Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera
NASA Astrophysics Data System (ADS)
Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.
2007-09-01
We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.
GAO, L.; HAGEN, N.; TKACZYK, T.S.
2012-01-01
Summary We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores’ emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. PMID:22356127
Zozaya, Carlos; Triana, Miryam; Madero, Rosario; Abrams, Steven; Martinez, Leopoldo; Amesty, Maria Virginia; Pipaón, Miguel Sáenz de
2017-10-01
Introduction The objective of the study is to examine the factors associated with time to achieve full enteral feeding after repair of congenital diaphragmatic hernia. Materials and Methods Demographic, clinical, and therapeutic data were retrospectively assessed, and uni- and multivariate Cox regression were performed to examine factors predictive of achieving full enteral feeding that was defined as time to achieve120 mL/kg/d after surgical repair. Results Of 78 infants, 66 underwent intervention before hospital discharge. All infants who survived had reached full enteral feeding at the time of hospital discharge by a median of 22 days (range: 2-119 days) after surgery and 10 days (range: 1-91) after initiation of postoperative enteral feedings. Independent risk factors associated with a longer time to reach full enteral feeding achievement included gastroesophageal reflux and days of antibiotics in the postoperative period. Daily stool passage preoperatively predicted earlier enteral tolerance. Conclusion Infants who survive congenital diaphragmatic hernia generally are able to achieve full enteral feedings after surgical repair. A longer time to full feeding is needed in the most severe cases, but some specific characteristics can be used to help identify patients at higher risk. Although some of these characteristics are unavoidable, others including rational antibiotic usage and active gastroesophageal reflux prevention and treatment are feasible and may improve enteral tolerance. Georg Thieme Verlag KG Stuttgart · New York.
Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging
NASA Astrophysics Data System (ADS)
Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib
2017-11-01
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.
Common fractures and dislocations of the hand.
Jones, Neil F; Jupiter, Jesse B; Lalonde, Donald H
2012-11-01
After reading this article, the participant should be able to: 1. Describe the concept of early protected movement with Kirschner-wired finger fractures to the hand therapist. 2. Choose the most appropriate method of fracture fixation to achieve the goal of a full range of motion. 3. Describe the methods of treatment available for the most common fractures and dislocations of the hand. The main goal of treatment of hand and finger fractures and dislocations is to attain a full range of wrist and nonscissoring finger motion after the treatment is accomplished. This CME article consists of literature review, illustrations, movies, and an online CME examination to bring the participant recent available information on the topic. The authors reviewed literature regarding the most current treatment strategies for common hand and finger fractures and dislocations. Films were created to illustrate operative and rehabilitation methods used to treat these problems. A series of multiple-choice questions, answers, discussions, and references were written and are provided online so that the participant can receive the full benefit of this review. Many treatment options are available, from buddy and Coban taping to closed reduction with immobilization; percutaneous pins or screws; and open reduction with pins, screws, or plates. Knowledge of all available options is important because all can be used to achieve the goal of treatment in the shortest time possible. The commonly used methods of treatment are reviewed and illustrated. Management of common hand and finger fractures and dislocations includes the need to focus on achieving a full range of motion after treatment. A balance of fracture reduction with minimal dissection and early protected movement will achieve the goal.
Characteristics of Third-Grade Learning Disabled Children.
ERIC Educational Resources Information Center
Cullen, Joy L.; And Others
1981-01-01
The Developmental Test of Visual-Motor Integration, the Wide Range Achievement Test, and the Student's Perception of Ability Scale were administreed to 70 learning disabled and 73 normally achieving third-grade children who had been stratified on full scale Wechsler Intelligence Scale for Children-Revised (WISC-R) IQ scores. (Author)
Rinne, Paul; Mace, Michael; Nakornchai, Tagore; Zimmerman, Karl; Fayer, Susannah; Sharma, Pankaj; Liardon, Jean-Luc; Burdet, Etienne; Bentley, Paul
2016-01-01
Motor-training software on tablets or smartphones (Apps) offer a low-cost, widely-available solution to supplement arm physiotherapy after stroke. We assessed the proportions of hemiplegic stroke patients who, with their plegic hand, could meaningfully engage with mobile-gaming devices using a range of standard control-methods, as well as by using a novel wireless grip-controller, adapted for neurodisability. We screened all newly-diagnosed hemiplegic stroke patients presenting to a stroke centre over 6 months. Subjects were compared on their ability to control a tablet or smartphone cursor using: finger-swipe, tap, joystick, screen-tilt, and an adapted handgrip. Cursor control was graded as: no movement (0); less than full-range movement (1); full-range movement (2); directed movement (3). In total, we screened 345 patients, of which 87 satisfied recruitment criteria and completed testing. The commonest reason for exclusion was cognitive impairment. Using conventional controls, the proportion of patients able to direct cursor movement was 38–48%; and to move it full-range was 55–67% (controller comparison: p>0.1). By comparison, handgrip enabled directed control in 75%, and full-range movement in 93% (controller comparison: p<0.001). This difference between controllers was most apparent amongst severely-disabled subjects, with 0% achieving directed or full-range control with conventional controls, compared to 58% and 83% achieving these two levels of movement, respectively, with handgrip. In conclusion, hand, or arm, training Apps played on conventional mobile devices are likely to be accessible only to mildly-disabled stroke patients. Technological adaptations such as grip-control can enable more severely affected subjects to engage with self-training software. PMID:27706248
NASA Astrophysics Data System (ADS)
Kabir, Salman; Smith, Craig; Armstrong, Frank; Barnard, Gerrit; Schneider, Alex; Guidash, Michael; Vogelsang, Thomas; Endsley, Jay
2018-03-01
Differential binary pixel technology is a threshold-based timing, readout, and image reconstruction method that utilizes the subframe partial charge transfer technique in a standard four-transistor (4T) pixel CMOS image sensor to achieve a high dynamic range video with stop motion. This technology improves low light signal-to-noise ratio (SNR) by up to 21 dB. The method is verified in silicon using a Taiwan Semiconductor Manufacturing Company's 65 nm 1.1 μm pixel technology 1 megapixel test chip array and is compared with a traditional 4 × oversampling technique using full charge transfer to show low light SNR superiority of the presented technology.
Do Creativity Self-Beliefs Predict Literacy Achievement and Motivation?
ERIC Educational Resources Information Center
Putwain, David W.; Kearsley, Rebecca; Symes, Wendy
2012-01-01
Previous work has suggested that creativity self-beliefs show only small relations with academic achievement and may only be related to intrinsic, not extrinsic motivation. We set out to re-examine these relationships accounting for the multifaceted and process embedded nature of creativity self-beliefs and the full domain range of extrinsic…
Highly efficient holograms based on c-Si metasurfaces in the visible range.
Martins, Augusto; Li, Juntao; da Mota, Achiles F; Wang, Yin; Neto, Luiz G; do Carmo, João P; Teixeira, Fernando L; Martins, Emiliano R; Borges, Ben-Hur V
2018-04-16
This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-color holograms.
Three brief assessments of math achievement.
Steiner, Eric T; Ashcraft, Mark H
2012-12-01
Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect
NASA Astrophysics Data System (ADS)
Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang
2018-03-01
MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-01-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327
Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range
NASA Astrophysics Data System (ADS)
Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu
2017-03-01
We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.
A novel digital neutron flux monitor for international thermonuclear experimental reactor
NASA Astrophysics Data System (ADS)
Xiang, ZHOU; Zihao, LIU; Chao, CHEN; Renjie, ZHU; Li, ZHAO; Lingfeng, WEI; Zejie, YIN
2018-04-01
A novel full-digital real-time neutron flux monitor (NFM) has been developed for the International Thermonuclear Experimental Reactor. A measurement range of 109 counts per second is achieved with 3 different sensitive fission chambers. The Counting mode and Campbelling mode have been combined as a means to achieve higher measurement range. The system is based on high speed as well as parallel and pipeline processing of the field programmable gate array and has the ability to upload raw-data of analog-to-digital converter in real-time through the PXIe platform. With the advantages of the measurement range, real time performance and the ability of raw-data uploading, the digital NFM has been tested in HL-2A experiments and reflected good experimental performance.
NASA Technical Reports Server (NTRS)
Campbell, J. F.
1975-01-01
Wind-tunnel data were obtained at a free-stream Mach number of 0.26 for a range of model angle of attack, jet thrust coefficient, and jet location. Results of this study show that the sectional effects to spanwise blowing are strongly dependent on angle of attack, jet thrust coefficient, and span location; the largest effects occur at the highest angles of attack and thrust coefficients and on the inboard portion of the wing. Full vortex lift was achieved at the inboard span station with a small blowing rate, but successively higher blowing rates were necessary to achieve full vortex lift at increased span distances. It is shown that spanwise blowing increases lift throughout the angle-of-attack range, delays wing stall to higher angles of attack, and improves the induced-drag polars. The leading-edge suction analogy can be used to estimate the section and total lifts resulting from spanwise blowing.
Making Meaning through Translanguaging in the Literacy Classroom
ERIC Educational Resources Information Center
Pacheco, Mark B.; Miller, Mary E.
2016-01-01
In this Teaching Tip, we share three literacy activities for teachers working with emergent bilinguals. Leveraging students' heritage languages in instruction holds rich opportunities for literacy achievement. Translanguaging pedagogies encourage emergent bilinguals to use the full range of their linguistic repertoires when making meaning in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, themore » present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.« less
A full-parallax 3D display with restricted viewing zone tracking viewer's eye
NASA Astrophysics Data System (ADS)
Beppu, Naoto; Yendo, Tomohiro
2015-03-01
The Three-Dimensional (3D) vision became widely known as familiar imaging technique now. The 3D display has been put into practical use in various fields, such as entertainment and medical fields. Development of 3D display technology will play an important role in a wide range of fields. There are various ways to the method of displaying 3D image. There is one of the methods that showing 3D image method to use the ray reproduction and we focused on it. This method needs many viewpoint images when achieve a full-parallax because this method display different viewpoint image depending on the viewpoint. We proposed to reduce wasteful rays by limiting projector's ray emitted to around only viewer using a spinning mirror, and to increase effectiveness of display device to achieve a full-parallax 3D display. We propose a method by using a tracking viewer's eye, a high-speed projector, a rotating mirror that tracking viewer (a spinning mirror), a concave mirror array having the different vertical slope arranged circumferentially (a concave mirror array), a cylindrical mirror. About proposed method in simulation, we confirmed the scanning range and the locus of the movement in the horizontal direction of the ray. In addition, we confirmed the switching of the viewpoints and convergence performance in the vertical direction of rays. Therefore, we confirmed that it is possible to realize a full-parallax.
ERIC Educational Resources Information Center
Hammerman, Elizabeth
2008-01-01
State and national standards identify what students should know and be able to do, including what it means to "do" science, the historical significance of science achievement and its ethical underpinnings, and science from the human perspective. Middle level science programs that address the full range of science standards and connect learning to…
Formby, Craig; Hawley, Monica L.; Sherlock, LaGuinn P.; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M.; Juneau, Roger; Desporte, Edward J.; Siegle, Gregory R.
2015-01-01
The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy–based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1—full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2—partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3—partial treatment achieved with binaural sound generators alone; and (4) group 4—a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were significantly greater than the corresponding pretreatment judgments measured at baseline at 500, 2,000, and 4,000 Hz. Moreover, increases in their “uncomfortably loud” judgments (∼12 dB over the range from 500 to 4,000 Hz) were superior to those measured for either of the partial-treatment groups 2 and 3 or for control group 4. Efficacy, assessed by treatment-related criterion increases ≥ 10 dB for judgments of uncomfortable loudness, was superior for full treatment (82% efficacy) compared with that for either of the partial treatments (25% and 40% for counseling combined with the placebo sound therapy and sound therapy alone, respectively) or for the control treatment (50%). The majority of the group 1 participants achieved their criterion improvements within 3 months of beginning treatment. The treatment effect from sound therapy was much greater than that for counseling, which was statistically indistinguishable in most of our analyses from the control treatment. The basic principles underlying the full-treatment protocol are valid and have general applicability for expanding the DR among individuals with sensorineural hearing losses, who may often report aided loudness problems. The positive full-treatment effects were superior to those achieved for either counseling or sound therapy in virtual or actual isolation, respectively; however, the delivery of both components in the full-treatment approach was essential for an optimum treatment outcome. PMID:27516711
Formby, Craig; Hawley, Monica L; Sherlock, LaGuinn P; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M; Juneau, Roger; Desporte, Edward J; Siegle, Gregory R
2015-05-01
The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy-based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1-full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2-partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3-partial treatment achieved with binaural sound generators alone; and (4) group 4-a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were significantly greater than the corresponding pretreatment judgments measured at baseline at 500, 2,000, and 4,000 Hz. Moreover, increases in their "uncomfortably loud" judgments (∼12 dB over the range from 500 to 4,000 Hz) were superior to those measured for either of the partial-treatment groups 2 and 3 or for control group 4. Efficacy, assessed by treatment-related criterion increases ≥ 10 dB for judgments of uncomfortable loudness, was superior for full treatment (82% efficacy) compared with that for either of the partial treatments (25% and 40% for counseling combined with the placebo sound therapy and sound therapy alone, respectively) or for the control treatment (50%). The majority of the group 1 participants achieved their criterion improvements within 3 months of beginning treatment. The treatment effect from sound therapy was much greater than that for counseling, which was statistically indistinguishable in most of our analyses from the control treatment. The basic principles underlying the full-treatment protocol are valid and have general applicability for expanding the DR among individuals with sensorineural hearing losses, who may often report aided loudness problems. The positive full-treatment effects were superior to those achieved for either counseling or sound therapy in virtual or actual isolation, respectively; however, the delivery of both components in the full-treatment approach was essential for an optimum treatment outcome.
Full thickness facial burns: Outcomes following orofacial rehabilitation.
Clayton, N A; Ward, E C; Maitz, P K M
2015-11-01
To document orofacial rehabilitation and outcomes after full thickness orofacial burn. Participants included 12 consecutive patients presenting with full thickness orofacial burns. A group of 120 age-matched healthy participants was recruited for normative comparison. Non-surgical exercise was initiated within 48 h of admission and continued until wounds had healed, circumoral scar tissue had stabilised and functional goals were achieved to the best of the patient's ability. Outcomes were documented using vertical and horizontal mouth opening measures at start and end of treatment and therapy duration was recorded. At commencement of treatment, participants had significantly (p<0.001) reduced vertical and horizontal mouth opening range compared to controls. Average duration of orofacial contracture management was 550 days, with half requiring >2 years rehabilitation. By end of treatment, significant (p<0.01) positive improvement in vertical and horizontal mouth opening had been achieved, however measures had returned to lower limits of normal function and remained significantly (p<0.05) reduced compared to the control group. This study demonstrates that although positive gains can be achieved through non-surgical exercise after full thickness burn, the duration of rehabilitation is considerable and some degree of long term loss in functional mouth opening remains. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Van der Sluis, Wouter B; Bouman, Mark-Bram; Buncamper, Marlon E; Mullender, Margriet G; Meijerink, Wilhelmus J
2016-10-01
Vaginal (re)construction can greatly improve the quality of life of indicated patients. If primary vaginoplasty fails, multiple surgical approaches exist for revision. The authors compared surgical results of laparoscopic intestinal versus full-thickness skin graft revision vaginoplasty. A retrospective chart review of patients who underwent revision vaginoplasty at the authors' institution was conducted. Patient demographics, surgical characteristics, complications, hospitalization, reoperations, and neovaginal depth for both surgical techniques were recorded and compared. The authors studied a consecutive series of 50 transgender and three biological women who underwent revision vaginoplasty, of which 21 were laparoscopic intestinal and 32 were perineal full-thickness skin graft vaginoplasties, with a median clinical follow-up of 3.2 years (range, 0.5 to 19.7 years). Patient demographics did not differ significantly. There was no mortality. Two intraoperative rectal perforations (10 percent) occurred in the intestinal group versus six (19 percent) in the full-thickness skin graft group. Operative time was shorter for the full-thickness skin graft vaginoplasty group (131 ± 35 minutes versus 191 ± 45 minutes; p < 0.01). Hospitalization length did not differ significantly. Successful vaginal (re)construction was achieved in 19 intestinal (91 percent) and 26 full-thickness skin graft (81 percent) vaginoplasty procedures. A deeper neovagina was achieved with intestinal vaginoplasty (15.9 ± 1.4 cm versus 12.5 ± 2.8 cm; p < 0.01). Both laparoscopic intestinal and full-thickness skin graft vaginoplasty can be used as secondary vaginal reconstruction. Intraoperative and postoperative complications do not differ significantly, but rectal perforation was more prevalent in the full-thickness skin graft vaginoplasty group. Although the operative time of laparoscopic intestinal vaginoplasty is longer, adequate neovaginal depth was more frequently achieved than in secondary perineal full-thickness skin graft vaginoplasty. Therapeutic, III.
Apples and Oranges and Bananas
ERIC Educational Resources Information Center
Bracey, Gerald W.
2008-01-01
Private high schools have higher test scores than public schools. Does this mean they are better? Most studies of public versus private schools have explored the full range of income and achievement, one recently finding little if any difference that could not be accounted for by demographic differences. In this article, the author discusses the…
Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi
2010-09-01
The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.
Tailoring plasmonic nanoparticles and fractal patterns
NASA Astrophysics Data System (ADS)
Rosa, Lorenzo; Juodkazis, Saulius
2011-12-01
We studied new three-dimensional tailoring of nano-particles by ion-beam and electron-beam lithographies, aiming for features and nano-gaps down to 10 nm size. Electron-beam patterning is demonstrated for 2D fabrication in combination with plasmonic metal deposition and lift-off, with full control of spectral features of plasmonic nano-particles and patterns on dielectric substrates. We present wide-angle bow-tie rounded nano-antennas whose plasmonic resonances achieve strong field enhancement at engineered wavelength range, and show how the addition of fractal patterns defined by standard electron beam lithography achieve light field enhancement from visible to far-IR spectral range and scalable up towards THz band. Field enhancement is evaluated by FDTD modeling on full-3D simulation domains using complex material models, showing the modeling method capabilities and the effect of staircase approximations on field enhancement and resonance conditions, especially at metal corners, where a minimum rounding radius of 2 nm is resolved and a five-fold reduction of spurious ringing at sharp corners is obtained by the use of conformal meshing.
Pedicled fat flap to increase lateral fullness in upper blepharoplasty.
Sozer, Sadri O; Agullo, Francisco J; Palladino, Humberto; Payne, Phileemon E; Banerji, Soumo
2010-03-01
The eyelid of a young person can be distinguished by the lateral fullness of the upper eyelid. With aging, lateral fullness decreases. Volume restoration in the periorbital area has been previously addressed by fat draping and grafting. More recently, techniques for regaining lateral fullness of the upper eyelid have focused on fat grafting, although effective graft take, reabsorption, and irregularities have been a concern. To address these issues, the concept of pedicled fat draping in the upper eyelid was explored. In a retrospective study from June 2006 to August 2008, 31 patients underwent upper blepharoplasty with augmentation of the lateral fullness with a pedicled fat flap from the central fat pad. The fat from the central compartment was elevated, dissected, and then transposed to the lateral upper eyelid below the orbicularis muscle. All patients were women ranging in age from 43 to 68 years. Pre- and postoperative picture comparison demonstrated a more youthful appearance with increased lateral fullness of the upper eyelids. There were no cases of fat necrosis encountered. Increased volume remained stable over an average of one-year follow-up. No complications were recorded. Transposing a pedicled fat pad from the central compartment laterally has proven to be an effective technique for achieving predictable upper lateral eyelid fullness and thus achieving a long-lasting, more youthful appearance.
Geissler, David; Belder, Detlev
2015-12-01
One of the most commonly employed detection methods in microfluidic research is fluorescence detection, due to its ease of integration and excellent sensitivity. Many analytes though do not show luminescence when excited in the visible light spectrum, require suitable dyes. Deep-ultraviolet (UV) excitation (<300 nm) allows label-free detection of a broader range of analytes but also mandates the use of expensive fused silica glass, which is transparent to UV light. Herein, we report the first application of label-free deep UV fluorescence detection in non-UV transparent full-body polymer microfluidic devices. This was achieved by means of two-photon excitation in the visible range (λex = 532 nm). Issues associated with the low optical transmittance of plastics in the UV range were successfully circumvented in this way. The technique was investigated by application to microchip electrophoresis of small aromatic compounds. Various polymers, such as poly(methyl methacrylate), cyclic olefin polymer, and copolymer as well as poly(dimethylsiloxane) were investigated and compared with respect to achievable LOD and ruggedness against photodamage. To demonstrate the applicability of the technique, the method was also applied to the determination of serotonin and tryptamine in fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber
NASA Technical Reports Server (NTRS)
Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.
1994-01-01
The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.
Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.
Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu
2011-01-31
A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
Niwa, Terutake; Hatamoto, Masashi; Yamashita, Takuya; Noguchi, Hiroshi; Takase, Osamu; Kekre, Kiran A; Ang, Wui Seng; Tao, Guihe; Seah, Harry; Yamaguchi, Takashi
2016-10-01
This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes.
Talamo, Jonathan H; Meltzer, Jeremy; Gardner, John
2006-06-01
To compare flap thickness reproducibility of the femtosecond laser and two mechanical microkeratomes. Flap thickness for all eyes was measured as the difference between the preoperative (day of surgery) full corneal thickness and post-flap creation central stromal bed thickness using ultrasonic pachymetry. Flap thickness values produced by three different microkeratome systems were compared for accuracy and reproducibility. For 99 flaps created using the IntraLase FS laser with an intended thickness of 110 microm, the mean achieved thickness was 119 +/- 12 microm (range: 82 to 149 microm). In 100 eyes treated with the Moria LSK-1 microkeratome with an intended flap thickness of 160 microm, the mean achieved thickness was 130 +/- 19 microm (range: 71 to 186 microm). In 135 eyes treated with the Moria M2 microkeratome with an intended flap thickness of 130 microm, mean thickness was 142 +/- 24 microm (range: 84 to 203 microm). The standard deviation and range of corneal flap thickness created with the IntraLase FS laser was significantly smaller than either mechanical microkeratome (P < .0001). When compared to two commonly used mechanical microkeratomes, mean achieved flap thickness was more reproducible with the IntraLase FS laser, reducing the comparative risk of overly thick flaps.
24 CFR 972.127 - Standards for determining whether a property is viable in the long term.
Code of Federal Regulations, 2011 CFR
2011-04-01
... must be met: (a) The investment to be made in the development is reasonable. (1) Proposed... of households with at least one full-time worker. Measures to achieve a broader range of household... census or other recent statistical evidence demonstrating some mix of incomes of other households located...
ERIC Educational Resources Information Center
Connelly, Vincent J.; Rosenberg, Michael S.
2009-01-01
In this article, issues surrounding the status of special education teaching as a profession are investigated. First, the authors consider what makes an occupation a profession and examine the range of views of professions in American society. Second, the authors describe the evolution and developmental history of three established professions:…
NASA Astrophysics Data System (ADS)
Wood, Benjamin T.; Quinn, Claire H.; Stringer, Lindsay C.; Dougill, Andrew J.
2017-09-01
Governments and donors are investing in climate compatible development in order to reduce climate and development vulnerabilities. However, the rate at which climate compatible development is being operationalised has outpaced academic enquiry into the concept. Interventions aiming to achieve climate compatible development "wins" (for development, mitigation, adaptation) can also create negative side-effects. Moreover, benefits and negative side-effects may differ across time and space and have diverse consequences for individuals and groups. Assessments of the full range of outcomes created by climate compatible development projects and their implications for distributive justice are scarce. This article develops a framework using a systematic literature review that enables holistic climate compatible development outcome evaluation over seven parameters identified. Thereafter, we explore the outcomes of two donor-funded projects that pursue climate compatible development triple-wins in Malawi using this framework. Household surveys, semi-structured interviews and documentary material are analysed. Results reveal that uneven outcomes are experienced between stakeholder groups and change over time. Although climate compatible development triple-wins can be achieved through projects, they do not represent the full range of outcomes. Ecosystem—and community-based activities are becoming popularised as approaches for achieving climate compatible development goals. However, findings suggest that a strengthened evidence base is required to ensure that these approaches are able to meet climate compatible development goals and further distributive justice.
The differential enlargement of the neurocranium in the full-term fetus.
Jordaan, H V
1976-11-17
There is a wide range of variation in the cephalic index in the full-term fetus. The index rises as birth weight increases. The correlation between birth weight and the cephalic index is significant (r = 0,65) at the 0,05 level. Increasing neurocranial size is associated with differential growth of the dimensions which determine endocranial capacity. A higher cephalic index is achieved by a disproportionately large increase in the biparietal diameter relative to the occipitofrontal dimension. This results in a more globular neurocranial form.
Donatsky, Anders Meller; Andersen, Luise; Nielsen, Ole Lerberg; Holzknecht, Barbara Juliane; Vilmann, Peter; Meisner, Søren; Jørgensen, Lars Nannestad; Rosenberg, Jacob
2012-07-01
Most natural orifice transluminal endoscopic surgery (NOTES) procedures to date rely on the hybrid technique with simultaneous laparoscopic access to protect against access-related complications and to achieve adequate triangulation for dissection. This is done at the cost of the potential benefits of this new minimally invasive technique. This study aimed to evaluate the feasibility and safety of a transgastric (TG) pure-NOTES procedure in a diagnostic setting. A TG pure-NOTES procedure with endoscopic ultrasonograpy (EUS)-guided access and over-the-scope-clip (OTSC) closure was performed for 10 pigs in a survival and feasibility study. A full macroscopic necropsy with subsequent histologic evaluation was performed on postoperative day (POD) 14. The outcome parameters were uncomplicated follow-up assessment, survival, intraoperative complications, intraabdominal pathology, macroscopic full-thickness closure, and histology-proven full-thickness healing of the gastrotomy. An uncomplicated postoperative course was reported for 9 of the 10 pigs, and survival was reported for all 10 pigs. For all the pigs, EUS-guided access was performed successfully with a median duration of 25 min (range, 12-62 min) and without intraoperative complications or access-related lesions at necropsy. An OTSC closure was achieved with a median duration of 11 min (range, 3-28 min). The OTSC provided immediate closure, but according to the authors' definition of a full-thickness healing evaluated by histologic examination, this was not achieved in any of the cases. Although all the animals survived until POD 14, intraabdominal chronic abscesses were present in 3 of the 10 pigs at necropsy. The EUS-guided TG access proved to be feasible without access-related complications. Although OTSC provided an immediate closure, the histopathology raised concerns regarding the risk of perforation. Together with the high risk of intraabdominal infection, TG pure-NOTES is not yet ready for routine clinical practice.
Baroni, Bruno M; Pompermayer, Marcelo G; Cini, Anelize; Peruzzolo, Amanda S; Radaelli, Régis; Brusco, Clarissa M; Pinto, Ronei S
2017-08-01
Baroni, BM, Pompermayer, MG, Cini, A, Peruzzolo, AS, Radaelli, R, Brusco, CM, and Pinto, RS. Full range of motion induces greater muscle damage than partial range of motion in elbow flexion exercise with free weights. J Strength Cond Res 31(8): 2223-2230, 2017-Load and range of motion (ROM) applied in resistance training (RT) affect the muscle damage magnitude and the recovery time-course. Because exercises performed with partial ROM allow a higher load compared with those with full ROM, this study investigated the acute effect of a traditional RT exercise using full ROM or partial ROM on muscle damage markers. Fourteen healthy men performed 4 sets of 10 concentric-eccentric repetitions of unilateral elbow flexion on the Scott bench. Arms were randomly assigned to partial-ROM (50-100°) and full-ROM (0-130°) conditions, and load was determined as 80% of 1 repetition maximum (1RM) in the full- and partial-ROM tests. Muscle damage markers were assessed preexercise, immediately, and 24, 48, and 72 hours after exercise. Primary outcomes were peak torque, muscle soreness during palpation and elbow extension, arm circumference, and joint ROM. The load lifted in the partial-ROM condition (1RM = 19.1 ± 3.0 kg) was 40 ± 18% higher compared with the full-ROM condition (1RM = 13.7 ± 2.2 kg). Seventy-two hours after exercise, the full-ROM condition led to significant higher soreness sensation during elbow extension (1.3-4.1 cm vs. 1.0-1.9 cm) and smaller ROM values (97.5-106.1° vs. 103.6-115.7°). Peak torque, soreness from palpation, and arm circumference were statistically similar between conditions, although mean values in all time points of these outcomes have suggested more expressive muscle damage for the full-ROM condition. In conclusion, elbow flexion exercise with full ROM seems to induce greater muscle damage than partial-ROM exercises, even though higher absolute load was achieved with partial ROM.
ERIC Educational Resources Information Center
Handley, Fiona J. L.; Read, Ann
2017-01-01
In 2011, Southampton Solent University, a post-1992 university in southern England, introduced a new marking scheme with the aims of changing marking practice to achieve greater transparency and consistency in marking, and to ensure that the full range of marks was being awarded to students. This paper discusses the strategic background to the…
Sassoon, Adam A; Fitz-Gibbon, Patrick D; Harmsen, William S; Moran, Steven L
2012-06-01
Enchondromas represent the most common primary bone tumor in the hand. Despite their frequency, a standardized treatment protocol is lacking. This study examines the outcome of surgically treated enchondromas of the hand with regard to tumor location, graft choice, and presence or absence of fracture. We retrospectively reviewed 102 enchondromas in 80 patients, identified between 1991 and 2008, with a mean clinical follow-up of 38 months. We assessed the effects of age, tumor location, and graft choice on outcomes for all lesions. Patients presenting with Ollier disease, Maffucci syndrome, pathologic fractures, or recurrent disease were separated for additional analysis. Of the 102 lesions, 62 (61%) achieved complete radiographic healing in a median time of 6 months. Full range of motion was achieved following treatment of 68 lesions (67%) in a median time of 3 months. A total of 95 lesions (93%) remained recurrence free following surgery. One case of malignant transformation occurred in a patient with Maffucci syndrome. Tumor location and graft choice did not affect healing grade, time to healing, range of motion, or recurrence rate. Age at presentation greater than 30 was associated with more rapid healing. Monocentric, nonexpanding lesions were associated with improved postoperative range of motion. Patients with a diagnosis of multiple enchondromas had a higher rate of recurrence following surgery, and patients presenting with a recurrent lesion had a higher rate of complications. Following pathologic fracture, no differences in outcomes were observed when enchondromas were treated primarily or following fracture healing. Following surgical treatment of enchondromas in the hand, the majority of patients achieve complete bony healing and full range of motion, regardless of the graft material used. Malignant transformation is rare, and aggressive follow-up measures should be reserved for patients with a diagnosis of multiple enchondromas. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. All rights reserved.
Shape memory alloy actuation for a variable area fan nozzle
NASA Astrophysics Data System (ADS)
Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.
2001-06-01
The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.
Demonstration of SiC Pressure Sensors at 750 C
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender
2014-01-01
We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.
Savino, Giovanni; Rizzi, Matteo; Brown, Julie; Piantini, Simone; Meredith, Lauren; Albanese, Bianca; Pierini, Marco; Fitzharris, Michael
2014-01-01
In 2006, Motorcycle Autonomous Emergency Braking (MAEB) was developed by a European Consortium (Powered Two Wheeler Integrated Safety, PISa) as a crash severity countermeasure for riders. This system can detect an obstacle through sensors in the front of the motorcycle and brakes automatically to achieve a 0.3 g deceleration if the collision is inevitable and the rider does not react. However, if the rider does brake, full braking force is applied automatically. Previous research into the potential benefits of MAEB has shown encouraging results. However, this was based on MAEB triggering algorithms designed for motorcycle crashes involving impacts with fixed objects and rear-end crashes. To estimate the full potential benefit of MAEB, there is a need to understand the full spectrum of motorcycle crashes and further develop triggering algorithms that apply to a wider spectrum of crash scenarios. In-depth crash data from 3 different countries were used: 80 hospital admittance cases collected during 2012-2013 within a 3-h driving range of Sydney, Australia, 40 crashes with Injury Severity Score (ISS)>15 collected in the metropolitan area of Florence, Italy, during 2009-2012, and 92 fatal crashes that occurred in Sweden during 2008-2009. In the first step, the potential applicability of MAEB among the crashes was assessed using a decision tree method. To achieve this, a new triggering algorithm for MAEB was developed to address crossing scenarios as well as crashes involving stationary objects. In the second step, the potential benefit of MAEB across the applicable crashes was examined by using numerical computer simulations. Each crash was reconstructed twice-once with and once without MAEB deployed. The principal finding is that using the new triggering algorithm, MAEB is seen to apply to a broad range of multivehicle motorcycle crashes. Crash mitigation was achieved through reductions in impact speed of up to approximately 10 percent, depending on the crash scenario and the initial vehicle pre-impact speeds. This research is the first attempt to evaluate MAEB with simulations on a broad range of crash scenarios using in-depth data. The results give further insights into the feasibility of MAEB in different speed ranges. It is clear then that MAEB is a promising technology that warrants further attention by researchers, manufacturers, and regulators.
Virtual Design of a Controller for a Hydraulic Cam Phasing System
NASA Astrophysics Data System (ADS)
Schneider, Markus; Ulbrich, Heinz
2010-09-01
Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.
NASA Astrophysics Data System (ADS)
Huang, Yong; Zhang, Kang; Yi, WonJin; Kang, Jin U.
2012-01-01
Frequent monitoring of gingival sulcus will provide valuable information for judging the presence and severity of periodontal disease. Optical coherence tomography, as a 3D high resolution high speed imaging modality is able to provide information for pocket depth, gum contour, gum texture, gum recession simultaneously. A handheld forward-viewing miniature resonant fiber-scanning probe was developed for in-vivo gingival sulcus imaging. The fiber cantilever driven by magnetic force vibrates at resonant frequency. A synchronized linear phase-modulation was applied in the reference arm by the galvanometer-driven reference mirror. Full-range, complex-conjugate-free, real-time endoscopic SD-OCT was achieved by accelerating the data process using graphics processing unit. Preliminary results showed a real-time in-vivo imaging at 33 fps with an imaging range of lateral 2 mm by depth 3 mm. Gap between the tooth and gum area was clearly visualized. Further quantification analysis of the gingival sulcus will be performed on the image acquired.
ERIC Educational Resources Information Center
Mississippi Band of Choctaw Indians, Philadelphia.
Self-determination for the Choctaw tribal government and its people was reflected in the progress made in program development. Programs in effect during fiscal year (FY) 1973 covered the full range of economic and social needs of the Choctaw people. Designed to complement the progress achieved during FY 1972, the following four developmental…
Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control
NASA Astrophysics Data System (ADS)
Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.
2015-03-01
Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.
Ankle Distraction Arthroplasty: Indications, Technique, and Outcomes.
Bernstein, Mitchell; Reidler, Jay; Fragomen, Austin; Rozbruch, S Robert
2017-02-01
Ankle distraction is an alternative to ankle arthrodesis or total ankle arthroplasty in younger patients with arthritis. Ankle distraction involves the use of external fixation to mechanically unload the ankle joint, which allows for stable, congruent range of motion in the setting of decreased mechanical loading, potentially promoting cartilage repair. Adjunct surgical procedures are frequently done to address lower-extremity malalignment, ankle equinus contractures, and impinging tibiotalar osteophytes. Patients can bear full weight during the treatment course. The distraction frame frequently uses a hinge, and patients are encouraged to do daily range-of-motion exercises. Although the initial goal of the procedure is to delay arthrodesis, many patients achieve lasting clinical benefits, obviating the need for total ankle arthroplasty or fusion. Complications associated with external fixation are common, and patients should be counseled that clinical improvements occur slowly and often are not achieved until at least 1 year after frame removal.
Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2011-02-28
We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.
Large signal design - Performance and simulation of a 3 W C-band GaAs power MMIC
NASA Astrophysics Data System (ADS)
White, Paul M.; Hendrickson, Mary A.; Chang, Wayne H.; Curtice, Walter R.
1990-04-01
This paper describes a C-band GaAs power MMIC amplifier that achieved a gain of 17 dB and 1 dB compressed CW power output of 34 dBm across a 4.5-6.25-GHz frequency range, without design iteration. The first-pass design success was achieved due to the application of a harmonic balance simulator to define the optimum output load, using a large-signal FET model determined statistically on a well controlled foundry-ready process line. The measured performance was close to that predicted by a full harmonic balance circuit analysis.
NASA Astrophysics Data System (ADS)
Ye, Jun; Xu, Jiangming; Song, Jiaxin; Wu, Hanshuo; Zhang, Hanwei; Wu, Jian; Zhou, Pu
2018-06-01
Through high-fidelity numerical modeling and careful system-parameter design, we demonstrate the spectral manipulation of a hundred-watt-level high-power random fiber laser (RFL) by employing a watt-level tunable optical filter. Consequently, a >100-W RFL with the spectrum-agile property is achieved. The central wavelength can be continuously tuned with a range of ∼20 nm, and the tuning range of the full width at half maximum linewidth, which is closely related to the central wavelength, covers ∼1.1 to ∼2.7 times of the minimum linewidth.
Interprosthetic femoral fractures treated with locking plate.
Ebraheim, Nabil; Carroll, Trevor; Moral, Muhammad Z; Lea, Justin; Hirschfeld, Adam; Liu, Jiayong
2014-10-01
Interprosthetic fractures are challenging to manage. Although treatment of femoral fractures around a single implant has been described, there is little literature for treatment of interprosthetic femoral fractures. This study analyses the management and outcomes of 15 patients with interprosthetic femoral fractures treated with locking plates. A retrospective chart review was conducted of 17 patients with interprosthetic femur fracture treated with locking plates from 2002 to 2013. Patient demographics and comorbidities were collected. Preoperatively, patients were classified with the Vancouver or Su classification system. Intraoperative use of bone graft and/or cerclage cables was also examined. Clinical and radiographic outcomes were evaluated for union, time to full weight bearing, return to preinjury level of activity, and pain assessed with visual analog scale (VAS). There were 15 patients with interprosthetic fractures meeting criteria for this study. Average patient age was 80.53 (range, 61-92) years. Bone grafting was used in 23.5% (four of 17) and cerclage cables in 29.4% (five of 17). Patients achieved complete union and return to full weight bearing an average of 4.02 (range, two to six) months later. Average VAS pain score was 1.00 (range, zero to six). All patients returned to their preoperative ambulatory status. Locking plates could achieve satisfactory results for interprosthetic fractures. Considering an individual's fracture type, bone quality and protheses to determine the appropriate plate length and optional use of cerclage and/or bone graft was essential. In this limited sample size, interprosthetic fractures occurred at similar rates at the supracondylar region and diaphysis.
Eyjolfsdottir, H; Haraldsdottir, B; Ragnarsdottir, M; Asgeirsson, K S
2017-06-01
To prospectively assess the functional effect of using the extended latissimus dorsi flap in immediate breast reconstructions. A total of 15 consecutive patients undergoing breast reconstruction with extended latissimus dorsi flap participated. Shoulder range of motion, muscle strength, lateral flexion of the torso, and position of scapula were measured pre-operatively and 1, 6, and 12 months post-operatively, in addition to donor-site post-operative complications. At 12 months post-operatively, patients had achieved full range of shoulder movement, when compared to pre-operative values. Lateral flexion of the torso was, however, significantly reduced bilaterally at 1 and 6 months post-operatively (p = 0.001, p = 0.01) and to the not operated side at 12 months (p = 0.01). Muscle strength in flexion-extension-internal rotation was significantly (p = 0.01) reduced on the operated side 12 months post-operatively. All but one patient had numbness around the donor-site scar 12 months post-operatively, 33% had slight adhesions but all were pain free. Although invariably, patients having extended latissimus dorsi flap may expect to achieve full range of shoulder movement, they should be informed of possible functional consequences and the time and effort it takes to recover. Further research is needed to investigate the potential long-term functional implications that extended latissimus dorsi flap may have as a result of changes in the lateral flexion of the torso and scapula position.
Smith, James R A; Amirfeyz, Rouin
2016-05-01
Rehabilitation protocols after distal biceps repair are highly variable, with many surgeons favoring at least 2 weeks of immobilization. Is this conservative approach necessary to protect the repair? This was a consecutive series of 22 distal biceps tendon repairs in which a cortical button system was used. Patients were encouraged to mobilize their elbow actively from the day of surgery. Physiotherapy commenced at 3 weeks, with strengthening exercises when full range of movement (ROM) was achieved. The primary outcome measured was the clinical integrity of the repaired tendon. Secondary outcomes comprised wound or nerve complication, elbow ROM, and patient-reported outcome measures (the 11-item version of the Disabilities of Arm, Shoulder and Hand, Mayo Elbow Performance Index, and Oxford Elbow Score). All patients were male, and the dominant arm was repaired in 60%. Mean age was 40.6 years (range, 27-62 years), and mean time to surgery was 17 days (range, 5-99 days). Mean follow-up was 16.6 months (range, 3.8-29 months). All tendons were clinically intact at time of review. No wound breakdown occurred. Mean extension was -6° (range, -10° to 10°), and flexion was 144° (range, 135°-150°). All patients achieved full pronosupination. ROM was equivalent to the uninjured arm (P = .7). The mean 11-item version of the Disabilities of Arm, Shoulder and Hand score was 2.7 (range, 0-15.9), the Mayo Elbow Performance Index was 97.8 (range, 70-100), and the Oxford Elbow Score was 46.9 (range, 43-48) at the latest follow-up. One-third of patients experienced a transient sensory neurapraxia. Immediate mobilization after biceps tendon repair with a cortical button is possible, and in this series was not associated with failure of the repair, wound breakdown, or patient dissatisfaction. However, this series emphasizes the high incidence of nerve complication that can be associated with the single transverse incision technique. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
A 5GHz Band Low Noise and Wide Tuning Range Si-CMOS VCO with a Novel Varactors Pair Circuit
NASA Astrophysics Data System (ADS)
Ta, Tuan Thanh; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo
In this paper, a fully integrated 5GHz voltage controlled oscillator (VCO) is presented. The VCO is designed with 0.18µm silicon complementary metal oxide semiconductor (Si-CMOS) process. To achieve low phase noise, a novel varactors pair circuit is proposed to cancel effects of capacitance fluctuation that makes harmonic currents which increase phase noise of VCO. The VCO with the proposed varactor circuit has tuning range from 5.1GHz to 6.1GHz (relative value of 17.9%) and phase noise of lower than -110.8dBc/Hz at 1MHz offset over the full tuning range. Figure-of-merit-with-tuning-range (FOMT) of the proposed VCO is -182dBc/Hz.
Real-Life Impact of Executive Function Impairments in Adults Who Were Born Very Preterm.
Kroll, Jasmin; Karolis, Vyacheslav; Brittain, Philip J; Tseng, Chieh-En Jane; Froudist-Walsh, Sean; Murray, Robin M; Nosarti, Chiara
2017-05-01
Children and adolescents who were born very preterm (≤32 weeks' gestation) are vulnerable to experiencing cognitive problems, including in executive function. However, it remains to be established whether cognitive deficits are evident in adulthood and whether these exert a significant effect on an individual's real-lifeachievement. Using a cross-sectional design, we tested a range of neurocognitive abilities, with a focus on executive function, in a sample of 122 very preterm individuals and 89 term-born controls born between 1979 and 1984. Associations between executive function and a range of achievement measures, indicative of a successful transition to adulthood, were examined. Very preterm adults performed worse compared to controls on measures of intellectual ability and executive function with moderate to large effect sizes. They also demonstrated significantly lower achievement levels in terms of years spent in education, employment status, and on a measure of functioning in work and social domains. Results of regression analysis indicated a stronger positive association between executive function and real-life achievement in the very preterm group compared to controls. Very preterm born adults demonstrate executive function impairments compared to full-term controls, and these are associated with lower achievement in several real-life domains. (JINS, 2017, 23, 381-389).
RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions
NASA Astrophysics Data System (ADS)
Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin
2018-01-01
In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
First full dynamic range calibration of the JUNGFRAU photon detector
NASA Astrophysics Data System (ADS)
Redford, S.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Vetter, S.; Zhang, J.
2018-01-01
The JUNGFRAU detector is a charge integrating hybrid silicon pixel detector developed at the Paul Scherrer Institut for photon science applications, in particular for the upcoming free electron laser SwissFEL. With a high dynamic range, analogue readout, low noise and three automatically switching gains, JUNGFRAU promises excellent performance not only at XFELs but also at synchrotrons in areas such as protein crystallography, ptychography, pump-probe and time resolved measurements. To achieve its full potential, the detector must be calibrated on a pixel-by-pixel basis. This contribution presents the current status of the JUNGFRAU calibration project, in which a variety of input charge sources are used to parametrise the energy response of the detector across four orders of magnitude of dynamic range. Building on preliminary studies, the first full calibration procedure of a JUNGFRAU 0.5 Mpixel module is described. The calibration is validated using alternative sources of charge deposition, including laboratory experiments and measurements at ESRF and LCLS. The findings from these measurements are presented. Calibrated modules have already been used in proof-of-principle style protein crystallography experiments at the SLS. A first look at selected results is shown. Aspects such as the conversion of charge to number of photons, treatment of multi-size pixels and the origin of non-linear response are also discussed.
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Catoptric electrodes: transparent metal electrodes using shaped surfaces.
Kik, Pieter G
2014-09-01
An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.; Kwan, H. W.
1999-01-01
The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.
Volumetric full-range magnetomotive optical coherence tomography
Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.
2014-01-01
Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770
WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.
Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E
2015-06-01
The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.
Applying Dynamic Wake Models to Induced Power Calculations for an Optimum Rotor
2009-08-01
versions being special cases of the general one. Although the rotor blade may be moving at transonic speeds near the tip, the rotor wake is...The effect of a finite number of blades incurs an additional loss in wake energy due to the individual vortex sheets from each blade . In 1929... blades . Up to this point, previous developments have been able to achieve the full description of the wake in all ranges of flight regime
NASA Technical Reports Server (NTRS)
Nunnelee, Mark (Inventor)
2004-01-01
A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.
Method and apparatus for producing composites of materials exhibiting thermoplastic properties
Garvey, Raymond E.; Grostick, Edmund T.
1992-01-01
A mobile device for the complete consolidation of layers of material which exhibit thermoplastic properties for the formation of a composite of the layers upon a complex contoured substrate. The principal of the device is to provide heating into the molten temperature range of the thermoplastic material, applying sufficient pressure to the layers to cause flow of the plastic for a time sufficient to achieve full consolidation of the layers, and quickly cooling the structure to prevent delamination or other non-consolidation action. In the preferred form, there is an element to deposit a layer of the mateiral against another layer in close proximity. The two layers are pre-heated to near the melting temperature, and then further heated into the melting temperature range as they are brought into intimate contact with sufficient pressure to cause flow of the plastic for a time sufficient to achieve the full consolidation. The structure is then cooled. The mechanism for the application of pressure is selected such that the layers can be deformed to conform to a complex contour. In the preferred form, this pressurization is produced using a compliant hood that supplies both the pressure and at least a portion of the melting temperature, as well as the cooling. The apparatus, and method of operation, are described relative to the use of fiber-reinforced PEEK in the making of fully-consolidated composites. Other applications are discussed.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.
1975-01-01
Experimental tests were conducted to demonstrate the ability of the influence coefficient method to achieve precise balance of flexible rotors of virtually any design for operation through virtually any speed range. Various practical aspects of flexible-rotor balancing were investigated. Tests were made on a laboratory quality machine having a 122 cm (48 in.) long rotor weighing 50 kg (110 lb) and covering a speed range up to 18000 rpm. The balancing method was in every instance effective, practical, and economical and permitted safe rotor operation over the full speed range covering four rotor bending critical speeds. Improved correction weight removal methods for rotor balancing were investigated. Material removal from a rotating disk was demonstrated through application of a commercially available laser.
Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R
2017-11-01
Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.
New Density Functional Approach for Solid-Liquid-Vapor Transitions in Pure Materials
NASA Astrophysics Data System (ADS)
Kocher, Gabriel; Provatas, Nikolas
2015-04-01
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Research on regional intrusion prevention and control system based on target tracking
NASA Astrophysics Data System (ADS)
Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin
2017-08-01
In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; ...
2017-10-25
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.
A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commerciallymore » available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. As a result, the ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.« less
Spark plasma sintering and porosity studies of uranium nitride
NASA Astrophysics Data System (ADS)
Johnson, Kyle D.; Wallenius, Janne; Jolkkonen, Mikael; Claisse, Antoine
2016-05-01
In this study, a number of samples of UN sintered by the SPS method have been fabricated, and highly pure samples ranging in density from 68% to 99.8%TD - corresponding to an absolute density of 14.25 g/cm3 out of a theoretical density of 14.28 g/cm3 - have been fabricated. By careful adjustment of the sintering parameters of temperature and applied pressure, the production of pellets of specific porosity may now be achieved between these ranges. The pore closure behaviour of the material has also been documented and compared to previous studies of similar materials, which demonstrates that full pore closure using these methods occurs near 97.5% of relative density.
Hughes integrated synthetic aperture radar: High performance at low cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayma, R.W.
1996-11-01
This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8more » figs.« less
A Reduced-Order Model For Zero-Mass Synthetic Jet Actuators
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.; Vatsa, Veer S.
2007-01-01
Accurate details of the general performance of fluid actuators is desirable over a range of flow conditions, within some predetermined error tolerance. Designers typically model actuators with different levels of fidelity depending on the acceptable level of error in each circumstance. Crude properties of the actuator (e.g., peak mass rate and frequency) may be sufficient for some designs, while detailed information is needed for other applications (e.g., multiple actuator interactions). This work attempts to address two primary objectives. The first objective is to develop a systematic methodology for approximating realistic 3-D fluid actuators, using quasi-1-D reduced-order models. Near full fidelity can be achieved with this approach at a fraction of the cost of full simulation and only a modest increase in cost relative to most actuator models used today. The second objective, which is a direct consequence of the first, is to determine the approximate magnitude of errors committed by actuator model approximations of various fidelities. This objective attempts to identify which model (ranging from simple orifice exit boundary conditions to full numerical simulations of the actuator) is appropriate for a given error tolerance.
Skiak, Eyad; Karakasli, Ahmet; Basci, Onur; Satoglu, Ismail S; Ertem, Fatih; Havitcioglu, Hasan
2015-09-01
Patients with cerebral palsy (CP) disorder often develop rotational hip deformity. Increasing deformities impair already diminished walking abilities; femoral osteotomies are often performed to maintain and improve walking abilities. Fixation of osteotomies with condylar plates has been used successfully, but does not often enable immediate postoperative full weight-bearing. To avoid considerable postoperative rehabilitation deficit and additional bone loss because of inactivity, a postoperative treatment with full weight-bearing, is therefore, desirable. Self-tapping Schanz screws with a unilateral external fixator crossing the knee joint providing stronger anchoring in osteopenic bone might fulfill these demands. A retrospective study was carried out on 27 ambulatory CP patients, mean age 17.5 years (range 9-22 years); 11 patients with bilateral severe intoeing deformities underwent a supracondylar femoral osteotomy between September 2008 and April 2012. All patients were allowed to bear their full weight postoperatively. The aim of this study was to describe the technique, the results of this technique, to evaluate the time required for bone healing, and the type of complications associated with a distal derotational femoral osteotomy fixed with a uniaxial external fixator crossing the knee joint. A total of 27 patients were studied [mean weight 48.8 kg (range 29.8-75 kg)]. The mean preoperative rotation included internal rotation of 69° and external rotation of 17°. All patients were evaluated clinically and radiographically for a minimum of 1 year after surgery. There was a significant decrease in the mean medial rotation from 69° to 32° (P=0.00034). The lateral rotation increased significantly from preoperative 17° to postoperative 45° (P=0.0011). The femoral anteversion decreased significantly from a mean of 55° preoperatively to a mean 17° postoperatively (P=0.030). All patients, except one, achieved solid fusion uneventfully. One patient was a 16-year-old female who had sustained a knee flexion contracture of 30° because of a delay in the physiotherapy program. One 13-year-old female patient with a bilateral osteotomy had a nondisplaced fracture in her right femur after a direct trauma 2 weeks after removal of an external fixator, and was treated by a cast. Another 17-year-old male patient developed a nonunion because of loosening of two pins and achieved solid union after revision by dynamic compression plate plating. Besides four cases with superficial pin-tract infection, no other complications were documented. Minimally invasive supracondylar femoral derotational osteotomy fixed with a unilateral external fixators crossing the knee joint is a reliable procedure in CP patients. Most patients can be treated with early postoperative full weight-bearing. However, removal of the knee joint crossing fixator should be performed as early as possible to achieve a full range of motion.
Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy
Lazar, Josef; Klapetek, Petr; Valtr, Miroslav; Hrabina, Jan; Buchta, Zdenek; Cip, Onrej; Cizek, Martin; Oulehla, Jindrich; Sery, Mojmir
2014-01-01
We present a design of a nanometrology measuring setup which is a part of the national standard instrumentation for nanometrology operated by the Czech Metrology Institute (CMI) in Brno, Czech Republic. The system employs a full six-axis interferometric position measurement of the sample holder consisting of six independent interferometers. Here we report on description of alignment issues and accurate adjustment of orthogonality of the measuring axes. Consequently, suppression of cosine errors and reduction of sensitivity to Abbe offset is achieved through full control in all six degrees of freedom. Due to the geometric configuration including a wide basis of the two units measuring in y-direction and the three measuring in z-direction the angle resolution of the whole setup is minimize to tens of nanoradians. Moreover, the servo-control of all six degrees of freedom allows to keep guidance errors below 100 nrad. This small range system is based on a commercial nanopositioning stage driven by piezoelectric transducers with the range (200 × 200 × 10) μm. Thermally compensated miniature interferometric units with fiber-optic light delivery and integrated homodyne detection system were developed especially for this system and serve as sensors for othogonality alignment. PMID:24451463
NASA Astrophysics Data System (ADS)
Jing, Joseph C.; Chou, Lidek; Su, Erica; Wong, Brian J. F.; Chen, Zhongping
2016-12-01
The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.
Endoscopic full-thickness resection and defect closure in the colon.
von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Rudolph, Hans-Ulrich; Caca, Karel
2010-06-01
Endoscopic full-thickness resection (eFTR) is a minimally invasive method for en bloc resection of GI lesions. The aim of this pilot study was to evaluate the feasibility of a grasp-and-snare technique for eFTR combined with an over-the-scope clip (OTSC) for defect closure. Nonsurvival animal study. Animal laboratory. Fourteen female domestic pigs. The eFTR was performed in porcine colons using a novel tissue anchor in combination with a standard monofilament snare and 14 mm OTSC. In the first group (n = 20), closure of the colonic defects with OTSC was attempted after the resection. In the second group (n = 8), an endoloop was used to secure the resection base before eFTR was performed. In the first group (n = 20), eFTR specimens ranged from 2.4 to 5.5 cm in diameter. Successful closure was achieved in 9 out of 20 cases. Mean burst pressure for OTSC closure was 29.2 mm Hg (range, 2-90; SD, 29.92). Injury to adjacent organs occurred in 3 cases. Lumen obstruction due to the OTSC closure occurred in 3 cases. In the second group (n = 8), the diameter of specimens ranged from 1.2 to 2.2 cm. Complete closure was achieved in all cases, with a mean burst pressure of 76.6 mm Hg (range, 35-120; SD, 31). Lumen obstruction due to the endoloop closure occurred in one case. No other complications or injuries were observed in the second group. Nonsurvival setting. Colonic eFTR using the grasp-and-snare technique is feasible in an animal model. Ligation of the resection base with an endoloop before eFTR seems to reduce complication rates and improve closure success and leak test results despite yielding smaller specimens. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
[Late results following surgical correction of syndactyly and symbrachydactyly].
Deutinger, M; Mandl, H; Frey, M; Holle, J; Freilinger, G
1989-02-01
Growth and the type of surgical treatment of the hand play an important role in the results of surgery in children. 29 patients have been operated on because of syndactyly and symbrachydactyly and were controlled. The following parameters were assessed: kind of incision and skin graft, functional results, x-ray to examine the skeleton and the depth of the commissure, colour of the skin graft and use of the hand. After operation of syndactyly all patients were able to use their hands normally, although full extend of flexion and extension was achieved only in 20 of 22 hands. In 5 divided pairs of fingers there was recurrence of syndactyly. In all cases except one, a split thickness skin graft has been used. After operative treatment of symbrachydactyly and complex syndactyly, full extent of flexion was achieved in 13 of 19 hands, in 6 hands the range of flexion was incomplete because of skeleton abnormalities. Recurrence occurred in 9 divided pairs of fingers; in 7 cases, a split thickness skin graft had been used. Despite this, all patients were able to use their hands normally. The use of split thickness skin grafts resulted in a 60% recurrence rate, whereas the use of full thickness skin graft led merely to 7.5% recurrence rate. Our results show the advantage of the full thickness skin graft. As a consequence, full thickness skin graft should be used in all cases. Furthermore, the operation should be performed at an early age, if fingers of unequal length have to be separated. Zig-zag incision should be used in all cases.
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.
2013-01-01
Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
All-digital full waveform recording photon counting flash lidar
NASA Astrophysics Data System (ADS)
Grund, Christian J.; Harwit, Alex
2010-08-01
Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.
Nishioka, Shinta; Okamoto, Takatsugu; Takayama, Masako; Urushihara, Maki; Watanabe, Misuzu; Kiriya, Yumiko; Shintani, Keiko; Nakagomi, Hiromi; Kageyama, Noriko
2017-08-01
Whether malnutrition risk correlates with recovery of swallowing function of convalescent stroke patients is unknown. This study was conducted to clarify whether malnutrition risks predict achievement of full oral intake in convalescent stroke patients undergoing enteral nutrition. We conducted a secondary analysis of 466 convalescent stroke patients, aged 65 years or over, who were undergoing enteral nutrition. Patients were extracted from the "Algorithm for Post-stroke Patients to improve oral intake Level; APPLE" study database compiled at the Kaifukuki (convalescent) rehabilitation wards. Malnutrition risk was determined by the Geriatric Nutritional Risk Index as follows: severe (<82), moderate (82 to <92), mild (92 to <98), and no malnutrition risks (≥98). Swallowing function was assessed by Fujishima's swallowing grade (FSG) on admission and discharge. The primary outcome was achievement of full oral intake, indicated by FSG ≥ 7. Binary logistic regression analysis was performed to identify predictive factors, including malnutrition risk, for achieving full oral intake. Estimated hazard risk was computed by Cox's hazard model. Of the 466 individuals, 264 were ultimately included in this study. Participants with severe malnutrition risk showed a significantly lower proportion of achievement of full oral intake than lower severity groups (P = 0.001). After adjusting for potential confounders, binary logistic regression analysis showed that patients with severe malnutrition risk were less likely to achieve full oral intake (adjusted odds ratio: 0.232, 95% confidence interval [95% CI]: 0.047-1.141). Cox's proportional hazard model revealed that severe malnutrition risk was an independent predictor of full oral intake (adjusted hazard ratio: 0.374, 95% CI: 0.166-0.842). Compared to patients who did not achieve full oral intake, patients who achieved full oral intake had significantly higher energy intake, but there was no difference in protein intake and weight change. Severe malnutrition risk independently predicts the achievement of full oral intake in convalescent stroke patients undergoing enteral nutrition. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
Current Results of NEUTRINO-4 Experiment
NASA Astrophysics Data System (ADS)
Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.
2017-12-01
The main goal of experiment “Neutrino-4” is to search for the oscillation of reactor antineutrino to a sterile state. Experiment is conducted on SM-3 research reactor (Dimitrovgrad, Russia). Data collection with full-scale detector with liquid scintillator volume of 3m3 was started in June 2016. We present the results of measurements of reactor antineutrino flux dependence on the distance in range 6- 12 meters from the center of the reactor. At that distance range, the fit of experimental dependence has good agreement with the law 1/L2. Which means, at achieved during the data collecting accuracy level oscillations to sterile state are not observed. In addition, the spectrum of prompt signals of neutrino-like events at different distances have been presented.
Teacher and Teaching Effects on Students' Attitudes and Behaviors.
Blazar, David; Kraft, Matthew A
2017-03-01
Research has focused predominantly on how teachers affect students' achievement on tests despite evidence that a broad range of attitudes and behaviors are equally important to their long-term success. We find that upper-elementary teachers have large effects on self-reported measures of students' self-efficacy in math, and happiness and behavior in class. Students' attitudes and behaviors are predicted by teaching practices most proximal to these measures, including teachers' emotional support and classroom organization. However, teachers who are effective at improving test scores often are not equally effective at improving students' attitudes and behaviors. These findings lend empirical evidence to well-established theory on the multidimensional nature of teaching and the need to identify strategies for improving the full range of teachers' skills.
Sellgren, Katelyn L.; Klem, Ethan J. D.; Piascik, Jeffrey R.; Stoner, Brian R.
2017-01-01
Abstract Decentralized, energy‐efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water‐ and energy‐scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field. PMID:29242713
Heterodyne range imaging as an alternative to photogrammetry
NASA Astrophysics Data System (ADS)
Dorrington, Adrian; Cree, Michael; Carnegie, Dale; Payne, Andrew; Conroy, Richard
2007-01-01
Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry.
Multigrid Approach to Incompressible Viscous Cavity Flows
NASA Technical Reports Server (NTRS)
Wood, William A.
1996-01-01
Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.
Multi-Body Orbit Architectures for Lunar South Pole Coverage
NASA Technical Reports Server (NTRS)
Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.
2006-01-01
A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sucheng; Duan, Qian; Li, Shuo
We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.
Study of radar pulse compression for high resolution satellite altimetry
NASA Technical Reports Server (NTRS)
Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.
1974-01-01
Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.
1D silicon refractive lenses for surface scattering with high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, F.; Gutowski, O.; Schroer, C.
2016-07-27
At the high energy X-ray beamline P07 at PETRA III, 1D focusing down to 4 micrometer vertical beam height while preserving a horizontal beam width of 0.5 mm was established by refractive lenses etched into a silicon wafer. A single wafer with 8 different lens structures can cover the full energy range between 50 and 120 keV. For surface diffraction on ultrathin films a factor of 4 in intensity can be achieved compared to the already established Al-compound refractive 2D-lenses.
Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications
Cottler, Patrick S.; Karpen, Whitney R.; Morrow, Duane A.; Kaufman, Kenton R.
2009-01-01
A next generation fiber-optic microsensor based on the extrinsic Fabry–Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 µm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0–250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles. PMID:19495983
Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc
2009-12-01
Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is up to 54% for the simulations and 90% for the measurements. The phase-correlated data now appear accurate enough for a quantitative analysis of cardiac perfusion.
Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering
NASA Astrophysics Data System (ADS)
Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young
2018-03-01
The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.
Laser ranging with the MéO telescope to improve orbital accuracy of space debris
NASA Astrophysics Data System (ADS)
Hennegrave, L.; Pyanet, M.; Haag, H.; Blanchet, G.; Esmiller, B.; Vial, S.; Samain, E.; Paris, J.; Albanese, D.
2013-05-01
Improving orbital accuracy of space debris is one of the major prerequisite to performing reliable collision prediction in low earth orbit. The objective is to avoid false alarms and useless maneuvers for operational satellites. This paper shows how laser ranging on debris can improve the accuracy of orbit determination. In March 2012 a joint OCA-Astrium team had the first laser echoes from space debris using the MéO (Métrologie Optique) telescope of the Observatoire de la Côte d'Azur (OCA), upgraded with a nanosecond pulsed laser. The experiment was conducted in full compliance with the procedures dictated by the French Civil Aviation Authorities. To perform laser ranging measurement on space debris, the laser link budget needed to be improved. Related technical developments were supported by implementation of a 2J pulsed laser purchased by ASTRIUM and an adapted photo detection. To achieve acquisition of the target from low accuracy orbital data such as Two Lines Elements, a 2.3-degree field of view telescope was coupled to the original MéO telescope 3-arcmin narrow field of view. The wide field of view telescope aimed at pointing, adjusting and acquiring images of the space debris for astrometry measurement. The achieved set-up allowed performing laser ranging and angular measurements in parallel, on several rocket stages from past launches. After a brief description of the set-up, development issues and campaigns, the paper discusses added-value of laser ranging measurement when combined to angular measurement for accurate orbit determination. Comparison between different sets of experimental results as well as simulation results is given.
Endoscopic full-thickness resection of gastric subepithelial tumors: a single-center series.
Schmidt, Arthur; Bauder, Markus; Riecken, Bettina; von Renteln, Daniel; Muehleisen, Helmut; Caca, Karel
2015-02-01
Endoscopic full-thickness resection of gastric subepithelial tumors with a full-thickness suturing device has been described as feasible in two small case series. The aim of this study was to evaluate the efficacy, safety, and clinical outcome of this resection technique. After 31 patients underwent endoscopic full-thickness resection, the data were analyzed retrospectively. Before snare resection, 1 to 3 full-thickness sutures were placed underneath each tumor with a device originally designed for endoscopic anti-reflux therapy. All tumors were resected successfully. Bleeding occurred in 12 patients (38.7 %); endoscopic hemostasis could be achieved in all cases. Perforation occurred in 3 patients (9.6 %), and all perforations could be managed endoscopically. Complete resection was histologically confirmed in 28 of 31 patients (90.3 %). Mean follow-up was 213 days (range, 1 - 1737), and no tumor recurrences were observed. Endoscopic full-thickness resection of gastric subepithelial tumors with the suturing technique described above is feasible and effective. After the resection of gastrointestinal stromal tumors (GISTs), we did not observe any recurrences during follow-up, indicating that endoscopic full-thickness resection may be an alternative to surgical resection for selected patients. © Georg Thieme Verlag KG Stuttgart · New York.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
Passive micromixers with dual helical channels
NASA Astrophysics Data System (ADS)
Liu, Keyin; Yang, Qing; Chen, Feng; Zhao, Yulong; Meng, Xiangwei; Shan, Chao; Li, Yanyang
2015-02-01
In this study, a three-dimensional (3D) micromixer with cross-linked double helical microchannels is studied to achieve rapid mixing of fluids at low Reynolds numbers (Re). The 3D micromixer takes full advantages of the chaotic advection model with helical microchannels; meanwhile, the proposed crossing structure of double helical microchannels enables two flow patterns of repelling flow and straight flow in the fluids to promote the agitation effect. The complex 3D micromixer is realized by an improved femtosecond laser wet etching (FLWE) technology embedded in fused silica. The mixing results show that cross-linked double helical microchannels can achieve excellent mixing within 3 cycles (300 μm) over a wide range of low Re (1.5×10-3~600), which compare well with the conventional passive micromixers. This highly-effective micromixer is hoped to contribute to the integration of microfluidic systems.
Optimization of engines for a commercial Mach 0.98 transport using advanced turbine cooling methods
NASA Technical Reports Server (NTRS)
Kraft, G. A.; Whitlow, J. B., Jr.
1972-01-01
A study was made of an advanced technology airplane using supercritical aerodynamics. Cruise Mach number was 0.98 at 40,000 feet altitude with a payload of 60,000 pounds and a range of 3000 nautical miles. Separate-flow turbofans were examined parametrically to determine the effect of sea-level-static design turbine-inlet-temperature and noise on takeoff gross weight (TOGW) assuming full-film turbine cooling. The optimum turbine inlet temperature was 2650 F. Two-stage-fan engines, with cruise fan pressure ratio of 2.25, achieved a noise goal of 103.5 EPNdB with todays noise technology while one-stage-fan engines, achieved a noise goal of 98 EPNdB. The take-off gross weight penalty to use the one-stage fan was 6.2 percent.
Vitrectomy for optic disk pit with macular schisis and outer retinal dehiscence.
Shukla, Dhananjay; Kalliath, Jay; Tandon, Manish; Vijayakumar, Balakrishnan
2012-07-01
To describe the outcomes of vitrectomy for optic disc pit-related maculopathy with central outer retinal dehiscence. This prospective interventional case series included seven patients with optic disc pit with macular schisis and central outer retinal dehiscence who underwent vitrectomy with internal limiting membrane peeling, barrage laser photocoagulation, and gas tamponade and were followed for at least 6 months. The surgical outcomes in terms of restoration of macular anatomy and visual improvement were recorded at each visit by fundus photography and optical coherence tomography. The mean age of the patients was 21.3 ± 8.6 years (range, 10-35 years), and the mean duration of defective vision was 6.7 ± 8.5 months (range, 1-24 months). Preoperatively, the median best-corrected visual acuity (BCVA) was 20/60 (range, 20/40 to 20/120). Full-thickness macular holes were noticed in 4 patients 1 month postoperatively. Gas tamponade was repeated in two patients with large macular holes. By the final follow-up, macular holes had closed and BCVA improved in all patients except one. Final mean central macular thickness was 176.83 ± 55.74 μ, the range being 109 μ to 256 μ. The median postoperative BCVA was 20/30 (range, 20/20 to 20/80). Six of 7 patients (85.7%) had improvement in BCVA postoperatively (mean, +2 lines; range, 1-4 lines). Five patients (71%) achieved a postoperative BCVA of ≥20/30. Best-corrected visual acuity dropped by one line in the patient with persistent macular hole. Vitrectomy with internal limiting membrane peeling can achieve excellent final surgical outcomes in optic pit maculopathy with outer retinal dehiscence despite the potential for macular hole formation.
Reduced description of reactive flows with tabulation of chemistry
NASA Astrophysics Data System (ADS)
Ren, Zhuyin; Goldin, Graham M.; Hiremath, Varun; Pope, Stephen B.
2011-12-01
The direct use of large chemical mechanisms in multi-dimensional Computational Fluid Dynamics (CFD) is computationally expensive due to the large number of chemical species and the wide range of chemical time scales involved. To meet this challenge, a reduced description of reactive flows in combination with chemistry tabulation is proposed to effectively reduce the computational cost. In the reduced description, the species are partitioned into represented species and unrepresented species; the reactive system is described in terms of a smaller number of represented species instead of the full set of chemical species in the mechanism; and the evolution equations are solved only for the represented species. When required, the unrepresented species are reconstructed assuming that they are in constrained chemical equilibrium. In situ adaptive tabulation (ISAT) is employed to speed the chemistry calculation through tabulating information of the reduced system. The proposed dimension-reduction / tabulation methodology determines and tabulates in situ the necessary information of the nr-dimensional reduced system based on the ns-species detailed mechanism. Compared to the full description with ISAT, the reduced descriptions achieve additional computational speed-up by solving fewer transport equations and faster ISAT retrieving. The approach is validated in both a methane/air premixed flame and a methane/air non-premixed flame. With the GRI 1.2 mechanism consisting of 31 species, the reduced descriptions (with 12 to 16 represented species) achieve a speed-up factor of up to three compared to the full description with ISAT, with a relatively moderate decrease in accuracy compared to the full description.
Hesse, E; Brand, J; Bastian, L; Krettek, C; Meller, R
2008-07-01
Melorheostosis is a rare, benign, and sporadically occurring osteosclerosis of unknown cause. The onset of the disease is usually in early adulthood. Melorheostosis affects both genders, develops progressively, and is usually limited to one side of the human body. The sclerosis originates predominantly from the cortices of the long bones of the lower limbs and rarely the upper limbs. Frequently, the sclerosis involves the soft tissue surrounding the affected bones which may cause limitations in the range of motion, contractures, deformities, and pain. Melorheostosis is usually diagnosed by radiograms. Pain relief and restoration of the full range of motion are the primary goals of the therapeutic approach. A good outcome cannot always be achieved and a recurrence of the disease happens very often.
Method of producing optical quality glass having a selected refractive index
Poco, John F.; Hrubesh, Lawrence W.
2000-01-01
Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.
Teacher and Teaching Effects on Students’ Attitudes and Behaviors
Blazar, David; Kraft, Matthew A.
2017-01-01
Research has focused predominantly on how teachers affect students’ achievement on tests despite evidence that a broad range of attitudes and behaviors are equally important to their long-term success. We find that upper-elementary teachers have large effects on self-reported measures of students’ self-efficacy in math, and happiness and behavior in class. Students’ attitudes and behaviors are predicted by teaching practices most proximal to these measures, including teachers’ emotional support and classroom organization. However, teachers who are effective at improving test scores often are not equally effective at improving students’ attitudes and behaviors. These findings lend empirical evidence to well-established theory on the multidimensional nature of teaching and the need to identify strategies for improving the full range of teachers’ skills. PMID:28931959
Conception and realization of a semiconductor based 240 GHz full 3D MIMO imaging system
NASA Astrophysics Data System (ADS)
Weisenstein, Christian; Kahl, Matthias; Friederich, Fabian; Haring Bolívar, Peter
2017-02-01
Multiple-input multiple-output (MIMO) imaging systems in the terahertz frequency range have a high potential in the field of non-destructive testing (NDT). With such systems it is possible to detect defects in composite materials, for example cracks or delaminations in fiber composites. To investigate mass-produced products it is necessary to study the objects in close to real-time on a conveyor without affecting the production cycle time. In this work we present the conception and realization of a 3D MIMO imaging system for in-line investigation of composite materials and structures. To achieve a lateral resolution of 1 mm, in order to detect such small defects in composite materials with a moderate number of elements, precise sensor design is crucial. In our approach we use the effective aperture concept. The designed sparse array consists of 32 transmitters and 30 receivers based on planar semiconductor components. High range resolution is achieved by an operating frequency between 220 GHz and 260 GHz in a stepped frequency continuous wave (SFCW) setup. A matched filter approach is used to simulate the reconstructed 3D image through the array. This allows the evaluation of the designed array geometry in regard of resolution and side lobe level. In contrast to earlier demonstrations, in which synthetic reconstruction is only performed in a 2D plane, an optics-free full 3D recon- struction has been implemented in our concept. Based on this simulation we designed an array geometry that enables to resolve objects with a resolution smaller than 1mm and moderate side lobe level.
Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U
2017-06-01
The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.
Age and growth dynamics of Tyrannosaurus rex.
Horner, John R; Padian, Kevin
2004-09-22
Tyrannosaurus rex is the most commonly found North American latest Cretaceous theropod, but until the 1980s only five specimens had been discovered, and no more than six have received a full description. Consequently there has been little information on how old Tyrannosaurus specimens were at maturity or death. Histological analysis of seven individuals provided, for the first time, an opportunity to assess the age represented by the bone cortex, to estimate the average individual age of these skeletons, to determine whether they represented fully grown individuals, and to predict their individual longevity. Though a range of ages (15-25 years) was found for the specimens studied, the seven individuals demonstrate that T. rex reached effectively full size in less than 20 years. The growth rate of T. rex was comparable to that of the African elephant, which has a similar mass and time to maturity. Some of the known specimens of T. rex did not quite reach full size; others do not seem to have survived long after achieving it.
Age and growth dynamics of Tyrannosaurus rex.
Horner, John R.; Padian, Kevin
2004-01-01
Tyrannosaurus rex is the most commonly found North American latest Cretaceous theropod, but until the 1980s only five specimens had been discovered, and no more than six have received a full description. Consequently there has been little information on how old Tyrannosaurus specimens were at maturity or death. Histological analysis of seven individuals provided, for the first time, an opportunity to assess the age represented by the bone cortex, to estimate the average individual age of these skeletons, to determine whether they represented fully grown individuals, and to predict their individual longevity. Though a range of ages (15-25 years) was found for the specimens studied, the seven individuals demonstrate that T. rex reached effectively full size in less than 20 years. The growth rate of T. rex was comparable to that of the African elephant, which has a similar mass and time to maturity. Some of the known specimens of T. rex did not quite reach full size; others do not seem to have survived long after achieving it. PMID:15347508
Passive detection of vehicle loading
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.
2012-01-01
The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.
Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin
2017-11-01
To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.
NASA Astrophysics Data System (ADS)
Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco
2018-03-01
Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.
Properties important to mixing and simulant recommendations for WTP full-scale vessel testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M. R.; Martino, C. J.
2015-12-01
Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assignedmore » to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.« less
Monte Carlo simulation of the full energy peak efficiency of an HPGe detector.
Khan, Waseem; Zhang, Qingmin; He, Chaohui; Saleh, Muhammad
2018-01-01
This paper presents a Monte Carlo method to obtain the full energy peak efficiency (FEPE) curve for a High Purity Germanium (HPGe) detector, as it is difficult and time-consuming to measure the FEPE curve experimentally. The Geant4 simulation toolkit was adopted to establish a detector model since detector specifications provided by the nominal manufacturer are usually insufficient to calculate the accurate efficiency of a detector. Several detector parameters were optimized. FEPE curves for a given HPGe detectors over the energy range of 59.50-1836keV were obtained and showed good agreements with those measured experimentally. FEPE dependences on detector parameters and source-detector distances were investigated. A best agreement with experimental result was achieved for a certain detector geometry and source-detector distance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mission Level Autonomy for USSV
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert
2011-01-01
On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010
Wydra, James W; Cramer, Neil B; Stansbury, Jeffrey W; Bowman, Christopher N
2014-06-01
A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Modeling health gains and cost savings for ten dietary salt reduction targets.
Wilson, Nick; Nghiem, Nhung; Eyles, Helen; Mhurchu, Cliona Ni; Shields, Emma; Cobiac, Linda J; Cleghorn, Christine L; Blakely, Tony
2016-04-26
Dietary salt reduction is included in the top five priority actions for non-communicable disease control internationally. We therefore aimed to identify health gain and cost impacts of achieving a national target for sodium reduction, along with component targets in different food groups. We used an established dietary sodium intervention model to study 10 interventions to achieve sodium reduction targets. The 2011 New Zealand (NZ) adult population (2.3 million aged 35+ years) was simulated over the remainder of their lifetime in a Markov model with a 3 % discount rate. Achieving an overall 35 % reduction in dietary salt intake via implementation of mandatory maximum levels of sodium in packaged foods along with reduced sodium from fast foods/restaurant food and discretionary intake (the "full target"), was estimated to gain 235,000 QALYs over the lifetime of the cohort (95 % uncertainty interval [UI]: 176,000 to 298,000). For specific target components the range was from 122,000 QALYs gained (for the packaged foods target) down to the snack foods target (6100 QALYs; and representing a 34-48 % sodium reduction in such products). All ten target interventions studied were cost-saving, with the greatest costs saved for the mandatory "full target" at NZ$1260 million (US$820 million). There were relatively greater health gains per adult for men and for Māori (indigenous population). This work provides modeling-level evidence that achieving dietary sodium reduction targets (including specific food category targets) could generate large health gains and cost savings for a national health sector. Demographic groups with the highest cardiovascular disease rates stand to gain most, assisting in reducing health inequalities between sex and ethnic groups.
Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range.
Hyun, Jaeyub; Kim, Yong Tae; Doh, Il; Ahn, Bongyoung; Baik, Kyungmin; Kim, Se-Hwa
2018-06-14
In this study, we report the first experimental realization of an ultrathin (0.14λ, λ = 1.482 mm means wavelength at 1 MHz in the water medium) subwavelength focusing acoustic lens that can surpass the Rayleigh diffraction limit (0.61λ/NA, NA means numerical aperture). It is termed a Super-Oscillatory Acoustic Lens (SOAL), and it operates in the megasonic range. The SOAL represents an interesting feature allowing the achievement of subwavelength focusing without the need to operate in close proximity to the object to be imaged. The optimal layout of the SOAL is obtained by utilizing a systematic design approach, referred to here as topology optimization. To this end, the optimization formulation is newly defined. The optimized SOAL is fabricated using a photo-etching process and its subwavelength focusing performance is verified experimentally via an acoustic intensity measurement system. From these measurements, we found that the proposed optimized SOAL can achieve superior focusing features with a Full Width at Half Maximum (FWHM) of ~0.40λ/NA ≃ 0.84 mm (for our SOAL, NA = 0.707) with the transmission efficiency of 26.5%.
NASA Astrophysics Data System (ADS)
Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek
2018-04-01
A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.
Development of a calibration equipment for spectrometer qualification
NASA Astrophysics Data System (ADS)
Michel, C.; Borguet, B.; Boueé, A.; Blain, P.; Deep, A.; Moreau, V.; François, M.; Maresi, L.; Myszkowiak, A.; Taccola, M.; Versluys, J.; Stockman, Y.
2017-09-01
With the development of new spectrometer concepts, it is required to adapt the calibration facilities to characterize correctly their performances. These spectro-imaging performances are mainly Modulation Transfer Function, spectral response, resolution and registration; polarization, straylight and radiometric calibration. The challenge of this calibration development is to achieve better performance than the item under test using mostly standard items. Because only the subsystem spectrometer needs to be calibrated, the calibration facility needs to simulate the geometrical "behaviours" of the imaging system. A trade-off study indicates that no commercial devices are able to fulfil completely all the requirements so that it was necessary to opt for an in home telecentric achromatic design. The proposed concept is based on an Offner design. This allows mainly to use simple spherical mirrors and to cover the spectral range. The spectral range is covered with a monochromator. Because of the large number of parameters to record the calibration facility is fully automatized. The performances of the calibration system have been verified by analysis and experimentally. Results achieved recently on a free-form grating Offner spectrometer demonstrate the capacities of this new calibration facility. In this paper, a full calibration facility is described, developed specifically for a new free-form spectro-imager.
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.
Observation of entanglement of a single photon with a trapped atom.
Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald
2006-01-27
We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.
Full Moon Exploration: valuable (non-polar) lunar science facilitated by a return to the Moon
NASA Astrophysics Data System (ADS)
Crawford, I. A.; Fagents, S. A.; Joy, K. H.
2007-06-01
The Moon is a promising science target, made a priority in recent space exploration plans. So far, polar landing sites have been preferred, but many promising scientific objectives lie elsewhere. Here we summarize the potential value of one such scientific target, northern Oceanus Procellarum, which includes basalts of a wide range of ages. Studying these would allow refinement of the lunar stratigraphy and chronology, and a better understanding of lunar mantle evolution. We consider how exploration of such areas might be achieved in the context of lunar exploration plans.
ERIC Educational Resources Information Center
Hornstra, Lisette; van der Veen, Ineke; Peetsma, Thea
2017-01-01
This study focused on effects of high-ability programs on students' achievement emotions, i.e. emotions that students experience that are associated with achievement activities. Participants were students in grade 4-6 of primary education: 218 students attended full-time high-ability programs, 245 attended part-time high-ability programs (i.e.…
Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft
NASA Technical Reports Server (NTRS)
Bohn, A. J.; Shovlin, M. D.
1980-01-01
An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.
Wan, Jianing; Zhu, Junda; Zhong, Ying; Liu, Haitao
2018-06-01
The electromagnetic enhancement by a metallic nanowire optical antenna on metallic substrate is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons in the nanogap between the antenna and the substrate, we build up an intuitive and comprehensive model that provides semianalytical expressions for the electromagnetic field in the nanogap to achieve an understanding of the mechanism of electromagnetic enhancement. Our results show that antennas with short lengths that support the lowest order of resonance can achieve a high electric-field enhancement factor over a large range of incidence angles. Two phase-matching conditions are derived from the model for predicting the antenna lengths at resonance. Excitation of symmetric or antisymmetric localized surface plasmon resonance is further explained with the model. The model also shows superior computational efficiency compared to the full-wave numerical method when scanning the antenna length, the incidence angle, or the wavelength.
Coyle, Thomas R; Rindermann, Heiner; Hancock, Dale
2016-10-01
Cognitive ability stimulates economic productivity. However, the effects of cognitive ability may be stronger in free and open economies, where competition rewards merit and achievement. To test this hypothesis, ability levels of intellectual classes (top 5%) and average classes (country averages) were estimated using international student assessments (Programme for International Student Assessment; Trends in International Mathematics and Science Study; and Progress in International Reading Literacy Study) (N = 99 countries). The ability levels were correlated with indicators of economic freedom (Fraser Institute), scientific achievement (patent rates), innovation (Global Innovation Index), competitiveness (Global Competitiveness Index), and wealth (gross domestic product). Ability levels of intellectual and average classes strongly predicted all economic criteria. In addition, economic freedom moderated the effects of cognitive ability (for both classes), with stronger effects at higher levels of freedom. Effects were particularly robust for scientific achievements when the full range of freedom was analyzed. The results support cognitive capitalism theory: cognitive ability stimulates economic productivity, and its effects are enhanced by economic freedom. © The Author(s) 2016.
Kampman, Margitta T; Eltoft, Agnethe; Karaliute, Migle; Børvik, Margrethe T; Nilssen, Hugo; Rasmussen, Ida; Johnsen, Stein H
2015-10-01
In patients with acute stroke, undernutrition and aspiration pneumonia are associated with increased mortality and length of hospital stay. Formal screening for nutritional risk and dysphagia helps to ensure optimal nutritional management in all patients with stroke and to reduce the risk of aspiration in patients with dysphagia. We developed a national guideline for nutritional and dysphagia screening in acute stroke, which was introduced in our stroke unit on June 1, 2012. The primary objective was to audit adherence to the guideline and to achieve full implementation. Second, we assessed the prevalence of nutritional risk and dysphagia. We performed a chart review to assess performance of screening for nutritional risk and dysphagia in all patients with stroke hospitalized for ≥48 hours between June 1, 2012, and May 31, 2013. Next we applied a "clinical microsystems approach" with rapid improvement cycles and audits over a 6-month period to achieve full implementation. The chart review showed that nutritional risk screening was performed in 65% and swallow testing in 91% of eligible patients (n = 185). Proactive implementation resulted in >95% patients screened (n = 79). The overall prevalence of nutritional risk was 29%, and 23% of the patients failed the initial swallow test. Proactive implementation is required to obtain high screening rates for nutritional risk and swallowing difficulties using validated screening tools. The proportion of patients at nutritional risk and the prevalence of dysphagia at initial swallow test were in the lower range of previous reports.
3D parallel-detection microwave tomography for clinical breast imaging
Meaney, P. M.; Paulsen, K. D.
2014-01-01
A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data. PMID:25554311
What Is the Impact of Full Access to Technology on the Achievement of the Hispanic Student?
ERIC Educational Resources Information Center
Carr, John E., Jr.
2013-01-01
The problem studied in this research was whether the impact of full access to technology both at home and in school would affect the achievement of Hispanic students. The purpose of this study was to examine the relationship between the access to technology and the achievement of the Hispanic students at a suburban middle school. What are the…
ERIC Educational Resources Information Center
Nolan, Lisa A.
2016-01-01
When considering closing the achievement gap, full-day kindergarten (FDK) is a viable contender. The implementation of specific teacher strategies enhances the FDK experience and elicits gains among the students. The literature clearly articulates a strong correlation between poverty and poor achievement and supports the notion that the…
Role of Square Flap in Post Burn Axillary Contractures.
Karki, Durga; Narayan, Ravi Prakash
2017-09-01
Post-burn contractures are a commonly encountered problem and many techniques have been described in their treatment. Z-plasties are the commonest local flap procedure done for linear bands with adjacent healthy tissue. Our aim was to assess the use of square flap technique in axillary contractures. Ten patients with type I and II axillary contractures underwent release by the square flap technique. All cases were followed up for at least one year and analysed for range of motion and aesthetic outcome. All cases achieved full range of movement postoperatively with no recurrence during follow up period and a good cosmetic outcome. Square flap was shown to be a reliable technique for mild to moderate axillary contractures of the anterior or posterior axillary folds even when there is significant adjacent scarring of chest wall or back of types I and II.
Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array
NASA Astrophysics Data System (ADS)
Eastwood, Michael W.; Hallinan, Gregg
2018-05-01
21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.
Quadrant photodetector sensitivity.
Manojlović, Lazo M
2011-07-10
A quantitative theoretical analysis of the quadrant photodetector (QPD) sensitivity in position measurement is presented. The Gaussian light spot irradiance distribution on the QPD surface was assumed to meet most of the real-life applications of this sensor. As the result of the mathematical treatment of the problem, we obtained, in a closed form, the sensitivity function versus the ratio of the light spot 1/e radius and the QPD radius. The obtained result is valid for the full range of the ratios. To check the influence of the finite light spot radius on the interaxis cross talk and linearity, we also performed a mathematical analysis to quantitatively measure these types of errors. An optimal range of the ratio of light spot radius and QPD radius has been found to simultaneously achieve low interaxis cross talk and high linearity of the sensor. © 2011 Optical Society of America
Long range guided wave defect monitoring in rail track
NASA Astrophysics Data System (ADS)
Loveday, Philip W.; Long, Craig S.
2014-02-01
A guided wave ultrasound system was previously developed for monitoring rail track used on heavy duty freight lines. This system operates by transmitting guided waves between permanently installed transmit and receive transducers spaced approximately 1km apart. The system has been proven to reliably detect rail breaks without false alarms. While cracks are sometimes detected there is a trade - off between detecting cracks and the possibility of false alarms. Adding a pulse-echo mode of operation to the system could provide increased functionality by detecting, locating and possibly monitoring cracks. This would require an array of transducers to control the direction and mode of propagation and it would be necessary to detect cracks up to a range of approximately 500 m in either direction along the rail. A four transducer array was designed and full matrix capture was used for field measurements. Post processing of the signals showed that a thermite weld could be detected at a range of 790m from the transducer array. It was concluded that the required range can be achieved in new rail while it would be extremely difficult in very old rail.
NASA Astrophysics Data System (ADS)
Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran
2018-05-01
High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of ±200 nm over the full 200 mm measurement range of the sensor.
Akman, Yunus Emre; Yavuz, Umut; Çetinkaya, Engin; Gür, Volkan; Gül, Murat; Demir, Bilal
2018-03-01
We report the short-term outcomes of total hip arthroplasty(THA) in patients previously treated with Schanz osteotomy (SO). Eighteen patients [2 male, 16 female; mean age, 55.4 (range, 50-66) years] who had undergone THA after SO were retrospectively evaluated. Clinical evaluation was performed based on the Harris hip score. Radiological evaluation was performed using full-length radiographs of the lower extremities, pelvis, and hip. The mean follow-up period was 30.8 (range, 18-56) months. Mean femoral shortening was 3.7 (range, 2-5) cm. Perioperative complications occurred in 4 (22.2%) patients. Nonunion was not found at the osteotomy sites. No dislocation was observed. The Trendelenburg sign was positive for five (27.7%) patients, postoperatively. The mean Harris hip score improved from 42.7 to 78.7 (p < 0.05). THA for hips previously treated with SO is technically demanding. If careful preoperative planning is performed, successful treatment can be achieved.
NASA Astrophysics Data System (ADS)
Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.
2015-04-01
Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.
Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai
2016-01-01
A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047
High Reliability Prototype Quadrupole for the Next Linear Collider
NASA Astrophysics Data System (ADS)
Spencer, C. M.
2001-01-01
The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.
[Bilateral traumatic patella fracture: a case report].
Cırpar, Meriç; Türker, Mehmet; Aslan, Arif; Yalçınozan, Mehmet
2011-08-01
Patellar fractures are uncommon injuries and account for approximately 1% of all fractures. In this article, a 35-year-old male patient who sustained a collision deceleration accident with bilateral comminuted transverse patellar fractures is presented. For this patient, open reduction and internal fixation with tension band technique, using two Kirschner wires and cerclage wire was applied for both fractures. At the first postoperative day, isometric quadriceps and active range of motion exercises were begun and the patient was allowed to walk full weight bearing with two crutches while both extremities were immobilized in a hinged brace allowing maximum 30 degrees of flexion. At postoperative fourth week brace immobilization was terminated. However, the patient was advised to use crutches for two weeks more to prevent any complications that may arise during walking because of the bilaterally of the injury. At six weeks solid union was achieved. During the last visit at postoperative second year, the patient had no complaints and the range of motion was full. In this paper a case of bilateral patella fractures is presented as a consequence of a dashboard injury, and the pathomechanical and therapeutical aspects of such an injury is discussed.
The Efficacy of Full Range Advising at a Georgia Technical College
ERIC Educational Resources Information Center
Greco, Victor
2017-01-01
Full Range Leadership predicts positive behavioral outcomes through transformational leadership, mixed outcomes through transactional leadership, and unfavorable outcomes through passive leadership practices. Full Range Advising introduces a new paradigm in advising research by applying Full Range Leadership to academic advising. A problem exists…
Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.
Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J
2013-06-17
We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.
A Three-Dimensional Microdisplacement Sensing System Based on MEMS Bulk-Silicon Technology
Wu, Junjie; Lei, Lihua; Chen, Xin; Cai, Xiaoyu; Li, Yuan; Han, Tao
2014-01-01
For the dimensional measurement and characterization of microsized and nanosized components, a three-dimensional microdisplacement sensing system was developed using the piezoresistive effect in silicon. The sensor was fabricated using microelectromechanical system bulk-silicon technology, and it was validated using the finite element method. A precise data acquisition circuit with an accuracy of 20 μV was designed to obtain weak voltage signals. By calibration, the sensing system was shown to have a sensitivity of 17.29 mV/μm and 4.59 mV/μm in the axial and lateral directions, respectively; the nonlinearity in these directions was 0.8% and 1.0% full scale, respectively. A full range of 4.6 μm was achieved in the axial direction. Results of a resolution test indicated that the sensing system had a resolution of 5 nm in the axial direction and 10 nm in the lateral direction. PMID:25360581
NASA Astrophysics Data System (ADS)
Awasarmol, Umesh Vandeorao; Pise, Ashok T.
2018-02-01
The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.
2013-01-01
Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and flight testing that verifies transition flight control. A final down-selected vehicle is also presented.
Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots
Li, Hongjian; Li, Panpan; Kang, Junjie; Ding, Jiianfeng; Ma, Jun; Zhang, Yiyun; Yi, Xiaoyan; Wang, Guohong
2016-01-01
We have presented broadband full-color monolithic InGaN light-emitting diodes (LEDs) by self-assembled InGaN quantum dots (QDs) using metal organic chemical vapor deposition (MOCVD). The electroluminescence spectra of the InGaN QDs LEDs are extremely broad span from 410 nm to 720 nm with a line-width of 164 nm, covering entire visible wavelength range. A color temperature of 3370 K and a color rendering index of 69.3 have been achieved. Temperature-dependent photoluminescence measurements reveal a strong carriers localization effect of the InGaN QDs layer by obvious blue-shift of emission peak from 50 K to 300 K. The broadband luminescence spectrum is believed to be attributed to the injected carriers captured by the different localized states of InGaN QDs with various sizes, shapes and indium compositions, leading to a full visible color emission. The successful realization of our broadband InGaN QDs LEDs provide a convenient and practical method for the fabrication of GaN-based monolithic full-color LEDs in wafer scale. PMID:27734917
Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.
Najeeb, Najeeb W; Detweiler, Carrick
2017-07-17
When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.
Extending Wireless Rechargeable Sensor Network Life without Full Knowledge
Najeeb, Najeeb W.; Detweiler, Carrick
2017-01-01
When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values. PMID:28714936
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam
2015-03-01
By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
Evoked prior learning experience and approach to learning as predictors of academic achievement.
Trigwell, Keith; Ashwin, Paul; Millan, Elena S
2013-09-01
In separate studies and research from different perspectives, five factors are found to be among those related to higher quality outcomes of student learning (academic achievement). Those factors are higher self-efficacy, deeper approaches to learning, higher quality teaching, students' perceptions that their workload is appropriate, and greater learning motivation. University learning improvement strategies have been built on these research results. To investigate how students' evoked prior experience, perceptions of their learning environment, and their approaches to learning collectively contribute to academic achievement. This is the first study to investigate motivation and self-efficacy in the same educational context as conceptions of learning, approaches to learning and perceptions of the learning environment. Undergraduate students (773) from the full range of disciplines were part of a group of over 2,300 students who volunteered to complete a survey of their learning experience. On completing their degrees 6 and 18 months later, their academic achievement was matched with their learning experience survey data. A 77-item questionnaire was used to gather students' self-report of their evoked prior experience (self-efficacy, learning motivation, and conceptions of learning), perceptions of learning context (teaching quality and appropriate workload), and approaches to learning (deep and surface). Academic achievement was measured using the English honours degree classification system. Analyses were conducted using correlational and multi-variable (structural equation modelling) methods. The results from the correlation methods confirmed those found in numerous earlier studies. The results from the multi-variable analyses indicated that surface approach to learning was the strongest predictor of academic achievement, with self-efficacy and motivation also found to be directly related. In contrast to the correlation results, a deep approach to learning was not related to academic achievement, and teaching quality and conceptions of learning were only indirectly related to achievement. Research aimed at understanding how students experience their learning environment and how that experience relates to the quality of their learning needs to be conducted using a wider range of variables and more sophisticated analytical methods. In this study of one context, some of the relations found in earlier bivariate studies, and on which learning intervention strategies have been built, are not confirmed when more holistic teaching-learning contexts are analysed using multi-variable methods. © 2012 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Nakano, T.; Oogane, M.; Furuichi, T.; Ando, Y.
2018-04-01
The automotive industry requires magnetic sensors exhibiting highly linear output within a dynamic range as wide as ±1 kOe. A simple model predicts that the magneto-conductance (G-H) curve in a magnetic tunnel junction (MTJ) is perfectly linear, whereas the magneto-resistance (R-H) curve inevitably contains a finite nonlinearity. We prepared two kinds of MTJs using in-plane or perpendicularly magnetized synthetic antiferromagnetic (i-SAF or p-SAF) reference layers and investigated their sensor performance. In the MTJ with the i-SAF reference layer, the G-H curve did not necessarily show smaller nonlinearities than those of the R-H curve with different dynamic ranges. This is because the magnetizations of the i-SAF reference layer start to rotate at a magnetic field even smaller than the switching field (Hsw) measured by a magnetometer, which significantly affects the tunnel magnetoresistance (TMR) effect. In the MTJ with the p-SAF reference layer, the G-H curve showed much smaller nonlinearities than those of the R-H curve, thanks to a large Hsw value of the p-SAF reference layer. We achieved a nonlinearity of 0.08% FS (full scale) in the G-H curve with a dynamic range of ±1 kOe, satisfying our target for automotive applications. This demonstrated that a reference layer exhibiting a large Hsw value is indispensable in order to achieve a highly linear G-H curve.
Loudon, Janice K; Reiman, Michael P; Sylvain, Jonathan
2014-03-01
Lateral ankle sprains are common and can have detrimental consequences to the athlete. Joint mobilisation/manipulation may limit these outcomes. Systematically summarise the effectiveness of manual joint techniques in treatment of lateral ankle sprains. This review employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A computer-assisted literature search of MEDLINE, CINHAL, EMBASE, OVID and Physiotherapy Evidence Database (PEDro) (January 1966 to March 2013) was used with the following keywords alone and in combination 'ankle', 'sprain', 'injuries', 'lateral', 'manual therapy', and 'joint mobilisation'. The methodological quality of individual studies was assessed using the PEDro scale. After screening of titles, abstracts and full articles, eight articles were kept for examination. Three articles achieved a score of 10 of 11 total points; one achieved a score of 9; two articles scored 8; one article scored a 7 and the remaining article scored a 5. Three articles examined joint techniques for acute sprains and the remainder examined subacute/chronic ankle sprains. Outcome measures included were pain level, ankle range of motion, swelling, functional score, stabilometry and gait parameters. The majority of the articles only assessed these outcome measures immediately after treatment. No detrimental effects from the joint techniques were revealed in any of the studies reviewed. For acute ankle sprains, manual joint mobilisation diminished pain and increased dorsiflexion range of motion. For treatment of subacute/chronic lateral ankle sprains, these techniques improved ankle range-of-motion, decreased pain and improved function.
Truong, D D; Austin, M E
2014-11-01
The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.
Wireless magnetoelastic transducers for biomedical applications
NASA Astrophysics Data System (ADS)
Green, S. R.; Gianchandani, Y. B.
2017-05-01
This paper highlights emerging medical applications for magnetoelastic sensing and actuation, each taking advantage of the wireless capabilities and small form factor enabled by the magnetoelastic transduction technique. Magnetoelastic transduction leverages the strong coupling between stress, strain, and magnetization intrinsic to some materials - notably amorphous metals and rare earth crystalline alloys. This coupling provides inherently wireless transduction that does not require any onboard power; these traits are especially advantageous in diagnostic and therapeutic medical implant applications. This paper first describes the basic transduction technique, and considerations for design and fabrication of medical systems which utilize the technique. These considerations include material selection, magnetic biasing, packaging, and interrogation approaches. The first application highlighted is stent monitoring, in which the masssensitive magnetoelastic resonator is integrated along the inner sidewall of the stent to provide early detection of stent occlusion. Prototype tests indicate clinical feasibility and a full scale range from zero stent occlusion to full stent occlusion. Wireless ranges of up to 15 cm in situ have been achieved using 25 mm long resonators. The second application is wireless strain sensing, which can be useful for orthopedic implants and orthodontia. A differential strain sensor is described, with a dynamic range of 0-1.85 mstrain - accommodating typical palatal expander strain - and a sensitivity of 12.5x103 ppm/mstrain. Finally, a wireless actuator intended to agitate fluid for mitigation of encapsulation of glaucoma drainage devices is shown. Peak actuator vibration amplitudes of 1.5 μm - sufficient to affect cell adhesion in other studies - are recorded at a wireless range of 25-30 mm.
Traction-compression-closure for exomphalos major.
Morabito, Antonino; Owen, Anthony; Bianchi, Adrian
2006-11-01
We present our experience with traction-compression-closure (TCC) for exomphalos major (EM) to achieve a safe and embryologically correct midline supraumbilical aesthetic closure with preservation of the umbilicus. Nineteen neonates with EM were paralyzed and ventilated. The abdominal domain was increased by upward cord traction to assist liver-bowel reduction by gravity and sac ligation, followed by circumferential elastic body binder compression. The supraumbilical abdominal wall anomaly cicatrized spontaneously or was closed surgically as a midline scar, with preservation of the umbilicus. Over 7 years (1998-2004), 19 patients with EM were treated by TCC, 18 of whom survived. The patients' median gestational age was 36 weeks (range, 24-40 weeks); their median birth weight was 2312 g (range, 890-3000 g). The median time to reduction was 4 days (range, 3-5 days), whereas that to full enteral feeds was 6 days (range, 4-6 days). Mechanical ventilation for 7 days (range, 6-8 days) was not associated with any morbidity, and the time to home discharge was 11 days (range, 8-12 days). Five patients did not require any surgery. There was no episode of sac rupture or infection. Abdominal expansion by vertical cord traction followed by compression reduction (TCC) under muscle relaxation and ventilation is time well spent toward a safe and aesthetic midline abdominal wall closure without tension for EM.
Automatic localization of cochlear implant electrodes in CTs with a limited intensity range
NASA Astrophysics Data System (ADS)
Zhao, Yiyuan; Dawant, Benoit M.; Noble, Jack H.
2017-02-01
Cochlear implants (CIs) are neural prosthetics for treating severe-to-profound hearing loss. Our group has developed an image-guided cochlear implant programming (IGCIP) system that uses image analysis techniques to recommend patientspecific CI processor settings to improve hearing outcomes. One crucial step in IGCIP is the localization of CI electrodes in post-implantation CTs. Manual localization of electrodes requires time and expertise. To automate this process, our group has proposed automatic techniques that have been validated on CTs acquired with scanners that produce images with an extended range of intensity values. However, there are many clinical CTs acquired with a limited intensity range. This limitation complicates the electrode localization process. In this work, we present a pre-processing step for CTs with a limited intensity range and extend the methods we proposed for full intensity range CTs to localize CI electrodes in CTs with limited intensity range. We evaluate our method on CTs of 20 subjects implanted with CI arrays produced by different manufacturers. Our method achieves a mean localization error of 0.21mm. This indicates our method is robust for automatic localization of CI electrodes in different types of CTs, which represents a crucial step for translating IGCIP from research laboratory to clinical use.
NASA Astrophysics Data System (ADS)
Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Asamura, Kazushi; Hirahara, Masafumi; Shibano, Yasuko; Takashima, Takeshi
2018-05-01
The medium-energy particle experiments—electron analyzer onboard the exploration of energization and radiation in geospace spacecraft measures the energy and direction of each incoming electron in the energy range of 7-87 keV. The sensor covers a 2 π-radian disklike field of view with 16 detectors, and the full solid angle coverage is achieved through the spacecraft's spin motion. The electron energy is independently measured by both an electrostatic analyzer and avalanche photodiodes, enabling significant background reduction. We describe the technical approach, data output, and examples of initial observations.[Figure not available: see fulltext.
Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices.
Lim, Wen Xiang; Manjappa, Manukumara; Srivastava, Yogesh Kumar; Cong, Longqing; Kumar, Abhishek; MacDonald, Kevin F; Singh, Ranjan
2018-03-01
Incorporating semiconductors as active media into metamaterials offers opportunities for a wide range of dynamically switchable/tunable, technologically relevant optical functionalities enabled by strong, resonant light-matter interactions within the semiconductor. Here, a germanium-thin-film-based flexible metaphotonic device for ultrafast optical switching of terahertz radiation is experimentally demonstrated. A resonant transmission modulation depth of 90% is achieved, with an ultrafast full recovery time of 17 ps. An observed sub-picosecond decay constant of 670 fs is attributed to the presence of trap-assisted recombination sites in the thermally evaporated germanium film. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gostin, Lawrence O.
2001-01-01
Public health law reform is necessary because existing statutes are outdated, contain multiple layers of regulation, and are inconsistent. A model law would define the mission and functions of public health agencies, provide a full range of flexible powers, specify clear criteria and procedures for activities, and provide protections for privacy and against discrimination. The law reform process provides an opportunity for public health agencies to draw attention to their resource needs and achievements and to form ties with constituency groups and enduring relations with the legislative branch of government. Ultimately, the law should become a catalyst, rather than an impediment, to reinvigorating the public health system. PMID:11527757
The scientific challenges to forecasting and nowcasting the solar origins of space weather (Invited)
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Title, A. M.
2013-12-01
With the full-sphere continuous coverage of the Sun achieved by combining SDO and STEREO imagery comes the realization that solar activity is a manifestation of local processes that respond to long-range if not global influences. Numerical experiments provide insights into these couplings, as well as into the intricacies of destabilizations of field emerging into pre-existing configurations and evolving within the context of their dynamic surroundings. With these capabilities grows an understanding of the difficulties in forecasting of the solar origins of space weather: we need assimilative global non-potential field models, but our observational resources are too limited to meet that need.
STAR*D: helping to close the gap between science and practice.
Shern, David L; Moran, Hazel
2009-11-01
Practical clinical trials, such as STAR*D (Sequenced Treatment Alternatives to Relieve Depression), extend the traditional randomized controlled trial to real-world settings. Consumers and clinicians should be encouraged by STAR*D's 70% remission rate and should realize that for many participants remission required medication switching and augmentation. Policy makers should recognize the importance of easy access to a full range of treatments. Researchers should be sobered by the high attrition rate and the 30% of participants who did not achieve remission. Although more such practical trials are needed, future work must more meaningfully involve consumers in design, analysis, and interpretation.
Gostin, L O
2001-09-01
Public health law reform is necessary because existing statutes are outdated, contain multiple layers of regulation, and are inconsistent. A model law would define the mission and functions of public health agen cies, provide a full range of flexible powers, specify clear criteria and procedures for activities, and provide protections for privacy and against discrimination. The law reform process provides an opportunity for public health agencies to draw attention to their resource needs and achievements and to form ties with constituency groups and enduring relations with the legislative branch of government. Ultimately, the law should become a catalyst, rather than an impediment, to reinvigorating the public health system.
Promotion of women physicians in academic medicine. Glass ceiling or sticky floor?
Tesch, B J; Wood, H M; Helwig, A L; Nattinger, A B
1995-04-05
To assess possible explanations for the finding that the percentage of women medical school faculty members holding associate or full professor rank remains well below the percentage of men. Cross-sectional survey of physician faculty of US medical schools using the Association of American Medical Colleges (AAMC) database. Surveyed were 153 women and 263 men first appointed between 1979 and 1981, matched for institutions of original faculty appointment. Academic rank achieved, career preparation, academic resources at first appointment, familial responsibilities, and academic productivity. After a mean of 11 years on a medical school faculty, 59% of women compared with 83% of men had achieved associate or full professor rank, and 5% of women compared with 23% of men had achieved full professor rank. Women and men reported similar preparation for an academic career, but women began their careers with fewer academic resources. The number of children was not associated with rank achieved. Women worked about 10% fewer hours per week and had authored fewer publications. After adjustment for productivity factors, women remained less likely to be associate or full professors (adjusted odds ratio [OR] = 0.37; 95% confidence interval [CI], 0.21 to 0.66) or to achieve full professor rank (adjusted OR = 0.27; 95% CI, 0.12 to 0.63). Based on the AAMC database, 50% of both women and men originally appointed as faculty members between 1979 and 1981 had left academic medicine by 1991. Women physician medical school faculty are promoted more slowly than men. Gender differences in rank achieved are not explained by productivity or by differential attrition from academic medicine.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng
2017-02-01
Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).
NASA Astrophysics Data System (ADS)
Blaser, S.; Nebiker, S.; Cavegn, S.
2017-05-01
Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.
High-birefringence photonic crystal fiber structures based on the binary morse-thue fractal sequence
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed; Abdel-Aty-Zohdy, Hoda
2016-09-01
A novel index-guiding Silica glass-core hexagonal High-Birefringence Photonic Crystal Fiber (HB-PCF) is proposed, with five rings of standard cladding air circular holes arranged in four formations inspired by the Binary Morse-Thue fractal Sequence (BMTS). The form birefringence, confinement loss, chromatic dispersion, effective mode area, and effective normalized frequency are evaluated for the four PCFs operating within (1.8 - 2 μm) eye-safe wavelength range. Modeling and analysis of the four PCF formations are performed deploying full-vector analysis in Finite Element Method (FEM) using COMSOL Multiphysics. Respecting fabrication and in light of commercial availability in designing the proposed PCF structures, a high birefringence of up to (6.549 × 10-3 at 2 μm) is achieved with dispersionfree single-mode operation. Confinement loss as low as (3.2 × 10-5 - 6.5 × 10-4 dB/m for 1.8 - 2 μm range) is achieved as well. Comparison against previously reported PCF structures reveals the desirably higher birefringence of our BMTS HB-PCF. The proposed PCFs are of vital use in various optical systems (e.g.: multi-wavelength fiber ring laser systems, and tunable lasers), catering for applications such as: optical sensing, LIDAR systems, material processing, optical signal processing, and optical communication.
NASA Astrophysics Data System (ADS)
Udovydchenkov, Ilya A.
2017-07-01
Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Extended temperature range ACPS thruster investigation
NASA Technical Reports Server (NTRS)
Blubaugh, A. L.; Schoenman, L.
1974-01-01
The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.
Estado y rendimiento del espectrógrafo infrarrojo criogénico F2
NASA Astrophysics Data System (ADS)
Diaz, R. J.; Gomez, P.; Schirmer, M.; Navarrete, F.; Stephens, A.; Bosch, G.; Gaspar, G.; Camperi, J.; Gunthardt, G.
First results related to the commissioning phase of Flamingos-2 spectrograph are reported. The available operation modes for observation and expected performance for 2014 are also presented. After the replacement of the first collimator lens; broken in 2012; a problem persisted in the optical alignment. The troubleshooting will require a new instrument refurbishing schedule; meanwhile; the available operation modes are limited to direct image and longslit spectroscopy. We found that the direct image () achieves its highest quality (0.4'') only in the inner 3' of the field and resolution drops toward the spectrum ends. The longslit mode provides for the / ranges; and for the R3k grism in the ranges ; or . We also determine the uncertainties for emission line kinematics; and study the relative flexion between the guiding system; the slit and the detector. FULL TEXT IN SPANISH
Chemically etched ultrahigh-Q wedge-resonator on a silicon chip
NASA Astrophysics Data System (ADS)
Lee, Hansuek; Chen, Tong; Li, Jiang; Yang, Ki Youl; Jeon, Seokmin; Painter, Oskar; Vahala, Kerry J.
2012-06-01
Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible `system on a chip' functions enabled by ultrahigh-Q devices.
High-performance fiber optic link for ECM antenna remoting
NASA Astrophysics Data System (ADS)
Edge, Colin; Burgess, John W.; Wale, Michael J.; Try, Nicholas W.
1998-11-01
The ability to remotely radiate microwave signals has become an essential feature of modern electronic counter-measures (ECM) systems. The use of fiber optics allows remote microwave links to be constructed which have very low propagation loss and dispersion, are very flexible and light in weight, and have a high degree of immunity from external electromagnetic fields, crosstalk and environmental effects. This combination of desirable characteristics are very beneficial to avionic ECM antenna remoting as well as many other applications. GEC-Marconi have developed high performance fiber components for use in a towed radar decoy. The resulting rugged and compact optical transmitter and receiver modules have been developed and proven to maintain the required performance over the full hostile range of environmental conditions encountered on a fast jet. Packaged fiber optic links have been produced which can achieve a compression dynamic range of greater than 87 dB in 1 MHz bandwidth over a 2 to 18 GHz.
Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert
2002-01-01
The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.
Biofiltration: an innovative air pollution control technology for VOC emissions.
Leson, G; Winer, A M
1991-08-01
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.
Organic semiconductor density of states controls the energy level alignment at electrode interfaces
Oehzelt, Martin; Koch, Norbert; Heimel, Georg
2014-01-01
Minimizing charge carrier injection barriers and extraction losses at interfaces between organic semiconductors and metallic electrodes is critical for optimizing the performance of organic (opto-) electronic devices. Here, we implement a detailed electrostatic model, capable of reproducing the alignment between the electrode Fermi energy and the transport states in the organic semiconductor both qualitatively and quantitatively. Covering the full phenomenological range of interfacial energy level alignment regimes within a single, consistent framework and continuously connecting the limiting cases described by previously proposed models allows us to resolve conflicting views in the literature. Our results highlight the density of states in the organic semiconductor as a key factor. Its shape and, in particular, the energy distribution of electronic states tailing into the fundamental gap is found to determine both the minimum value of practically achievable injection barriers as well as their spatial profile, ranging from abrupt interface dipoles to extended band-bending regions. PMID:24938867
Mitsuhashi, A; Sato, Y; Kiyokawa, T; Koshizaka, M; Hanaoka, H; Shozu, M
2016-02-01
Metformin, widely used in the treatment of type 2 diabetes mellitus, reduces the risk of cancer and relapse after treatment. Fertility-sparing treatment for endometrial cancer (EC) with progestin is associated with a high chance of disease regression, and the high relapse rate continues to be a problem. We assessed the efficacy of metformin in preventing recurrence after medroxyprogesterone acetate (MPA) as fertility-sparing treatment for atypical endometrial hyperplasia (AEH) and EC. This phase II study enrolled 17 patients with AEH and 19 patients with EC limited to the endometrium (age, 20-40 years). MPA (400 mg/day) and metformin (750-2250 mg/day) were administered for 24-36 weeks to achieve a complete response (CR). Metformin was administered until conception, even after MPA discontinuation. The primary end point was relapse-free survival (RFS) after remission. We analyzed all efficacy end points in the full analysis set. The body mass index was ≥25 kg/m(2) in 27 patients (mean, 31 kg/m(2); range, 19-51 kg/m(2)), and the homeostasis model assessment for insulin resistance index was ≥2.5 in 24 patients (mean, 4.7; range, 0.7-21). Two patients showed progression at 12 weeks [6%; 95% confidence interval (CI) 2-18]. At 36 weeks, 29 (81%; 95% CI 65-90) patients achieved CR, and 5 (14%; 95% CI 6-29) patients achieved partial response. During a median follow-up of 38 months (range, 9-66 months) after remission, relapse was confirmed in three of the patients who had achieved CR (relapse rate, 10%). The 3-year estimated RFS rate was 89%. No patients experienced severe toxicity. Metformin inhibited disease relapse after MPA therapy. The combination of metformin and MPA in EC treatment should be studied further. UMIN 000002210. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A Review of Gender and Full-Range Leadership Research and Suggestions for Future Research
ERIC Educational Resources Information Center
Smith, Kelli K.; Matkin, Gina S.; Fritz, Susan M.
2004-01-01
In this paper the research on gender and Full-Range Leadership is documented and explored. Included is consideration of research that studied Full-Range Leadership directly as well as indirect study that contributed to the field of research on Full-Range Leadership. The paper culminates in a series of recommendations for future research. It is…
High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak
Truong, D. D.; Austin, M. E.
2014-11-01
The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. Heterodyning divides this frequency range into three 2-18 GHz intermediate frequency (IF) bands. The frequency spacing of the radiometer’s channels results in a spatial resolution of ~1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels’ IF bands andmore » consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. We achieved a higher spatial resolution through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ~2-4 cm radial region. These high resolution channels will be most useful in the low-field side edge region where modest Te values (1-2 keV) result in a minimum of relativistic broadening. Some expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, is presented.« less
The Development of a Tactical-Level Full Range Leadership Measurement Instrument
2010-03-01
full range leadership theory has become established as the predominant and most widely researched theory on leadership . The most commonly used survey...instrument to assess full range leadership theory is the Multifactor Leadership Questionnaire, originally developed by Bass in 1985. Although much...existing literature to develop a new full range leadership theory measurement instrument that effectively targets low- to mid-level supervisors, or
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
Academic Achievement in Blacks and Whites: Are the Developmental Processes Similar?
ERIC Educational Resources Information Center
Rowe, David C.; Cleveland, Hobart H.
1996-01-01
Genetic and environmental influences on academic achievement were studied for 314 pairs of white full siblings and 53 pairs of half siblings and 161 pairs of black full siblings and 106 half-sibling pairs (National Longitudinal Survey of Youth). Results support a common heritage view of the growth of academic knowledge. (SLD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeonov, Y; Penchev, P; Ringbaek, T Printz
2016-06-15
Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less
Fusobacterial liver abscess: a case report and review of the literature.
Jayasimhan, Dilip; Wu, Linus; Huggan, Paul
2017-06-20
Fusobacteriae are facultative anaerobic gram-negative bacilli which cause a range of invasive infections, amongst which pyogenic liver abscesses are rare. We describe a case of Fusobacterium nucleatum liver abscess and review the relevant literature. A 51-year-old lady presented with a 4-day history of abdominal pain, diarrhoea, fever, rigors, and lethargy. Imaging revealed an abscess which was drained. Cultures of the blood and abscess aspirate grew Fusobacterium nucleatum and Prevotella pleuritidis respectively. She achieved full recovery following treatment. A MEDLINE search was undertaken using free-text and Medical Subject Headings (MeSH), keywords "Fusobacterium" and "Liver abscess". Non-English language reports and cases without confirmed growth of Fusobacterium species were excluded. Additional cases were identified by surveying the references of each report and by using the same keywords in a web-based search. Forty-eight cases were identified, 41 in men. The median age was 42.5, with an interquartile range of 33. F. nucleatum and F. necrophorum were in involved in 22 cases each, and 4 cases were not further speciated. Among cases of F. nucleatum liver abscess, nine were attributed to periodontal disease, four to lower gastrointestinal tract disease, one to Lemierre's Syndrome, and eight were considered cryptogenic. All patients treated made a full recovery. Antimicrobial treatment duration ranged from 2 weeks to 6 months with a median of 6 weeks. Fusobacterium nucleatum is an uncommon cause of liver abscess generally associated with good clinical outcomes with contemporary medical and surgical care.
Oztürkmen, Yusuf; Caniklioğlu, Mustafa; Karamehmetoğlu, Mahmut; Sükür, Erhan
2010-01-01
We aimed to evaluate the clinical and radiological outcomes of open reduction and internal fixation augmented with calcium phosphate cement (CPC) in the treatment of depressed tibial plateau fractures. Twenty-eight knees of 28 patients [19 males and 9 females; mean age, 41.2 years (range 22-72 years)] who had open reduction and internal fixation combined with CPC augmentation were included in this study. Seventeen fractures were Schatzker type II, 5 were type III, 3 were type IV, 2 were type V, and 1 was type VI. CPC was used to fill the subchondral bone defects in all knees. Fixation of the fragments was done with screws in 3 knees (10%). Standard proximal tibial plates or buttress plates were used in 25 knees (90%) with an additional split fragment extending distally to achieve internal fixation. Full weight-bearing was allowed in 6.4 weeks (range 6-12 weeks) after surgery. Resorption of CPC granules was defined as the decrease in the size and density of grafting material on radiographs. Rasmussen's radiological and clinical scores were determined postoperatively. Functionality was assessed with Lysholm knee scoring system. Activity was graded with Tegner's activity scale. Union was achieved in all patients with a mean follow-up of 22.2 months (range 6-36 months). There were no intraoperative complications. At the latest follow-up radiographs, resorption of the graft was observed in 25 knees (89%). Rasmussen's radiologic score was excellent in 17 patients (61%), good in 9 patients (32%), and fair in 2 patients (7%). Rasmussen's clinical score was excellent in 9 patients (32%), good in 18 patients (64%), and fair in 1 patient (4%). According to the Lysholm knee score, functional results were excellent in 16 patients (57%), good in 8 patients (29%), and fair in 4 patients (14%). Twenty-two patients (78%) achieved the preoperative activity level after surgery, and there was no significant difference between the mean preoperative and postoperative Tegner scores (4.11±0.68 and 4.04±0.64, respectively, p=0.161). CPC is a safe biomaterial with many advantages in augmenting the open reduction and internal fixation of depressed tibial plateau fractures, including elimination of morbidity associated with bone graft harvesting, the unlimited supply of bone substitute, the optimum filling of irregular bone defects, and shortening of the postoperative full weight-bearing time.
One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers
NASA Astrophysics Data System (ADS)
Rodríguez-Ulibarri, P.; Beruete, M.; Serebryannikov, A. E.
2017-10-01
A concept of quasiplanar one-way transparent terahertz absorbers made of linear isotropic materials is presented. The resulting structure consists of a homogeneous absorbing layer of polar dielectric, GaAs, a dispersion-free substrate, and an ultrathin frequency-selective reflector. It is demonstrated that perfect absorption can be obtained for forward illumination, along with total reflection at backward illumination and transparency windows in the adjacent bands. The design is particularized for the polaritonic gap range where permittivity of GaAs varies in a wide range and includes epsilon-near-zero and transparency regimes. The underlying physics can be explained with the aid of a unified equivalent-circuit (EC) analytical model. Perfect matching of input impedance in forward operation and, simultaneously, strong mismatch in the backward case are the universal criteria of one-way absorption. It is shown that perfect one-way absorption can be achieved at rather arbitrary permittivity values, provided these criteria are fulfilled. The EC results are in good agreement with full-wave simulations in a wide range of material and geometrical parameters. The resulting one-way absorbers are very compact and geometrically simple, and enable transparency in the neighboring frequency ranges and, hence, multifunctionality that utilizes both absorption- and transmission-related regimes.
Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.
Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing
2016-01-26
Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.
What is policy and where do we look for it when we want to research it?
Crammond, Brad; Carey, Gemma
2017-04-01
Public health researchers are increasingly concerned with achieving 'upstream' change to achieve reductions in the global burden of disease and health inequalities. Consequently, understanding policy and how to change it has become a central goal of public health. Yet conceptualisation of what constitutes policy and where it can be found is very limited within this field. Our glossary demonstrates that policy is many headed. It is located in a vast array of documents, discussions dialogues and actions which can be captured variously by formal and informal forms of documentation and observation. Effectively understanding policy and its relevance for public health requires an awareness of the full range of places and contexts in which policy work happens and policy documents are produced. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1975-01-01
Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.
Antireflective glass nanoholes on optical lenses.
Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun
2018-05-28
Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.
All-fiber tunable MMI fiber laser
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; Castillo-Guzman, A.; May-Arrioja, D. A.; Selvas-Aguilar, R.; LiKamWa, P.
2009-05-01
We report on a novel tuning mechanism to fabricate an all-fiber tunable laser based on multimode interference (MMI) effects. It is well known that the wavelength response of MMI devices exhibits a linear dependence when the length of the multimode fiber (MMF) section. Therefore, tuning in the MMI filter is achieved using a ferrule (capillary tube of 127 μm diameter) filled with a liquid with a higher refractive index than that of the ferrule, which creates a variable liquid MMF. This liquid MMF is used to increase the effective length of the MMI filter and tuning takes place. Using this simple scheme, a tuning range of 30 nm was easily achieved, with very small insertion losses. The filter was tested within a typical Erbium doped fiber (EDF) ring laser cavity, and a tunable EDF laser covering the full C-band was demonstrated. The advantage of our laser is of course the simplicity of the tunable MMI filter, which results in an inexpensive tunable fiber laser.
Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)
NASA Astrophysics Data System (ADS)
Lin, Tsung-Hsien
2015-10-01
Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.
Very high frame rate volumetric integration of depth images on mobile devices.
Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David
2015-11-01
Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.
NASA Technical Reports Server (NTRS)
Ban, Vladimir S.; Olsen, Gregory H.
1990-01-01
In the course of this work, 5 mm diameter InGaAs pin detectors were produced which met or exceeded all of the goals of the program. The best results achieved were: shunt resistance of over 300 K ohms; rise time of less than 300 ns; contact resistance of less than 20 ohms; quantum efficiency of over 50 percent in the 0.5 to 1.7 micron range; and devices were maintained and operated at 125 C without deterioration for over 100 hours. In order to achieve the goals of this program, several major technological advances were realized, among them: successful design, construction and operation of a hydride VPE reactor capable of growing epitaxial layers on 2 inch diameter InP substrates with a capacity of over 8 wafers per day; wafer processing was upgraded to handle 2 inch wafers; a double layer Si3N4/SiO2 antireflection coating which enhances response over the 0.5 to 1.7 micron range was developed; a method for anisotropic, precisely controlled CH4/H2 plasma etching for enhancement of response at short wavelengths was developed; and electronic and optical testing methods were developed to allow full characterization of detectors with size and spectral response characteristics. On the basis of the work and results achieved in this program, it is concluded that large size, high shunt resistance, high quantum efficiency InGaAs pin detectors are not only feasible but also manufacturable on industrial scale. This device spans a significant portion of visible and near infrared spectral range and it will allow a single detector to be used for the 0.5 to 1.7 micron spectral region, rather than the presently used silicon (for 0.5 to 1.1 microns) and germanium (0.8 to 1.7 microns).
USDA-ARS?s Scientific Manuscript database
Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...
The First Deep WSRT 150~MHz Full Polarization Observations
NASA Astrophysics Data System (ADS)
de Bruyn, A. G.; Bernardi, G.; Lofar Eor-Team
2009-09-01
We present the first deep total intensity and full polarization observations with the WSRT at frequencies from 116-162 MHz. Under stable ionospheric conditions we can image regions as large as 20°diameter with a single direction independent selfcalibration without detectable non-isoplanaticity effects. Deep imaging at low frequencies, however, requires removal of the brightest northern hemisphere radio sources (the A-team). A noise level of about 3 mJy, limited by classical confusion, can be achieved in Stokes I with the WSRT within a single 12 h synthesis in this frequency band. Thermal noise levels of 0.5 mJy have been reached in 6×12 h syntheses. These images have dynamic range in excess of about 20,000:1. In one such deep synthesis of the FAN region we have detected strong linear polarization over a range of Faraday depths from -6 to +2 rad m-2. The properties of a 3°diameter ring-like structure, first studied in detail by \\citeauthor{hav2003} (\\citeyear{hav2003}), suggest that we are dealing with a spherical `Faraday bubble', a region with strongly enhanced Faraday rotation. We have also detected, for the first time, structure on a scale of about 10 arcmin in the diffuse Galactic synchrotron foreground.
Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P
2010-11-01
Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.
A digital wide range neutron flux measuring system for HL-2A
NASA Astrophysics Data System (ADS)
Yuan, Chen; Wu, Jun; Yin, Zejie
2017-08-01
To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.
Relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test.
Smith, T D; Smith, B L
1998-12-01
The present study examined the relationship between the Wide Range Achievement Test 3 and the Wechsler Individual Achievement Test for a sample of children with learning disabilities in two rural school districts. Data were collected for 87 school children who had been classified as learning disabled and placed in special education resource services. Pearson product-moment correlations between scores on the two measures were significant and moderate to high; however, mean scores were not significantly different on Reading, Spelling, and Arithmetic subtests of the Wide Range Achievement Test 3 compared to those for the basic Reading, Spelling, and Mathematics Reasoning subtests of the Wechsler Individual Achievement Test. Although there were significant mean differences between scores on Reading and Reading Comprehension and on Arithmetic and Numerical Operations, magnitudes were small. It appears that the two tests provide similar results when screening for reading, spelling, and arithmetic.
NASA Technical Reports Server (NTRS)
Clark, E. C.
1975-01-01
Thruster valve assemblies (T/VA's) were subjected to the development test program for the combined JPL Low-Cost Standardized Spacecraft Equipment (LCSSE) and Mariner Jupiter/Saturn '77 spacecraft (MJS) programs. The development test program was designed to achieve the following program goals: (1) demonstrate T/VA design compliance with JPL Specifications, (2) to conduct a complete performance Cf map of the T/VA over the full operating range of environment, (3) demonstrate T/VA life capability and characteristics of life margin for steady-state limit cycle and momentum wheel desaturation duty cycles, (4) verification of structural design capability, and (5) generate a computerized performance model capable of predicting T/VA operation over pressures ranging from 420 to 70 psia, propellant temperatures ranging from 140 F to 40 F, pulse widths of 0.008 to steady-state operation with unlimited duty cycle capability, and finally predict the transient performance associated with reactor heatup during any given duty cycle, start temperature, feed pressure, and propellant temperature conditions.
Nuclear medicine imaging system
Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George
1986-01-07
A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.
Nuclear medicine imaging system
Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George
1986-01-01
A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.
ERIC Educational Resources Information Center
Brenton, Beatrice White; Gilmore, Doug
1976-01-01
An operational index of discrepancy to assist in identifying learning disabilities was derived using the Full Scale IQ, Wechsler Intelligence Scale for Children, and relevant subtest scores on the Peabody Individual Achievement Test. Considerable caution should be exercised when classifying children, especially females, as learning disabled.…
Structural Integrity of an Electron Beam Melted Titanium Alloy.
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-06-14
Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.
Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers
NASA Astrophysics Data System (ADS)
Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus
2017-11-01
Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Wurster, Kathryn E.
2006-01-01
Recently, NASA's Exploration Systems Research and Technology Project funded several tasks that endeavored to develop and evaluate various thermal protection systems and high temperature material concepts for potential use on the crew exploration vehicle. In support of these tasks, NASA Langley's Vehicle Analysis Branch generated trajectory information and associated aeroheating environments for more than 60 unique entry cases. Using the Apollo Command Module as the baseline entry system because of its relevance to the favored crew exploration vehicle design, trajectories for a range of lunar and Mars return, direct and aerocapture Earth-entry scenarios were developed. For direct entry, a matrix of cases was created that reflects reasonably expected minimum and maximum values of vehicle ballistic coefficient, inertial velocity at entry interface, and inertial flight path angle at entry interface. For aerocapture, trajectories were generated for a range of values of initial velocity and ballistic coefficient that, when combined with proper initial flight path angles, resulted in achieving a low Earth orbit either by employing a full lift vector up or full lift vector down attitude. For each trajectory generated, aeroheating environments were generated which were intended to bound the thermal protection system requirements for likely crew exploration vehicle concepts. The trades examined clearly pointed to a range of missions / concepts that will require ablative systems as well as a range for which reusable systems may be feasible. In addition, the results clearly indicated those entry conditions and modes suitable for manned flight, considering vehicle deceleration levels experienced during entry. This paper presents an overview of the analysis performed, including the assumptions, methods, and general approach used, as well as a summary of the trajectory and aerothermal environment information that was generated.
High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.
Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S
2018-03-05
A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.
High dynamic range CMOS-based mammography detector for FFDM and DBT
NASA Astrophysics Data System (ADS)
Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey
2016-03-01
Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.
Scaling of Ion Thrusters to Low Power
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.
1998-01-01
Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.
Put Your Science to Work: The Take-Charge Career Guide for Scientists
NASA Astrophysics Data System (ADS)
Fiske, Peter S.
This is the first of an occasional column in which the author or authors of a book recently published byAGU will be interviewed and their new book discussed.In this issue, Eos talks with Peter S. Fiske, the author of Put Your Science to Work: The Take-Charge Career Guide for Scientists. This is an update to his 1996 best-seller, To Boldly Go: A Practical Career Guide for Scientists, which became a best-seller for its comprehensive, hands-on guidance to scientists and scientistsin-training about the full range of professional opportunties open to them—including non-traditional ones—and how best to achieve success in them.
Microwave focusing with uniaxially symmetric gradient index metamaterials
NASA Astrophysics Data System (ADS)
Wheeland, Sara; Sternberg, Oren; Perez, Israel; Rockway, John D.
2016-09-01
Previous efforts to create a metamaterial lens in the microwave X band frequency range focused on the development of a device with biaxial symmetry. This allows for focusing solely along the central axis of propagation. For applications involving wave direction or energy diversion, focusing may be required off the central axis. This work explores a metamaterial device with uniaxial symmetry, namely in the direction of propagation. Ray-trace optimization and full-wave finite element simulations contribute to the design of the lens. By changing the placement of the focus, we achieve further control of the focus parameters. While the present work uses coils, the unit cell can consist of any structure or material.
Chiral symmetry and the nucleon-nucleon interaction
Machleidt, Ruprecht
2016-04-20
We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less
Houben, Rein M G J; Menzies, Nicolas A; Sumner, Tom; Huynh, Grace H; Arinaminpathy, Nimalan; Goldhaber-Fiebert, Jeremy D; Lin, Hsien-Ho; Wu, Chieh-Yin; Mandal, Sandip; Pandey, Surabhi; Suen, Sze-Chuan; Bendavid, Eran; Azman, Andrew S; Dowdy, David W; Bacaër, Nicolas; Rhines, Allison S; Feldman, Marcus W; Handel, Andreas; Whalen, Christopher C; Chang, Stewart T; Wagner, Bradley G; Eckhoff, Philip A; Trauer, James M; Denholm, Justin T; McBryde, Emma S; Cohen, Ted; Salomon, Joshua A; Pretorius, Carel; Lalli, Marek; Eaton, Jeffrey W; Boccia, Delia; Hosseini, Mehran; Gomez, Gabriela B; Sahu, Suvanand; Daniels, Colleen; Ditiu, Lucica; Chin, Daniel P; Wang, Lixia; Chadha, Vineet K; Rade, Kiran; Dewan, Puneet; Hippner, Piotr; Charalambous, Salome; Grant, Alison D; Churchyard, Gavin; Pillay, Yogan; Mametja, L David; Kimerling, Michael E; Vassall, Anna; White, Richard G
2016-11-01
The post-2015 End TB Strategy proposes targets of 50% reduction in tuberculosis incidence and 75% reduction in mortality from tuberculosis by 2025. We aimed to assess whether these targets are feasible in three high-burden countries with contrasting epidemiology and previous programmatic achievements. 11 independently developed mathematical models of tuberculosis transmission projected the epidemiological impact of currently available tuberculosis interventions for prevention, diagnosis, and treatment in China, India, and South Africa. Models were calibrated with data on tuberculosis incidence and mortality in 2012. Representatives from national tuberculosis programmes and the advocacy community provided distinct country-specific intervention scenarios, which included screening for symptoms, active case finding, and preventive therapy. Aggressive scale-up of any single intervention scenario could not achieve the post-2015 End TB Strategy targets in any country. However, the models projected that, in the South Africa national tuberculosis programme scenario, a combination of continuous isoniazid preventive therapy for individuals on antiretroviral therapy, expanded facility-based screening for symptoms of tuberculosis at health centres, and improved tuberculosis care could achieve a 55% reduction in incidence (range 31-62%) and a 72% reduction in mortality (range 64-82%) compared with 2015 levels. For India, and particularly for China, full scale-up of all interventions in tuberculosis-programme performance fell short of the 2025 targets, despite preventing a cumulative 3·4 million cases. The advocacy scenarios illustrated the high impact of detecting and treating latent tuberculosis. Major reductions in tuberculosis burden seem possible with current interventions. However, additional interventions, adapted to country-specific tuberculosis epidemiology and health systems, are needed to reach the post-2015 End TB Strategy targets at country level. Bill and Melinda Gates Foundation. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Wamala, Robert
2013-01-01
Achieving the United Nations Millennium Development Goals (MDGs) remains a major challenge, particularly in developing countries. Specifically, achieving the target of completing a full course of primary schooling among all children, which is goal two, is a major challenge for Sub-Saharan Africa. Though literature consensually suggests that the…
Developmental milestones among Aboriginal children in Canada
Findlay, Leanne; Kohen, Dafna; Miller, Anton
2014-01-01
BACKGROUND: Windows of achievement provide age ranges for the attainment of early developmental skills. Group-specific research is warranted given that development may be influenced by social or cultural factors. OBJECTIVES: To examine developmental milestones for Inuit, Métis and off-reserve First Nation children in Canada, based on developmental domains collected from the 2006 Aboriginal Children’s Survey. Sociodemographic and health predictors of risk for developmental delay were also examined. RESULTS: The ranges in which children achieve certain developmental milestones are presented. Gross motor and self-help skills were found to be achieved earlier (across the three Aboriginal groups), whereas language skills were achieved slightly later than in Canadian children in general. Furthermore, health factors (eg, low birth weight, chronic health conditions) were associated with late achievement of developmental outcomes even when sociodemographic characteristics were considered. CONCLUSIONS: Findings suggest that the timing of milestone achievement may differ for Aboriginal children, highlighting the importance of establishing culturally specific norms and standards rather than relying on those derived from general populations. This information may be useful for practitioners and parents interested in identifying the age ranges for development, as well as age ranges indicating potential for developmental risk and opportunities for early intervention among Aboriginal children. PMID:24855426
Intelligent fuzzy approach for fast fractal image compression
NASA Astrophysics Data System (ADS)
Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila
2014-12-01
Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.
Direct and full-scale experimental verifications towards ground-satellite quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Jian-Yu; Yang, Bin; Liao, Sheng-Kai; Zhang, Liang; Shen, Qi; Hu, Xiao-Fang; Wu, Jin-Cai; Yang, Shi-Ji; Jiang, Hao; Tang, Yan-Lin; Zhong, Bo; Liang, Hao; Liu, Wei-Yue; Hu, Yi-Hua; Huang, Yong-Mei; Qi, Bo; Ren, Ji-Gang; Pan, Ge-Sheng; Yin, Juan; Jia, Jian-Jun; Chen, Yu-Ao; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei
2013-05-01
Quantum key distribution (QKD) provides the only intrinsically unconditional secure method for communication based on the principle of quantum mechanics. Compared with fibre-based demonstrations, free-space links could provide the most appealing solution for communication over much larger distances. Despite significant efforts, all realizations to date rely on stationary sites. Experimental verifications are therefore extremely crucial for applications to a typical low Earth orbit satellite. To achieve direct and full-scale verifications of our set-up, we have carried out three independent experiments with a decoy-state QKD system, and overcome all conditions. The system is operated on a moving platform (using a turntable), on a floating platform (using a hot-air balloon), and with a high-loss channel to demonstrate performances under conditions of rapid motion, attitude change, vibration, random movement of satellites, and a high-loss regime. The experiments address wide ranges of all leading parameters relevant to low Earth orbit satellites. Our results pave the way towards ground-satellite QKD and a global quantum communication network.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
Radwan, Ahmed Bassiuony; El-Debeiky, Mohammed Soliman; Abdel-Hay, Sameh
2015-08-01
Overflow retentive stool incontinence (ORSI) is secondary to constipation and fecal loading. In our study, the dose and duration of senna-based laxatives (SBL) treatment to achieve full defecatory control will be examined for possible correlation with new parameters measured from the initial contrast enema. Initially, an observational study was conducted prospectively on a group of patient with ORSI to define the optimum dose of SBL to achieve full defecatory control with measurement of six parameters in the initial contrast enema (level of colonic dilatation, recto-anal angle, ratio of maximal diameter of dilated colon to last lumbar spine, ratio of maximum diameter of dilated colon to normal descending colon, immediate and after 24-h post-evacuation residual contrast). The result was analyzed statistically to reach a correlation between the radiological data and prescribed dose. Over 2 and half years, 72 patients were included in the study; their mean age was 6.3 ± 3.33 years. The mean effective starting dose of SBL was 57 ± 18.13 mg/day and the mean effective ending dose was 75 ± 31.68 mg/day. Time lapsed till full defecatory control ranged from 1 to 16 weeks. Statistical correlation revealed that mean effective ending dose of SBL treatment significantly increased with higher levels of colonic dilatation. A weak positive correlation was found for both the mean effective starting and ending doses with the ratio of maximum colonic diameter to last lumbar spine and descending colonic diameters ratio. Senna-based laxatives are effective treatment for overflow retentive stool incontinence and their doses can be adjusted initially depending on the analysis of the radiological data.
Qi, Y; Wang, Y; You, Q; Tsai, F; Liu, W
2017-07-01
PurposeTo report OCT appearance and surgical outcomes of full-thickness macular holes (MHs) accidentally caused by laser devices.Patients and methodsThis retrospective case series included 11 eyes of 11 patients with laser-induced MHs treated by pars plana vitrectomy, internal limiting membrane (ILM) peeling, and gas or silicone oil tamponade. Evaluations included a full ophthalmic examination, macular spectral-domain optical coherence tomography (SD-OCT), and fundus photography. Main outcome measures is MH closure and final visual acuity; the secondary outcome was the changes of retinal pigment epithelium and photoreceptor layer evaluated by sequential post-operative SD-OCT images.ResultsFive patients were accidentally injured by a yttrium aluminum garnet (YAG) laser and six patients by handheld laser. MH diameters ranged from 272 to 815 μm (mean, 505.5±163.0 μm) preoperatively. Best-corrected visual acuity (BCVA) improved from a mean of 0.90 logMAR (range, counting finger-8/20) preoperatively to a mean of 0.34 logMAR (range, a counting finger-20/20) postoperatively (P=0.001, t=4.521). Seven of 11 patients (63.6%) achieved a BCVA better than 10/20. Ten patients had a subfoveal hyperreflectivity and four patients had a focal choroidal depression subfoveal preoperatively. At the last follow-up, all 11 eyes demonstrated the following: closure of the macular hole, variable degrees of disruption of external limiting membrane (ELM) and outer photoreceptor ellipsoid and interdigitation bands. In 10 eyes, the disruption was in the form of focal defects in the outer retina. After surgery, the subfoveal hyperreflectivity and focal choroidal depression remained.ConclusionAccidental laser-induced full-thickness macular holes can be successfully closed with surgery. Inadvertent retinal injury from laser devices, especially handheld laser injury has occurred with increasing frequency in recent years. However, there is a paucity of data regarding these types of injuries, mostly in the form of case reports. We hereby reported 11 eyes of 11 patients with laser-induced macular holes treated by vitrectomy. All the macular holes closed after surgery and the corresponding visual acuities significantly improved postoperatively.
Salvarinova-Zivkovic, R; Hartnett, C; Sinclair, G; Dix, D; Horvath, G; Lillquist, Y; Stockler-Ipsiroglu, S
2012-04-01
The metabolic control of phenylalanine levels is a challenge during illness. We present the metabolic management of a 6 year old boy with classical PKU who was diagnosed with stage III intraabdominal Burkit's lymphoma and underwent surgical resection and chemotherapy. The metabolic control during chemotherapy was achieved by the use of parenteral custom made amino acid solution and pro-active adjustment of intake. From the 94 obtained plasma phenylalanine (Phe) levels, 18.4% were above our clinic's recommended upper limit (360 μmol/L, 6 mg/dL) while 52.7% of Phe levels were below the recommended lower limit (120 μmol/L, 2 mg/dL). Phe levels above recommended range were associated with low caloric/protein intake, while levels below recommended range reflected the difficulty in achieving the full prescribed Phe intake. We recommend early institution of custom made amino acid solution with maximum amino acid content and caloric intake to provide optimal phenylalanine control. Administration of phenylalanine via regular intravenous amino acid solution may assist in avoiding low Phe levels when prescribed intake is compromised due to vomiting and other disease related illnesses. Use of custom made, phenylalanine free amino acid solution proved beneficial in the management of blood phenylalanine levels in a PKU patient during chemotherapy for Burkitt lymphoma. Copyright © 2012 Elsevier Inc. All rights reserved.
Performance and stability of mask process correction for EBM-7000
NASA Astrophysics Data System (ADS)
Saito, Yasuko; Chen, George; Wang, Jen-Shiang; Bai, Shufeng; Howell, Rafael; Li, Jiangwei; Tao, Jun; VanDenBroeke, Doug; Wiley, Jim; Takigawa, Tadahiro; Ohnishi, Takayuki; Kamikubo, Takashi; Hara, Shigehiro; Anze, Hirohito; Hattori, Yoshiaki; Tamamushi, Shuichi
2010-05-01
In order to support complex optical masks today and EUV masks in the near future, it is critical to correct mask patterning errors with a magnitude of up to 20nm over a range of 2000nm at mask scale caused by short range mask process proximity effects. A new mask process correction technology, MPC+, has been developed to achieve the target requirements for the next generation node. In this paper, the accuracy and throughput performance of MPC+ technology is evaluated using the most advanced mask writing tool, the EBM-70001), and high quality mask metrology . The accuracy of MPC+ is achieved by using a new comprehensive mask model. The results of through-pitch and through-linewidth linearity curves and error statistics for multiple pattern layouts (including both 1D and 2D patterns) are demonstrated and show post-correction accuracy of 2.34nm 3σ for through-pitch/through-linewidth linearity. Implementing faster mask model simulation and more efficient correction recipes; full mask area (100cm2) processing run time is less than 7 hours for 32nm half-pitch technology node. From these results, it can be concluded that MPC+ with its higher precision and speed is a practical technology for the 32nm node and future technology generations, including EUV, when used with advance mask writing processes like the EBM-7000.
A multiscale crack-bridging model of cellulose nanopaper
NASA Astrophysics Data System (ADS)
Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao
2017-06-01
The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.
Single-Scale Retinex Using Digital Signal Processors
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2005-01-01
The Retinex is an image enhancement algorithm that improves the brightness, contrast and sharpness of an image. It performs a non-linear spatial/spectral transform that provides simultaneous dynamic range compression and color constancy. It has been used for a wide variety of applications ranging from aviation safety to general purpose photography. Many potential applications require the use of Retinex processing at video frame rates. This is difficult to achieve with general purpose processors because the algorithm contains a large number of complex computations and data transfers. In addition, many of these applications also constrain the potential architectures to embedded processors to save power, weight and cost. Thus we have focused on digital signal processors (DSPs) and field programmable gate arrays (FPGAs) as potential solutions for real-time Retinex processing. In previous efforts we attained a 21 (full) frame per second (fps) processing rate for the single-scale monochromatic Retinex with a TMS320C6711 DSP operating at 150 MHz. This was achieved after several significant code improvements and optimizations. Since then we have migrated our design to the slightly more powerful TMS320C6713 DSP and the fixed point TMS320DM642 DSP. In this paper we briefly discuss the Retinex algorithm, the performance of the algorithm executing on the TMS320C6713 and the TMS320DM642, and compare the results with the TMS320C6711.
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process.
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-07-20
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-01-01
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell. PMID:27435428
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process
NASA Astrophysics Data System (ADS)
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-07-01
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm green QY: ~85%, FWHM: 41 nm red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
NASA Technical Reports Server (NTRS)
Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark
2011-01-01
A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
Full Range Advising: Transforming the Advisor-Advisee Experience
ERIC Educational Resources Information Center
Barbuto, John E., Jr.; Story, Joana S.; Fritz, Susan M.; Schinstock, Jack L.
2011-01-01
Drawing from the leadership literature, a new model for advising is proposed. Full range advising encompasses laissez-faire, management by exception, contingent rewards, and transformational behaviors. The relationships between full range advising and advisees' extra effort, satisfaction with the advisor, and advising effectiveness were examined.…
[Clinical study of full-thickness skin graft for reconstruction of completely defect nail unit].
Li, Wen-jun; Li, Chun; Zhu, Jin; Tian, Guang-lei; Chen, Shan-lin; Tian, Wen
2012-12-18
To explore a reconstruction method for complete nail bed defect caused by various kinds of reasons and to retrospectively analyze the effect of application of free full-thickness skin graft for the whole nail unit repair. Between Apr. 2010 and Mar. 2012, the method of free full-thickness skin graft was done for reconstruction of the completely nail unit defect in seven cases. There were 2 male and 5 female patients; the mean age of these patients at the time of surgery was 51.9 years (range: 7 to 70 years). The preoperative diagnoses included two cases of malignant melanoma, one of chronic infection, one of squamous cell carcinoma, two of subungual pigmentation and one of junctional nevus. There were 2 thumb lesions, 3 middle and 2 index finger lesions. Nail unit defect was in the range of 1.5 cm×2 cm to 2.5 cm × 3.5 cm and full thickness skin graft was harvested from the same medial side of upper arm (3 cases), forearm cubital fossa (1 case) and contralateral side of groin region (3 cases). All the patients were followed with an average follow-up time being 10 months. All the free skin graft taken was achieved with 100% in all the 7 cases, even in those patients whose partial cortical bone had been curetted. The skin graft was often bluish initially, and superficial blisters were always noticed within 1.5 months postoperatively and the survival skin graft was smooth eventually, and skin graft was adhered to the underlying bone tightly. There was no epidermal inclusion cyst and no residual nail formation. The skin donor sites were without complications. Aesthetic appearance was assessed by the surgeons and found no unacceptable for their patients. And all the patients were satisfied with the cosmetic appearance and active range of motion of their involved fingers, who did not express a desire to undergo any further of nail reconstruction. Free full-thickness skin grafting for reconstruction of the complete nail unit defect is a simple, safe and effective procedure which provides a satisfactory aesthetic appearance and does not make any significant skin donor site morbidity especially for middle-aged and elder patients.
Wang, Zhangjun; Liu, Zhishen; Liu, Liping; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Chu, Xinzhao
2010-12-20
An incoherent Doppler wind lidar based on iodine edge filters has been developed at the Ocean University of China for remote measurements of atmospheric wind fields. The lidar is compact enough to fit in a minivan for mobile deployment. With its sophisticated and user-friendly data acquisition and analysis system (DAAS), this lidar has made a variety of line-of-sight (LOS) wind measurements in different operational modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar, including wind profile, LOS wind velocities in plan position indicator (PPI) and range height indicator (RHI) modes, and sea surface wind. Data are processed and displayed in real time, and continuous wind measurements have been demonstrated for as many as 16 days. Full-azimuth-scanned wind measurements in PPI mode and full-elevation-scanned wind measurements in RHI mode have been achieved with this lidar. The detection range of LOS wind velocity PPI and RHI reaches 8-10 km at night and 6-8 km during daytime with range resolution of 10 m and temporal resolution of 3 min. In this paper, we introduce the DAAS architecture and describe the data retrieval methods for various operation modes. We present the measurement procedures and results of LOS wind velocities in PPI and RHI scans along with wind profiles obtained by Doppler beam swing. The sea surface wind measured for the sailing competition during the 2008 Beijing Olympics is also presented. The precision and accuracy of wind measurements are estimated through analysis of the random errors associated with photon noise and the systematic errors introduced by the assumptions made in data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are made in order to experimentally determine the zero wind ratio and the measurement sensitivity, which are important factors in LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar and propose several paths for future improvement.
Hsieh, Jiang; Nilsen, Roy A.; McOlash, Scott M.
2006-01-01
A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to reconstruct tomographic images with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1: 1 (namely extended 3D weighted helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 2π + Δβ] into a union of full scans corresponding to an angular range of [0, 2π], the extended 3D weighted function is a summation of all 3D weighting functions corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1: 1, while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB reconstruction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive applications in CT medical imaging. PMID:23165031
[Spironolactone in patients with resistant hypertension].
Rodilla, Enrique; Costa, José A; Pérez-Lahiguera, Francisco; González, Carmen; Pascual, José M
2008-10-04
The aim of the study was to assess the effect of adding spironolactone to hypertensive resistant (HTR) patients and characterize those who respond effectively. Observational retrospective study on outpatients with HTR (being treated with at least 3 drugs at full doses, one of these being a diuretic) not achieving blood pressure (BP) goals, with normal creatinine values (< 1.6 mg/dl for males and < 1.4 mg/dl in women). A total of 95 patients (70% male), average (standard deviation) age of 66 (12) years (40% diabetics), were treated with spironolactone during 4 months (range: 2-13). Mean systolic and diastolic BP fell from 170/86 (20/14) mmHg, by 29/12 mmHg (95% confidence interval [CI], 25 to 33/10 to 14 mmHg; p = 0.001). At the end of follow-up, 38% of all patients achieved the goal of BP control. Initial systolic BP < 165 mmHg (odds ratio [OR] = 3,97; 95% CI, 1.52-10.37; p = 0.005), and diabetes (OR = 0.33; 95% CI, 0.13-0.86; p = 0.02) were the only independent factors related to BP control in a logistic regression analysis. The addition of spironolactone effectively lowers BP in patients with HTR treated with 3 drugs. BP control is more difficult to achieve in diabetics.
Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators
NASA Astrophysics Data System (ADS)
Miller, David; Alemán, Benjamín
2017-06-01
The shape of a nanomechanical resonator profoundly affects its mechanical properties and determines its suitability for various applications, such as ultra-sensitive mass and force detection. Despite the promise of 2D nanomechanical systems in such applications, full control over the shape of suspended 2D materials, such as graphene, has not been achieved. We present an effective, single-step method to shape pre-suspended graphene into nanomechanical resonators with arbitrary geometries leading to enhanced properties in comparison to conventional drumheads. Our technique employs focused ion beam milling and achieves feature sizes ranging from a few tens of nanometers to several microns, while obtaining near perfect yield. We compare the mechanical properties of the shaped devices to unmodified drumheads, and find that low-tension, singly-clamped graphene cantilevers display a 20 fold increase in the mechanical quality factor (Q) with a factor 100 reduction in the mechanical damping. Importantly, we achieve these results while simultaneously removing mass, which enables state-of-the-art force sensitivity for a graphene mechanical resonator at room temperature. Our approach opens up a unique, currently inaccessible regime in graphene nanomechanics, one characterized by low strain, low frequency, small mass, and high Q, and facilitates tailoring of non-linearity and damping in mechanical structures composed of graphene and other 2D crystals.
Shi, Dai; Zeng, Yang; Shen, Wenzhong
2015-01-01
Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs. PMID:26566176
Shi, Dai; Zeng, Yang; Shen, Wenzhong
2015-11-13
Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs.
Full band all-sky search for periodic gravitational waves in the O1 LIGO data
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-05-01
We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×1 0-8 Hz /s . Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ˜4 ×1 0-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 ×1 0-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ˜1.5 ×1 0-25.
Premium quality 5A1-2.5 Sn ELI titanium production
NASA Technical Reports Server (NTRS)
Dessau, P. P.; Harris, C. L.
1972-01-01
Preliminary design and reliability analysis conducted on the turbopump for the NERVA 75,000 full flow cycle engine, indicated that the turbopump bearings were the most critical turbopump parts in meeting the 10 hour life at the required turbopump reliability of .99978. The analysis revealed that significant reductions (approximately a factor of 3.25) in bearing loads would be achieved by fabricating the rotating parts from titanium in lieu of A286 or 718. This is basically due to the difference in density of the materials and the resulting mass effect on the location of the first and second stick mode critical speeds. For the selected rotor configuration, the lighter material has a first critical speed at approximately 36,000 rpm, while that of the heavier material has a first critical at approximately 27,000 rpm. As the operating range of the turbopump is from 0 to 30,000 rpm, the heavier material would have a stick mode critical in the operating range.
NASA Astrophysics Data System (ADS)
Venkata, Santhosh Krishnan; Roy, Binoy Krishna
2016-03-01
Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.
NASA Astrophysics Data System (ADS)
Banerjee, Sreetama; Bülz, Daniel; Solonenko, Dmytro; Reuter, Danny; Deibel, Carsten; Hiller, Karla; Zahn, Dietrich R. T.; Salvan, Georgeta
2017-05-01
Organic-inorganic hybrid electronic devices (HEDs) offer opportunities for functionalities that are not easily obtainable with either organic or inorganic materials individually. In the strive for down-scaling the channel length in planar geometry HEDs, the best results were achieved with electron beam lithography or nanoimprint lithography. Their application on the wafer level is, however, cost intensive and time consuming. Here, we propose trench isolated electrode (TIE) technology as a fast, cost effective, wafer-level approach for the fabrication of planar HEDs with electrode gaps in the range of 100 nm. We demonstrate that the formation of the organic channel can be realized by deposition from solution as well as by the thermal evaporation of organic molecules. To underline one key feature of planar HED-TIEs, namely full accessibility of the active area of the devices by external stimuli such as light, 6,13-bis (triisopropylsilylethynyl) (TIPS)-pentacene/Au HED-TIEs are successfully tested for possible application as hybrid photodetectors in the visible spectral range.
NASA Astrophysics Data System (ADS)
Zheng, Qiaofeng; Han, Baoguo; Ou, Jinping
2018-07-01
In this paper, a ship-bridge collision monitoring system based on flexible quantum tunneling composite (QTC) with cushioning capability is proposed by investigating the sensing capability and positioning capability of QTC to collisions. QTCs with different rubber matrix and thickness were fabricated, and collision tests between steel ball and QTCs sensors were designed to simulate ship-bridge collision. The results show that QTCs have a sensing range over 50 MPa with stress resolution ranging between 0.017 and 0.13 MPa, enough to achieve the full-time monitoring of ship-bridge collision. The system has instant and repeatable respond to impact load, and can accurately position the collisions. Moreover, QTC can remarkably absorb the kinetic energy during collisions, exhibiting excellent cushioning capability. These findings indicate the proposed ship-bridge collision monitoring system has great potential for application to detecting collision information such as collision occurrence and duration, impact load and collision location, as well as providing basis for citizen evacuation, post-accident damage estimation and rescue strategy.
Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating
NASA Astrophysics Data System (ADS)
Li, Xu; Wang, Zongpeng; Hou, Yumin
2018-01-01
In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.
Biofiltration: An innovative air pollution control technology for VOC emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leson, G.; Winer, A.M.
1991-08-01
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readilymore » biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.« less
MEMS-based handheld confocal microscope for in-vivo skin imaging
Arrasmith, Christopher L.; Dickensheets, David L.; Mahadevan-Jansen, Anita
2010-01-01
This paper describes a handheld laser scanning confocal microscope for skin microscopy. Beam scanning is accomplished with an electromagnetic MEMS bi-axial micromirror developed for pico projector applications, providing 800x600 (SVGA) resolution at 56 frames per second. The design uses commercial objective lenses with an optional hemisphere front lens, operating with a range of numerical aperture from NA=0.35 to NA=1.1 and corresponding diagonal field of view ranging from 653 μm to 216 μm. Using NA=1.1 and a laser wavelength of 830 nm we measured the axial response to be 1.14 μm full width at half maximum, with a corresponding 10%-90% lateral edge response of 0.39 μm. Image examples showing both epidermal and dermal features including capillary blood flow are provided. These images represent the highest resolution and frame rate yet achieved for tissue imaging with a MEMS bi-axial scan mirror. PMID:20389391
Science in the Looking Glass - What Do Scientists Really Know?
NASA Astrophysics Data System (ADS)
Davies, E. Brian
2007-04-01
How do scientific conjectures become laws? Why does proof mean different things in different sciences? Do numbers exist, or were they invented? Why do some laws turn out to be wrong? In this wide-ranging book, Brian Davies discusses the basis for scientists' claims to knowledge about the world. He looks at science historically, emphasizing not only the achievements of scientists from Galileo onwards, but also their mistakes. He rejects the claim that all scientific knowledge is provisional, by citing examples from chemistry, biology and geology. A major feature of the book is its defence of the view that mathematics was invented rather than discovered. While experience has shown that disentangling knowledge from opinion and aspiration is a hard task, this book provides a clear guide to the difficulties. Full of illuminating examples and quotations, and with a scope ranging from psychology and evolution to quantum theory and mathematics, this book brings alive issues at the heart of all science.
Precise orbit determination of BeiDou constellation based on BETS and MGEX network.
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-04-15
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.
Live HDR video streaming on commodity hardware
NASA Astrophysics Data System (ADS)
McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan
2015-09-01
High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.
NASA Astrophysics Data System (ADS)
In, Hai-Jung; Kwon, Oh-Kyong
2012-03-01
A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.
An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration
Stone, Jack A.; Egan, Patrick
2010-01-01
Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794
The MESSIER surveyor: unveiling the ultra-low surface brightness universe
NASA Astrophysics Data System (ADS)
Valls-Gabaud, David; MESSIER Collaboration
2017-03-01
The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.
Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar.
Hu, Xikun; Jin, Tian
2016-11-30
The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.
SOFIA's secondary mirror assembly: in-flight performance and control approach
NASA Astrophysics Data System (ADS)
Reinacher, Andreas; Lammen, Yannick; Roeser, Hans-Peter
2016-08-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5m infrared telescope built into a Boeing 747 SP. In 2014 SOFIA reached its Full Operational Capability milestone and nowadays takes off about three times a week to observe the infrared sky from altitudes above most of the atmosphere's water vapor content. An actively controlled 352mm SiC secondary mirror is used for infrared chopping with peak-to-peak amplitudes of up to 10 arcmin and chop frequencies of up to 20Hz and also as actuator for fast pointing corrections. The Swiss-made Secondary Mirror Mechanism (SMM) is a complex, highly integrated and compact flexure based mechanism that has been performing with remarkable reliability during recent years. Above mentioned capabilities are provided by the Tilt Chopper Mechanism (TCM) which is one of the two stages of the SMM. In addition the SMM is also used to establish a collimated telescope and to adjust the telescope focus depending on the structure's temperature which ranges from about 40°C at takeoff in Palmdale, CA to about -40°C in the stratosphere. This is achieved with the Focus Center Mechanism (FCM) which is the base stage of the SMM on which the TCM is situated. Initially the TCM was affected by strong vibrations at about 300 Hz which led to unacceptable image smearing. After some adjustments to the PID-type controller it was finally decided to develop a completely new control algorithm in state space. This pole placement controller matches the closed loop system poles to those of a Bessel filter with a corner frequency of 120 Hz for optimal square wave behavior. To reduce noise present on the position and current sensors and to estimate the velocity a static gain Kalman Filter was designed and implemented. A system inherent delay is incorporated in the Kalman filter design and measures were applied to counteract the actuators' hysteresis. For better performance over the full operational temperature range and to represent an amplitude dependent non-linearity the underlying model of the Kalman filter adapts in real-time to those two parameters. This highly specialized controller was developed over the course of years and only the final design is introduced here. The main intention of this contribution is to present the currently achieved performance of the SOFIA chopper over the full amplitude, frequency, and temperature range. Therefore a range of data gathered during in-flight tests aboard SOFIA is displayed and explained. The SMM's three main performance parameters are the transition time between two chop positions, the stability of the Secondary Mirror when exposed to the low pressures, low temperatures, aerodynamic, and aeroacoustic excitations present when the SOFIA observatory operates in the stratosphere at speeds of up to 850 km/h, and finally the closed-loop bandwidth available for fast pointing corrections.
Public Key Infrastructure Increment 2 (PKI Inc 2)
2016-03-01
DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...experienced due to a delay in achieving the FDD . The Critical Change Report was provided to Congress on July 11, 2014. Firm, Fixed-Price Feasibility...to a delay in achieving the FDD . To support the Critical Change Report, the NSA Cost Estimating organization prepared a cost estimate that was
ERIC Educational Resources Information Center
Nathanson, Lori; Corcoran, Sean; Baker-Smith, Christine
2013-01-01
This document presents the technical appendices that accompany the full report, "High School Choice in New York City: A Report on the School Choices and Placements of Low-Achieving Students." The appendices include: (1) The Shrinking Pool of Level 1 and Level 2 Students; and (2) Supplemental Tables and Figures. [For the full report, see…
A single surgeon's experience with contact laser vaporization of the prostate
NASA Astrophysics Data System (ADS)
Mueller, Edward J.
1995-05-01
Herein, I report on my first 50 contact laser prostatectomies performed with the SLT Nd:YAG laser. The obstructed prostatic urethra is opened via contact laser vaporization of the obstructing adenoma. The average pre-op AUA symptom score was 22.9 (range 14 - 30). The average 3 month post-op AUA symptom score was 2.1 (range 0 -8). Eighteen of the patients had the foley catheter removed approximately 4 - 6 hours post-op and were discharged the same day. Thirty patients had the foley catheter removed the morning following surgery and were discharged. And two patients had the foley catheter removed the morning following surgery, but remained in the hospital for medical reasons unrelated to the TURP. Thus, 48 (96%) of the patients were discharged within 24 hours of admission. No patient had to be readmitted to the hospital for any reason. All patients were allowed to return to full activity within 24 hours of discharge. The average hospital cost for the 48 patients discharged within 24 hours was DOL4,694. This compares to the average hospital cost of an electrocautery TURP of DOL6-8000. In summary, contact laser TURP using the SLT Nd:YAG laser relived the symptoms of an obstructing prostate comparable to electrocautery TURP. However, these results were achieved with a much shorter hospitalization, a quicker return to full activity and at a lower cost.
Realization of a near-perfect antireflection coating for silicon solar energy utilization.
Kuo, Mei-Ling; Poxson, David J; Kim, Yong Sung; Mont, Frank W; Kim, Jong Kyu; Schubert, E Fred; Lin, Shawn-Yu
2008-11-01
To harness the full spectrum of solar energy, Fresnel reflection at the surface of a solar cell must be eliminated over the entire solar spectrum and at all angles. Here, we show that a multilayer nanostructure having a graded-index profile, as predicted by theory [J. Opt. Soc. Am. 66, 515 (1976); Appl. Opt. 46, 6533 (2007)], can accomplish a near-perfect transmission of all-color of sunlight. An ultralow total reflectance of 1%-6% has been achieved over a broad spectrum, lambda = 400 to 1600 nm, and a wide range of angles of incidence, theta = 0 degrees-60 degrees . The measured angle- and wavelength-averaged total reflectance of 3.79% is the smallest ever reported in the literature, to our knowledge.
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.
Binh, P H; Trong, V D; Renucci, P; Marie, X
2013-08-01
We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.
The Language Grid: supporting intercultural collaboration
NASA Astrophysics Data System (ADS)
Ishida, T.
2018-03-01
A variety of language resources already exist online. Unfortunately, since many language resources have usage restrictions, it is virtually impossible for each user to negotiate with every language resource provider when combining several resources to achieve the intended purpose. To increase the accessibility and usability of language resources (dictionaries, parallel texts, part-of-speech taggers, machine translators, etc.), we proposed the Language Grid [1]; it wraps existing language resources as atomic services and enables users to create new services by combining the atomic services, and reduces the negotiation costs related to intellectual property rights [4]. Our slogan is “language services from language resources.” We believe that modularization with recombination is the key to creating a full range of customized language environments for various user communities.
Refractive index sensor based on total scattering of plasmonic nanotube
NASA Astrophysics Data System (ADS)
Yao, Kaiqiang; Zeng, Qingbing; Hu, Zengrong; Zhan, Yaohui
2018-03-01
Plasmonic nanostructures can couple free space light into anultrafine space; therefore,they are employed extensively in the refractive index sensors to minimize the device size or further improve the detection sensitivity. In this work, the optical response of the plasmonic nanotube are investigated comprehensively by using full wave finite element method. With a subwavelength scale, the silver nanotube have prominent scattering peaks in the visible range, which is very suitable for observing through the dark field microscope. The geometric dependence of the scattering spectra and the sensing performance are evaluated carefully. Results show that the scattering peaks are in linear relationship to the circumstance refractive index and a sensitivity of 337 nm/RIUcan be achieved easily by such a plasmonicnanotube with an optimized size.
NASA Technical Reports Server (NTRS)
Debarrosaguirre, J. L.
1985-01-01
The current status of the Brazilian LANDSAT facilities operated by Instituto de Pesquisas Espaciais (INPE) and the results achieved during the period from October 1, 1984 to August 31, 1985 are presented. INPE's Receiving Station at Cuiaba, MT, operates normally the two tracking and receiving systems it has installed, the old one (1973) for Band S and the new one (February 1983) for dual S- and X-band. Both MSS and TM recording capabilities are functional. Support to the NASA Backup Plan for MSS data also remains active. Routine recordings are being made for LANDSAT-5 only, for both MSS and TM. Originally, MSS was recorded over the full acquisition range. However, since December, 1984, due to further reduction of operational expenses, both instruments are being recorded over Brazilian territory only.
Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng
2018-03-12
The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terahertz wavefront control by tunable metasurface made of graphene ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji
2015-08-03
We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less
Structural Integrity of an Electron Beam Melted Titanium Alloy
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-01-01
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roser, R.
1998-08-01
NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less
Beyond Necrotizing Enterocolitis: Other Clinical Advantages of an Exclusive Human Milk Diet.
Hair, Amy B; Rechtman, David J; Lee, Martin L; Niklas, Victoria
2018-06-07
Articles previously published by Sullivan et al. and Cristofalo et al. were reanalyzed using the proportion of cow milk-based nutrition received to determine whether that affected clinical outcomes during hospitalization for infants birth weight 500-1250 g. Abrams et al. showed in the same cohort incidences of necrotizing enterocolitis (NEC), NEC requiring surgery and sepsis increased proportionally to the amount of dietary cow milk. The data from the two studies conducted under essentially the same protocol were combined yielding a cohort of 260 infants receiving a diet ranging from 0% to 100% cow milk. Data analysis utilized negative binomial regression which mitigates differences between subjects in terms of their time on study by incorporating that number into the statistical model. The percent of cow milk-based nutrition was the only predictor investigated. For all outcomes the larger the amount of cow's milk in the diet the greater the number of days of that intervention required. A trend toward statistical significance was seen for ventilator days; however, only parenteral nutrition (PN) days and days to full feeds achieved statistical significance. Incorporation of any cow milk-based nutrition into the diet of extremely premature infants correlates with more days on PN and a longer time to achieve full feeds. There was a nonstatistically significant trend toward increased ventilator days. These represent additional clinical consequences of the use of any cow milk-based protein in feeding EP infants.
ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...
Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar
Chen, Rong; Yang, Jianhua; Cheng, Xinbing; Pan, Zilong
2017-03-01
High voltage pulse generators are widely applied in a number of fields. Defense and industrial applications stimulated intense interests in the area of pulsed power technology towards the system with high power, high repetition rate, solid state characteristics, and compact structure. An all-solid-state microsecond-range quasi-square pulse generator based on a fractional-turn ratio saturable pulse transformer and anti-resonance network is proposed in this paper. This generator consists of a charging system, a step-up system, and a modulating system. In this generator, the fractional-turn ratio saturable pulse transformer is the key component since it acts as a step-up transformer and a main switch during the working process. Demonstrative experiments show that if the primary storage capacitors are charged to 400 V, a quasi-square pulse with amplitude of about 29 kV can be achieved on a 3500 Ω resistive load, as well as the pulse duration (full width at half maximum) of about 1.3 μs. Preliminary repetition rate experiments are also carried out, which indicate that this pulse generator could work stably with the repetition rates of 30 Hz and 50 Hz. It can be concluded that this kind of all-solid-state microsecond-range quasi-square pulse generator can not only lower both the operating voltage of the primary windings and the saturable inductance of the secondary windings, thus ideally realizing the magnetic switch function of the fractional-turn ratio saturable pulse transformer, but also achieve a quasi-square pulse with high quality and fixed flat top after the modulation of a two-section anti-resonance network. This generator can be applied in areas of large power microwave sources, sterilization, disinfection, and wastewater treatment.
Chen, Hongping; Gao, Guanwei; Liu, Pingxiang; Pan, Meiling; Chai, Yunfeng; Liu, Xin; Lu, Chengyin
2018-04-25
A fast, sensitive and reliable method for the determination of fipronil and its metabolites in tea and chrysanthemum was developed using a modified QuEChERS technique and an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry. The mixture of adsorbents containing primary secondary amine (PSA), octadecylsilane (C 18 ) and carbon nanotubes (CNTs), was used as QuEChERS adsorbents. The use of mass resolution at 70000 full width at half maximum (FWHM) and narrow mass windows at 5 ppm achieved high selectivity and repeatability. Satisfactory linearity with correlative coefficient (R 2 ) higher than 0.996 was achieved for all compounds. Recoveries at three levels (2, 10 and 50 μg kg -1 ) ranged from 86% to 112%, while the intra- and inter-day accuracies were less than 15%. Limits of quantification for fipronil and its metabolites were 2 μg kg -1 , which fulfils the requirement of maximum residue limits formulated by European Union and Japan. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vertical cavity surface emitting lasers from all-inorganic perovskite quantum dots
NASA Astrophysics Data System (ADS)
Sun, Handong; Wang, Yue; Li, Xiaoming; Zeng, Haibo
We report the breakthrough in realizing the challenging while practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 inorganic perovskite nanocrystals (IPNCs). These laser devices feature record low threshold (9 µJ/cm2), unidirectional output (beam divergence of 3.6º) and superb stability. We show that both single-mode and multimode lasing operation are achievable in the device. In contrast to traditional metal chacogenide colloidal quantum dots based lasers where the pump thresholds for the green and blue wavelengths are typically much higher than that of the red, these CsPbX3 IPNC-VCSEL devices are able to lase with comparable thresholds across the whole visible spectral range, which is appealing for achieving single source-pumped full-color lasers. We further reveal that these lasers can operate in quasi-steady state regime, which is very practical and cost-effective. Given the facile solution processibility, our CsPbX3 IPNC-VCSEL devices may hold great potential in developing low-cost yet high-performance lasers, promising in revolutionizing the vacuum-based epitaxial semiconductor lasers.
Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos
2011-12-01
During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage. Copyright © 2011 Elsevier Ltd. All rights reserved.
HEMATOPOIETIC STEM CELL INFUSION/TRANSPLANTATION FOR INDUCTION OF ALLOGRAFT TOLERANCE
Granados, Jose M. Marino; Benichou, Gilles; Kawai, Tatsuo
2015-01-01
Purpose of review This review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. Recent findings Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. Summary Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, as well as to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications. PMID:25563992
Silicon pore optics for the international x-ray observatory
NASA Astrophysics Data System (ADS)
Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.
2017-11-01
Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.
NASA Astrophysics Data System (ADS)
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081
Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation
NASA Technical Reports Server (NTRS)
Pollmeier, V. M.; Thurman, S. W.
1992-01-01
The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
Written and oral testimony presented in this document concerns legislative and policy considerations for achieving full employment. Although the Reagan Administration cites a low unemployment figure for the nation, there remain almost eight million persons out of work and more than a million "discouraged workers" who have given up trying…
Black Girls' Achievement in Middle Grades Mathematics: How Can Socializing Agents Help?
ERIC Educational Resources Information Center
Young, Jemimah L.; Young, Jamaal Rashad; Capraro, Mary Margaret
2017-01-01
The middle grades mathematics classroom is full of transitions that students must overcome to become successful long-term learners of mathematics. This transition can be exorbitantly more tumultuous for Black girls who must overcome gender and racial mathematics achievement stereotypes. Mathematics identities and achievement socialization trends…
NASA Astrophysics Data System (ADS)
Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan
2014-05-01
The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the above results on the scaling transition between inertial and kinetic range scales are qualitatively robust, and that quantitatively, there is a spread in the values of the scaling exponents.
Self-assembled pit arrays as templates for the integration of Au nanocrystals in oxide surfaces.
Konstantinović, Z; Sandiumenge, F; Santiso, J; Balcells, Ll; Martínez, B
2013-02-07
We report on the fabrication of long-range ordered arrays of Au nanocrystals (sub-50 nm range) on top of manganite (La(2/3)Sr(1/3)MnO(3)) thin films achieving area densities around 2 × 10(10) gold nanocrystals per cm(2), well above the densities achievable by using conventional nanofabrication techniques. The gold-manganite interface exhibits excellent conduction properties. Long-range order is achieved by a guided self-assembling process of Au nanocrystals on self-organized pit-arrays acting as a template for the nucleation of gold nanocrystals. Self-organization of pits on the manganite film surface promoted by the underlying stepped SrTiO(3) substrate is achieved by a fine tuning of the growth kinetic pathway, taking advantage of the unusual misfit strain relaxation behaviour of manganite films.
Probing the galaxy-halo connection in UltraVISTA to z ˜ 2
NASA Astrophysics Data System (ADS)
McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.
2015-05-01
We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.
Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.
2014-01-01
One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square errors (surface-to-surface distance) in the 0.28-0.81mm range on the phantom object and in the 0.54-1.35mm range on 4 clinical cases. The digitization accuracy of the presented stereovision methods indicate that the operating microscope can be used to deliver the persistent intraoperative input required by computational biomechanical models to update the patient’s preoperative images and facilitate active surgical guidance. PMID:25189364
Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M
2015-01-01
One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square errors (surface-to-surface distance) in the 0.28-0.81 mm range on the phantom object and in the 0.54-1.35 mm range on 4 clinical cases. The digitization accuracy of the presented stereovision methods indicate that the operating microscope can be used to deliver the persistent intraoperative input required by computational biomechanical models to update the patient's preoperative images and facilitate active surgical guidance. Copyright © 2014 Elsevier B.V. All rights reserved.
Stilgenbauer, Stephan; Eichhorst, Barbara; Schetelig, Johannes; Hillmen, Peter; Seymour, John F; Coutre, Steven; Jurczak, Wojciech; Mulligan, Stephen P; Schuh, Anna; Assouline, Sarit; Wendtner, Clemens-Martin; Roberts, Andrew W; Davids, Matthew S; Bloehdorn, Johannes; Munir, Talha; Böttcher, Sebastian; Zhou, Lang; Salem, Ahmed Hamed; Desai, Monali; Chyla, Brenda; Arzt, Jennifer; Kim, Su Young; Verdugo, Maria; Gordon, Gary; Hallek, Michael; Wierda, William G
2018-07-01
Purpose Venetoclax is an orally bioavailable B-cell lymphoma 2 inhibitor. US Food and Drug Administration and European Medicines Agency approval for patients with 17p deleted relapsed/refractory chronic lymphocytic leukemia [del(17p) CLL] was based on results from 107 patients. An additional 51 patients were enrolled in a safety expansion cohort. Extended analysis of all enrolled patients, including the effect of minimal residual disease (MRD) negativity on outcome, is now reported. Patients and Methods Overall, 158 patients with relapsed/refractory or previously untreated (n = 5) del(17p) CLL received venetoclax 400 mg per day after an initial dose ramp up. Responses were based on 2008 International Workshop on Chronic Lymphocytic Leukemia criteria, with monthly physical exams and blood counts. Computed tomography scan was mandatory at week 36, after which assessment made was by clinical evaluation. Marrow biopsy was performed when complete remission was suspected. MRD was assessed by flow cytometry. Results Patients had a median of two prior therapies (range, zero to 10 therapies), 71% had TP53 mutation, and 48% had nodes that were ≥ 5 cm. Median time on venetoclax was 23.1 months (range, 0 to 44.2 months) and median time on study was 26.6 months (range, 0 to 44.2 months). For all patients, investigator-assessed objective response rate was 77% (122 of 158 patients; 20% complete remission) and estimated progression-free survival at 24 months was 54% (95% CI, 45% to 62%). For 16 patients who received prior kinase inhibitors, objective response rate was 63% (10 of 16 patients) and 24-month progression-free survival estimate was 50% (95% CI, 25% to 71%). By intent-to-treat analysis, 48 (30%) of 158 patients achieved MRD below the cutoff of 10 -4 in blood. Common grade 3 and 4 adverse events were hematologic and managed with supportive care and/or dose adjustments. Conclusion Venetoclax achieves durable responses and was well tolerated in patients with del(17p) CLL. A high rate of blood MRD < 10 -4 was achieved in this high-risk population.
On fairness, full cooperation, and quantum game with incomplete information
NASA Astrophysics Data System (ADS)
Lei, Zhen-Zhou; Liu, Bo-Yang; Yi, Ying; Dai, Hong-Yi; Zhang, Ming
2018-03-01
Quantum entanglement has emerged as a new resource to enhance cooperation and remove dilemmas. This paper aims to explore conditions under which full cooperation is achievable even when the information of payoff is incomplete. Based on the quantum version of the extended classical cash in a hat game, we demonstrate that quantum entanglement may be used for achieving full cooperation or avoiding moral hazards with the reasonable profit distribution policies even when the profit is uncertain to a certain degree. This research further suggests that the fairness of profit distribution should play an important role in promoting full cooperation. It is hopeful that quantum entanglement and fairness will promote full cooperation among distant people from various interest groups when quantum networks and quantum entanglement are accessible to the public. Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, and 61134008.
Srinubabu, Gedela; Ratnam, Bandaru Veera Venkata; Rao, Allam Appa; Rao, Medicherla Narasimha
2008-01-01
A rapid tandem mass spectrometric (MS-MS) method for the quantification of Oxcarbazepine (OXB) in human plasma using imipramine as an internal standard (IS) has been developed and validated. Chromatographic separation was achieved isocratically on a C18 reversed-phase column within 3.0 min, using a mobile phase of acetonitrile-10 mM ammonium formate (90 : 10 v/v) at a flow rate of 0.3 ml/min. Quantitation was achieved using multiple reaction monitoring (MRM) scan at MRM transitions m/z 253>208 and m/z 281>86 for OXB and the IS respectively. Calibration curves were linear over the concentration range of 0.2-16 mug/ml (r>0.999) with a limit of quantification of 0.2 mug/ml. Analytical recoveries of OXB from spiked human plasma were in the range of 74.9 to 76.3%. Plackett-Burman design was applied for screening of chromatographic and mass spectrometric factors; factorial design was applied for optimization of essential factors for the robustness study. A linear model was postulated and a 2(3) full factorial design was employed to estimate the model coefficients for intermediate precision. More specifically, experimental design helps the researcher to verify if changes in factor values produce a statistically significant variation of the observed response. The strategy is most effective if statistical design is used in most or all stages of the screening and optimizing process for future method validation of pharmacokinetic and bioequivalence studies.
A focal plane detector design for a wide band Laue-lens telescope
NASA Astrophysics Data System (ADS)
Caroli, E.; Auricchio, N.; Bertuccio, G.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Frontera, F.; Quadrini, E.; Ubertini, P.; Ventura, G.
2006-06-01
The energy range above 50 keV is important for the study of many open problems in high energy astrophysics such as, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. In the framework of the definition of a new mission concept for hard X and soft gamma ray (GRI- Gamma Ray Imager) for the next decade, the use of Laue lenses with broad energy band-passes from 100 to 1000 keV is under study. This kind of instruments will be used for deep study the hard X-ray continuum of celestial sources. This new telescope will require focal plane detectors with high detection efficiency over the entire operative range, an energy resolution of few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration for the focal plane detector based on CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can either operate as a separate position sensitive detector and a polarimeter or together with other layers in order to increase the overall full energy efficiency. We report on the current state of art in high Z spectrometers development and on some activities undergoing. Furthermore we describe the proposed focal plane option with the required resources and an analytical summary of the achievable performance in terms of efficiency and polarimetry.
Building technolgies program. 1994 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkowitz, S.E.
1995-04-01
The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less
Sayal, Kapil; Washbrook, Elizabeth; Propper, Carol
2015-05-01
To investigate the impact of increasing levels of inattention, hyperactivity/impulsivity, and oppositional/defiant behaviors at age 7 years on academic achievement at age 16 years. In a population-based sample of 7-year-old children in England, information was obtained about inattention, hyperactivity/impulsivity, and oppositional/defiant behaviors (using parent and teacher ratings) and the presence of attention-deficit/hyperactivity disorder (ADHD) and disruptive behavior disorders (DBDs). After adjusting for confounder variables, their associations with academic achievement in national General Certificate of Secondary Education (GCSE) examinations (using scores and minimum expected school-leaving qualification level [5 "good" GCSEs]) at age 16 years were investigated (N = 11,640). In adjusted analyses, there was a linear association between each 1-point increase in inattention symptoms and worse outcomes (2- to 3-point reduction in GCSE scores and 6% to 7% (10%-12% with teacher ratings) increased likelihood of not achieving 5 good GCSEs). ADHD was associated with a 27- to 32-point reduction in GCSE scores and, in boys, a more than 2-fold increased likelihood of not achieving 5 good GCSEs. In boys, oppositional/defiant behaviors were also independently associated with worse outcomes, and DBDs were associated with a 19-point reduction in GCSE scores and a 1.83-increased likelihood of not achieving 5 good GCSEs. Across the full range of scores at a population level, each 1-point increase in inattention at age 7 years is associated with worse academic outcomes at age 16. The findings highlight long-term academic risk associated with ADHD, particularly inattentive symptoms. After adjusting for inattention and ADHD respectively, oppositional/defiant behaviors and DBDs are also independently associated with worse academic outcomes. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Sequential ranging integration times in the presence of CW interference in the ranging channel
NASA Technical Reports Server (NTRS)
Mathur, Ashok; Nguyen, Tien
1986-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, is used primarily for communication with interplanetary spacecraft. The high sensitivity required to achieve planetary communications makes the DSN very susceptible to radio-frequency interference (RFI). In this paper, an analytical model is presented of the performance degradation of the DSN sequential ranging subsystem in the presence of downlink CW interference in the ranging channel. A trade-off between the ranging component integration times and the ranging signal-to-noise ratio to achieve a desired level of range measurement accuracy and the probability of error in the code components is also presented. Numerical results presented illustrate the required trade-offs under various interference conditions.
High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai
2006-10-01
The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.
A spectroscopic study of Brazilwood paints in medieval books of hours.
Melo, Maria João; Otero, Vanessa; Vitorino, Tatiana; Araújo, Rita; Muralha, Vânia S F; Lemos, Ana; Picollo, Marcello
2014-01-01
In this work, microspectrofluorimetry was for the first time applied to the identification of the red organic lakes that are characteristic of the lavish illuminations found in 15(th) century books of hours. Microspectrofluorimetry identified those red paints, ranging from opaque pink to dark red glazes, as brazilwood lakes. An unequivocal characterization was achieved by comparison with reference paints produced following recipes from the medieval treatise The Book on How to Make Colours, and was further confirmed by fiber optic reflectance spectroscopy (FORS). For these treasured cultural objects, microspectrofluorimetry and FORS proved to be the only techniques that could identify, in situ or in microsamples, the chromophore responsible for the pinkish hues: a brazilein-Al(3+) complex. Additionally, a multi-analytical approach provided a full characterization of the color paints, including pigments, additives, and binders. Microspectroscopic techniques, based on infrared and X-ray radiation, enabled us to disclose the full palette of these medieval manuscripts, including the elusive greens, for which, besides malachite, basic copper sulfates were found; Raman microscopy suggested a mixture of brochantite and langite. Infrared analysis proved invaluable for a full characterization of the additives that were applied as fillers or whites (chalk, gypsum, and white lead) as well as the proteinaceous and polysaccharide binders that were found pure or in mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.« less
Academic Stress in an Achievement Driven Era: Time and School Culture
ERIC Educational Resources Information Center
Mrowka, Karyn Anne Kowalski
2014-01-01
Whether academic achievement is defined as passing a state-mandated test for graduation or earning "A's" in a rigorous course load and having a resume full of extra-curricular accomplishments, the pressure to achieve is pervading public education, creating a culture of competition and causing academic stress. A culture of competition…
Variable thrust/specific-impulse of multiplexed electrospray microthrusters
NASA Astrophysics Data System (ADS)
Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.
We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale-up to a 600-MES system, the device would be suitable for micro-satellites missions such as attitude control and station keeping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina
Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system.more » One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.« less
Contreras-Gutiérrez, Paulina K; Hurtado-Fernández, Elena; Gómez-Romero, María; Ignacio Hormaza, José; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto
2013-10-01
A CZE method with two different MS detection conditions (MRM and Full Scan) was developed to determine qualitative and quantitative changes in the metabolic profile of avocado fruits (Persea americana). LODs in MRM approach were found between 20.1 and 203.0 ppb for abscisic acid and perseitol, respectively, whilst in Full Scan, varied within the range 0.22–1.90 ppm for the same metabolites. The RSDs for reproducibility test did not exceed 11.45%. The two MS approaches were used to quantify 10 metabolites (phenolic acids, flavonoids, a carbohydrate, an organic acid, a vitamin and a phytohormone) in 18 samples of avocado at different ripening states, and the achieved results were compared. Perseitol, quinic, chlorogenic, trans-cinnamic, pantothenic and abscisic acids, as well as epicatechin and catechin decreased during the ripening process, whereas ferulic and p-coumaric acids showed the opposite trend. Moreover, some other unknown compounds whose concentration changed largely during ripening were also studied by MS/MS and QTOF MS to get a tentative identification.
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas
2013-02-07
Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlapmore » matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.« less
Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes
2013-02-07
Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.
Colostomy irrigation in the elderly. Effective recovery regardless of age.
Venturini, M; Bertelli, G; Forno, G; Grandi, G; Dini, D
1990-12-01
One hundred forty elderly cancer outpatients with colostomy in the authors' rehabilitation department were included in an analysis of the feasibility, effectiveness, and safety of periodic irrigation of remaining colon with lukewarm tap water with the aim of regaining full continence. Sixteen patients did not have a sufficiently long remaining bowel (cecostomy, transverse colostomy) and 17 were considered unsuitable to learn the technique because of advanced neoplastic disease with poor life expectancy, intercurrent disease, or stomal problems. One hundred seven patients were proposed to perform the irrigation: 17 refused to do so with the remaining 90 able to learn the method without problems. Nearly all patients achieved full continence for at least 24 hours. Three patients refused to continue, and nine interrupted for minor complications. The median duration of irrigation in the whole group is 257 days (range, 1 to 2669 days): 32 patients have been irrigating from one to five years, and 9 patients for more than 5 years. Based on these results, we recommend irrigation as standard rehabilitative treatment for elderly patients.
Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya
2018-01-22
In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.
Is Adult Reading a Guide to Educational-Vocational Achievement?
ERIC Educational Resources Information Center
Athanasou, James A.
2011-01-01
Reading is theorised as a key aspect of one's educational and vocational adjustment. The reading scores on the "Wide-Range Achievement Test 3" of 465 adult vocational assessment clients were examined. Reading varied across a range of social factors and the overall results were consistent with earlier studies, especially the "Adult…
Time required for institutional review board review at one Veterans Affairs medical center.
Hall, Daniel E; Hanusa, Barbara H; Stone, Roslyn A; Ling, Bruce S; Arnold, Robert M
2015-02-01
Despite growing concern that institutional review boards (IRBs) impose burdensome delays on research, little is known about the time required for IRB review across different types of research. To measure the overall and incremental process times for IRB review as a process of quality improvement. After developing a detailed process flowchart of the IRB review process, 2 analysts abstracted temporal data from the records pertaining to all 103 protocols newly submitted to the IRB at a large urban Veterans Affairs medical center from June 1, 2009, through May 31, 2011. Disagreements were reviewed with the principal investigator to reach consensus. We then compared the review times across review types using analysis of variance and post hoc Scheffé tests after achieving normally distributed data through logarithmic transformation. Calendar days from initial submission to final approval of research protocols. Initial IRB review took 2 to 4 months, with expedited and exempt reviews requiring less time (median [range], 85 [23-631] and 82 [16-437] days, respectively) than full board reviews (median [range], 131 [64-296] days; P = .008). The median time required for credentialing of investigators was 1 day (range, 0-74 days), and review by the research and development committee took a median of 15 days (range, 0-184 days). There were no significant differences in credentialing or research and development times across review types (exempt, expedited, or full board). Of the extreme delays in IRB review, 80.0% were due to investigators' slow responses to requested changes. There were no systematic delays attributable to the information security officer, privacy officer, or IRB chair. Measuring and analyzing review times is a critical first step in establishing a culture and process of continuous quality improvement among IRBs that govern research programs. The review times observed at this IRB are substantially longer than the 60-day target recommended by expert panels. The method described here could be applied to other IRBs to begin identifying and improving inefficiencies.
Achieving cost-neutrality with long-acting reversible contraceptive methods.
Trussell, James; Hassan, Fareen; Lowin, Julia; Law, Amy; Filonenko, Anna
2015-01-01
This analysis aimed to estimate the average annual cost of available reversible contraceptive methods in the United States. In line with literature suggesting long-acting reversible contraceptive (LARC) methods become increasingly cost-saving with extended duration of use, it aimed to also quantify minimum duration of use required for LARC methods to achieve cost-neutrality relative to other reversible contraceptive methods while taking into consideration discontinuation. A three-state economic model was developed to estimate relative costs of no method (chance), four short-acting reversible (SARC) methods (oral contraceptive, ring, patch and injection) and three LARC methods [implant, copper intrauterine device (IUD) and levonorgestrel intrauterine system (LNG-IUS) 20 mcg/24 h (total content 52 mg)]. The analysis was conducted over a 5-year time horizon in 1000 women aged 20-29 years. Method-specific failure and discontinuation rates were based on published literature. Costs associated with drug acquisition, administration and failure (defined as an unintended pregnancy) were considered. Key model outputs were annual average cost per method and minimum duration of LARC method usage to achieve cost-savings compared to SARC methods. The two least expensive methods were copper IUD ($304 per women, per year) and LNG-IUS 20 mcg/24 h ($308). Cost of SARC methods ranged between $432 (injection) and $730 (patch), per women, per year. A minimum of 2.1 years of LARC usage would result in cost-savings compared to SARC usage. This analysis finds that even if LARC methods are not used for their full durations of efficacy, they become cost-saving relative to SARC methods within 3 years of use. Previous economic arguments in support of using LARC methods have been criticized for not considering that LARC methods are not always used for their full duration of efficacy. This study calculated that cost-savings from LARC methods relative to SARC methods, with discontinuation rates considered, can be realized within 3 years. Copyright © 2014 Elsevier Inc. All rights reserved.
Working towards TB elimination the WHO Regional Strategic Plan (2006-2015).
Nair, Nani; Cooreman, Erwin
2006-03-01
DOTS has expanded rapidly in the South-East Asia Region over the period of the Partnership's first Global Plan (2001-2005), with almost 100% geographical coverage achieved in 2005. All countries have made impressive progress in improving coverage and quality. This progress has been made possible through strong political commitment and large investments in TB control for improved infrastructure, reliable drug supply, increased staffing, improved laboratory services, and intensified training and supervision. Accomplishing the objectives outlined in this document will require sustaining the progress in all countries and particularly in the five high burden countries for achieving major regional and global impact. National TB programmes will need to be supported to maintain or surpass the 70% case detection and 85% treatment success rates. The achievement of the TB-related targets linked to the MDGs will also depend on how effectively initiatives such as DOTS-Plus, PPM DOTS and interventions for TB/ HIV among others, are implemented. National governments and development partners must fulfill their commitments to mobilizing and sustaining adequate resources to support the full range of activities envisaged. The benefits of full and effective implementation of all the planned interventions would be substantial. These will result in 20 to 25 million TB cases being treated in DOTS program mes and more than 150 000 drug-resistant cases receiving treatment through DOTS-Plus during the period 2006-2015. In addition, at least 250 000 HIV-infected TB patients may also receive anti-retroviral therapy. As a consequence, the prevalence of TB is expected to fall below 175/100 000 and the number of TB deaths is expected to fall to between 100 000 and 150 000 per year. There would also be substantial economic benefits given that TB disproportionately affects adults in their most productive years. Considering these aspects, it is expected that the TB incidence will decline significantly during this period so that the Millennium Development Goals would be met by or ahead of 2015.
Achieving cost-neutrality with long-acting reversible contraceptive methods⋆
Trussell, James; Hassan, Fareen; Lowin, Julia; Law, Amy; Filonenko, Anna
2014-01-01
Objectives This analysis aimed to estimate the average annual cost of available reversible contraceptive methods in the United States. In line with literature suggesting long-acting reversible contraceptive (LARC) methods become increasingly cost-saving with extended duration of use, it aimed to also quantify minimum duration of use required for LARC methods to achieve cost-neutrality relative to other reversible contraceptive methods while taking into consideration discontinuation. Study design A three-state economic model was developed to estimate relative costs of no method (chance), four short-acting reversible (SARC) methods (oral contraceptive, ring, patch and injection) and three LARC methods [implant, copper intrauterine device (IUD) and levonorgestrel intrauterine system (LNG-IUS) 20 mcg/24 h (total content 52 mg)]. The analysis was conducted over a 5-year time horizon in 1000 women aged 20–29 years. Method-specific failure and discontinuation rates were based on published literature. Costs associated with drug acquisition, administration and failure (defined as an unintended pregnancy) were considered. Key model outputs were annual average cost per method and minimum duration of LARC method usage to achieve cost-savings compared to SARC methods. Results The two least expensive methods were copper IUD ($304 per women, per year) and LNG-IUS 20 mcg/24 h ($308). Cost of SARC methods ranged between $432 (injection) and $730 (patch), per women, per year. A minimum of 2.1 years of LARC usage would result in cost-savings compared to SARC usage. Conclusions This analysis finds that even if LARC methods are not used for their full durations of efficacy, they become cost-saving relative to SARC methods within 3 years of use. Implications Previous economic arguments in support of using LARC methods have been criticized for not considering that LARC methods are not always used for their full duration of efficacy. This study calculated that cost-savings from LARC methods relative to SARC methods, with discontinuation rates considered, can be realized within 3 years. PMID:25282161
Berenguer, Marina; Roche, Bruno; Aguilera, Victoria; Duclos-Vallée, Jean-Charles; Navarro, Laia; Rubín, Angel; Pons, Jose-Antonio; de la Mata, Manuel; Prieto, Martín; Samuel, Didier
2013-01-01
A sustained virological response (SVR) is achieved by 30% of naive liver transplantation (LT) recipients treated with pegylated interferon (PEG-IFN) and ribavirin (RBV). Almost no data are available about retreatment. The aim of this study was to assess the efficacy, tolerability, and SVR predictors of retreatment. Data were collected from 4 centers on the retreatment of prior nonresponders to standard therapy or PEG-IFN (with or without RBV) and relapsers. Seventy-nine of 301 treatment-experienced LT patients (26%), who had a median age of 59 years (range = 35-77 years) and were mostly male (72%) and infected with genotype 1 (87%), were retreated with PEG-IFN and RBV at a median of 6.9 years after LT. During the first course of therapy, 35% were treated with interferon, 49% received tacrolimus, 52% received steroids, and 49.5% were relapsers. Retreatment was started at a median of 1.9 years (range = 45 days to 8.2 years) after the end of the first course. The proportion of patients with cirrhosis increased from 10% to 37% (P < 0.001). In addition, in retreated patients, full initial RBV doses (P = 0.03), growth factors [erythropoietin (P < 0.001) and granulocyte colony-stimulating factor (P = 0.048)], and transfusions (P = 0.03) were used more frequently, and the treatment duration was longer (P = 0.03). An end-of-treatment response was achieved in 61%, whereas SVR, which was associated with improved survival, occurred in 28 (35%). The variables predicting SVR were age (P = 0.04), disease severity [fibrosis (50% with F0-F2 versus 26% with F3-4), P = 0.03; bilirubin, P = 0.006; platelet count, P = 0.03], adherence, and viral kinetics. None of the patients without an early virological response achieved SVR. There was a trend of prior relapsers achieving higher SVR rates than prior nonresponders. In conclusion, SVR, which was achieved by approximately one-third of the retreated patients, can be predicted with the same variables used for naive LT recipients (age, disease severity, adherence, and viral kinetics) and is associated with enhanced survival. Copyright © 2012 American Association for the Study of Liver Diseases.
NASA Astrophysics Data System (ADS)
Li, Z.; Jiu, L.; Gong, Y.; Wang, L.; Zhang, Y.; Bai, J.; Wang, T.
2017-02-01
Thick and crack-free semi-polar (11-22) AlGaN layers with various high Al compositions have been achieved by means of growth on the top of nearly but not yet fully coalesced GaN overgrown on micro-rod templates. The range of the Al composition of up to 55.7% was achieved, corresponding to an emission wavelength of up to 270 nm characterised by photoluminescence at room temperature. X-ray diffraction (XRD) measurements show greatly improved crystal quality as a result of lateral overgrowth compared to the AlGaN counterparts on standard planar substrates. The full width at half maximums of the XRD rocking curves measured along the [1-100]/[11-2-3] directions (the two typical orientations for characterizing the crystal quality of (11-22) AlGaN) are 0.2923°/0.2006° for 37.8% Al and 0.3825°/0.2064° for 55.7% Al, respectively, which have never been achieved previously. Our calculation based on reciprocal space mapping measurements has demonstrated significant strain relaxation in the AlGaN as a result of utilising the non-coalesced GaN underneath, contributing to the elimination of any cracks. The results presented have demonstrated that our overgrowth technique can effectively manage strain and improve crystal quality simultaneously.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
Photometric redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1
NASA Astrophysics Data System (ADS)
Tanaka, Masayuki; Coupon, Jean; Hsieh, Bau-Ching; Mineo, Sogo; Nishizawa, Atsushi J.; Speagle, Joshua; Furusawa, Hisanori; Miyazaki, Satoshi; Murayama, Hitoshi
2018-01-01
Photometric redshifts are a key component of many science objectives in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). In this paper, we describe and compare the codes used to compute photometric redshifts for HSC-SSP, how we calibrate them, and the typical accuracy we achieve with the HSC five-band photometry (grizy). We introduce a new point estimator based on an improved loss function and demonstrate that it works better than other commonly used estimators. We find that our photo-z's are most accurate at 0.2 ≲ zphot ≲ 1.5, where we can straddle the 4000 Å break. We achieve σ[Δzphot/(1 + zphot)] ˜ 0.05 and an outlier rate of about 15% for galaxies down to i = 25 within this redshift range. If we limit ourselves to a brighter sample of i < 24, we achieve σ ˜ 0.04 and ˜8% outliers. Our photo-z's should thus enable many science cases for HSC-SSP. We also characterize the accuracy of our redshift probability distribution function (PDF) and discover that some codes over-/underestimate the redshift uncertainties, which has implications for N(z) reconstruction. Our photo-z products for the entire area in Public Data Release 1 are publicly available, and both our catalog products (such as point estimates) and full PDFs can be retrieved from the data release site, "https://hsc-release.mtk.nao.ac.jp/".
V-doped SnS2: a new intermediate band material for a better use of the solar spectrum.
Wahnón, Perla; Conesa, José C; Palacios, Pablo; Lucena, Raquel; Aguilera, Irene; Seminovski, Yohanna; Fresno, Fernando
2011-12-07
Intermediate band materials can boost photovoltaic efficiency through an increase in photocurrent without photovoltage degradation thanks to the use of two sub-bandgap photons to achieve a full electronic transition from the valence band to the conduction band of a semiconductor structure. After having reported in previous works several transition metal-substituted semiconductors as able to achieve the electronic structure needed for this scheme, we propose at present carrying out this substitution in sulfides that have bandgaps of around 2.0 eV and containing octahedrally coordinated cations such as In or Sn. Specifically, the electronic structure of layered SnS(2) with Sn partially substituted by vanadium is examined here with first principles quantum methods and seen to give favourable characteristics in this respect. The synthesis of this material in nanocrystalline powder form is then undertaken and achieved using solvothermal chemical methods. The insertion of vanadium in SnS(2) is found to produce an absorption spectrum in the UV-Vis-NIR range that displays a new sub-bandgap feature in agreement with the quantum calculations. A photocatalytic reaction-based test verifies that this sub-bandgap absorption produces highly mobile electrons and holes in the material that may be used for the solar energy conversion, giving experimental support to the quantum calculations predictions.
NASA Astrophysics Data System (ADS)
Hao Jiang, Zhi; Werner, Douglas H.
2013-12-01
In this paper, we report an approach for achieving near-perfect low-profile electromagnetic cloaking beyond the quasi-static limit. In contrast to previous works on metasurface cloaks where only the Leontovich surface impedance boundary condition has been considered, we employ a second-order surface impedance boundary condition to account for the radial response of the proposed anisotropic metasurfaces. This radial surface polarizability tensor parameter can be tailored to eliminate the higher order scattering modes. It is shown from analytical expressions that for a moderate-sized perfect electric conducting or dielectric cylinder (∼0.4λ0 in width), near-perfect scattering reduction, i.e. >98%, can be achieved by a single anisotropic metasurface with non-vanishing radial response, which is far superior to the conventional scalar impedance surface. A practical design of the metasurface is also presented and further validated by full-wave simulations. The physical mechanism of the metasurface cloaks is investigated in detail, revealing that the radiation cancellation of the induced surface currents is responsible for the scattering reduction. Importantly, it is shown that in addition to a ‘low-visibility coating’, the metasurface also functions to provide induced current enhancement which would be beneficial for the operation of a ‘cloaked sensor’. These findings will broaden the usage of metasurfaces to applications ranging from scattering reduction to noninvasive probing for objects beyond the quasi-static limit.
On a more rigorous gravity field processing for future LL-SST type gravity satellite missions
NASA Astrophysics Data System (ADS)
Daras, I.; Pail, R.; Murböck, M.
2013-12-01
In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of individual error sources to the system's error budget. More specifically we analyze sensor noise from the laser interferometer and the accelerometers, errors in the kinematic orbits and the background fields as well as temporal and spatial aliasing errors. We give special care on the assessment of error sources with stochastic behavior, such as the laser interferometer and the accelerometers, and their consistent stochastic modeling in frame of the adjustment process.
Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application
NASA Astrophysics Data System (ADS)
Agarwal, Sajal; Prajapati, Y. K.
2018-04-01
Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.
Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)
NASA Technical Reports Server (NTRS)
Fleurial, J.
1994-01-01
IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.
NASA Astrophysics Data System (ADS)
Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes
2018-04-01
A high-power Raman lidar system has been developed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m, at the side of an existing differential-absorption lidar. It is based on a 180-W single-line XeCl laser and on two Newtonian telescopes (up to 1.5-m-diameter). In this way a vertical range up to more than 20 km and an accuracy level of the order of 10 % can be achieved for a measurement time of 1 h. Temperature measurements have been demonstrated to altitudes up to 54 km with just 1 % of the full 308-nm backscatter signal. Significantly higher altitudes are expected when using a chopper that cuts off the first 10 km or for 353 nm.
NASA Technical Reports Server (NTRS)
Johnson, Perry L.; Shyam, Vikram
2012-01-01
A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics
Bruijn, Dirk Jan; Blom, Jan Dirk
2010-01-01
Catatonia is a neuropsychiatric syndrome characterized by dysregulation of the motor system. It is associated with affective disorders, psychosis, and a number of somatic conditions. The condition tends to be undertreated due to under-recognition. This is unfortunate, because various cheap and effective treatment methods are widely available. In this clinical lesson, we present case studies of three patients with schizophrenia and severe catatonic symptoms. They were all treated with lorazepam, in dosages ranging from 2 to 60 mg a day, following which they achieved full remission of their catatonic symptoms. We recommend being alert for catatonia in patients with or without a psychiatric disorder. Early recognition and treatment is vital for the quality of life of these patients, and may in some cases be life-saving. In addition, we recommend a thorough analysis of possible underlying somatic disorders.
Bangladesh becomes "success story".
1999-01-01
The State Minister for Health and Family of Bangladesh, Dr. Mohammed Amanullah, highlighted some of the successes being achieved by his country in lowering fertility and improving the lives of the people since the 1994 International Conference on Population and Development. Some of these successes include practical measures to eliminate violence against women; introduction of a quota for women in public sector employment; and launching of the Health and Population Sector Program to provide a one-stop, full range of essential reproductive health, family planning and child health services through an integrated delivery mechanism. Moreover, the Minister informed the Forum participants that their success is attributable to many factors which include support from the government, from non-governmental organizations, civil society, mass media, religious and other community leaders, intersectoral collaboration, microcredit and income-generation activities.
Transonic CFD applications at Boeing
NASA Technical Reports Server (NTRS)
Tinoco, E. N.
1989-01-01
The use of computational methods for three dimensional transonic flow design and analysis at the Boeing Company is presented. A range of computational tools consisting of production tools for every day use by project engineers, expert user tools for special applications by computational researchers, and an emerging tool which may see considerable use in the near future are described. These methods include full potential and Euler solvers, some coupled to three dimensional boundary layer analysis methods, for transonic flow analysis about nacelle, wing-body, wing-body-strut-nacelle, and complete aircraft configurations. As the examples presented show, such a toolbox of codes is necessary for the variety of applications typical of an industrial environment. Such a toolbox of codes makes possible aerodynamic advances not previously achievable in a timely manner, if at all.
Walter, W. David; Leslie, David M.; Herner-Thogmartin, Jennifer H.; Smith, Kimberly G.; Cartwright, Michael E.
2005-01-01
From January 1999 to April 2002, 14 free-ranging elk were darted with a mixture of Telazol® reconstituted with xylazine hydrochloride (HCl) in a forested habitat in southwestern Oklahoma and north-central Arkansas. Elk were darted from ground blinds, tree stands, or a vehicle at distances of 14–46 m and were recovered 37–274 m from the dart site. Elk were located using radiotelemetry with 3-cc disposable Pneu-dart® transmitter darts. Mean±SD dose of Telazol®and xylazine HCl was 590±192 mg/ml and 276±153 mg/ml, respectively, and mean time to standing after injection of reversal agent was 27 min (range: 1–65 min). The combination of Telazol® and xylazine HCl successfully immobilized free-ranging elk, and transmitter-equipped darts permitted successful location of sedated elk by two people in areas of dense forest cover. The dose required to sedate elk appeared to vary depending on physiology and behavior, but no drug-induced mortality occurred despite the wide variance in the doses administered. We recommend 500 mg Telazol® reconstituted with 300 mg xylazine HCl as an initial dose for a ≥200 kg elk. If needed to achieve full sedation, up to 3 additional ml of the mixture may be administered without adverse effects.
2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers
NASA Astrophysics Data System (ADS)
Deninger, Anselm J.; Roggenbuck, A.; Schindler, S.; Preu, S.
2015-03-01
To date, exploiting the full bandwidth of state-of-the-art InGaAs photomixers for generation and detection of continuous-wave (CW) THz radiation (typ. ~50 GHz to ~3 THz) required complex and costly external-cavity diode lasers with motorized resonator control. Distributed feedback (DFB) lasers, by contrast, are compact and inexpensive, but the tuning range per diode is limited to ~600 GHz at 1.5 μm. In this paper, we show that a combination of three DFB diodes covers the complete frequency range from 0 - 2750 GHz without any gaps. In combination with InGaAs-based photomixers for terahertz generation and detection, the system achieves a dynamic range of > 100 dB at 56 GHz, 64 dB at 1000 GHz, and 26 dB at 2500 GHz. A field-programmable gate array (FPGA)-based lock-in amplifier permits a flexible adjustment of the integration time from 0.5 ms to 600 ms. Employing an optimized "fast scan" mode, a spectrum of ~1200 GHz - the bandwidth of each subset of two lasers - and 40 MHz steps is acquired in less than one minute, still maintaining a reasonable dynamic range. To the best of our knowledge, the bandwidth of 2.75 THz presents a new record for DFB-based CW-terahertz systems.
Pure spin polarized current through a full magnetic silicene junction
NASA Astrophysics Data System (ADS)
Lorestaniweiss, Zeinab; Rashidian, Zeinab
2018-06-01
Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.
IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2002-10-15
The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P.more » fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.« less
The Effect of Grade Norms in College Students: Using the Woodcock-Johnson III Tests of Achievement
ERIC Educational Resources Information Center
Cressman, Markus N.; Liljequist, Laura
2014-01-01
The "Woodcock-Johnson III" Tests of Achievement grade norms versus age norms were examined in the calculation of discrepancy scores in 202 college students. Difference scores were calculated between the "Wechsler Adult Intelligence Scale-3rd Edition" Full Scale IQ and the "Woodcock-Johnson III" Total Achievement,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw
Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less
Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F.; Zhang, Qiuheng
2016-01-01
Background Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Methods Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3’ UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Results Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Conclusion Long-range, unambiguous HLA genotyping is achievable on clinical buccal swab-extracted DNA. Importantly, full-length gene sequencing and the ability to curate full sequence data will permit future interrogation of the impact of introns, expanded exons, and other gene regulatory sequences on clinical outcomes in transplantation. PMID:27798706
Yin, Yuxin; Lan, James H; Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F; Zhang, Qiuheng
2016-01-01
Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3' UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Long-range, unambiguous HLA genotyping is achievable on clinical buccal swab-extracted DNA. Importantly, full-length gene sequencing and the ability to curate full sequence data will permit future interrogation of the impact of introns, expanded exons, and other gene regulatory sequences on clinical outcomes in transplantation.
1THz synchronous tuning of two optical synthesizers
NASA Astrophysics Data System (ADS)
Neuhaus, Rudolf; Rohde, Felix; Benkler, Erik; Puppe, Thomas; Raab, Christoph; Unterreitmayer, Reinhard; Zach, Armin; Telle, Harald R.; Stuhler, Jürgen
2016-04-01
Single-frequency optical synthesizers (SFOS) provide an optical field with arbitrarily adjustable frequency and phase which is phase-coherently linked to a reference signal. Ideally, they combine the spectral resolution of narrow linewidth frequency stabilized lasers with the broad spectral coverage of frequency combs in a tunable fashion. In state-of-the-art SFOSs tuning across comb lines requires comb line order switching,1, 2 which imposes technical overhead with problems like forbidden frequency gaps or strong phase glitches. Conventional tunable lasers often tune over only tens of GHz before mode-hops occur. Here, we present a novel type of SFOSs, which relies on a serrodyne technique with conditional flyback,3 shifting the carrier frequency of the employed frequency comb without an intrusion into the comb generator. It utilizes a new continuously tunable diode laser that tunes mode-hop-free across the full gain spectrum of the integrated laser diode. We investigate the tuning behavior of two identical SFOSs that share a common reference, by comparing the phases of their output signals. Previously, we achieved phase-stable and cycle-slip free frequency tuning over 28.1 GHz with a maximum zero-to-peak phase deviation of 62 mrad4 when sharing a common comb generator. With the new continuously tunable lasers, the SFOSs tune synchronously across nearly 17800 comb lines (1 THz). The tuning range in this approach can be extended to the full bandwidth of the frequency comb and the 110 nm mode-hop-free tuning range of the diode laser.
Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther
2017-07-01
We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20 dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7 nm (full width at -20 dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100 Hz 2 /Hz and of at most 170 Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.
Murray, Peter D; Dobbels, Fabienne; Lonsdale, Daniel C; Harden, Paul N
2014-10-01
Young adult kidney patients are at an important stage of development when end-stage kidney disease (ESKD) may adversely influence progress in education and employment. This study is designed to assess the impact of ESKD on education and employment outcomes in young adults. This cross-sectional study was a mixed methods design. Education and career achievements in young adults with ESKD were recorded quantitatively using a questionnaire survey (n = 57): 14 of 57 representative participants were subsequently selected for semistructured interview. Questionnaire survey was conducted in 57 young adults (median age 25): 8.8% (n = 5) were predialysis; 14.0% (n = 8) dialysis; and 78.9% (n = 45) were kidney transplant recipients. Median school-leaving age was 16 (interquartile range = 15-19). Of 57 young adults, 10 (17.5%) were still studying, 43 (75.4%) had completed education, 34 (59.7%) were employed (23 full time and 11 part time), and 19 (33.3%) were unemployed. Twenty-seven of 45 transplanted patients were employed (60.0%). Of these 27, 21 were full time (77.8%). Five of eight dialysis patients were employed: only one of eight was full-time employed (12.5%). Themes impacting on education and employment included low energy levels, time missed, loss of self-esteem, and feelings of loneliness and isolation, which may progress to depression and recreational drug use. Lack of understanding from educators and employers resulting in lost work, and career ambitions changed or limited because of dialysis. Dialysis has a major negative impact on education and reduced employment rates of young adults. There is a general lack of understanding among educators and employers of the impact of ESKD. Low energy levels, lack of self-esteem, and depression are key factors. There is a need for health care providers to recognize this issue and invest in supporting young adults with ESKD. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Flash flood warning based on fully dynamic hydrology modelling
NASA Astrophysics Data System (ADS)
Pejanovic, Goran; Petkovic, Slavko; Cvetkovic, Bojan; Nickovic, Slobodan
2016-04-01
Numerical hydrologic modeling has achieved limited success in the past due to, inter alia, lack of adequate input data. Over the last decade, data availability has improved substantially. For modelling purposes, high-resolution data on topography, river routing, and land cover and soil features have meanwhile become available, as well as the observations such as radar precipitation information. In our study, we have implemented the HYPROM model (Hydrology Prognostic Model) to predict a flash flood event at a smaller-scale basin in Southern Serbia. HYPROM is based on the full set of governing equations for surface hydrological dynamics, in which momentum components, along with the equation of mass continuity, are used as full prognostic equations. HYPROM also includes a river routing module serving as a collector for the extra surface water. Such approach permits appropriate representation of different hydrology scales ranging from flash floods to flows of large and slow river basins. The use of full governing equations, if not appropriately parameterized, may lead to numerical instability systems when the surface water in a model is vanishing. To resolve these modelling problems, an unconditionally stable numerical scheme and a method for height redistribution avoiding shortwave height noise have been developed in HYPROM, which achieve numerical convergence of u, v and h when surface water disappears. We have applied HYPROM, driven by radar-estimated precipitation, to predict flash flooding occurred over smaller and medium-size river basins. Two torrential rainfall cases have been simulated to check the accuracy of the model: the exceptional flooding of May 2014 in Western Serbia, and the convective flash flood of January 2015 in Southern Serbia. The second episode has been successfully predicted by HYPROM in terms of timing and intensity six hours before the event occurred. Such flash flood warning system is in preparation to be operationally implemented in the Republic Hydrometeorological Service of Serbia.
Precise orbit determination of BeiDou constellation based on BETS and MGEX network
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-01-01
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025
Improvement of automatic fish feeder machine design
NASA Astrophysics Data System (ADS)
Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.
2017-10-01
Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.
Investigation of Active Flow Control to Improve Aerodynamic Performance of Oscillating Wings
NASA Technical Reports Server (NTRS)
Narducci, Robert P.; Bowersox, Rodney; Bussom, Richard; McVeigh, Michael; Raghu, Surya; White, Edward
2014-01-01
The objective of this effort is to design a promising active flow control concept on an oscillating airfoil for on-blade alleviation of dynamic stall. The concept must be designed for a range of representative Mach numbers (0.2 to 0.5) and representative reduced frequency characteristics of a full-scale rotorcraft. Specifications for a sweeping-jet actuator to mitigate the detrimental effects of retreating blade stall experienced by edgewise rotors in forward flight has been performed. Wind tunnel modifications have been designed to accommodate a 5x6 test section in the Oran W. Nicks Low Speed Wind Tunnel at Texas A&M University that will allow the tunnel to achieve Mach 0.5. The flow control design is for a two-dimensional oscillating VR-7 blade section with a 15- inch chord at rotor-relevant flow conditions covering the range of reduced frequencies from 0.0 to 0.15 and Mach numbers from 0.2 to 0.5. A Computational Fluid Dynamics (CFD) analysis has been performed to influence the placement of the flow control devices for optimal effectiveness.
The Earth Observation Technology Cluster
NASA Astrophysics Data System (ADS)
Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.
2012-07-01
The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.
Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael
2011-01-24
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.
Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner
NASA Technical Reports Server (NTRS)
Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2017-01-01
The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.
Merging-compression formation of high temperature tokamak plasma
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Sykes, A.
2017-07-01
Merging-compression is a solenoid-free plasma formation method used in spherical tokamaks (STs). Two plasma rings are formed and merged via magnetic reconnection into one plasma ring that then is radially compressed to form the ST configuration. Plasma currents of several hundred kA and plasma temperatures in the keV-range have been produced using this method, however until recently there was no full understanding of the merging-compression formation physics. In this paper we explain in detail, for the first time, all stages of the merging-compression plasma formation. This method will be used to create ST plasmas in the compact (R ~ 0.4-0.6 m) high field, high current (3 T/2 MA) ST40 tokamak. Moderate extrapolation from the available experimental data suggests the possibility of achieving plasma current ~2 MA, and 10 keV range temperatures at densities ~1-5 × 1020 m-3, bringing ST40 plasmas into a burning plasma (alpha particle heating) relevant conditions directly from the plasma formation. Issues connected with this approach for ST40 and future ST reactors are discussed
Predicting the effect of relaxation during frequency-selective adiabatic pulses
NASA Astrophysics Data System (ADS)
Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus
2017-11-01
Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.
[Plants as an alternative source of therapeutic proteins].
Łucka, Marta; Kowalczyk, Tomasz; Szemraj, Janusz; Sakowicz, Tomasz
2015-03-22
In recent years, there has been an increased interest of researchers in developing efficient plant heterologous expression systems of proteins for a wide range of applications. It represents an alternative to the traditional strategy utilizing bacterial, yeast, insect or mammalian cells. New techniques of identification and characterization and effective methods of plant genetic transformation allow the range of recombinant protein products to be expanded. Great expectations are associated with the use of plants as bioreactors for the production of specific proteins of therapeutic interest. This strategy offers a number of advantages, the most important being: the possibility of a significant reduction in production costs, the safety of the products obtained and full eukaryotic post-translational modifications of proteins. A group of proteins of special interest is pharmaceuticals, and a number of successful experiments have confirmed the possibility of obtaining heterogeneous proteins with therapeutic potential: monoclonal antibodies, vaccine antigens, and a variety of cytokines. This work is focused on selected recombinant proteins belonging to those groups expression of which was achieved in plant cells. These proteins may be used in the future for therapy or prevention of viral, bacterial or cancer diseases.
Feasibility of Close-Range Photogrammetric Models for Geographic Information System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Luke; /Rice U.
2011-06-22
The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less
Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar
Hu, Xikun; Jin, Tian
2016-01-01
The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications. PMID:27916877
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.
2010-04-01
Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.
From Soft to Hard X-ray with a Single Grating Monochromator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, D.; Bianco, A.; Kaulich, B.
Even if not well defined a border exists between the soft and the hard X-ray region. The optics adopted in one region is not suitable for the other region and vice versa. Nevertheless, recently more and more experimentalists wish to investigate their samples by using an energy range as wide as possible. Without adopting complicated and very expensive mechanical solutions, it is a major challenge, for the optical designer, to find a solution suitable for both spectral ranges. This was our task for the TwinMic beamline at Elettra, the Italian 3rd generation synchrotron radiation source. This beamline will house amore » twin x-ray microscope, which combines scanning and full-field imaging in a single multipurpose end station and is operated in the 0.2-3 keV photon energy range. This energy range will be covered by a blazed grating, which has a very shallow blaze angle of 0.4 deg. With this grating mechanically ruled in the grating laboratory of Carl Zeiss very high diffraction efficiency can be achieved, expected to be higher then 10% over the whole range. This grating was tested at the KMC 1 beamline in BESSY, which is particularly suitable for this kind of measurements since it has a crystal monochromator that can go down to 1.7 keV and can be equipped with an high precision diffractometer. The obtained results demonstrate that it is possible to work with this grating up to 6 keV with still enough efficiency (5% at 6 keV and 15% at 1.8 keV). The efficiency in the lower part of the energy range was tested at Elettra, again with very good results (more then 20% at 950 eV and 15% at 600eV). A second grating, also produced by Carl Zeiss, with a blaze angle of 1.1 deg. will be mounted in the same monochromator, to cover the lower energy range. Both gratings have 600 grooves/mm, which is a good compromise for achieving the requested energy resolving power (of the order of 4000 in most of the range) and to have as much flux as possible, mandatory for the experiments proposed for this beamline. A multilayer mirror, mounted side by side with the two gratings, will permit a wide band selection of the incoming radiation. The beamline is expected to be operative in spring 2007.« less
Antimicrobial Efficacy of a Silver Impregnated Hydrophilic PU Foam.
Percival, Steven L
2018-06-01
A novel hydrophilic polyurethane (PU) foam dressing which is impregnated with silver chloride, Optifoam® Gentle (OG) Ag+ (Medline Industries Inc., Chicago, Illinois), was evaluated in this study. The aims of this study were to determine the rate of elution of silver from the foam dressing over a period of 168 hours into simulated wound fluid and an evaluation of antimicrobial efficacy using zone of inhibition (ZOI), direct kill, and time-kill viability. Thirty-two microorganisms associated with wounds including Pseudomonas aeruginosa, Methicillin sensitive Staphylococcus aureus (MSSA), Acinetobacter baumannii, Candida albicans, and antibiotic-resistant strains (Methicillin-resistant S. aureus [MRSA] and Vancomycin-resistant Enterococci [VRE]) were evaluated. Silver release from the wound dressing showed an exponential curve with a stable sustained release of 25ppm achieved after 24 hours, which was maintained for the full duration of the study. OG Ag+ caused inhibition zones ranging from 4-16mm after a 24-hour contact time. In the direct kill assay, OG Ag+ reduced the microbial numbers below the limit of detection and reduced viability by a log of four within 24 hours. For the time-kill viability studies, the results support the use of this hydrophilic polyurethane foam as a wound dressing for use in wounds at risk of infection or infected by achieving a four log kill within six hours and a six log kill in 16 hours. In conclusion, OG Ag+ was shown to be an effective wound dressing in the killing of a range of important opportunistic pathogens of relevance to wound healing and infections. Achieving a six log kill against S. aureus and E.coli, within 16 hours in the time kill assay, (ASTM E2315-03) demonstrates that OG Ag+ should be an important addition to the armoury available for the management of acute and chronic wounds at risk of infection or clinically infected.
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks.
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-06-06
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.
Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks
Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue
2017-01-01
Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions. PMID:28587304
The performance of a centrifugal compressor with high inlet prewhirl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A.; Abdullah, A.H.
1998-07-01
The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or tomore » switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.« less
NASA Astrophysics Data System (ADS)
Choi, Hongseok; Park, Jong-Oh; Ko, Seong Young; Park, Sukho; Cho, Sungho; Jung, Won-Gyun; Park, Yong Kyun; Kang, Jung Suk
2016-10-01
This paper describes a robotic patient positioning system (PPS) for a fixed-beam heavy-ion therapy system. In order to extend the limited irradiation angle range of the fixed beam, we developed a 6-degree-of-freedom (6-DOF) serial-link robotic arm and used it as the robotic PPS for the fixed-beam heavy-ion therapy system. This research aims to develop a robotic PPS for use in the Korea Heavy Ion Medical Accelerator (KHIMA) system, which is under development at the Korea Institute of Radiological & Medical Sciences (KIRAMS). In particular, we select constraints and criteria that will be used for designing and evaluating the robotic PPS through full consultation with KIRAMS. In accordance with the constraints and criteria, we develop a 6-DOF serial-link robotic arm that consists of six revolute joints for the robotic PPS, where the robotic arm covers the upper body of a patient as a treatment area and achieves a 15 ° roll and pitch angle in the treatment area without any collision. Various preliminary experiments confirm that the robotic PPS can meet all criteria for extension of the limited irradiation angle range in the treatment area and has a positioning repeatability of 0.275 mm.
Arthroscopic resection of humeroradial synovial plica for persistent lateral elbow pain.
Rajeev, Aysha; Pooley, Joesph
2015-04-01
To review the outcome of 121 patients who underwent arthroscopic resection of a humeroradial synovial plica for persistent lateral elbow pain. 92 men and 29 women aged 24 to 56 (mean, 38) years with chronic lateral elbow pain underwent arthroscopic resection of a humeroradial synovial plica using a motorised soft tissue shaver, followed by intensive physiotherapy. The modified elbow score and range of motion were assessed, as were wound healing, infection, soft tissue swelling or effusion, tenderness, ligamentous instability, and motor strength. No patient had any ligamentous instability. 80 patients were pain-free at 3 months; only 3 patients were taking pain medication at 6 months. All patients had full pronation and supination; the mean range of motion was 3º to 135º of flexion. The mean modified elbow score at 12 months was 93.2 (range, 72-100). The percentages of patients with excellent, good, fair, and poor score were 70%, 17%, 8%, and 5% at 3 months, 74%, 20%, 3%, and 3% at 6 months, and 76%, 18%, 3%, and 3% at 12 months, respectively. A humeroradial synovial plica is one of the causes of chronic lateral elbow pain. Arthroscopic resection of the synovial plica followed by intensive physiotherapy achieved good outcome.
Mahfuz, Mohammad Upal
2016-10-01
In this paper, the expressions of achievable strength-based detection probabilities of concentration-encoded molecular communication (CEMC) system have been derived based on finite pulsewidth (FP) pulse-amplitude modulated (PAM) on-off keying (OOK) modulation scheme and strength threshold. An FP-PAM system is characterized by its duty cycle α that indicates the fraction of the entire symbol duration the transmitter remains on and transmits the signal. Results show that the detection performance of an FP-PAM OOK CEMC system significantly depends on the statistical distribution parameters of diffusion-based propagation noise and intersymbol interference (ISI). Analytical detection performance of an FP-PAM OOK CEMC system under ISI scenario has been explained and compared based on receiver operating characteristics (ROC) for impulse (i.e., spike)-modulated (IM) and FP-PAM CEMC schemes. It is shown that the effects of diffusion noise and ISI on ROC can be explained separately based on their communication range-dependent statistics. With full duty cycle, an FP-PAM scheme provides significantly worse performance than an IM scheme. The paper also analyzes the performance of the system when duty cycle, transmission data rate, and quantity of molecules vary.
Using Kalman Filters to Reduce Noise from RFID Location System
Xavier, José; Reis, Luís Paulo; Petry, Marcelo
2014-01-01
Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of improvement). PMID:24592186
Davies, Tim K.; Mees, Chris C.; Milner-Gulland, E. J.
2017-01-01
Spatial closures are widely used in marine conservation and fisheries management and it is important to understand their contribution to achieving management objectives. Many previous evaluations of closed area effects have used before-after comparisons, which, without controlling for a full range of factors, cannot ascribe changes in fleet behaviour to area closures per se. In this study we used a counterfactual approach to disentangle the effect of two closed areas on fishing location from other competing effects on the behaviour of the Indian Ocean tuna purse seine fishery. Our results revealed an inconsistent effect of the one of the closed areas between years, after taking into account the influence of environmental conditions on fleet behaviour. This suggests that the policy of closing the area per se was not the main driver for the fleet allocating its effort elsewhere. We also showed a marked difference in effect between the two closed areas resulting from their different locations in the fishery area. These findings highlight the need to account for other key fleet behavioural drivers when predicting or evaluating the contribution of area closures to achieving conservation and fishery management objectives. PMID:28355269
Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.
Zhou, Ziheng; Chen, Ke; Zhao, Junming; Chen, Ping; Jiang, Tian; Zhu, Bo; Feng, Yijun; Li, Yue
2017-11-27
The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.
Low-noise readout circuit for SWIR focal plane arrays
NASA Astrophysics Data System (ADS)
Altun, Oguz; Tasdemir, Ferhat; Nuzumlali, Omer Lutfi; Kepenek, Reha; Inceturkmen, Ercihan; Akyurek, Fatih; Tunca, Can; Akbulut, Mehmet
2017-02-01
This paper reports a 640x512 SWIR ROIC with 15um pixel pitch that is designed and fabricated using 0.18um CMOS process. Main challenge of SWIR ROIC design is related to input circuit due to pixel area and noise limitations. In this design, CTIA with single stage amplifier is utilized as input stage. The pixel design has three pixel gain options; High Gain (HG), Medium Gain (MG), and Low Gain (LG) with corresponding Full-Well-Capacities of 18.7ké, 190ké and 1.56Mé, respectively. According to extracted simulation results, 5.9é noise is achieved at HG mode and 200é is achieved at LG mode of operation. The ROIC can be programmed through an SPI interface. It supports 1, 2 and 4 output modes which enables the user to configure the detector to work at 30, 60 and 120fps frame rates. In the 4 output mode, the total power consumption of the ROIC is less than 120mW. The ROIC is powered from a 3.3V analog supply and allows for an output swing range in excess of 2V. Anti-blooming feature is added to prevent any unwanted blooming effect during readout.
NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission
NASA Astrophysics Data System (ADS)
Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana
2016-05-01
The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.
Progress and process improvements for multiple electron-beam direct write
NASA Astrophysics Data System (ADS)
Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2017-06-01
Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.
Enhanced thermoelectric efficiency of porous silicene nanoribbons.
Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J
2015-03-30
There is a critical need to attain new sustainable materials for direct upgrade of waste heat to electrical energy via the thermoelectric effect. Here we demonstrate that the thermoelectric performance of silicene nanoribbons can be improved dramatically by introducing nanopores and tuning the Fermi energy. We predict that values of electronic thermoelectric figure of merit ZTe up to 160 are achievable, provided the Fermi energy is located approximately 100 meV above the charge neutrality point. Including the effect of phonons yields a value for the full figure of merit of ZT = 3.5. Furthermore the sign of the thermopower S can be varied with achievable values as high as S = +/- 500 μV/K. As a method of tuning the Fermi energy, we analyse the effect of doping the silicene with either a strong electron donor (TTF) or a strong electron acceptor (TCNQ) and demonstrate that adsorbed layers of the former increases ZTe to a value of 3.1, which is insensitive to temperature over the range 100 K - 400 K. This combination of a high, temperature-insensitive ZTe, and the ability to choose the sign of the thermopower identifies nanoporous silicene as an ideal thermoelectric material with the potential for unprecedented performance.
Davies, Tim K; Mees, Chris C; Milner-Gulland, E J
2017-01-01
Spatial closures are widely used in marine conservation and fisheries management and it is important to understand their contribution to achieving management objectives. Many previous evaluations of closed area effects have used before-after comparisons, which, without controlling for a full range of factors, cannot ascribe changes in fleet behaviour to area closures per se. In this study we used a counterfactual approach to disentangle the effect of two closed areas on fishing location from other competing effects on the behaviour of the Indian Ocean tuna purse seine fishery. Our results revealed an inconsistent effect of the one of the closed areas between years, after taking into account the influence of environmental conditions on fleet behaviour. This suggests that the policy of closing the area per se was not the main driver for the fleet allocating its effort elsewhere. We also showed a marked difference in effect between the two closed areas resulting from their different locations in the fishery area. These findings highlight the need to account for other key fleet behavioural drivers when predicting or evaluating the contribution of area closures to achieving conservation and fishery management objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.
This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less
Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M
2015-09-29
Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.
Improving pathways to transit for persons with disabilities.
DOT National Transportation Integrated Search
2016-08-01
Persons with disabilities can achieve a greater degree of freedom when they have full access to a variety of transit modes, but this : can only be achieved when the pathways to transit the infrastructure and conditions in the built environment ...
Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.
Stern, Mark J; Guiles, Robert A F; Gevirtz, Richard
2014-12-01
Irritable bowel syndrome (IBS) and Functional Abdominal Pain (FAP) are among the most commonly reported Functional Gastrointestinal Disorders. Both have been associated with varying autonomic dysregulation. Heart Rate Variability Biofeedback (HRVB) has recently begun to show efficacy in the treatment of both IBS and FAP. The purpose of this multiple clinical replication series was to analyze the clinical outcomes of utilizing HRVB in a clinical setting. Archival data of twenty-seven consecutive pediatric outpatients diagnosed with IBS or FAP who received HRVB were analyzed. Clinical outcomes were self-report and categorized as full or remission with patient satisfaction, or no improvement. Qualitative reports of patient experiences were also noted. Full remission was achieved by 69.2 % and partial remission was achieved by 30.8 % of IBS patients. Full remission was achieved by 63.6 % and partial remission was achieved by 36.4 % of FAP patients. No patients in either group did not improve to a level of patient satisfaction or >50 %. Patient's commonly reported feeling validated in their discomfort as a result of psychophysiological education. Results suggest that HRVB is a promising intervention for pediatric outpatients with IBS or FAP. Randomized controlled trials are necessary to accurately determine clinical efficacy of HRVB in the treatment of IBS and FAP.
COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator.
Rawi, Reda; Mall, Raghvendra; Kunji, Khalid; El Anbari, Mohammed; Aupetit, Michael; Ullah, Ehsan; Bensmail, Halima
2016-12-15
The post-genomic era with its wealth of sequences gave rise to a broad range of protein residue-residue contact detecting methods. Although various coevolution methods such as PSICOV, DCA and plmDCA provide correct contact predictions, they do not completely overlap. Hence, new approaches and improvements of existing methods are needed to motivate further development and progress in the field. We present a new contact detecting method, COUSCOus, by combining the best shrinkage approach, the empirical Bayes covariance estimator and GLasso. Using the original PSICOV benchmark dataset, COUSCOus achieves mean accuracies of 0.74, 0.62 and 0.55 for the top L/10 predicted long, medium and short range contacts, respectively. In addition, COUSCOus attains mean areas under the precision-recall curves of 0.25, 0.29 and 0.30 for long, medium and short contacts and outperforms PSICOV. We also observed that COUSCOus outperforms PSICOV w.r.t. Matthew's correlation coefficient criterion on full list of residue contacts. Furthermore, COUSCOus achieves on average 10% more gain in prediction accuracy compared to PSICOV on an independent test set composed of CASP11 protein targets. Finally, we showed that when using a simple random forest meta-classifier, by combining contact detecting techniques and sequence derived features, PSICOV predictions should be replaced by the more accurate COUSCOus predictions. We conclude that the consideration of superior covariance shrinkage approaches will boost several research fields that apply the GLasso procedure, amongst the presented one of residue-residue contact prediction as well as fields such as gene network reconstruction.
Chirp-aided power fading mitigation for upstream 100 km full-range long reach PON with DBR DML
NASA Astrophysics Data System (ADS)
Zhang, Kuo; He, Hao; Xin, Haiyun; Hu, Weisheng; Liang, Song; Lu, Dan; Zhao, Lingjuan
2018-01-01
The DML is a promising option for cost-sensitive ONUs in optical access networks, but suffers from severe power fading due to dispersion and chirp. In this work, we investigate to mitigate the power fading by optimizing the chirp. Theoretical analysis indicates, a see-saw effect, influenced by the bias, exists between the adiabatic notch-induced fading (A-fading) and the transient notch-induced fading (T-fading). High bias can mitigate T-fading, but causes large A-fading. Low bias can avoid A-fading, but cannot completely mitigate T-fading. For each transmission distance, balance should be achieved to favor transmission. The ∼20 km short distance requires high bias to obtain large adiabatic chirp to counteract the T-fading, while the ∼100 km long distance requires relatively low bias to avoid the A-fading. With this power fading mitigation technique, we conduct upstream transmission experiment of LR-PON. Experiments show that, although signal contamination is inevitable, clear ;1; and ;0; are obtained with this power fading mitigation scheme for any 0 ∼100 km distance with 10 Gb/s OOK signal and DBR DML. The optical power budget penalty induced by 0 ∼100 km fiber is limited within only 2.2 dB, with optimum bias for each distance. More than 10 and 15 dB improvement is achieved when BER is 10-3 and 10-6. A method is also proposed to automatically obtain optimum bias from the ranging procedure of PON protocol.
NASA Technical Reports Server (NTRS)
Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.
2011-01-01
A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.
ERIC Educational Resources Information Center
Shih, Shu-Shen
2005-01-01
Using the trichotomous framework of achievement goals, in the present study I investigated the effects of different combinations of achievement goals on Taiwanese sixth graders' motivation, strategy use, and performance. 242 students completed a self-report survey assessing their achievement goal orientations and a range of outcomes including…
The Global Increase in the Socioeconomic Achievement Gap, 1964-2015. CEPA Working Paper No. 17-04
ERIC Educational Resources Information Center
Chmielewski, Anna K.
2017-01-01
The existence of a "socioeconomic achievement gap"--a disparity in academic achievement between students from high- and low-socioeconomic status (SES) backgrounds--is well-known in educational research. The SES achievement gap has been documented across a wide range of countries. What is unknown in most countries is whether the SES…
ERIC Educational Resources Information Center
Davenport, Teresa L.
2011-01-01
The purpose of this study was to determine if a summer camp utilizing academic and behavioral remediation programming could increase the academic achievement of children with autism spectrum disorders. Academic achievement was measured using the Wide Range Achievement Test-Fourth Edition (WRAT4; Wilkinson & Robertson, 2006) and an Informal…
ERIC Educational Resources Information Center
Brenton, Beatrice White; Gilmore, Doug
An operational index of discrepancy between ability and achievement using the Wechsler Intelligence Scale for Children and the Peabody Individual Achievement Test (PIAT) was tested with 50 male and 10 female legally identified learning disabled (LD) children (mean age 9 years 2 months). Use of the index identified 74% of the males and 30% of the…
ERIC Educational Resources Information Center
Thode, Kathleen B., Ed.
The document reports on a 1976 conference discussing critical issues related to income maintenance and full employment. The objective is to explore the persistence of inequality and want in America and the issue of achieving more equality through income maintenance programs and full employment. Major topics include values issues; income…
A high-resolution full-field range imaging system
NASA Astrophysics Data System (ADS)
Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.
2005-08-01
There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.
Can the multiple mini-interview predict academic achievement in medical school?
Kim, Ja Kyoung; Kang, Seok Hoon; Lee, Hee Jae; Yang, JeongHee
2014-09-01
The purpose of this study was to determine whether the multiple mini-interview (MMI) predicts academic achievement for subjects in a medical school curriculum. Of 49 students who were admitted in 2008, 46 students finished the entire medical education curriculum within 4 years. We calculated the Pearson correlation coefficients between the total MMI score of the 46 graduates and their academic achievements in all subjects of the curriculum. The correlation coefficients between total MMI score and academic achievement in Medical Interview and History Taking, Problem-Based Learning, Doctoring I, and Clinical Practice of Surgery ranged from 0.4 to 0.7, indicating that they were moderately related. The values between total MMI score and achievement in Research Overview, Technical and Procedural Skills, Clinical Performance Examinations 1 and 3, Clinical Practice of Laboratory Medicine and Psychiatry, Neurology, and Orthopedics ranged from 0.2 to 0.4, which meant that they were weakly related. MMI score can predict medical student' academic achievement in subjects in the medical humanities and clinical practice.
NASA Astrophysics Data System (ADS)
Sun, Y. W.; Liu, C.; Xie, P. H.; Hartl, A.; Chan, K. L.; Tian, Y.; Wang, W.; Qin, M.; Liu, J. G.; Liu, W. Q.
2015-12-01
In this paper, we demonstrate achieving accurate industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm. The introduced analyzer features with large dynamic measurement range and correction of interferences from other co-existing infrared absorbers, e.g., NO, CO, CO2, NO2, CH4, HC, N2O and H2O. Both effects have been the major limitations of industrial SO2 emissions monitoring. The multi-channel gas analyzer measures 11 different wavelength channels simultaneously in order to achieve correction of several major problems of an infrared gas analyzer, including system drift, conflict of sensitivity, interferences among different infrared absorbers and limitation of measurement range. The optimized algorithm makes use of a 3rd polynomial rather than a constant factor to quantify gas-to-gas interference. The measurement results show good performance in both linear and nonlinear range, thereby solving the problem that the conventional interference correction is restricted by the linearity of both intended and interfering channels. The result implies that the measurement range of the developed multi-channel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated by experimental laboratory calibration. An excellent agreement was achieved with a Pearson correlation coefficient (r2) of 0.99977 with measurement range from ~5 ppmv to 10 000 ppmv and measurement error <2 %. The instrument was also deployed for field measurement. Emissions from 3 different factories were measured. The emissions of these factories have been characterized with different co-existing infrared absorbers, covering a wide range of concentration levels. We compared our measurements with the commercial SO2 analyzers. The overall good agreements are achieved.
NASA Astrophysics Data System (ADS)
Lau, Shun
The dissertation presents two analytic approaches, a variable-centered and person-centered approach, to investigating holistic patterns of the cognitive, motivational, and affective correlates of science achievement and engagement in a sample of 491 10th and 11th grade high-school students. Building on Snow's (1989) idea of two pathways to achievement outcomes, Study 1 adopted a variable-centered approach to examining how cognitive and motivational factors associated with the performance and commitment pathways, respectively, contributed to the prediction of achievement outcomes in science. Results of hierarchical regression analyses showed that (a) students' cognitive abilities were the strongest predictors of their performance in science as measured by standardized test scores; (b) motivational processes enhanced the predictive validity for science test scores and grades beyond the variance accounted for by ability and demography; (c) motivational processes were the strongest predictors of students' commitment to science in the form of situational engagement and anticipated choices of science-related college majors and careers; and (d) competence beliefs served as a point of contact between the performance and commitment pathways. These results are consistent with Snow's (1989) conjecture that both performance and commitment pathway-related factors are necessary for understanding the full range of person-level inputs to achievement outcomes. Study 2 adopted a person-centered approach to examining holistic organizations of psychological factors within individuals and their relations to science achievement and engagement. Four types of students characterized by unique configurations of cognitive, motivational, and affective attributes were identified in both the male and female subsamples using inverse factor analysis. Type membership was found to distinguish students in various indicators of science achievement and engagement. Two of the four types were also found to generalize across gender groups. These two generalizable types resembled the mastery-oriented and helpless patterns identified in motivational research and the resilient and overcontrolled patterns identified in personality research. Study 2 provides empirical evidence for the replicability, generalizability, and validity of the identified types in the domain of science. It also demonstrates the importance of examining holistic patterns of individuals' psychological profiles and the utility of inverse factor analysis in person-centered research.
Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail
NASA Technical Reports Server (NTRS)
Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.
2016-01-01
This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
NASA Technical Reports Server (NTRS)
Gregg, Dane W.; Hall, Susan E.
1996-01-01
Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently in use in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development, consisting of a cell stack, gas management, oxygen storage, electrolyte management coolant and controller subsystems. It is designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modification to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various materials and components is complete. Sub=scale (short stack) system testing is complete. A full-scale demonstration unit is now under construction for testing in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussion of future directions for this technology.
Energetics of Sn 2+ isomorphic substitution into hydroxylapatite: First-principles predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja
2016-11-04
In this study, the energetics of Sn 2+ substitution into the Ca 2+ sublattice of hydroxylapatite (HA), Ca 10(PO 4) 6(OH) 2, has been investigated within the framework of density functional theory. Calculations reveal that Sn 2+ incorporation via coupled substitutions at Ca(II) sites is energetically favourable up to a composition of Sn 6Ca 4(PO 4) 6(OH) 2, and further substitutions at Ca(I) sites proceed once full occupancy of Ca(II) sites by Sn 2+ is achieved. Compositions of Sn xCa 10–x(PO 4) 6(OH) 2 (x = 4–9) are predominant, with an optimal stoichiometry of Sn 8Ca 2(PO 4) 6(OH) 2,more » and Sn-substituted HA follows approximately Vegard's law across the entire composition range.« less
Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings
NASA Astrophysics Data System (ADS)
Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui
2016-03-01
We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.
Lafont, U; van Zeijl, H; van der Zwaag, S
2012-11-01
Synthetic systems with intrinsic self-repairing or self-healing abilities have emerged during the past decade. In this work, the influence of the cross-linker and chain rigidity on the healing ability of thermoset rubbers containing disulfide bonds have been investigated. The produced materials exhibit adhesive and cohesive self-healing properties. The recovery of these two functionalities upon the thermally triggered healing events has shown to be highly dependent on the network cross-link density and chain rigidity. As a result, depending on the rubber thermoset intrinsic physical properties, the thermal mending leading to full cohesive recovery can be achieved in 20-300 min at a modest healing temperature of 65 °C. The adhesive strength ranges from 0.2 to 0.5 MPa and is fully recovered even after multiple failure events.
NASA Astrophysics Data System (ADS)
Sultana, Jakeya; Islam, Md. Saiful; Atai, Javid; Islam, Muhammad Rakibul; Abbott, Derek
2017-07-01
We demonstrate a photonic crystal fiber with near-zero flattened dispersion, ultralower effective material loss (EML), and negligible confinement loss for a broad spectrum range. The use of cyclic olefin copolymer Topas with improved core confinement significantly reduces the loss characteristics and the use of higher air filling fraction results in flat dispersion characteristics. The properties such as dispersion, EML, confinement loss, modal effective area, and single-mode operation of the fiber have been investigated using the full-vector finite element method with the perfectly matched layer absorbing boundary conditions. The practical implementation of the proposed fiber is achievable with existing fabrication techniques as only circular-shaped air holes have been used to design the waveguide. Thus, it is expected that the proposed terahertz waveguide can potentially be used for flexible and efficient transmission of terahertz waves.
Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes.
Zeng, Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun, Wenbing
2008-05-01
Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 murad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.
Remote Operations and Ground Control Centers
NASA Technical Reports Server (NTRS)
Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee
2004-01-01
The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.
Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses
Huang, Xiaojing; Xu, Weihe; Nazaretski, Evgeny; ...
2017-04-05
Here, we report scanning hard x-ray imaging with a monolithic focusing optic consisting of two multilayer Laue lenses (MLLs) bonded together. With optics pre-characterization and accurate control of the bonding process, we show that a common focal plane for both MLLs can be realized at 9.317 keV. Using bonded MLLs, we obtained a scanning transmission image of a star test pattern with a resolution of 50 × 50 nm 2. By applying a ptychography algorithm, we obtained a probe size of 17 × 38 nm 2 and an object image with a resolution of 13 × 13 nm 2. Finally,more » the significant reduction in alignment complexity for bonded MLLs will greatly extend the application range in both scanning and full-field x-ray microscopies.« less
Barla, Alessandro; Nicolas, Josep; Cocco, Daniele; ...
2016-10-07
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X-ray absorption and scattering experiments using soft X-rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed-included-angle, variable-line-spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end-stations, one for X-ray magnetic circular dichroism and the other for resonant magnetic scattering. In conclusion, the commissioning results show that the expected beamline performance ismore » achieved both in terms of energy resolution and of photon flux at the sample position.« less
Farace, P; Deidda, M A; Amichetti, M
2015-10-01
The recent EORTC 10981-22023 AMAROS trial showed that axillary radiotherapy and axillary lymph node dissection provide comparable local control and reduced lymphoedema in the irradiated group. However, no significant differences between the two groups in range of motion and quality of life were reported. It has been acknowledged that axillary irradiation could have induced some toxicity, particularly shoulder function impairment. In fact, conventional breast irradiation by tangential beams has to be modified to achieve full-dose coverage of the axillary nodes, including in the treatment field a larger portion of the shoulder structures. In this scenario, alternative irradiation techniques were discussed. Compared with modern photon techniques, axillary irradiation by proton therapy has the potential for sparing the shoulder without detrimental increase of the medium-to-low doses to the other normal tissues.
The PIAA Coronagraph: Optical design and Diffraction Effects
NASA Astrophysics Data System (ADS)
Pluzhnik, E. A.; Guyon, O.; Ridgway, S.; Martinache, F.; Woodruff, R.; Blain, C.; Galicher, R.
2005-12-01
Properly apodized pupils are suitable for high dynamical range imaging of extrasolar terrestrial planets. Phase-induced amplitude apodization (PIAA) of the telescope pupil (Guyon 2003) combines the advantages of classical pupil apodization with full throughput, no loss of angular resolution and low chromaticity. Diffraction propagation effects can decrease both the achieved contrast and the spectral bandwidth of the coronagraph. We show here how the diffraction effects in the PIAA optics can be corrected by an appropriate optical design. The proposed hybrid coronagraph design preserves the 10-10 PSF contrast at ≈ 1.5 λ /d required for efficient exoplanet imaging over the whole visible spectrum. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.
Hands-Free Transcranial Color Doppler Probe
NASA Technical Reports Server (NTRS)
Chin, Robert; Madala, Srihdar; Sattler, Graham
2012-01-01
Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.
Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaojing; Xu, Weihe; Nazaretski, Evgeny
Here, we report scanning hard x-ray imaging with a monolithic focusing optic consisting of two multilayer Laue lenses (MLLs) bonded together. With optics pre-characterization and accurate control of the bonding process, we show that a common focal plane for both MLLs can be realized at 9.317 keV. Using bonded MLLs, we obtained a scanning transmission image of a star test pattern with a resolution of 50 × 50 nm 2. By applying a ptychography algorithm, we obtained a probe size of 17 × 38 nm 2 and an object image with a resolution of 13 × 13 nm 2. Finally,more » the significant reduction in alignment complexity for bonded MLLs will greatly extend the application range in both scanning and full-field x-ray microscopies.« less
Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.
Levy-Sakin, Michal; Ebenstein, Yuval
2013-08-01
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material. Optical mapping of DNA grants access to genetic and epigenetic information on individual DNA molecules up to ∼1 Mbp in length. Fluorescent labeling of specific sequence motifs, epigenetic marks and other genomic information on individual DNA molecules generates a high content optical barcode along the DNA. By stretching the DNA to a linear configuration this barcode may be directly visualized by fluorescence microscopy. We discuss the advances of these methods in light of recent developments in nano-fabrication and super-resolution optical imaging (nanoscopy) and review the latest achievements of optical mapping in the context of genomic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.
2004-01-01
The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.
Effects of individualized assignments on biology achievement
NASA Astrophysics Data System (ADS)
Kremer, Philip L.
A pretest-posttest, randomized, two groups, experimental, factorial design compared effects of detailed and nondetailed assignments on biology achievement over seven and a half months. Detailed assignments (favoring field independence and induction) employed block diagrams and stepwise directions. Nondetailed assignments (favoring field dependence and deduction) virtually lacked these. The accessible population was 101 tenth grade preparatory school male students. The 95 students enrolled in first year biology constituted the sample. Two by three ANOVA was done on residualized posttest score means of the students. Totally, the detailed students achieved significantly higher than the nondetailed students. This significantly higher achievement was only true of detailed students in the middle thirds of the deviation intelligence quotient (DIQ) range and of the grade point average (G.P.A.) range after the breakdown into upper, middle, and lower thirds of intellectual capability (ability and achievement). The upper third detailed DIQ grouping indirectly achieved higher than its peers, whereas the lower detailed DIQ third achieved lower than its peers. Thus, high capability students apparently benefit from flow and block diagrams, inductions, field independence, and high structure, whereas low capability students may be hindered by these.
Bairoliya, Neha; Fink, Günther
2018-03-01
While the high prevalence of preterm births and its impact on infant mortality in the US have been widely acknowledged, recent data suggest that even full-term births in the US face substantially higher mortality risks compared to European countries with low infant mortality rates. In this paper, we use the most recent birth records in the US to more closely analyze the primary causes underlying mortality rates among full-term births. Linked birth and death records for the period 2010-2012 were used to identify the state- and cause-specific burden of infant mortality among full-term infants (born at 37-42 weeks of gestation). Multivariable logistic models were used to assess the extent to which state-level differences in full-term infant mortality (FTIM) were attributable to observed differences in maternal and birth characteristics. Random effects models were used to assess the relative contribution of state-level variation to FTIM. Hypothetical mortality outcomes were computed under the assumption that all states could achieve the survival rates of the best-performing states. A total of 10,175,481 infants born full-term in the US between January 1, 2010, and December 31, 2012, were analyzed. FTIM rate (FTIMR) was 2.2 per 1,000 live births overall, and ranged between 1.29 (Connecticut, 95% CI 1.08, 1.53) and 3.77 (Mississippi, 95% CI 3.39, 4.19) at the state level. Zero states reached the rates reported in the 6 low-mortality European countries analyzed (FTIMR < 1.25), and 13 states had FTIMR > 2.75. Sudden unexpected death in infancy (SUDI) accounted for 43% of FTIM; congenital malformations and perinatal conditions accounted for 31% and 11.3% of FTIM, respectively. The largest mortality differentials between states with good and states with poor FTIMR were found for SUDI, with particularly large risk differentials for deaths due to sudden infant death syndrome (SIDS) (odds ratio [OR] 2.52, 95% CI 1.86, 3.42) and suffocation (OR 4.40, 95% CI 3.71, 5.21). Even though these mortality differences were partially explained by state-level differences in maternal education, race, and maternal health, substantial state-level variation in infant mortality remained in fully adjusted models (SIDS OR 1.45, suffocation OR 2.92). The extent to which these state differentials are due to differential antenatal care standards as well as differential access to health services could not be determined due to data limitations. Overall, our estimates suggest that infant mortality could be reduced by 4,003 deaths (95% CI 2,284, 5,587) annually if all states were to achieve the mortality levels of the best-performing state in each cause-of-death category. Key limitations of the analysis are that information on termination rates at the state level was not available, and that causes of deaths may have been coded differentially across states. More than 7,000 full-term infants die in the US each year. The results presented in this paper suggest that a substantial share of these deaths may be preventable. Potential improvements seem particularly large for SUDI, where very low rates have been achieved in a few states while average mortality rates remain high in most other areas. Given the high mortality burden due to SIDS and suffocation, policy efforts to promote compliance with recommended sleeping arrangements could be an effective first step in this direction.
Chagas disease: an impediment in achieving the Millennium Development Goals in Latin America
Franco-Paredes, Carlos; Von, Anna; Hidron, Alicia; Rodríguez-Morales, Alfonso J; Tellez, Ildefonso; Barragán, Maribel; Jones, Danielle; Náquira, Cesar G; Mendez, Jorge
2007-01-01
Background Achieving sustainable economic and social growth through advances in health is crucial in Latin America within the framework of the United Nations Millennium Development Goals. Discussion Health-related Millennium Development Goals need to incorporate a multidimensional approach addressing the specific epidemiologic profile for each region of the globe. In this regard, addressing the cycle of destitution and suffering associated with infection with Trypanosoma cruzi, the causal agent of Chagas disease of American trypanosomiasis, will play a key role to enable the most impoverished populations in Latin America the opportunity to achieve their full potential. Most cases of Chagas disease occur among forgotten populations because these diseases persist exclusively in the poorest and the most marginalized communities in Latin America. Summary Addressing the cycle of destitution and suffering associated with T. cruzi infection will contribute to improve the health of the most impoverished populations in Latin America and will ultimately grant them with the opportunity to achieve their full economic potential. PMID:17725836
Garcia-Ruiz, Andres; Pastor-Graells, Juan; Martins, Hugo F; Tow, Kenny Hey; Thévenaz, Luc; Martin-Lopez, Sonia; Gonzalez-Herraez, Miguel
2017-02-06
Chemical sensing using optical fibers is often challenging, as it is generally difficult to achieve strong interaction between the guided light and the analyte at the wavelength of interest for performing the detection. Despite this difficulty, many schemes exist (and can be found in the literature) for point chemical fiber sensors. However, the challenge increases even further when it comes to performing fully distributed chemical sensing. In this case, the optical signal which interacts with the analyte is typically also the signal that has to travel to and from the interrogator: for a good sensitivity, the light should interact strongly with the analyte, leading inevitably to an increased loss and a reduced range. Few works in the literature actually provide demonstrations of truly distributed chemical sensing and, although there have been several attempts to realize these sensors (e.g. based on special fiber coatings), the vast majority of these attempts has failed to reach widespread use due to several reasons, among them: lack of sensitivity or selectivity, lack of range or resolution, cross sensitivity to temperature or strain, or need to work at specific wavelengths where fiber instrumentation becomes extremely expensive or unavailable. In this work we provide a preliminary demonstration of the possibility of achieving distributed detection of gas presence with spectroscopic selectivity, high spatial resolution, potential for long range measurements and feasibility of having most of the interrogator system working at conventional telecom wavelengths. For a full exploitation of this concept, new fibers (or more likely, fiber bundles) should be developed capable of guiding specific wavelengths in the IR (corresponding to gas absorption wavelengths) with good overlap with the analyte while also having a solid core with good transmission behavior at 1.55 μm, and good thermal coupling between the two guiding structures.
Characterization of the Outer Barrel modules for the upgrade of the ALICE Inner Tracking System
NASA Astrophysics Data System (ADS)
Di Ruzza, B.
2017-09-01
ALICE is one of the four large detectors at the CERN LHC collider, designed to address the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma using proton-proton, proton-nucleus, and nucleus-nucleus collisions. Despite the success already reached in achieving these physics goals, there are several measurements still to be finalized, like high precision measurements of rare probes (D mesons, Lambda baryons and B mesons decays) over a broad range of transverse momenta. In order to achieve these new physics goals, a wide upgrade plan was approved that combined with a significant increase of luminosity will enhance the ALICE physics capabilities enormously and will allow the achievement of these fundamental measurements. The Inner Tracking System (ITS) upgrade of the ALICE detector is one of the major improvements of the experimental set-up that will take place in 2019-2020 when the whole ITS sub-detector will be replaced with one realized using a innovative monolithic active pixel silicon sensor, called ALPIDE. The upgraded ITS will be realized using more than twenty-four thousand ALPIDE chips organized in seven different cylindrical layers, for a total surface of about ten square meters. The main features of the new ITS are a low material budget, high granularity and low power consumption. All these peculiar capabilities will allow for full reconstruction of rare heavy flavour decays and the achievement of the physics goals. In this paper after an overview of the whole ITS upgrade project, the construction procedure of the basic building block of the detector, namely the module, and its characterization in laboratory will be presented.
40 CFR 91.317 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to optimize performance on the most sensitive range to be used. (2) Zero the carbon monoxide analyzer with either purified synthetic air or zero-grade nitrogen. (3) Bubble a mixture of three percent CO2 in... than one percent of full scale for ranges above 300 ppm full scale or more than three ppm on ranges...
Advances in enhanced biological phosphorus removal: from micro to macro scale.
Oehmen, Adrian; Lemos, Paulo C; Carvalho, Gilda; Yuan, Zhiguo; Keller, Jürg; Blackall, Linda L; Reis, Maria A M
2007-06-01
The enhanced biological phosphorus removal (EBPR) process has been implemented in many wastewater treatment plants worldwide. While the EBPR process is indeed capable of efficient phosphorus (P) removal performance, disturbances and prolonged periods of insufficient P removal have been observed at full-scale plants on numerous occasions under conditions that are seemingly favourable for EBPR. Recent studies in this field have utilised a wide range of approaches to address this problem, from studying the microorganisms that are primarily responsible for or detrimental to this process, to determining their biochemical pathways and developing mathematical models that facilitate better prediction of process performance. The overall goal of each of these studies is to obtain a more detailed insight into how the EBPR process works, where the best way of achieving this objective is through linking together the information obtained using these different approaches. This review paper critically assesses the recent advances that have been achieved in this field, particularly relating to the areas of EBPR microbiology, biochemistry, process operation and process modelling. Potential areas for future research are also proposed. Although previous research in this field has undoubtedly improved our level of understanding, it is clear that much remains to be learned about the process, as many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.
Chen, Jiann-Jong; Kung, Che-Min
2010-09-01
The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.
Yu, Z; Zheng, L; Zhang, Y; Li, J; Ma, Bao'an
2009-05-14
This study was designed to evaluate the functional and radiological outcomes of patients with complex tibial plateau fractures treated with double-buttress plate fixation. Sixty five cases of complex (Schatzker type V and VI) tibial plateau fractures were treated with double-buttress plate fixation in our centre from September 2001 to September 2006 through two separate plate incisions. Fifty four patients were followed up for a period ranging from 12 to 48 months and evaluated for the functional and radiological outcomes by a series of standard questionnaire and measurement. Due to the good exposure without any extensive soft-tissue dissection of the double-buttress plate fixation, the fractures in all 54 patients were healed and the treatment achieved greater than 90% of satisfactory-to-excellent rates of reduction. The mean time of bone union was 15.4 weeks (range, 12-30 weeks), and the mean time of full weight-bearing was 18.7 weeks (range, 14-26 weeks). At the final follow-up visit, no patients showed knee instability; the mean range of motion was 107.6 degrees (range, 85 degrees -130 degrees ). For all patients, no statistically significant difference in the functional outcomes was observed between their 6-months and final follow-up visits; or in the radiological findings between their immediate postoperative and final follow-up examinations. Double-buttress plate fixation is a feasible treatment option for bilcondylar and complex tibial plateau fractures. Although technically demanding, it offers reliable stability without additional postoperative adjuvant external fixation, and at the same time avoids extensive soft tissue dissection, allowing the early painless range of motion.
Foster, Jake D; Hall, Nigel J; Keys, S Charles; Burge, David M
2018-06-02
Many pediatric surgeons have limited experience of esophageal replacement. This study reports outcomes of esophageal replacement by gastric transposition performed by a single UK-based pediatric surgeon. Consecutive patients were identified who underwent esophageal replacement by gastric transposition over a 28 year period. Clinical and demographic data were collected. Weight-for-age Z-scores were calculated for esophageal atresia patients. Nineteen patients were identified. Indication in the majority was long-gap esophageal atresia (n = 17; 10 with tracheoesophageal fistula). At surgery, median age was 8.5 months (range 2-55); median weight was 7.4 kg (range 4.0-17.4 kg). A right-sided thoracotomy or transhiatal approach was used. Median postoperative length of stay was 17.5 days (range 7-130); median intensive care stay was three days (range 1-63). There were no deaths. Anastomotic leak rate at 30 days was 10.5% (n = 2). One patient required early stricture dilatation. Median weight-for-age Z-score increased from -2.17 at one year of age to -1.86, -1.70 and -1.93 at 5, 10 and 15 years. Esophageal replacement by gastric transposition offers a potentially life-changing treatment; however, it is associated with significant morbidity. The majority of patients eventually achieve full oral feeding and maintenance of weight gain trajectory. A right-sided approach to the esophagus is feasible. Treatment Study. IV. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
DeBerry, Karen E.
2011-01-01
Entrance age in kindergarten has been a controversial issue as the range from the youngest to the oldest student spans up to 24 months. This range leaves a heterogeneous gap for teachers who are already differentiating for their English Language Learners, struggling students, and high achieving students. This is compounded by the fact that the…
Rehabilitation exercise program after surgical treatment of pectoralis major rupture. A case report.
Vasiliadis, Angelo V; Lampridis, Vasileios; Georgiannos, Dimitrios; Bisbinas, Ilias G
2016-07-01
To present a rehabilitation exercise program and suggest a schedule of activities for daily living and participation in sports after surgical treatment of a pectoralis major rupture. A single case study. Hospital-based study, Thessaloniki, Greece. We present a 30-year-old male athlete (height, 196 cm; weight, 90 kg; right hand dominant) with a complete rupture of the pectoralis major tendon after a fall. The athlete received a post-operative rehabilitation exercise program for 16 weeks. During the program, there was a gradual increase in the exercise program regime and load across the sessions according to the specific case demands. Shoulder function was evaluated using Constant score. Magnetic resonance imaging (MRI) confirmed the diagnosis and the patient had surgical treatment repairing-reattaching the tendon back to its insertion using a bone anchor. At the end of the rehabilitation exercise program, the patient had full range of movement, normal muscle power and a return back to his previous level of athletic activities achieved. Post-operatively, a progressive rehabilitation protocol contributed to the patients' full recovery and allowed an early return to activities of daily living and participation in sports. Copyright © 2016 Elsevier Ltd. All rights reserved.
A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.
Guerrero, Federico N; Spinelli, Enrique M
2017-10-01
Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.
A survey of the state of the art and focused research in range systems, task 2
NASA Technical Reports Server (NTRS)
Yao, K.
1986-01-01
Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.
Pimkumwong, Narongrit; Wang, Ming-Shyan
2018-02-01
This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A
2018-07-01
Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Beyond the School Gates: Can Full Service and Extended Schools Overcome Disadvantage?
ERIC Educational Resources Information Center
Cummings, Colleen; Dyson, Alan; Todd, Liz
2011-01-01
This book, for the first time ever, critically examines the role of full service and extended schools. The authors draw on their extensive international evaluations of this radical new phenomenon to ask: (1) What do extended or full service schools hope to achieve, and why should services based on schools be any more effective than services…
IQ and Neuropsychological Predictors of Academic Achievement
ERIC Educational Resources Information Center
Mayes, Susan Dickerson; Calhoun, Susan L.; Bixler, Edward O.; Zimmerman, Dennis N.
2009-01-01
Word reading and math computation scores were predicted from Wechsler Abbreviated Scale of Intelligence Full Scale IQ, 10 neuropsychological tests, and parent attention deficit hyperactivity disorder (ADHD) ratings in 214 general population elementary school children. IQ was the best single predictor of achievement. In addition, Digit Span…
ERIC Educational Resources Information Center
Moreland Elementary School District, San Jose, CA.
THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Recognition for special effort and achievement has been noted as a component of effective schools. Schools in the Moreland School District have effectively improved standards of discipline and achievement by providing forty-six different ways for children to receive positive recognition. Good…
1988-10-03
full achievable region is achievable if there is only a bounded degree of asynchronism. E. Arikan , in a Ph.D. thesis [Ari85], extended sequential...real co-operation is required to reduce the number of transmissions to O(log log N). 14 REFERENCES [Ari85] E. Arikan , "Sequential Decoding for Multiple
Benoit, Isabelle; Coutard, Bruno; Oubelaid, Rachid; Asther, Marcel; Bignon, Christophe
2007-09-01
Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorganisms and directed against the backbone and the side chains of plant cell wall polysaccharides. Among side chains degrading enzymes, the feruloyl esterase A (FAEA) specifically removes feruloyl residues. Thus, FAEA has potential applications in a wide range of industrial processes such as paper bleaching or bio-ethanol production. To gain insight into FAEA hydrolysis activity, we solved its crystal structure. In this paper, we report how the use of four consecutive factorial approaches (two incomplete factorials, one sparse matrix, and one full factorial) allowed expressing in Escherichia coli, refolding and then crystallizing Aspergillus niger FAEA in 6 weeks. Culture conditions providing the highest expression level were determined using an incomplete factorial approach made of 12 combinations of four E. coli strains, three culture media and three temperatures (full factorial: 36 combinations). Aspergillus niger FAEA was expressed in the form of inclusion bodies. These were dissolved using a chaotropic agent, and the protein was purified by affinity chromatography on Ni column under denaturing conditions. A suitable buffer for refolding the protein eluted from the Ni column was found using a second incomplete factorial approach made of 96 buffers (full factorial: 3840 combinations). After refolding, the enzyme was further purified by gel filtration, and then crystallized following a standard protocol: initial crystallization conditions were found using commercial crystallization screens based on a sparse matrix. Crystals were then optimized using a full factorial screen.
Jiang, Hao; Kaminska, Bozena
2018-04-24
To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.
Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui
2018-03-30
A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Helms, E R; Fitschen, P J; Aragon, A A; Cronin, J; Schoenfeld, B J
2015-03-01
The anabolic effect of resistance training can mitigate muscle loss during contest preparation. In reviewing relevant literature, we recommend a periodized approach be utilized. Block and undulating models show promise. Muscle groups should be trained 2 times weekly or more, although high volume training may benefit from higher frequencies to keep volume at any one session from becoming excessive. Low to high (~3-15) repetitions can be utilized but most repetitions should occur in the 6-12 range using 70-80% of 1 repetition maximum. Roughly 40-70 reps per muscle group per session should be performed, however higher volume may be appropriate for advanced bodybuilders. Traditional rest intervals of 1-3 minutes are adequate, but longer intervals can be used. Tempo should allow muscular control of the load; 1-2 s concentric and 2-3 s eccentric tempos. Training to failure should be limited when performing heavy loads on taxing exercises, and primarily relegated to single-joint exercises and higher repetitions. A core of multi-joint exercises with some single-joint exercises to address specific muscle groups as needed should be used, emphasizing full range of motion and proper form. Cardiovascular training can be used to enhance fat loss. Interference with strength training adaptations increases concomitantly with frequency and duration of cardiovascular training. Thus, the lowest frequency and duration possible while achieving sufficient fat loss should be used. Full-body modalities or cycling may reduce interference. High intensities may as well; however, require more recovery. Fasted cardiovascular training may not have benefits over fed-state and could be detrimental.
Ultra Barrier Topsheet Film for Flexible Photovoltaics with 3M Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funkenbusch, Arnie; Ruth, Charles
2014-12-30
In this DOE sponsored program, 3M achieved the critical UBT features to enable durable flexible high efficiency modules to be produced by a range of customers who have now certified the 3M UBT and are actively developing said flexible modules. The specific objectives and accomplishments of the work under this program were; Scale-up the current Generation-1 UBT from 12” width, as made on 3M’s pilot line, to 1+meter width full-scale manufacturing, while maintaining baseline performance metrics (see table below); This objective was fully met; Validate service life of Generation-1 UBT for the 25+ year lifetime demanded by the photovoltaic market;more » Aggressive testing revealed potential failure modes in the Gen 1 UBT. Deficiencies were identified and corrective action taken in the Gen 2 UBT; Develop a Generation-2 UBT on the pilot line, targeting improved performance relative to baseline, including higher %T (percent transmission), lower water vapor transmission rate (WVTR) with targets based on what the technology needs for 25 year lifetime, proven lifetime of 25 years in solar module construction in the field, and lower cost; Testing of UBT Gen 2 under a wide range of conditions presented in this report failed to reveal any failure mode. Therefore UBT Gen 2 is known to be highly durable. 3M will continue to test towards statistically validating a 25 year lifetime under 3M funding; Transfer Generation-2 UBT from the pilot line to the full-scale manufacturing line within three years; and This objective was fully met.« less
NASA Astrophysics Data System (ADS)
Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.
2013-04-01
Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.
Timing and documentation of key events in neonatal resuscitation.
Heathcote, Adam Charles; Jones, Jacqueline; Clarke, Paul
2018-04-30
Only a minority of babies require extended resuscitation at birth. Resuscitations concerning babies who die or who survive with adverse outcomes are increasingly subject to medicolegal scrutiny. Our aim was to describe real-life timings of key resuscitation events observed in a historical series of newborns who required full resuscitation at birth. Twenty-seven babies born in our centre over a 10-year period had an Apgar score of 0 at 1 min and required full resuscitation. The median (95% confidence interval) postnatal age at achieving key events were commencing cardiac compressions, 2.0 (1.5-4.0) min; endotracheal intubation, 3.8 (2.0-6.0) min; umbilical venous catheterisation 9.0 (7.5-12.0) min; and administration of first adrenaline dose 10.0 (8.0-14.0) min. The wide range of timings presented from real-life cases may prove useful to clinicians involved in medical negligence claims and provide a baseline for quality improvements in resuscitation training. What is Known: • Only a minority of babies require extended resuscitation at birth; these cases are often subject to medicolegal interrogation • Timings of key resuscitation events are poorly described and documentation of resuscitation events is often lacking yet is open to medicolegal scrutiny What is New: • We present a wide range of real-life timings of key resuscitation events during the era of routine newborn life support training • These timings may prove useful to clinicians involved in medical negligence claims and provide a baseline for quality improvements in resuscitation training.
Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori
2011-09-15
Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.
Very low level viraemia and risk of virological failure in treated HIV-1-infected patients.
Teira, R; Vidal, F; Muñoz-Sánchez, P; Geijo, P; Viciana, P; Ribera, E; Domingo, P; Castaño, M; Martínez, E; Roca, B; Puig, T; Estrada, V; Deig, E; Galindo, M J; de la Fuente, B; Lozano, F; Montero, M; Muñoz-Sanz, A; Sanchez, T; Terrón, A; Romero-Palacios, A; Lacalle, J R; Garrido, M; Suárez-Lozano, I
2017-03-01
The aim of the study was to investigate whether very low level viraemia (VLLV) (20-50 HIV-1 RNA copies/mL) was associated with increased risk of virological failure (VF) as compared with persistent full suppression (< 20 copies/mL). From the VACH Cohort database, we selected those patients who started antiretroviral therapy (ART) after January 1997 and who achieved effective viral suppression [two consecutive viral loads (VLs) < 50 copies/mL] followed by full suppression (at least one VL <20 copies/mL). We carried out survival analyses to investigate whether the occurrence of VLLV rather than maintaining full suppression at < 20 copies/mL was associated with virological failure (two consecutive VLs > 200 copies/mL or one VL > 200 copies/mL followed by a change of ART regimen, administrative censoring or loss to follow-up), adjusted for nadir CD4 cell count, sex, age, ethnicity, transmission group, type of ART and time on effective suppression at < 50 copies/mL. Of 21 480 patients who started ART, 13 674 (63.7%) achieved effective suppression at < 50 copies/mL, of whom 4289 (31.4%) further achieved full suppression at < 20 copies/mL after May 2009. A total of 2623 patients (61.1%) remained fully suppressed thereafter, while 1666 had one or more episodes of VL detection > 20 copies/mL (excluding virological failure). A total of 824 patients had VLLV after suppression at < 20 copies/mL. VLLV was not associated with virological failure as compared with persistent full suppression [hazard ratio (HR) 0.67; 95% confidence interval (CI) 0.44-1.00], independently of the number of blips recorded (from one to 18). In our population of HIV-infected patients on ART who achieved viral suppression at < 20 copies/mL, the risk of virological failure was no different for patients who remained fully suppressed compared with those who experienced subsequent episodes of VLLV. © 2016 British HIV Association.
Rock, Kat S; Torr, Steve J; Lumbala, Crispin; Keeling, Matt J
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT.
Torr, Steve J.; Lumbala, Crispin; Keeling, Matt J.
2017-01-01
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. Six key strategies and twelve variations were considered which covered a range of recruitment strategies for screening and vector control. It was found that effectiveness of HAT screening could be improved by increasing effort to recruit high-risk groups for screening. Furthermore, seven proposed strategies which included vector control were predicted to be sufficient to achieve an incidence of less than 1 reported case per 10,000 people by 2020 in the study region. All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT. PMID:28056016
Product costing practices in the North American hardwood component industry
Adrienn Andersch; Urs Buehlmann; Jan Wiedenbeck; Steve Lawser
2011-01-01
Companies, when bidding for jobs, need to be able to price products competitively while also assuring that the necessary profitability can be achieved. These goals, competitive pricing and profitability, cannot be reliably achieved unless industry participants possess a full understanding of their company's cost structure. Competitors blame companies without...
High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Donghai; Manthiram, Arumugam; Wang, Chao-Yang
High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlFmore » 3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi 0.76Co 0.10Mn 0.14O 2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g -1 at C/10 rate and 180 mA h g -1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.« less
NASA Technical Reports Server (NTRS)
Kahn, R. D.; Thurman, S.; Edwards, C.
1994-01-01
Doppler and ranging measurements between spacecraft can be obtained only when the ratio of the total received signal power to noise power density (P(sub t)/N(sub 0)) at the receiving spacecraft is sufficiently large that reliable signal detection can be achieved within a reasonable time period. In this article, the requirement on P(sub t)/N(sub 0) for reliable carrier signal detection is calculated as a function of various system parameters, including characteristics of the spacecraft computing hardware and a priori uncertainty in spacecraft-spacecraft relative velocity and acceleration. Also calculated is the P(sub t)/N(sub 0) requirements for reliable detection of a ranging signal, consisting of a carrier with pseudonoise (PN) phase modulation. Once the P(sub t)/N(sub 0) requirement is determined, then for a given set of assumed spacecraft telecommunication characteristics (transmitted signal power, antenna gains, and receiver noise temperatures) it is possible to calculate the maximum range at which a carrier signal or ranging signal may be acquired. For example, if a Mars lander and a spacecraft approaching Mars are each equipped with 1-m-diameter antennas, the transmitted power is 5 W, and the receiver noise temperatures are 350 K, then S-band carrier signal acquisition can be achieved at ranges exceeding 10 million km. An error covariance analysis illustrates the utility of in situ Doppler and ranging measurements for Mars approach navigation. Covariance analysis results indicate that navigation accuracies of a few km can be achieved with either data type. The analysis also illustrates dependency of the achievable accuracy on the approach trajectory velocity.
Evaluation of delivery of enteral nutrition in mechanically ventilated Malaysian ICU patients.
Yip, Keng F; Rai, Vineya; Wong, Kang K
2014-01-01
There are numerous challenges in providing nutrition to the mechanically ventilated critically ill ICU patient. Understanding the level of nutritional support and the barriers to enteral feeding interruption in mechanically ventilated patients are important to maximise the nutritional benefits to the critically ill patients. Thus, this study aims to evaluate enteral nutrition delivery and identify the reasons for interruptions in mechanically ventilated Malaysian patients receiving enteral feeding. A cross sectional prospective study of 77 consecutive patients who required mechanical ventilation and were receiving enteral nutrition was done in an open 14-bed intensive care unit of a tertiary hospital. Data were collected prospectively over a 3 month period. Descriptive statistical analysis were made with respect to demographical data, time taken to initiate feeds, type of feeds, quantification of feeds attainment, and reasons for feed interruptions. There are no set feeding protocols in the ICU. The usual initial rate of enteral nutrition observed in ICU was 20 ml/hour, assessed every 6 hours and the decision was made thereafter to increase feeds. The target calorie for each patient was determined by the clinician alongside the dietitian. The use of prokinetic agents was also prescribed at the discretion of the attending clinician and is commonly IV metoclopramide 10 mg three times a day. About 66% of patients achieved 80% of caloric requirements within 3 days of which 46.8% achieved full feeds in less than 12 hours. The time to initiate feeds for patients admitted into the ICU ranged from 0 - 110 hours with a median time to start feeds of 15 hours and the interquartile range (IQR) of 6-59 hours. The mean time to achieve at least 80% of nutritional target was 1.8 days ± 1.5 days. About 79% of patients experienced multiple feeding interruptions. The most prevalent reason for interruption was for procedures (45.1%) followed by high gastric residual volume (38.0%), diarrhoea (8.4%), difficulty in nasogastric tube placement (5.6%) and vomiting (2.9%). Nutritional inadequacy in mechanically ventilated Malaysian patients receiving enteral nutrition was not as common as expected. However, there is still room for improvement with regards to decreasing the number of patients who did not achieve their caloric requirement throughout their stay in the ICU.
Achievement and Intelligence in Primary and Elementary Classes for the Educable Mentally Retarded
ERIC Educational Resources Information Center
Sundean, David A.; Salopek, Thomas F.
1971-01-01
The Wide Range Achievement Test scores of educable mentally handicapped children in primary and elementary classes were correlated with their Binet or Wechsler IQ scores. It was found that the WISC was a better differential predictor of achievement in reading, spelling and arithmetic at the elementary level only. (Author)
Perceived Competence and Autonomy as Moderators of the Effects of Achievement Goal Orientations
ERIC Educational Resources Information Center
Cho, YoonJung; Weinstein, Claire Ellen; Wicker, Frank
2011-01-01
The primary purpose of this study was to investigate the roles of two moderators--perceived competence and perceived autonomy--in the relationships of achievement goal orientations with a broad range of learning-related variables, including interest, effort, learning strategy use and academic achievement. Perceived competence and autonomy played…
Kwong, Yok-Lam; Chan, Thomas S Y; Tan, Daryl; Kim, Seok Jin; Poon, Li-Mei; Mow, Benjamin; Khong, Pek-Lan; Loong, Florence; Au-Yeung, Rex; Iqbal, Jabed; Phipps, Colin; Tse, Eric
2017-04-27
Natural killer (NK)/T-cell lymphomas failing L-asparaginse regimens have no known salvage and are almost invariably fatal. Seven male patients with NK/T-cell lymphoma (median age, 49 years; range, 31-68 years) for whom a median of 2 (range, 1-5) regimens (including l-asparaginase regimens and allogeneic hematopoietic stem-cell transplantation [HSCT] in 2 cases) failed were treated with the anti-programmed death 1 (PD1) antibody pembrolizumab. All patients responded, according to various clinical, radiologic (positron emission tomography), morphologic, and molecular (circulating Epstein-Barr virus [EBV] DNA) criteria. Two patients achieved complete response (CR) in all parameters. Three patients achieved clinical and radiologic CRs, with two having molecular remission (undetectable EBV DNA) but minimal EBV-encoded RNA-positive cells in lesions comprising predominantly CD3 + CD4 + and CD3 + CD8 + T cells (which ultimately disappeared, suggesting they represented pseudoprogression) and one having detectable EBV DNA despite morphologic CR. Two patients achieved partial response (PR). After a median of 7 (range, 2-13) cycles of pembrolizumab and a follow-up of a median of 6 (range, 2-10) months, all five CR patients were still in remission. The only adverse event was grade 2 skin graft-versus-host disease in one patient with previous allogeneic HSCT. Expression of the PD1 ligand was strong in 4 patients (3 achieving CR) and weak in 1 (achieving PR). PD1 blockade with pembrolizumab was a potent strategy for NK/T-cell lymphomas failing l-asparaginase regimens. © 2017 by The American Society of Hematology.
Time Required for Institutional Review Board Review at One Veterans Affairs Medical Center
Hall, Daniel E.; Hanusa, Barbara H.; Stone, Roslyn A.; Ling, Bruce S.; Arnold, Robert M.
2015-01-01
IMPORTANCE Despite growing concern that institutional review boards (IRBs) impose burdensome delays on research, little is known about the time required for IRB review across different types of research. OBJECTIVE To measure the overall and incremental process times for IRB review as a process of quality improvement. DESIGN, SETTING, AND PARTICIPANTS After developing a detailed process flowchart of the IRB review process, 2 analysts abstracted temporal data from the records pertaining to all 103 protocols newly submitted to the IRB at a large urban Veterans Affairs medical center from June 1, 2009, through May 31, 2011. Disagreements were reviewed with the principal investigator to reach consensus. We then compared the review times across review types using analysis of variance and post hoc Scheffé tests after achieving normally distributed data through logarithmic transformation. MAIN OUTCOMES AND MEASURES Calendar days from initial submission to final approval of research protocols. RESULTS Initial IRB review took 2 to 4 months, with expedited and exempt reviews requiring less time (median [range], 85 [23–631] and 82 [16–437] days, respectively) than full board reviews (median [range], 131 [64–296] days; P = .008). The median time required for credentialing of investigators was 1 day (range, 0–74 days), and review by the research and development committee took a median of 15 days (range, 0–184 days). There were no significant differences in credentialing or research and development times across review types (exempt, expedited, or full board). Of the extreme delays in IRB review, 80.0% were due to investigators' slow responses to requested changes. There were no systematic delays attributable to the information security officer, privacy officer, or IRB chair. CONCLUSIONS AND RELEVANCE Measuring and analyzing review times is a critical first step in establishing a culture and process of continuous quality improvement among IRBs that govern research programs. The review times observed at this IRB are substantially longer than the 60-day target recommended by expert panels. The method described here could be applied to other IRBs to begin identifying and improving inefficiencies. PMID:25494359
NASA Astrophysics Data System (ADS)
Ritchie, W. J.; Dowlatabadi, H.
2017-12-01
Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing (RF). Pathways for long-run fossil energy use that map to total forcing outcomes are commonly depicted with integrated assessment models (IAMs). IAMs structure outlooks for 21st-century emissions with various theories for developments in demographics, economics, land-use, energy markets and energy service demands. These concepts are applied to understand global changes in two key factors relevant for scenarios of carbon emissions: total energy use (E) this century and the carbon intensity of that energy (F/E). A simple analytical and graphical approach can also illustrate the full range of outcomes for these variables to determine if IAMs provide sufficient coverage of the uncertainty space for future energy use. In this talk, we present a method for understanding uncertainties relevant to RF scenario components in a phase space. The phase space of a dynamic system represents significant factors as axes to capture the full range of physically possible states. A two-dimensional phase space of E and F/E presents the possible system states that can lead to various levels of total 21st-century carbon emissions. Once defined in this way, a phase space of these energy system coordinates allows for rapid characterization of large IAM scenario sets with machine learning techniques. This phase space method is applied to the levels of RF described by the Representative Concentration Pathways (RCPs). The resulting RCP phase space identifies characteristics of the baseline energy system outlooks provided by IAMs for IPCC Working Group III. We conduct a k-means cluster analysis to distinguish the major features of IAM scenarios for each RCP range. Cluster analysis finds the IAM scenarios in AR5 illustrate RCPs with consistent combinations of energy resources. This suggests IAM scenarios understate uncertainty ranges for future fossil energy combustion and are overly constrained, implying it is likely easier to achieve a 1.5˚ climate policy goal than previously demonstrated.
NASA Astrophysics Data System (ADS)
Guo, W.; Mols, Y.; Belz, J.; Beyer, A.; Volz, K.; Schulze, A.; Langer, R.; Kunert, B.
2017-07-01
Selective area growth of InGaAs inside highly confined trenches on a pre-patterned (001) Si substrate has the potential of achieving a high III-V crystal quality due to high aspect ratio trapping for improved device functionalities in Si microelectronics. If the trench width is in the range of the hetero-layer thickness, the relaxation mechanism of the mismatched III-V layer is no longer isotropic, which has a strong impact on the device fabrication and performance if not controlled well. The hetero-epitaxial nucleation of InxGa1-xAs on Si can be simplified by using a binary nucleation buffer such as GaAs. A pronounced anisotropy in strain release was observed for the growth of InxGa1-xAs on a fully relaxed GaAs buffer with a (001) surface inside 20 and 100 nm wide trenches, exploring the full composition range from GaAs to InAs. Perpendicular to the trench orientation (direction of high confinement), the strain release in InxGa1-xAs is very efficiently caused by elastic relaxation without defect formation, although a small compressive force is still induced by the trench side walls. In contrast, the strain release along the trenches is governed by plastic relaxation once the vertical film thickness has clearly exceeded the critical layer thickness. On the other hand, the monolithic deposition of mismatched InxGa1-xAs directly into a V-shaped trench bottom with {111} Si planes leads instantly to a pronounced nucleation of misfit dislocations along the {111} Si/III-V interfaces. In this case, elastic relaxation no longer plays a role as the strain release is ensured by plastic relaxation in both directions. Hence, using a ternary seed layer facilitates the integration of InxGa1-xAs covering the full composition range.
Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry
NASA Astrophysics Data System (ADS)
Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun
2018-06-01
The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.
ERIC Educational Resources Information Center
Kapikiran, Sahin
2012-01-01
The main purpose of this study was to examine the mediator and moderator role of self-handicapping and achievement goal orientations variables on the relationship between negative automatic thoughts intrinsic achievement motivation in high school students. 586 high school students, ranging in age from 14 to 20 (M = 16.08), adolescence students…
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
NASA Astrophysics Data System (ADS)
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
Yan Lu; Wing-Hung Ki
2014-06-01
A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.
NASA Astrophysics Data System (ADS)
Ueno, Katsunori; Tominaga, Kazuo; Tadokoro, Takahiro; Ishizawa, Koji; Takahashi, Yoshinori; Kuwabara, Hitoshi
2016-08-01
The investigation of air dose rates at locations in the Fukushima Dai-ichi Nuclear Power Station is necessary for safe removal of the molten nuclear fuel. The target performance for the investigation is to analyze a dose rate in the range of 10-3 Gy/h to 102 Gy/h with a measurement precision of ±4.0% full scale (F.S.) at a measurement interval of 60 s. In order to achieve this target, the authors proposed an optically stimulated luminescence (OSL) analysis method using prompt OSL for a wide dynamic range of dose rates; the OSL is generated using BaFBr:Eu with a fast decay time constant. The luminescence intensity by prompt OSL was formulated by the electron concentration of the trapping state during gamma ray and stimulation light irradiations. The prototype OSL monitor using BaFBr:Eu was manufactured for investigation of prompt OSL and evaluation of the measurement precision. The time dependence of the luminescence intensity by prompt OSL was analyzed by irradiating the OSL sensor in a 60Co irradiation facility. The measured dose rates were obtained in a prompt mode and an accumulating mode with a precision of ±3.3% F.S. for the dose rate range of 9.5 ×10-4 Gy/h to 1.2 ×102 Gy/h.
Assessing the applicability of the Taguchi design method to an interrill erosion study
NASA Astrophysics Data System (ADS)
Zhang, F. B.; Wang, Z. L.; Yang, M. Y.
2015-02-01
Full-factorial experimental designs have been used in soil erosion studies, but are time, cost and labor intensive, and sometimes they are impossible to conduct due to the increasing number of factors and their levels to consider. The Taguchi design is a simple, economical and efficient statistical tool that only uses a portion of the total possible factorial combinations to obtain the results of a study. Soil erosion studies that use the Taguchi design are scarce and no comparisons with full-factorial designs have been made. In this paper, a series of simulated rainfall experiments using a full-factorial design of five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m), five slope gradients (18%, 27%, 36%, 48%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h-1) were conducted. Validation of the applicability of a Taguchi design to interrill erosion experiments was achieved by extracting data from the full dataset according to a theoretical Taguchi design. The statistical parameters for the mean quasi-steady state erosion and runoff rates of each test, the optimum conditions for producing maximum erosion and runoff, and the main effect and percentage contribution of each factor obtained from the full-factorial and Taguchi designs were compared. Both designs generated almost identical results. Using the experimental data from the Taguchi design, it was possible to accurately predict the erosion and runoff rates under the conditions that had been excluded from the Taguchi design. All of the results obtained from analyzing the experimental data for both designs indicated that the Taguchi design could be applied to interrill erosion studies and could replace full-factorial designs. This would save time, labor and costs by generally reducing the number of tests to be conducted. Further work should test the applicability of the Taguchi design to a wider range of conditions.
'Management is a black art'--professional ideologies with respect to temporomandibular disorders.
Durham, J; Exley, C; Wassell, R; Steele, J G
2007-06-09
To gain a deeper understanding of the range of influences on the full range of dental professionals who provide treatment for temporomandibular disorders (TMD). Qualitative semi-structured interviews. Primary and secondary care in the North and South of the United Kingdom. A criterion-based purposive sample was taken of dental practitioners, comprising primary and secondary care practitioners. In-depth interviews were conducted and data collection and analysis occurred concurrently until data saturation was achieved. DATA AND DISCUSSION: There was a reported lack of adequate remuneration for provision of treatment for TMD within primary care. This alongside the primary care practitioners' reported uncertainty in diagnosis of TMD appeared to lead to a propensity for referral to secondary care. Practitioners recognised a poor and scanty evidence base on which to base their care, and this allowed for idiosyncratic practice. Often the outcome measure for treatment was a subjective questioning of the patient focussing mainly on relief of pain. There is a need for better quality evidence on which to base TMD treatment, more continuing professional development and improvement in contracting arrangements to enable primary practitioners to feel confident in managing TMD.
NASA Technical Reports Server (NTRS)
Chen, Chun-Yen; Shen, Jason Jiun-San; Lee, Typhoon; Calaway, Wallis; Veryovkin, Igor; Moore, Jerry; Pellin, Michael
2005-01-01
In anticipation of the return of comet (and ISM?) dust grains by the Stardust mission [1] in mid-January next year, Academia Sinica (AS) and Argonne National Laboratory (ANL) have entered into a collaboration to develop instrument and method for the isotopic analysis of these samples. We need to achieve the highest possible sensitivity so that we can analyze individual grains one at a time to the smallest possible size. Only by doing so can we hope to reach one of the main science goals of the mission, namely the recognition of those isotopically distinct grains each carrying the characteristic signature of a particular nucleosynthetic stage of its parent star. In order to facilitate the interpretation of these grains the second requirement of our method is that the measurements must be made over the widest possible mass range before samples exhaustion. For instance, the thermonuclear fusion reactions that produced the isotopes of various major elements of a wide mass range required drastically different temperatures. Therefore their abundances could constrain the conditions at greatly varying depth inside the source star hence its structure and evolution.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-07
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
Sha, G; Ringer, S P
2009-04-01
The effect of laser pulse energy on the composition measurement of an Al-Mg-Si-Cu alloy (AA6111) specimen has been investigated over a base temperature range of 20-80K and a voltage range of 2.5-5kV. Laser pulse energy must be sufficiently higher to achieve pulse-controlled field evaporation, which is at least 0.9nJ with a beam spot size of about 5microm, providing an equivalent voltage pulse fraction, approximately 14% at 80K for the alloy specimen. In contrast to the cluster composition, the measured specimen composition is sensitive to base temperature and laser energy changes. The exchange charge state under the influence of laser pulsing makes the detection of Si better at low base temperature, but detection of Cr and Mn is better at a higher temperature and using higher laser energy. No such effect occurs for detection of Mg and Cu under laser pulsing, although Mg concentration is sensitive to the analysis temperature under voltage pulsing. Mass resolution at full-width half-maximum is sensitive to local taper angle near the apex, but has little effect on composition measurement.
Volumetric HiLo microscopy employing an electrically tunable lens.
Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W
2016-06-27
Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.
Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis
2018-01-01
Bio-aromatics (benzene, toluene, xylenes, BTX) were prepared by the catalytic pyrolysis of six different black liquors using both in situ and ex situ approaches. A wide range of catalysts was screened and conditions were optimized in microscale reactors. Up to 7 wt % of BTX, based on the organic fraction of the black liquors, was obtained for both the in situ and ex situ pyrolysis (T = 500–600 °C) using a Ga-modified H-ZSM-5 catalyst. The in situ catalytic pyrolysis of black liquors from hardwood paper mills afforded slightly higher yields of aromatics/BTX than softwood black liquors, a trend that could be confirmed by the results obtained in the ex situ catalytic pyrolysis. An almost full deoxygenation of the lignin and carbohydrate fraction was achieved and both organic fractions were converted to a broad range of (substituted) aromatics. The zeolite catalyst used was remarkably stable and even after 100 experiments in batch mode with intermittent oxidative catalyst regeneration, the yields and selectivity toward BTX remained similar. The ex situ pyrolysis of black liquor has potential for large-scale implementation in a paper mill without disturbing the paper production process. PMID:29607268
NASA Astrophysics Data System (ADS)
Buffa, F.; Pinna, A.; Sanna, G.
2016-06-01
The Sardinia Radio Telescope (SRT) is a 64 m diameter antenna, whose primary mirror is equipped with an active surface capable to correct its deformations by means of a thick network of actuators. Close range photogrammetry (CRP) was used to measure the self-load deformations of the SRT primary reflector from its optimal shape, which are requested to be minimized for the radio telescope to operate at full efficiency. In the attempt to achieve such performance, we conceived a near real-time CRP system which requires the cameras to be installed in fixed positions and at the same time to avoid any interference with the antenna operativeness. The design of such system is not a trivial task, and to assist our decision we therefore developed a simulation pipeline to realistically reproduce and evaluate photogrammetric surveys of large structures. The described simulation environment consists of (i) a detailed description of the SRT model, included the measurement points and the camera parameters, (ii) a tool capable of generating realistic images accordingly to the above model, and (iii) a self-calibrating bundle adjustment to evaluate the performance in terms of RMSE of the camera configurations.
Full thickness skin grafts in periocular reconstructions: long-term outcomes.
Rathore, Deepa S; Chickadasarahilli, Swaroop; Crossman, Richard; Mehta, Purnima; Ahluwalia, Harpreet Singh
2014-01-01
To evaluate the outcomes of eyelid reconstruction in patients who underwent full thickness skin grafts. A retrospective, noncomparative intervention study of patients who underwent periocular reconstruction with full thickness skin grafts between 2005 and 2011. One hundred consecutive Caucasian patients were included in the study, 54 women and 46 men. Mean follow up was 32 months. Indications for full thickness skin grafts were excision of eyelid tumors (98%) and cicatricial ectropion (2%). Site of lid defects were lower lid (60%), medial canthus (32%), upper lid (6%), and lateral canthus (2%). The skin graft donor sites were supraclavicular (44%), upper eyelid (24%), inner brachial (18%), and postauricular (14%).Early postoperative complications included lower eyelid graft contracture (1%) and partial failure (1%). Late sequelae included lower eyelid graft contracture (4%) and hypertrophic scarring (23%). Of the 23 patients with hypertrophic scar, 21 achieved good outcomes following massage with silicone gel and steroid ointment and 2 had persistent moderate lumpiness. No statistically significant association was found between graft hypertrophy and donor site or graft size. As high as 95% of all patients achieved good final eyelid position. Good color match was seen in 94% and graft hypopigmentation in 6%. An association between hypopigmentation and supraclavicular and inner brachial donor site was found to be statistically significant. Most patients (94%) achieved good eyelid position and color match. Majority (91%) of the early postoperative cicatricial sequelae can be reversed by massage, steroid ointment, and silicone gel application. Full thickness skin grafts have excellent graft survival rates and have minimal donor site morbidity.
NASA Astrophysics Data System (ADS)
McCoy, Amy
2015-04-01
In arid regions, the challenge of balancing water use among a diversity of sectors expands in lock step with conditions of water stress that are exacerbated by climate variability, prolonged drought, and growing water-use demands. The elusiveness of achieving a sustainable balance under conditions of environmental change in the southwestern United States is evidenced by reductions in both overall water availability and freshwater ecosystem health, as well as by recent projections of shortages on the Colorado River within the next five years. The water sustainability challenge in this region, as well as drylands throughout the world, can therefore be viewed through the lens of water stress, a condition wherein demands on land and water -- including the needs of freshwater ecosystems -- exceed reliable supplies, and the full range of water needs cannot be met without tradeoffs across multiple uses. Water stress influences not only ecosystems, but a region's economy, land management, quality of life, and cultural heritage -- each of which requires water to thrive. With respect to promoting successful adaptation to climate change, achieving full water sustainability would allow for water to be successfully divided among water users -- including municipalities, agriculture, and freshwater ecosystems -- at a level that meets the goals of water users and the governing body. Over the last ten to fifteen years, the use of transactional approaches in the western U.S., Mexico, and Australia has proven to be a viable management tool for achieving stream flow and shallow aquifer restoration. By broad definition, environmental water transactions are an equitable and adaptable tool that brings diverse stakeholders to the table to facilitate a fair-market exchange of rights to use water in a manner that benefits both water users and the environment. This talk will present a basic framework of necessary stakeholder engagement, hydrologic conditions, enabling laws and policies, pertinent tools and techniques, and potential ecological outcomes that are essential components of environmental water transactions in the western United States. The overarching goal of the presentation seeks to explore ways in which environmental transactions can contribute to the protection and restoration of streams and shallow aquifers in arid and semi-arid regions across the globe.
Smith, Eric B; Shafi, Karim A; Greis, Ari C; Maltenfort, Mitchell G; Chen, Antonia F
2016-10-01
Flexion contracture after total knee arthroplasty (TKA) can cause significant dissatisfaction. Botulinum toxin A has shown improved extension in patients with spastic flexion contractures after TKA. The purpose of this study was to evaluate whether Botulinum toxin A improves knee extension for any patient with flexion contractures following TKA. A prospective, double-blinded, randomized controlled trial was conducted. Fourteen patients (15 knees), with a flexion contracture (≥10°) one month postoperatively, were randomized to receive either Botulinum toxin A or saline placebo to the affected hamstrings. The subject, surgeon, and administering physiatrist were blinded to the treatment group throughout the study. Subject range of motion (ROM) was evaluated at 1, 6, and 12 months following injection. Differences were tested using mixed-effects regression to control for multiple measurements. The initial post-operative flexion contracture averaged 19° ± 6° in the Botulinum toxin A group and 13° ± 3° in the saline group. Injections were performed 53 and 57 days after TKA in the Botulinum toxin A and saline groups, respectively. Post-injection extension improved to an average of 8, 5, and 1 degrees for BTX and 4, 2, and 1 degrees for SAL, at 1, 6, and 12 months, respectively, compared to pre-injection extension (p < 0.0001). Improvement in knee extension at 1 year improved 18° ± 7.5° for Botulinum toxin A and 12° ± 2° for saline (p = 0.04). No complications resulted from either injection. Patients who received Botulinum toxin A or placebo were able to achieve near full extension one year after surgery. There was a statistically significant improvement in the amount of extension achieved at 1 year with Botulinum toxin A, but this may be of little clinical significance. Since achieving full extension is important for patient function and satisfaction, novel techniques to address this issue deserve special attention. I.
integrated Electronic Health Record Increment 1 (iEHR Inc 1)
2016-03-01
Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Acronyms and Abbreviations ADM - Acquisition Decision Memorandum FD - Full Deployment FDD - Full Deployment Decision iEHR Inc 1 2016 MAR UNCLASSIFIED...iEHR Increment 1 APB for FDD achieved in November 2014 was signed by the MDA March 2, 2015. Current estimate is consistent with the FDD APB. iEHR Inc 1 2016 MAR UNCLASSIFIED 11
Controversies In The Surgical Management Of Shoulder Instability: Associated Soft Tissue Procedures
Moros Marco, Santos; Ávila Lafuente, José Luis; Ruiz Ibán, Miguel Angel; Diaz Heredia, Jorge
2017-01-01
Background: The glenohumeral joint is a ball-and-socket joint that is inherently unstable and thus, susceptible to dislocation. The traditional and most common anatomic finding is the Bankart lesion (anterior-inferior capsule labral complex avulsion), but there is a wide variety of anatomic alterations that can cause shoulder instability or may be present as a concomitant injury or in combination, including bone loss (glenoid or humeral head), complex capsule-labral tears, rotator cuff tears, Kim´s lesions (injuries to the posterior-inferior labrum) and rotator interval pathology. Methods: A review of articles related to shoulder anatomy and soft tissue procedures that are performed during shoulder instability arthroscopic management was conducted by querying the Pubmed database and conclusions and controversies regarding this injury were exposed. Results: Due to the complex anatomy of the shoulder and the large range of movement of this joint, a wide variety of anatomic injuries and conditions can lead to shoulder instability, specially present in young population. Recognizing and treating all of them including Bankart repair, capsule-labral plicatures, SLAP repair, circumferential approach to pan-labral lesions, rotator interval closure, rotator cuff injuries and HAGL lesion repair is crucial to achieve the goal of a stable, full range of movement and not painful joint. Conclusion: Physicians must be familiarized with all the lesions involved in shoulder instability, and should be able to recognize and subsequently treat them to achieve the goal of a stable non-painful shoulder. Unrecognized or not treated lesions may result in recurrence of instability episodes and pain while overuse of some of the techniques previously described can lead to stiffness, thus the importance of an accurate diagnosis and treatment when facing a shoulder instability. PMID:28979603
Controversies In The Surgical Management Of Shoulder Instability: Associated Soft Tissue Procedures.
Marco, Santos Moros; Lafuente, José Luis Ávila; Ibán, Miguel Angel Ruiz; Heredia, Jorge Diaz
2017-01-01
The glenohumeral joint is a ball-and-socket joint that is inherently unstable and thus, susceptible to dislocation. The traditional and most common anatomic finding is the Bankart lesion (anterior-inferior capsule labral complex avulsion), but there is a wide variety of anatomic alterations that can cause shoulder instability or may be present as a concomitant injury or in combination, including bone loss (glenoid or humeral head), complex capsule-labral tears, rotator cuff tears, Kim´s lesions (injuries to the posterior-inferior labrum) and rotator interval pathology. A review of articles related to shoulder anatomy and soft tissue procedures that are performed during shoulder instability arthroscopic management was conducted by querying the Pubmed database and conclusions and controversies regarding this injury were exposed. Due to the complex anatomy of the shoulder and the large range of movement of this joint, a wide variety of anatomic injuries and conditions can lead to shoulder instability, specially present in young population. Recognizing and treating all of them including Bankart repair, capsule-labral plicatures, SLAP repair, circumferential approach to pan-labral lesions, rotator interval closure, rotator cuff injuries and HAGL lesion repair is crucial to achieve the goal of a stable, full range of movement and not painful joint. Physicians must be familiarized with all the lesions involved in shoulder instability, and should be able to recognize and subsequently treat them to achieve the goal of a stable non-painful shoulder. Unrecognized or not treated lesions may result in recurrence of instability episodes and pain while overuse of some of the techniques previously described can lead to stiffness, thus the importance of an accurate diagnosis and treatment when facing a shoulder instability.
Min, Pok Kee; Goo, Boncheol Leo
2013-01-01
The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies. There were 5 patients with ages ranging from 7 to 54 years, comprising 2 males and 3 females. The study followed 5 wounds, namely 2 acute excoriation wounds; 1 acute/subacute dog bite with infection; 1 subacute post-filler ulcerated wound with necrotic ischemic tissue and secondary infection; and 1 subacute case of edema and infection of the lips with herpes simplex involvement after an illegal cosmetic tattoo operation. All patients were in varying degrees of pain. All wounds were treated with multiple sessions (daily, every other day or twice weekly) using an LED-LLLT system (830 nm, CW, irradiance of 100 mW/cm(2) and fluence of 60 J/cm(2)) till improvement was achieved. Full wound healing and control of infection and discomfort were achieved in all patients, with wound condition-mediated treatment periods ranging from 1 to 8 weeks. No recurrence of the herpes simplex case was seen in a 4-month follow-up. 830 nm LED-LLLT successfully brought about accelerated healing in wounds of different etiologies and at different stages, and successfully controlled secondary infection. LED-LLLT was easy and pain-free to apply, and was well-tolerated by all patients. The good results warrant the design of controlled studies with a larger patient population.
Min, Pok Kee; Goo, Boncheol Leo
2013-01-01
Background and aims: The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies. Subjects and methods: There were 5 patients with ages ranging from 7 to 54 years, comprising 2 males and 3 females. The study followed 5 wounds, namely 2 acute excoriation wounds; 1 acute/subacute dog bite with infection; 1 subacute post-filler ulcerated wound with necrotic ischemic tissue and secondary infection; and 1 subacute case of edema and infection of the lips with herpes simplex involvement after an illegal cosmetic tattoo operation. All patients were in varying degrees of pain. All wounds were treated with multiple sessions (daily, every other day or twice weekly) using an LED-LLLT system (830 nm, CW, irradiance of 100 mW/cm2 and fluence of 60 J/cm2) till improvement was achieved. Results: Full wound healing and control of infection and discomfort were achieved in all patients, with wound condition-mediated treatment periods ranging from 1 to 8 weeks. No recurrence of the herpes simplex case was seen in a 4-month follow-up. Conclusions: 830 nm LED-LLLT successfully brought about accelerated healing in wounds of different etiologies and at different stages, and successfully controlled secondary infection. LED-LLLT was easy and pain-free to apply, and was well-tolerated by all patients. The good results warrant the design of controlled studies with a larger patient population. PMID:24155549
Longitudinal study of cognitive and academic outcomes after pediatric liver transplantation.
Sorensen, Lisa G; Neighbors, Katie; Martz, Karen; Zelko, Frank; Bucuvalas, John C; Alonso, Estella M
2014-07-01
To determine the evolution of cognitive and academic deficits and risk factors in children after liver transplantation. Patients ≥2 years after liver transplantation were recruited through Studies of Pediatric Liver Transplantation. Participants age 5-6 years at Time 1 completed the Wechsler Preschool and Primary Scale of Intelligence, 3rd edition, Wide Range Achievement Test, 4th edition, and Behavior Rating Inventory of Executive Function (BRIEF). Participants were retested at age 7-9 years, Time 2 (T2), by use of the Wechsler Intelligence Scales for Children, 4th edition, Wide Range Achievement Test, 4th edition, and BRIEF. Medical and demographic variables significant at P ≤ .10 in univariate analysis were fitted to repeated measures modeling predicting Full Scale IQ (FSIQ). Of 144 patients tested at time 1, 93 (65%) completed T2; returning patients did not differ on medical or demographic variables. At T2, more participants than expected had below-average FSIQ, Verbal Comprehension, Working Memory, and Math Computation, as well as increased executive deficits on teacher BRIEF. Processing Speed approached significance. At T2, 29% (14% expected) had FSIQ = 71-85, and 7% (2% expected) had FSIQ ≤70 (P = .0001). A total of 42% received special education. Paired comparisons revealed that, over time, cognitive and math deficits persisted; only reading improved. Modeling identified household status (P < .002), parent education (P < .01), weight z-score at liver transplantation (P < .03), and transfusion volume during liver transplantation (P < .0001) as predictors of FSIQ. More young liver transplantation recipients than expected are at increased risk for lasting cognitive and academic deficits. Pretransplant markers of nutritional status and operative complications predicted intellectual outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G
2015-01-01
To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.
Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
NASA Astrophysics Data System (ADS)
Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2018-04-01
The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.
Image smoothing and enhancement via min/max curvature flow
NASA Astrophysics Data System (ADS)
Malladi, Ravikanth; Sethian, James A.
1996-03-01
We present a class of PDE-based algorithms suitable for a wide range of image processing applications. The techniques are applicable to both salt-and-pepper gray-scale noise and full- image continuous noise present in black and white images, gray-scale images, texture images and color images. At the core, the techniques rely on a level set formulation of evolving curves and surfaces and the viscosity in profile evolution. Essentially, the method consists of moving the isointensity contours in an image under curvature dependent speed laws to achieve enhancement. Compared to existing techniques, our approach has several distinct advantages. First, it contains only one enhancement parameter, which in most cases is automatically chosen. Second, the scheme automatically stops smoothing at some optimal point; continued application of the scheme produces no further change. Third, the method is one of the fastest possible schemes based on a curvature-controlled approach.
Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap
NASA Technical Reports Server (NTRS)
Bennett, R. M.; Bland, S. R.
1978-01-01
A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.
[Value the correction of corneal astigmatism in cataract surgery].
Wang, J; Cao, Y X
2018-05-11
The aim of modern micro-incision phacoemulsification combined with foldable intraocular lens implantation and femtosecond laser-assisted cataract surgery is evolving from a simple pursuit of recuperation to a refractive procedure, which involves the correction of ametropia according to preoperative and postoperative refractive conditions, especially corneal astigmatism, in order to achieve the goal of optimized postoperative uncorrected full range of vision. Nowadays, due attention to the effect of preoperative corneal astigmatism, surgery-induced astigmatism and residual astigmatism after operation is lacked, which affect postoperative visual acuity significantly. There are many effective ways to reduce corneal astigmatism after cataract surgery including selecting appropriate size and location of clear corneal incision, employing astigmatism keratotomy and the implantation of Toric intraocular lenses, which need to be appropriately applied and popularized. At the same time, surgical indications, predictability and safety should also be taken into account. (Chin J Ophthalmol, 2018, 54: 321-323) .
Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging
NASA Astrophysics Data System (ADS)
Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.
2012-10-01
Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.
Self-starting, self-regulating Fourier domain mode locked fiber laser for OCT imaging
Murari, Kartikeya; Mavadia, Jessica; Xi, Jiefeng; Li, Xingde
2011-01-01
We present a Fourier domain mode locking (FDML) fiber laser with a feedback loop allowing automatic startup without a priori knowledge of the fundamental drive frequency. The feedback can also regulate the drive frequency making the source robust against environmental variations. A control system samples the energy of the light traversing the FDML cavity and uses a voltage controlled oscillator (VCO) to drive the tunable fiber Fabry-Perot filter in order to maximize that energy. We demonstrate a prototype self-starting, self-regulating FDML operating at 40 kHz with a full width tuning range of 140 nm around 1305 nm and a power output of ~40 mW. The laser starts up with no operator intervention in less than 5 seconds and exhibits improved spectral stability over a conventional FDML source. In OCT applications the source achieved over 120 dB detection sensitivity and an ~8.9-µm axial resolution. PMID:21750775
Nature apps: Waiting for the revolution.
Jepson, Paul; Ladle, Richard J
2015-12-01
Apps are small task-orientated programs with the potential to integrate the computational and sensing capacities of smartphones with the power of cloud computing, social networking, and crowdsourcing. They have the potential to transform how humans interact with nature, cause a step change in the quantity and resolution of biodiversity data, democratize access to environmental knowledge, and reinvigorate ways of enjoying nature. To assess the extent to which this potential is being exploited in relation to nature, we conducted an automated search of the Google Play Store using 96 nature-related terms. This returned data on ~36 304 apps, of which ~6301 were nature-themed. We found that few of these fully exploit the full range of capabilities inherent in the technology and/or have successfully captured the public imagination. Such breakthroughs will only be achieved by increasing the frequency and quality of collaboration between environmental scientists, information engineers, computer scientists, and interested publics.
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan; Eom, Tae Bong
2011-11-01
We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method. The angle generator configures a position feedback control loop using the readout of the encoder. By combining the ac and dc operation mode, the angle generator produced stepwise angular motion with 0.005" resolution. We also evaluated the performance of the angle generator using a precision angle encoder and an autocollimator. The expanded uncertainty (k = 2) in the angle generation was estimated less than 0.03", which included the calibrated scale error and the nonlinearity error. © 2011 American Institute of Physics
Deidda, M A; Amichetti, M
2015-01-01
The recent EORTC 10981-22023 AMAROS trial showed that axillary radiotherapy and axillary lymph node dissection provide comparable local control and reduced lymphoedema in the irradiated group. However, no significant differences between the two groups in range of motion and quality of life were reported. It has been acknowledged that axillary irradiation could have induced some toxicity, particularly shoulder function impairment. In fact, conventional breast irradiation by tangential beams has to be modified to achieve full-dose coverage of the axillary nodes, including in the treatment field a larger portion of the shoulder structures. In this scenario, alternative irradiation techniques were discussed. Compared with modern photon techniques, axillary irradiation by proton therapy has the potential for sparing the shoulder without detrimental increase of the medium-to-low doses to the other normal tissues. PMID:26153903
3D printing of robotic soft actuators with programmable bioinspired architectures.
Schaffner, Manuel; Faber, Jakob A; Pianegonda, Lucas; Rühs, Patrick A; Coulter, Fergal; Studart, André R
2018-02-28
Soft actuation allows robots to interact safely with humans, other machines, and their surroundings. Full exploitation of the potential of soft actuators has, however, been hindered by the lack of simple manufacturing routes to generate multimaterial parts with intricate shapes and architectures. Here, we report a 3D printing platform for the seamless digital fabrication of pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions. The actuators comprise an elastomeric body whose surface is decorated with reinforcing stripes at a well-defined lead angle. Similar to the fibrous architectures found in muscular hydrostats, the lead angle can be altered to achieve elongation, contraction, or twisting motions. Using a quantitative model based on lamination theory, we establish design principles for the digital fabrication of silicone-based soft actuators whose functional response is programmed within the material's properties and architecture. Exploring such programmability enables 3D printing of a broad range of soft morphing structures.
The Sentinel-4 detectors: architecture and performance
NASA Astrophysics Data System (ADS)
Skegg, Michael P.; Hermsen, Markus; Hohn, Rüdiger; Williges, Christian; Woffinden, Charles; Levillain, Yves; Reulke, Ralf
2017-09-01
The Sentinel-4 instrument is an imaging spectrometer, developed by Airbus under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program. SENTINEL-4 will provide accurate measurements of trace gases from geostationary orbit, including key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties. Key to achieving these atmospheric measurements are the two CCD detectors, covering the wavelengths in the ranges 305 nm to 500 nm (UVVIS) and 750 to 775 nm (NIR) respectively. The paper describes the architecture, and operation of these two CCD detectors, which have an unusually high full-well capacity and a very specific architecture and read-out sequence to match the requirements of the Sentinel- 4 instrument. The key performance aspects and their verification through measurement are presented, with a focus on an unusual, bi-modal dark signal generation rate observed during test.
NASA Astrophysics Data System (ADS)
Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.
1987-08-01
A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.
Applying NASA's explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1991-01-01
The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.
Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation
NASA Technical Reports Server (NTRS)
Pittman, J. L.; Miller, D. S.; Mason, W. H.
1984-01-01
Results of the experimental validation are presented for the three dimensional cambered wing which was designed to achieve attached supercritical cross flow for lifting conditions typical of supersonic maneuver. The design point was a lift coefficient of 0.4 at Mach 1.62 and 12 deg angle of attack. Results from the nonlinear full potential method are presented to show the validity of the design process along with results from linear theory codes. Longitudinal force and moment data and static pressure data were obtained in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.58, 1.62, 1.66, 1.70, and 2.00 over an angle of attack range of 0 to 14 deg at a Reynolds number of 2.0 x 10 to the 6th power per foot. Oil flow photographs of the upper surface were obtained at M = 1.62 for alpha approx. = 8, 10, 12, and 14 deg.
Adaptive image contrast enhancement using generalizations of histogram equalization.
Stark, J A
2000-01-01
This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.
[Isolated Displaced Fracture of the Acromion - Case Report].
Krtička, M; Ira, D
2016-01-01
Displaced fractures of the acromion are rare injuries. A 45-year-old lady presented with an isolated acromion fracture (type III, Kuhn classification) resulting from a direct blow to the top of her right shoulder in a fall while skiing. After standard clinical and radiological examination of the shoulder, an open reduction and internal plate fixation using a postero-superior approach to the scapula was performed. Early rehabilitation of the arm and shoulder was initiated. At 50 days after surgery the patient achieved a full range of motion in her right shoulder and muscle strength equal to that of the contralateral extremity. By 12 weeks radiographic union of the fracture was recorded. The final functional outcome after open reduction and internal plate fixation of the fracture was comparable with results reported in the literature and, in comparison with conservative treatment, the risk of non-union was significantly reduced. acromion fracture, scapula, osteosynthesis.
Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells.
Bai, Jie; Xu, Xiaobao; Xu, Ling; Cui, Jin; Huang, Dekang; Chen, Wei; Cheng, Yibing; Shen, Yan; Wang, Mingkui
2013-04-01
ZnO nanoparticles are doped with K and applied in p-type dye-sensitized solar cells (DSCs). The microstructure and dynamics of hole transportation and recombination are investigated. The morphology of the K-doped ZnO nanoparticles shows a homogeneous distribution with sizes in the range 30-40 nm. When applied in p-type DSCs in combination with C343 as sensitizer, the K-doped ZnO nanoparticles achieve a photovoltaic power conversion efficiency of 0.012 % at full-intensity sunlight. A further study on the device by transient photovoltage/photocurrent decay measurements shows that the K-doped ZnO nanoparticles have an appreciable hole diffusion coefficient (ca. 10(-6) cm(2) s(-1) ). Compared to the widely used p-type NiO nanoparticles, this advantage is crucial for further improving the efficiency of p-type DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schwamm, Lee H
2014-02-01
"Telehealth" refers to the use of electronic services to support a broad range of remote services, such as patient care, education, and monitoring. Telehealth must be integrated into traditional ambulatory and hospital-based practices if it is to achieve its full potential, including addressing the six domains of care quality defined by the Institute of Medicine: safe, effective, patient-centered, timely, efficient, and equitable. Telehealth is a disruptive technology that appears to threaten traditional health care delivery but has the potential to reform and transform the industry by reducing costs and increasing quality and patient satisfaction. This article outlines seven strategies critical to successful telehealth implementation: understanding patients' and providers' expectations, untethering telehealth from traditional revenue expectations, deconstructing the traditional health care encounter, being open to discovery, being mindful of the importance of space, redesigning care to improve value in health care, and being bold and visionary.
Color constancy by characterization of illumination chromaticity
NASA Astrophysics Data System (ADS)
Nikkanen, Jarno T.
2011-05-01
Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.
Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.
Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung
2017-07-25
Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Abedin, M. Nurul; Farnsworth, Glenn R.; Garcia, Christopher S.; Zawodny, Joseph M.
2005-01-01
Custom-designed charge-coupled devices (CCD) for Gas and Aerosols Monitoring Sensorcraft instrument were developed. These custom-designed CCD devices are linear arrays with pixel format of 512x1 elements and pixel size of 10x200 sq m. These devices were characterized at NASA Langley Research Center to achieve a full well capacity as high as 6,000,000 e-. This met the aircraft flight mission requirements in terms of signal-to-noise performance and maximum dynamic range. Characterization and analysis of the electrical and optical properties of the CCDs were carried out at room temperature. This includes measurements of photon transfer curves, gain coefficient histograms, read noise, and spectral response. Test results obtained on these devices successfully demonstrated the objectives of the aircraft flight mission. In this paper, we describe the characterization results and also discuss their applications to future mission.
NASA Astrophysics Data System (ADS)
Ding, Hao; Cao, Ming; DuPont, Andrew W.; Scott, Larry D.; Guha, Sushovan; Singhal, Shashideep; Younes, Mamoun; Pence, Isaac; Herline, Alan; Schwartz, David; Xu, Hua; Mahadevan-Jansen, Anita; Bi, Xiaohong
2016-03-01
Inflammatory bowel disease (IBD) is an idiopathic disease that is typically characterized by chronic inflammation of the gastrointestinal tract. Recently much effort has been devoted to the development of novel diagnostic tools that can assist physicians for fast, accurate, and automated diagnosis of the disease. Previous research based on Raman spectroscopy has shown promising results in differentiating IBD patients from normal screening cases. In the current study, we examined IBD patients in vivo through a colonoscope-coupled Raman system. Optical diagnosis for IBD discrimination was conducted based on full-range spectra using multivariate statistical methods. Further, we incorporated several feature selection methods in machine learning into the classification model. The diagnostic performance for disease differentiation was significantly improved after feature selection. Our results showed that improved IBD diagnosis can be achieved using Raman spectroscopy in combination with multivariate analysis and feature selection.
A Survey Of Techniques for Managing and Leveraging Caches in GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
2014-09-01
Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU–GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges ofmore » cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.« less
Strong scaling of general-purpose molecular dynamics simulations on GPUs
NASA Astrophysics Data System (ADS)
Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.; Lui, Pak; Spiga, Filippo; Millan, Jaime A.; Morse, David C.; Glotzer, Sharon C.
2015-07-01
We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5 ×.
Magneto-optical spectroscopy of Co{sub 2}FeSi Heusler compound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veis, M., E-mail: veis@karlov.mff.cuni.cz; Beran, L.; Antos, R.
2014-05-07
Magneto-optical and electronic properties of the Co{sub 2}FeSi Heusler compound were studied by polar Kerr magneto-optical spectroscopy and ab-initio calculations. The thin-film samples were grown by dc/rf magnetron co-sputtering on MgO(100) substrates. A Cr seed layer was deposited prior to the Co{sub 2}FeSi layer to achieve its epitaxial growth. The magneto-optical spectroscopy was carried out using generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.4 to 5.5 eV with an applied magnetic field of up to 1.2 T. The polar Kerr spectra showed a smooth spectral behavior up to 5.5 eV indicating nearly free charge carriers. Experimental data weremore » compared with ab-initio calculations based on density functional theory employing the full-potential linearized augmented plane wave method.« less