the emissions from the local food industry. The application of a simple model including uncertainty and sensitivity analysis indicates that at present not one large source but rather several small sources contribute to the load coming from households, small business enterprises and industry. This is in contrast to the consumption pattern seen two years earlier, which was dominated by one product. The inflow to the wastewater treatment plant decreased significantly from other measurements made two years earlier. The study shows that the combination of substance-flow modelling with the analysis of the loads to the receiving waters helps us to understand consumption-related emissions. PMID:20447681

  1. MOMENTS OF MEETING: THE RELEVANCE OF LOU SANDER'S AND DAN STERN'S CONCEPTUAL FRAMEWORK FOR UNDERSTANDING THE DEVELOPMENT OF PATHOLOGICAL SOCIAL RELATEDNESS.

    PubMed

    Gaensbauer, Theodore J

    2016-01-01

    Lou Sander and Dan Stern made seminal contributions to our understanding of early child development, particularly in regard to the moment-to-moment intersubjective exchanges and mutual sensitivity that are at the core of the caregiver-infant relationship. Although their own studies focused primarily on the ways in which children's intersubjective experiences of mutual attunement lead to adaptive social relatedness and validate a healthy sense of self, this article focuses on the applicability of their theoretical conceptions to the development of pathological social relations. It explores the premise that the emotional validation derived from recurrent intersubjective experiences of mutual attunement involving negative affects can be as emotionally compelling from the child's standpoint as that derived from positive exchanges. Children's needs to recreate unhealthy, but affectively meaningful, moments with their caregivers can lead to ingrained, automatically operating pathological patterns of social behavior and affective expression that can take on a life of their own and strongly shape the child's subsequent socioemotional functioning. Following an overview of Sander's and Stern's conceptual thinking, developmental research and clinical case material will be utilized to illustrate how their work can enrich our understanding of developmental processes that can contribute to a number of emotion-specific, early relational disturbances.

  2. The Effectiveness of Predict-Observe-Explain Tasks in Diagnosing Students' Understanding of Science and in Identifying Their Levels of Achievement.

    ERIC Educational Resources Information Center

    Liew, Chong-Wah; Treagust, David F.

    This study involves action research to explore the effectiveness of the Predict-Observe-Explain (POE) technique in diagnosing students' understanding of science and identifying their levels of achievement. A multidimensional interpretive framework is used to interpret students' understanding of science. The research methodology incorporated…

  3. Investigation of a reflective pedagogy to encourage pre-service physics teachers to explore argumentation as an aid to conceptual understanding

    NASA Astrophysics Data System (ADS)

    Lancaster, Greg; Cooper, Rebecca

    2016-05-01

    An emerging focus of recent science education research advocates the benefits of using argumentation as an approach in which teachers can better engage students in a more authentic experience of the epistemic work of scientists (Bricker and Bell, 2008). Logical argument and critical thinking are considered essential skills for an effective and successful undertaking of scientific inquiry and analysis. Early research suggests the practise of encouraging students to engage in scientific discourse in the classroom (Kuhn, 2010) can provide rich experiences for students and teachers to hone their cognitive abilities. This paper explores the use of critical `discussion problems' purposefully designed for pre-service physics teachers to investigate their own alternative conceptual understandings of key physics ideas. It also discusses how these problems are then used to generate classroom discourse which focuses on the importance of developing effective pedagogical content knowledge (See Shulman, 1986 for a detailed explanation of pedagogical content knowledge) rather than just mastery of scientific content and its mathematical applications. Further, the paper will detail a preliminary study in which pre-service physics teachers were introduced to a number of discussion problems via an online learning environment and asked to first consider the problem and post a solution in isolation from their peers. A considerable challenge was persuading the pre-service teachers to resist the common practice of "Googling the answer" via the internet before posting their solution attempt. Although most students initially appeared to believe that posting "the correct" answer was the main task objective, the vast majority eventually came to realise that discussing the range of unresearched solutions was much more beneficial for their conceptual understanding and professional practice. Over time, this approach generally encouraged students to post original ideas and to be less influenced

  4. Building Dynamic Conceptual Physics Understanding

    NASA Astrophysics Data System (ADS)

    Trout, Charlotte; Sinex, Scott A.; Ragan, Susan

    2011-09-01

    Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards2 include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks3 include them in their common themes chapter. Hyerle4 and Marzano5,6 argue for the importance of graphic organizers to student learning. In addition, there is a growing national interest in defining and implementing computational thinking for students.7 In the past 15 years, we have presented dozens of workshops to teachers who are interested in using the computational power of their computers in their classrooms.8-9 In addition to other programs, we use systems dynamics programs to encourage modeling in secondary science classrooms. The interface for these packages is a graphic organizer. In this article we will share some of our insights into the advantages of using such systems dynamics software with high school physics students.

  5. Building Dynamic Conceptual Physics Understanding

    ERIC Educational Resources Information Center

    Trout, Charlotte; Sinex, Scott A.; Ragan, Susan

    2011-01-01

    Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks include them in their common themes chapter. Hyerle and Marzano argue for…

  6. Emphasis on Conceptual Knowledge and Its Impact on Mathematics Anxiety for Community College Students

    ERIC Educational Resources Information Center

    Khoule, Alioune

    2013-01-01

    The study investigated the relationship between conceptual knowledge and mathematics anxiety of remedial mathematics students in an urban community college. The impact that conceptual understanding has on mathematics achievement was also examined. The study sample consisted of 105 remedial mathematics students from four elementary algebra courses.…

  7. Investigation of Conceptual Change about Double-Slit Interference in Secondary School Physics

    ERIC Educational Resources Information Center

    Kocakulah, Mustafa Sabri; Kural, Mehmet

    2010-01-01

    In this study, whether or not constructivist teaching of double-slit interference of light has a positive effect on the secondary school students' conceptual change is examined. An achievement test, a conceptual understanding test and semi-structured interviews were used as data collection tools in this mixed methods research. Experimental group…

  8. A Study of General Education Astronomy Students' Understandings of Cosmology. Part III. Evaluating Four Conceptual Cosmology Surveys: An Item Response Theory Approach

    ERIC Educational Resources Information Center

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is the third of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we use item response theory to analyze students' responses to three out of the four conceptual cosmology surveys we developed. The specific item response theory model we use is…

  9. A Study of General Education Astronomy Students' Understandings of Cosmology. Part II. Evaluating Four Conceptual Cosmology Surveys: A Classical Test Theory Approach

    ERIC Educational Resources Information Center

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2011-01-01

    This is the second of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. This article begins our quantitative investigation of the data. We describe how we scored students' responses to four conceptual cosmology surveys, and we present evidence for the inter-rater…

  10. Effects of Problem-Based Learning with Web-Anchored Instruction in Nanotechnology on the Science Conceptual Understanding, the Attitude towards Science, and the Perception of Science in Society of Elementary Students

    ERIC Educational Resources Information Center

    Yurick, Karla Anne

    2011-01-01

    This study explored the effects of Problem-Based Leaning (PBL) with web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students. A mixed-methods approach was used. Subjects (N=46) participated in the study for approximately two…

  11. [Re]Conceptualizing Inclusion: Can Critical Race Theory and Interest Convergence Be Utilized to Achieve Inclusion and Equity for African American Students?

    ERIC Educational Resources Information Center

    Zion, Shelley D.; Blanchett, Wanda

    2011-01-01

    Background/Context: Even though not fully realized, in legislation and theory, the requirements of the Individuals With Disabilities Education Improvement Act and the No Child Left Behind Act have created pressure to address the historical inequity in educational opportunity, achievement, and outcomes, as well as disparities in achievement between…

  12. Effects of problem-based learning with Web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students

    NASA Astrophysics Data System (ADS)

    Yurick, Karla Anne

    2011-12-01

    This study explored the effects of Problem-Based Leaning (PBL) with web-anchored instruction in nanotechnology on the science conceptual understanding, the attitude towards science, and the perception of science in society of elementary students. A mixed-methods approach was used. Subjects (N=46) participated in the study for approximately two and a half weeks. A pretest was administered for science conceptual understanding and for attitude towards science. An intervention, web-based nanotechnology anchor, Catching the Rays, followed. Catching the Rays navigated subjects through a nano quest on sunscreen. After the intervention, a posttest was administered for each science conceptual understanding and attitude towards science. Following, a purposeful selection of interviewees (N=6) participated in a Nano Post-Interview. Pretest/posttest data were analyzed using a paired t test. Results of the paired t test for science conceptual understanding (post- being larger than pre-, p <. 01) and attitude towards science (post- being larger than pre-, p < .01) were significant at the p < .05 alpha level. Nano Post-Interview data were coded and analyzed independently by two raters for emerging themes. Two themes of "Risks and Benefits" and "Solves Problems" emerged from subjects' (N=6) responses to perception of science in society questions. The theme of "Risks and Benefits" strongly suggests that subjects have a positive perception that nanotechnology comes with risks and benefits to society. The theme of "Solves Problems" strongly suggests subjects have a positive perception that nanotechnology is governed by society's needs and is used to help solve society's problems. Findings from this study suggest that PBL with web-anchored instruction in nanotechnology had a positive effect on subjects' science conceptual understanding, attitude towards science, and perception of science in society.

  13. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  14. How to Achieve Synergy between Medical Education and Cognitive Neuroscience? An Exercise on Prior Knowledge in Understanding

    ERIC Educational Resources Information Center

    Ruiter, Dirk J.; van Kesteren, Marlieke T. R.; Fernandez, Guillen

    2012-01-01

    A major challenge in contemporary research is how to connect medical education and cognitive neuroscience and achieve synergy between these domains. Based on this starting point we discuss how this may result in a common language about learning, more educationally focused scientific inquiry, and multidisciplinary research projects. As the topic of…

  15. Understanding the Self-Directed Online Learning Preferences, Goals, Achievements, and Challenges of MIT OpenCourseWare Subscribers

    ERIC Educational Resources Information Center

    Bonk, Curtis J.; Lee, Mimi Miyoung; Kou, Xiaojing; Xu, Shuya; Sheu, Feng-Ru

    2015-01-01

    This research targeted the learning preferences, goals and motivations, achievements, challenges, and possibilities for life change of self-directed online learners who subscribed to the monthly OpenCourseWare (OCW) e-newsletter from MIT. Data collection included a 25-item survey of 1,429 newsletter subscribers; 613 of whom also completed an…

  16. Using the Expectancy Value Model of Motivation to Understand the Relationship between Student Attitudes and Achievement in Statistics

    ERIC Educational Resources Information Center

    Hood, Michelle; Creed, Peter A.; Neumann, David L.

    2012-01-01

    We tested a model of the relationship between attitudes toward statistics and achievement based on Eccles' Expectancy Value Model (1983). Participants (n = 149; 83% female) were second-year Australian university students in a psychology statistics course (mean age = 23.36 years, SD = 7.94 years). We obtained demographic details, past performance,…

  17. Understanding Academic Achievement among Children in Stephouseholds: The Role of Parental Resources, Sex of Stepparent, and Sex of Child.

    ERIC Educational Resources Information Center

    Downey, Douglas B.

    1995-01-01

    Among over 24,000 eighth graders in the National Education Longitudinal Study, the lower academic achievement of students in stepfamilies relative to those in intact 2-parent families was largely explained by differences in parents' economic and cultural resources and involvement in children's school and nonschool activities. Boys and girls fared…

  18. "I Would Have Taught You Differently": Bringing an Understanding of the Economy into the Schools. Alliance for Achievement.

    ERIC Educational Resources Information Center

    Rubin, Sarah; Cunniff, Catherine

    This report offers ideas for expanding schools' partnerships with employers. These partnerships can raise academic achievement, college-going rates, and career-awareness for low-income and minority students. Topics include a discussion of the school-to-work movement and career guidance; raising awareness through workplace visits; summer…

  19. Understanding the Positive Role of Neighborhood Socioeconomic Advantage in Achievement: The Contribution of the Home, Child Care, and School Environments

    ERIC Educational Resources Information Center

    Dupere, Veronique; Leventhal, Tama; Crosnoe, Robert; Dion, Eric

    2010-01-01

    The goal of this study was to examine the mechanisms underlying associations between neighborhood socioeconomic advantage and children's achievement trajectories between ages 54 months and 15 years. Results of hierarchical linear growth models based on a diverse sample of 1,364 children indicate that neighborhood socioeconomic advantage was…

  20. Understanding and Addressing the California Latino Achievement Gap in Early Elementary School. Working Paper 2004-01

    ERIC Educational Resources Information Center

    Rumberger, Russell W.; Anguiano, Brenda Arellano

    2004-01-01

    One of the most pressing problems in California is improving student academic performance, especially the state's burgeoning Latino student population. This study examined the extent of the achievement gap between Latino and White students over the first two years of elementary school and the characteristics of students and schools that contribute…

  1. Conceptual Change.

    ERIC Educational Resources Information Center

    Ram, Ashwin, Ed.; Nersessian, Nancy J., Ed.; Keil, Frank C., Ed.

    1997-01-01

    This special issue includes four articles that address issues concerning conceptual change. Topics include analogical reasoning and a case study of Johannes Kepler; conceptual change and wine expertise; the role of extreme case reasoning in instruction for conceptual change; and dynamic science assessment: a new approach for investigating…

  2. Conceptual Models for Search Engines

    NASA Astrophysics Data System (ADS)

    Hendry, D. G.; Efthimiadis, E. N.

    Search engines have entered popular culture. They touch people in diverse private and public settings and thus heighten the importance of such important social matters as information privacy and control, censorship, and equitable access. To fully benefit from search engines and to participate in debate about their merits, people necessarily appeal to their understandings for how they function. In this chapter we examine the conceptual understandings that people have of search engines by performing a content analysis on the sketches that 200 undergraduate and graduate students drew when asked to draw a sketch of how a search engine works. Analysis of the sketches reveals a diverse range of conceptual approaches, metaphors, representations, and misconceptions. On the whole, the conceptual models articulated by these students are simplistic. However, students with higher levels of academic achievement sketched more complete models. This research calls attention to the importance of improving students' technical knowledge of how search engines work so they can be better equipped to develop and advocate policies for how search engines should be embedded in, and restricted from, various private and public information settings.

  3. Using stable water isotopes in a two-layer soil moisture conceptual framework to understand transpiration dynamics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Szutu, D. J.; Papuga, S. A.; Wehr, R.

    2014-12-01

    Semiarid shrublands and other dryland ecosystems are highly sensitive to precipitation pulses. Because the frequency and magnitude of precipitation events have been projected to change for these ecosystems, the nature of these pulses and how they are distributed as moisture in the soil profile are also expected to change. Previous research has suggested that transpiration dynamics in drylands are associated with deep soil moisture, which accumulates after large rainfall events. Because transpiration is the productive component of evapotranspiration in that it is water used toward biomass accumulation, a hypothetical decrease in large rainfall events would have major consequences for the health and functioning of dryland ecosystems. Furthermore, as drylands account for nearly 40% of terrestrial biomes, these cascading changes have the potential to impact global water and carbon budgets. Still, in pulse-dependent dryland ecosystems, the relative contribution of transpiration to evapotranspiration and the temporal dynamics of this contribution are not well understood. The objective of this research is to better characterize the temporal dynamics of transpiration in dryland ecosystems. We present the relative contribution of transpiration to evapotranspiration over the course of a year from eddy covariance and sap flow measurements taken at a creosotebush-dominated shrubland ecosystem in southern Arizona. We analyze soil moisture and stable water isotopes within the context of a two-layer soil moisture conceptual framework in an attempt to identify the source water for transpiration. We use these results to explain the temporal dynamics of transpiration in this semiarid shrubland. Finally, we put our results in the context of regional climate projections to suggest how this dryland ecosystem might be impacted in the future. We expect our study will contribute to understanding where precipitation pulses are distributed in the soil moisture profile and when these pulses

  4. Understanding the mathematics and science achievement and growth trajectories of high ability high school students using hierarchical linear modeling

    NASA Astrophysics Data System (ADS)

    Belen-Ferrer, Bellasanta

    2009-12-01

    This study used longitudinal data and individual, family, and academic-related matriculation variables to examine trends in initial status and growth trajectories in overall academics, mathematics, and science achievement among 224 high ability high school Asian students. Results indicate that females have an advantage in both initial status and growth rates in overall academics and science. None of the family variables entered in the models were found to be significantly related to overall academics grade point average. All available matriculation variables entered into the models explained less than or at most about half the variance in initial achievement status and growth rate in overall academics and science but not in mathematics. These results strongly imply that other factors, notably family and school and/or classroom-related variables, not measured by the ones used in the models could explain the expected variance in initial status and growth rate of the students especially in Mathematics.

  5. Postindustrial Capitalism and the Problems with Bourdieu's Social and Cultural Capital in Understanding the Black/White Achievement Gap in the United States and United Kingdom

    ERIC Educational Resources Information Center

    Mocombe, Paul C.

    2015-01-01

    This hermeneutical essay demonstrates why and how Pierre Bourdieu's social reproduction theory is neither an adequate explanation for understanding praxis nor the Black/White academic achievement gap in contemporary postindustrial economies like that of the United States and the United Kingdom. The underlining hypothesis of the work is that the…

  6. The Ninth Grade Physical Science Programs An Appraisal of Achievement, Understanding, and Vocational Interest Developed Through Three Different Physical Science Curriculums in Lincoln Schools.

    ERIC Educational Resources Information Center

    Durst, Wesley Nolan

    This study appraises some aspects of student development that have resulted from instruction in three different physical science courses: Traditional Physical Science, Interaction of Matter and Energy, and Introductory Physical Science. The students were analyzed for differences in understanding of science, achievement in science, or vocational…

  7. Chemistry Teachers' Estimations of Their Students' Learning Achievement

    ERIC Educational Resources Information Center

    Huann-Shyang, Lin; Sung, Tao Lee; Treagust, David

    2005-01-01

    A study was conducted to assess junior and high school students learning achievement in the topic of stoichiometry by using The Student Conceptual Understanding Test (SCUT). The low student achievement on the SCUT test deserves special attention from chemistry teachers, and it is stated that effective teaching strategies to promote student…

  8. The Influence of Mind Mapping on Eighth Graders' Science Achievement

    ERIC Educational Resources Information Center

    Abi-El-Mona, Issam; Adb-El-Khalick, Fouad

    2008-01-01

    This study assessed the influence of using mind maps as a learning tool on eighth graders' science achievement, whether such influence was mediated by students' prior scholastic achievement, and the relationship between students' mind maps and their conceptual understandings. Sixty-two students enrolled in four intact sections of a grade 8 science…

  9. Active Living Collaboratives in the United States: Understanding Characteristics, Activities, and Achievement of Environmental and Policy Change

    PubMed Central

    Reed, Hannah L.; Tabak, Rachel G.; Zieff, Susan G.; Eyler, Amy A.; Lyn, Rodney; Goins, Karin Valentine; Gustat, Jeanette; Tompkins, Nancy O’Hara

    2013-01-01

    Introduction Changing the built environment to promote active lifestyles requires collaboration among diverse sectors. Multisectoral collaborative groups in the United States promote active lifestyles through environmental and policy changes. The objective of this study was to examine the characteristics of these collaborative groups and the extent to which they have achieved change. Methods We identified, recruited, and interviewed the coordinators of active living collaborative groups in the United States. We used descriptive statistics to characterize groups by composition, stakeholder engagement, and the extent of environmental and policy change in 8 strategic areas. Results Fifty-nine groups from 22 states participated in the study. Most groups had a diverse set of partners and used a range of activities to advance their agendas. Most groups achieved some form of environmental or policy change. On average, groups reported working on 5 strategy areas; parks and recreation (86%) and Safe Routes to School (85%) were named most frequently. More than half of groups reported their environmental initiatives as either in progress or completed. Groups reported the most success in changing policy for public plazas, street improvements, streetscaping, and parks, open space, and recreation. Complete Streets policy and zoning ordinances were the most frequently cited policy types. Engaging in media activities and the policy-making process in addition to engaging stakeholders appear to influence success in achieving change. Conclusion Although many groups successfully worked on parks and recreation improvements, opportunities remain in other areas, including transit and infill and redevelopment. Additional time and resources may be critical to realizing these types of changes. PMID:23391295

  10. A Review of Literature to Understand the Complexity of Equity, Ethics and Management for Achieving Public Health Goals in India

    PubMed Central

    Garg, Pankaj; Nagpal, Jitender

    2014-01-01

    In the context of inadequate public spending on health care in India (0.9% of the GDP); government liberalized its policies in the form of subsidized lands and tax incentives, resulting in the mushrooming of private hospitals and clinics in India. Paradoxically, a robust framework was not developed for the regulation of these health care providers, resulting in disorganized health sector, inadequate financing models, and lack of prioritization of services, as well as a sub-optimal achievement of the Millennium Development Goals (MDG). We systematically reviewed the evidence base regarding regulation of private hospitals, applicability of private-public mix, state of health insurance and effective policy development for India, while seeking lessons on regulation of private health systems, from South African (a developing country) and Australian (a developed country) health care systems. PMID:24701465

  11. Conceptual frameworks in astronomy

    NASA Astrophysics Data System (ADS)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  12. High-School Students' Conceptual Difficulties and Attempts at Conceptual Change: The Case of Basic Quantum Chemical Concepts

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Papaphotis, Georgios

    2009-01-01

    This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…

  13. Upper Secondary Students' Understanding of the Use of Multiple Models in Biology Textbooks--The Importance of Conceptual Variation and Incommensurability

    ERIC Educational Resources Information Center

    Gericke, Niklas; Hagberg, Mariana; Jorde, Doris

    2013-01-01

    In this study we investigate students' ability to discern conceptual variation and the use of multiple models in genetics when reading content-specific excerpts from biology textbooks. Using the history and philosophy of science as our reference, we were able to develop a research instrument allowing students themselves to investigate the…

  14. Comparing Apples and Pears?: A Conceptual Framework for Understanding Forms of Outdoor Learning through Comparison of English Forest Schools and Danish "Udeskole"

    ERIC Educational Resources Information Center

    Waite, Sue; Bølling, Mads; Bentsen, Peter

    2016-01-01

    Using a conceptual model focused on purposes, aims, content, pedagogy, outcomes, and barriers, we review and interpret literature on two forms of outdoor learning: Forest Schools in England and "udeskole" in Denmark. We examine pedagogical principles within a comparative analytical framework and consider how adopted pedagogies reflect…

  15. "I Understand Why People Need to Ease Their Emotions": Exploring Mindfulness and Emotions in a Conceptual Physics Classroom of an Elementary Teacher Education Program

    ERIC Educational Resources Information Center

    Powietrzynska, Malgorzata; Gangji, Al-Karim H.

    2016-01-01

    In this manuscript we bring to focus student perceptions of salience (or lack of thereof) of emotions in the undergraduate conceptual physics course (in the teacher education program) and their relevance to teaching and learning. Our analysis of student responses to the Mindfulness in Education Heuristic constitutes a feedback loop affording the…

  16. The Effectiveness of Brain-Based Teaching Approach in Dealing with the Problems of Students' Conceptual Understanding and Learning Motivation towards Physics

    ERIC Educational Resources Information Center

    Saleh, Salmiza

    2012-01-01

    Teachers of science-based education in Malaysian secondary schools, especially those in the field of physics, often find their students facing huge difficulties in dealing with conceptual ideas in physics, resulting thus in a lack of interest towards the subject. The aim of this study was to assess the effectiveness of the Brain-Based Teaching…

  17. Designing Inductive Instructional Activities in a Teacher Training Program to Enhance Conceptual Understandings in Science for Thai Science and Non-Science Teachers

    ERIC Educational Resources Information Center

    Narjaikaew, Pattawan; Jeeravipoonvarn, Varanya; Pongpisanou, Kanjana; Lamb, Dennis

    2016-01-01

    Teachers are viewed as the most significant factor affecting student learning. However, research in science education showed that teachers often demonstrate misunderstandings of science very similar to students. The purpose of this research was to correct conceptual difficulties in science of Thai primary school science and non-science teachers…

  18. A Study of General Education Astronomy Students' Understandings of Cosmology. Part V. The Effects of a New Suite of Cosmology "Lecture-Tutorials" on Students' Conceptual Knowledge

    ERIC Educational Resources Information Center

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is the final paper in a five-paper series describing our national study of the teaching and learning of cosmology in general education astronomy college-level courses. A significant portion of this work was dedicated to the development of five new "Lecture-Tutorials" that focus on addressing the conceptual and reasoning difficulties that our…

  19. Coordinating Procedural and Conceptual Knowledge to Make Sense of Word Equations: Understanding the Complexity of a "Simple" Completion Task at the Learner's Resolution

    ERIC Educational Resources Information Center

    Taber, Keith S.; Bricheno, Pat

    2009-01-01

    The present paper discusses the conceptual demands of an apparently straightforward task set to secondary-level students--completing chemical word equations with a single omitted term. Chemical equations are of considerable importance in chemistry, and school students are expected to learn to be able to write and interpret them. However, it is…

  20. The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on science teachers' conceptual understanding of physics

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias Charilaos

    2002-09-01

    This paper investigated how use of an Interactive Computer-Based Simulation (ICBS) prior to performing a Laboratory Inquiry-Based Experiment (LIBE), in a conceptually oriented physics course, affects students' conceptual development of some physics ideas in Mechanics, Waves/Optics and Thermal Physics. ICBS and LIBE were selected from previous research studies, or developed to challenge students' ideas. These were integrated into a sixteen-week semester physics content class. The 13 science teachers who participated in the study were not physicists. The data collection process was based upon a self-control design where each participant alternated between treatment and control presentations. Interviews (pre-, inter-, and post-interviews) and conceptual tests (pre-, inter- and post-tests) were used, for each module presented in the class. Each one of the three physics areas had four modules, and for each module the participants responded to the three tests and participated in the three interviews. Both the tests and the interviews were statistically analyzed for (a) any significant changes in students' ability to make "scientifically accepted" predictions (a physics textbook was used as criterion) and give "scientifically accepted" explanations regarding a LIBE, after they had used an ICBS, (b) the extent to which students' experience with an ICBS, before and after the conduction of a LIBE, fostered conceptual change, and (c) investigating students' attitudes towards ICBS, LIBE, or both ICBS and LIBE, and which of them promotes more positive attitudes towards the physics areas of the study. Results indicated that students that used an ICBS before a LIBE performed significantly better than students who did not use an ICBS before a LIBE. The use of an ICBS improved students' ability to make "scientifically accepted" predictions and give "scientifically accepted" explanations regarding a LIBE, and fostered a significant conceptual change in all three physics areas that