Science.gov

Sample records for achieving high contrast

  1. Experiencing More Mathematics Anxiety than Expected? Contrasting Trait and State Anxiety in High Achieving Students

    ERIC Educational Resources Information Center

    Roos, A.-L.; Bieg, M.; Goetz, T.; Frenzel, A. C.; Taxer, J.; Zeidner, M.

    2015-01-01

    This study examined mathematics anxiety among high and low achieving students (N = 237, grades 9 and 10) by contrasting trait (habitual) and state (momentary) assessments of anxiety. Previous studies have found that trait anxiety measures are typically rated higher than state measures. Furthermore, the academic self-concept has been identified to…

  2. Achieving High Contrast for Exoplanet Imaging with a Kalman Filter and Stroke Minimization

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Groff, T. D.; Kasdin, N. J.; Carlotti, A.; Vanderbei, R. J.

    2014-01-01

    High contrast imaging requires focal plane wavefront control and estimation to correct aberrations in an optical system; non-common path errors prevent the use of conventional estimation with a separate wavefront sensor. The High Contrast Imaging Laboratory (HCIL) at Princeton has led the development of several techniques for focal plane wavefront control and estimation. In recent years, we developed a Kalman filter for optimal wavefront estimation. Our Kalman filter algorithm is an improvement upon DM Diversity, which requires at least two images pairs each iteration and does not utilize any prior knowledge of the system. The Kalman filter is a recursive estimator, meaning that it uses the data from prior estimates along with as few as one new image pairs per iteration to update the electric field estimate. Stroke minimization has proven to be a feasible controller for achieving high contrast. While similar to a variation of Electric Field Conjugation (EFC), stroke minimization achieves the same contrast with less stroke on the DMs. We recently utilized these algorithms to achieve high contrast for the first time in our experiment at the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory (JPL). Our HCIT experiment was also the first demonstration of symmetric dark hole correction in the image plane using two DMs--this is a major milestone for future space missions. Our ongoing work includes upgrading our optimal estimator to include an estimate of the incoherent light in the system, which allows for simultaneous estimation of the light from a planet along with starlight. The two-DM experiment at the HCIT utilized a shaped pupil coronagraph. Those tests utilized ripple style, free-standing masks etched out of silicon, but our current work is in designing 2-D optimized reflective shaped pupils. In particular, we have created several designs for the AFTA telescope, whose pupil presents major hurdles because of its atypical pupil obstructions. Our

  3. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  4. High-contrast imaging testbed

    SciTech Connect

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  5. Determination of contrast media administration to achieve a targeted contrast enhancement in CT

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Li, Yuan; Segars, Paul; Marin, Daniele; Nelson, Rendon; Samei, Ehsan

    2015-03-01

    Contrast enhancement is a key component of CT imaging and offer opportunities for optimization. The design and optimization of new techniques however requires orchestration with the scan parameters and further a methodology to relate contrast enhancement and injection function. In this study, we used such a methodology to develop a method, analytical inverse method, to predict the required injection function to achieve a desired contrast enhancement in a given organ by incorporation of a physiologically based compartmental model. The method was evaluated across 32 different target contrast enhancement functions for aorta, kidney, stomach, small intestine, and liver. The results exhibited that the analytical inverse method offers accurate performance with error in the range of 10% deviation between the predicted and desired organ enhancement curves. However, this method is incapable of predicting the injection function based on the liver enhancement. The findings of this study can be useful in optimizing contrast medium injection function as well as the scan timing to provide more consistency in the way that the contrast enhanced CT examinations are performed. To our knowledge, this work is one of the first attempts to predict the contrast material injection function for a desired organ enhancement curve.

  6. Advancing High Contrast Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  7. The optimal polarizations for achieving maximum contrast in radar images

    NASA Technical Reports Server (NTRS)

    Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    There is considerable interest in determining the optimal polarizations that maximize contrast between two scattering classes in polarimetric radar images. A systematic approach is presented for obtaining the optimal polarimetric matched filter, i.e., that filter which produces maximum contrast between two scattering classes. The maximization procedure involves solving an eigenvalue problem where the eigenvector corresponding to the maximum contrast ratio is an optimal polarimetric matched filter. To exhibit the physical significance of this filter, it is transformed into its associated transmitting and receiving polarization states, written in terms of horizontal and vertical vector components. For the special case where the transmitting polarization is fixed, the receiving polarization which maximizes the contrast ratio is also obtained. Polarimetric filtering is then applies to synthetic aperture radar images obtained from the Jet Propulsion Laboratory. It is shown, both numerically and through the use of radar imagery, that maximum image contrast can be realized when data is processed with the optimal polarimeter matched filter.

  8. Achieving Sub-Design Level Contrast for Coronagraphs with Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Groff, T. D.; Carlotti, A.; Kasdin, N. J.

    2013-01-01

    Coronagraphs for space-based detection of earth-like exoplanets are normally designed assuming perfect optics. One or more deformable mirrors (DMs) are then utilized to correct for these aberrations and recover the lost contrast. We demonstrate a new, unified approach in which the coronagraph needs a design contrast only on the order of the errors in the optics. The DMs can then be used to achieve higher contrast by treating small areas of the coronagraph as amplitude errors in the system. This approach eases design and manufacturing constraints on coronagraphs and yields higher throughput designs. Our initial simulations show that a single DM conjugate to a shaped pupil coronagraph can achieve a single-sided dark hole higher in contrast than the shaped pupil is designed for. Future work will focus on simulating double-sided dark holes with two DMs non-conjugate to the pupil plane. This will enable experiments performed in the Princeton High Contrast Imaging (HCIL) Lab with our two Boston Micromachines Corp. kilo-DMs. Symmetric dark holes have already been generated at the HCIL using the Stroke Minimization algorithm and a high contrast shaped pupil in monochromatic and broadband light. Experiments with the unified shaped pupil-DM system will utilize the Kalman filter estimator recently developed in the HCIL for focal plane wavefront correction.

  9. Mathematics Achievement in High- and Low-Achieving Secondary Schools

    ERIC Educational Resources Information Center

    Mohammadpour, Ebrahim; Shekarchizadeh, Ahmadreza

    2015-01-01

    This paper identifies the amount of variance in mathematics achievement in high- and low-achieving schools that can be explained by school-level factors, while controlling for student-level factors. The data were obtained from 2679 Iranian eighth graders who participated in the 2007 Trends in International Mathematics and Science Study. Of the…

  10. NASA High Contrast Imaging for Exoplanets

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Described is NASA's ongoing program for the detection and characterization of exosolar planets via high-contrast imaging. Some of the more promising proposed techniques under assessment may enable detection of life outside our solar system. In visible light terrestrial planets are approximately 10(exp -10) dimmer than the parent star. Issues such as diffraction, scatter, wavefront, amplitude and polarization all contribute to a reduction in contrast. An overview of the techniques will be discussed.

  11. The Potential of High-Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Serabyn, E.

    2008-01-01

    The direct detection of faint companions near much brighter stars requires the development of very high-contrast, small field-of-view detection techniques, and the past decade has seen remarkable conceptual and instrumental progress in this area. New coronagraphic techniques are being developed and deployed, as are extreme adaptive optics (ExAO) systems that will enable the advantageous exploitation of these new techniques. This paper provides a short overview of promising high contrast coronagraphic techniques, as well as recent examples of ExAO coronagraphy and transit measurements obtained with the ExAO-level "well-corrected subaperture" at Palomar.

  12. Embedded high-contrast distributed grating structures

    DOEpatents

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  13. High Contrast Imaging Testbed for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Lowmman, Andrew E.; Trauger, John T.; Gordon, Brian; Green, Joseph J.; Moody, Dwight; Niessner, Albert F.; Shi, Fang

    2004-01-01

    The Terrestrial Planet Finder (TPF) mission is planning to launch a visible coronagraphic space telescope in 2014. To achieve TPF science goals, the coronagraph must have extreme levels of wavefront correction (less than 1 Angstrom rms over controllable spatial frequencies) and stability to get the necessary suppression of diffracted starlight (approximately l0(exp -10)) contrast at an angular separation approximately 4 (lamda)/D). TPF Coronagraph's primary platform for experimentation is the High Contrast Imaging Testbed, which will provide laboratory validation of key technologies as well as demonstration of a flight-traceable approach to implementation. Precision wavefront control in the testbed is provided by a high actuator density deformable mirror. Diffracted light control is achieved through use of occulting or apodizing masks and stops. Contrast measurements will establish the technical feasibility of TPF requirements, while model and error budget validation will demonstrate implementation viability. This paper describes the current testbed design, development approach, and recent experimental results.

  14. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  15. First Bloch eigenvalue in high contrast media

    NASA Astrophysics Data System (ADS)

    Briane, Marc; Vanninathan, Muthusamy

    2014-01-01

    This paper deals with the asymptotic behavior of the first Bloch eigenvalue in a heterogeneous medium with a high contrast ɛY-periodic conductivity. When the conductivity is bounded in L1 and the constant of the Poincaré-Wirtinger weighted by the conductivity is very small with respect to ɛ-2, the first Bloch eigenvalue converges as ɛ → 0 to a limit which preserves the second-order expansion with respect to the Bloch parameter. In dimension two the expansion of the limit can be improved until the fourth-order under the same hypotheses. On the contrary, in dimension three a fibers reinforced medium combined with a L1-unbounded conductivity leads us to a discontinuity of the limit first Bloch eigenvalue as the Bloch parameter tends to zero but remains not orthogonal to the direction of the fibers. Therefore, the high contrast conductivity of the microstructure induces an anomalous effect, since for a given low-contrast conductivity the first Bloch eigenvalue is known to be analytic with respect to the Bloch parameter around zero.

  16. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  17. Optomechanics with high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Kemiktarak, Utku; Stambaugh, Corey; Xu, Haitan; Taylor, Jacob; Lawall, John

    2014-02-01

    High-contrast gratings fabricated in free-standing membranes of silicon nitride are a remarkable new platform for optomechanics, as they combine high reflectivity, low mass, and a high mechanical quality factor in a single device. In an effort to further improve on our earlier designs, we are now fabricating high-contrast gratings from stoichiometric silicon nitride. The new gratings have a diameter of 80 μm, a thickness of 250 μm, and are patterned in square membranes from 100 μm to 500 μm on a side. We find reflectivities R < 0.994 for these devices, and fundamental mechanical resonance frequencies above 1.5 MHz. In addition, we have incorporated HCGs fabricated from low-stress silicon nitride into a "membrane-in-the-middle" setup, and observe that the cavity transmission spectrum is distorted from a constant free spectral range of 3 GHz to one characterized by anticrossings separated by 72 ± 2 MHz.

  18. High contrast computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  19. HIGH-CONTRAST IMAGING VIA MODAL CONVERGENCE OF DEFORMABLE MIRROR

    SciTech Connect

    Wang Feiling

    2012-06-01

    For extremely high contrast imaging, such as direct observation of faint stellar companions, an adaptive optics system is required to produce low-halo and low-speckle regions in the focal plane. A method for deformable mirror control is proposed to achieve this goal. The method relies on a modal convergence of the deformable mirror driven by a focal-plane metric. The modal sets are derived from the Walsh functions. The Walsh-function modes serve two purposes: the expansion of the actuator displacements and the expansion of the phase functions. Taking advantage of the unique properties of the modal functions, a universal control algorithm is devised for the realization of high-contrast focal planes with and without the help of conventional coronagraphy. Numerical modeling is conducted to simulate complete imaging systems under various scenarios. It is shown that the proposed method reliably produces high-contrast focal planes using either a segmented or a membrane mirror. In the presence of random aberration the method is shown to be able to maintain high-contrast focal planes. Requiring neither retrieval of electric fields nor detailed knowledge of the deformable mirrors, this technique may allow high-contrast imaging in real time.

  20. High-contrast plasma-electrode Pockels cell

    SciTech Connect

    Kruschwitz, B. E.; Kelly, J. H.; Shoup, M. J. III; Waxer, L. J.; Cost, E. C.; Green, E. T.; Hoyt, Z. M.; Taniguchi, J.; Walker, T. W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP)laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density.

  1. High-contrast and fast electrochromic switching enabled by plasmonics

    DOE PAGESBeta

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-27

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less

  2. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.

  3. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Talin, Albert; Xu, Ting; Walter, Erich; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri

    With vibrant colors and simple, room-temperature processing methods, electrochromic polymers have long attracted attention as active materials for flexible, low-power consuming devices such as smart windows and displays. However, despite their many advantages, slow switching speed and complexity of combining several separate polymers to achieve full-color gamut has limited electrochromic materials to niche applications. Here we exploit the enhanced light-matter interaction associated with the deep-subwavelength mode confinement of surface plasmon polaritons propagating in metallic nanoslit arrays coated with ultra-thin electrochromic polymers to build a novel configuration for achieving high-contrast and fast electrochromic switching. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films while maintaining the high optical-contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-color response with high-contrast and fast switching-speeds while relying on just one electrochromic polymer.

  4. High-contrast and fast electrochromic switching enabled by plasmonics.

    PubMed

    Xu, Ting; Walter, Erich C; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J; Talin, A Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  5. High-contrast and fast electrochromic switching enabled by plasmonics

    PubMed Central

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  6. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  7. The Constraints of Poverty on High Achievement

    ERIC Educational Resources Information Center

    Burney, Virginia H.; Beilke, Jayne R.

    2008-01-01

    Research studies on school success often focus on the impact of discrete elements such as race, culture, ethnicity, gender, language, or school location on high achievement. The condition of poverty, however, may be the most important of all student differences in relation to high achievement; although not all schools have racial diversity, nearly…

  8. High contrast laser marking of alumina

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  9. Analysis of Three High-Achieving Young Adolescent Girls

    ERIC Educational Resources Information Center

    Lim, Jae Hoon; Chae, Jeong-Lim; Schinck-Mikel, Amelie G.; Watson, Jimmy

    2013-01-01

    This paper presents an in-depth cross-case analysis of three high-achieving young adolescent girls who had contrasting mathematics learning experiences during the first year of middle school. In particular, this study examines the foundation for their motivation, as well as the dominant mode of learning and academic engagement in relation to three…

  10. Catholic High Schools and Rural Academic Achievement.

    ERIC Educational Resources Information Center

    Sander, William

    1997-01-01

    A study of national longitudinal data examined effects of rural Catholic high schools on mathematics achievement, high school graduation rates, and the likelihood that high school graduates attend college. Findings indicate that rural Catholic high schools had a positive effect on mathematics test scores and no effect on graduation rates or rates…

  11. Clouds of high contrast on Uranus.

    PubMed

    Karkoschka, E

    1998-04-24

    Near-infrared images of Uranus taken with the Hubble Space Telescope in July and October 1997 revealed discrete clouds with contrasts exceeding 10 times the highest contrast observed before with other techniques. At visible wavelengths, these 10 clouds had lower contrasts than clouds seen by Voyager 2 in 1986. Uranus' rotational rates for southern latitudes were identical in 1986 and 1997. Clouds in northern latitudes rotate slightly more slowly than clouds in opposite southern latitudes. PMID:9554844

  12. Printed Multicolor High-Contrast Electrochromic Devices.

    PubMed

    Chen, Bo-Han; Kao, Sheng-Yuan; Hu, Chih-Wei; Higuchi, Masayoshi; Ho, Kuo-Chuan; Liao, Ying-Chih

    2015-11-18

    In this study, electrochemical responses of inkjet-printed multicolored electrochromic devices (ECD) were studied to evaluate the feasibility of presenting multiple colors in one ECD. Metallo-supramolecular polymers (MEPE) solutions with two primary colors were inkjet-printed on flexible electrodes. By digitally controlling print dosages of each species, the colors of the printed EC thin film patterns can be adjusted directly without premixing or synthesizing new materials. The printed EC thin films were then laminated with a solid transparent thin film electrolyte and a transparent conductive thin film to form an ECD. After applying a dc voltage, the printed ECDs exhibited great contrast with a transmittance change (ΔT) of 40.1% and a high coloration efficiency of 445 cm(2) C(-1) within a short darkening time of 2 s. The flexible ECDs also showed the same darkening time of 2 s and still had a high ΔT of 30.1% under bending condition. This study demonstrated the feasibility to fabricate display devices with different color setups by an all-solution process and can be further extended to other types of displays. PMID:26496422

  13. Active coloration with flexible high contrast metastructures

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Kapraun, Jonas; Ferrara, James; Chang-Hasnain, Connie J.

    2015-02-01

    The ability to actively control the perceived color of objects is highly desirable for a variety of applications, such as camouflage, sensing, and displays. Such a phenomenon can be readily found in nature - the chameleon is an excellent example. However, the capability to change color at-will has yet to be reproduced by humans. Ultra-thin dielectric high contrast metastructures (HCMs) have been shown to exhibit unique versatility to manipulate light. In this work, we report a completely new flexible HCM structure whose color can be varied by stretching the membrane. This is accomplished with a novel HCM design that annihilates the 0th order diffraction in a grating while enhancing the -1st order. The color perception of the HCM, determined by the -1st diffraction order, is thus easily changed with the variation of its period. The ultra-thin HCM is patterned on a silicon-on-insulator wafer and transferred onto a flexible membrane. We measure more than 15 times stronger intensity in the -1st order diffraction than the 0th order, in excellent agreement with theoretical results. We experimentally demonstrate brilliant colors and change the color of a 1 cm×1 cm sample from green to orange (39 nm wavelength change) with a stretch of 4.9% (25 nm period change). The same effect can be used for steering a laser beam. We demonstrate more than 40 resolvable beam spots.

  14. High contrast imaging polarimetry of circumstellar environments

    NASA Astrophysics Data System (ADS)

    Canovas Cabrera, H.

    2011-09-01

    The work presented in this thesis is based on the analysis of the results produced by ExPo, the Extreme Polarimeter. ExPo is an imaging polarimeter that has been designed and built by the group of prof. Christoph Keller, at Utrecht University. The purpose of this instrument is to use polarimetry to detect and characterize the circumstellar environments around different types of stars. In this work I focus on the polarized features that are produced by scattering by dust grains. Depending on the properties of the particles producing the scattering (size, shape...) and the scattering angle (forward, backward scattering), the light becomes polarized in higher or lower degree. The main problem when studying circumstellar environments is the high contrast ratios that are faced. For example, a young star is typically four orders of magnitude (10000 times) brighter than its protoplanetary disk. On the other hand, the light emitted by the star is largely unpolarized, while the light that is scattered (by the protoplanetary disk in this example) is polarized. Therefore, polarimetry offers a very elegant way to remove most of the starlight, allowing the detection of only the polarized photons. Furthermore, and as explained before, by studying the polarization of the light that we measure we can learn more about the properties of the circumstellar environments (dust composition, geometry, etc.). ExPo has produced a wealth of data, combining observations of very different targets such as protoplanetary disks, post-AGB stars, comets and planets of our Solar System (Venus and Saturn).

  15. High Stakes Testing and Student Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The effects of high stakes testing may be critical in the lives of public school students and may have many consequences for schools and teachers. There are no easy answers in measuring student achievement and in holding teachers accountable for learner progress. High stakes testing also involves responsibilities on the part of the principal who…

  16. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  17. High-contrast, adaptive-optics simulations for HARMONI

    NASA Astrophysics Data System (ADS)

    Gladysz, Szymon; Thatte, Niranjan A.; Salter, Graeme; Clarke, Fraser; Tecza, Matthias; Jolissaint, Laurent; Galle, Roberto Baena

    2011-09-01

    HARMONI is a proposed visible and near-infrared integral field spectrograph for the European Extremely Large Telescope. We are exploring the potential of using HARMONI for high-contrast science, e.g. observations of exoplanets. Although HARMONI is not fed by extreme adaptive optics we show that substantial contrasts can be achieved by combining single-conjugate AO with coronagraphy and post-processing of the hyperspectral data cube using spectral deconvolution. HARMONI will be well suited for follow-up spectroscopy of planets detected by 8m class instruments, emphasizing their characterisation. We implement models of telescope aberrations: due to wind buffeting on M1, due to windshake on M2, due to rolled segment edges, as well as the ones resulting from M1 phasing and individual segment warping affected by thermal and gravity effects. Additionally, we investigate the impact of post-AO differential aberrations. We also look at possible improvements to spectral deconvolution which is our method of choice for data post-processing. Finally, we make predictions of achievable contrast which translates to the ability to characterise various types of exoplanets in detail.

  18. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  19. Orion: a high contrast user facility

    NASA Astrophysics Data System (ADS)

    Hillier, D. I.; Danson, C. N.; Duffield, S. J.; Egan, D. A.; Elsmere, S. P.; Girling, M. T.; Harvey, E. J.; Hopps, N. W.; Norman, M. J.; Parker, S. J. F.; Treadwell, P. T.; Winter, D. N.; Bett, T. H.

    2016-03-01

    The Orion facility consists of two synchronized laser systems: two CPA (Chirped Pulse Amplification) beamlines each deliver 500J to target in a 0.5ps pulse (1PW) at 1054nm; and ten long pulse beamlines each deliver 500J in 0.1-5ns temporally shaped pulse at 351nm. One of the CPA beamlines has the option to be frequency doubled at sub-aperture to produce 100J laser pulses with a nanosecond contrast of ∼ 1014. Further work is under way to enhance the contrast of both CPA beamlines in the first harmonic.

  20. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  1. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  2. MRI Contrasts in High Rank Rotating Frames

    PubMed Central

    Liimatainen, Timo; Hakkarainen, Hanne; Mangia, Silvia; Huttunen, Janne M.J.; Storino, Christine; Idiyatullin, Djaudat; Sorce, Dennis; Garwood, Michael; Michaeli, Shalom

    2014-01-01

    Purpose MRI relaxation measurements are performed in the presence of a fictitious magnetic field in the recently described technique known as RAFF (Relaxation Along a Fictitious Field). This method operates in the 2nd rotating frame (rank n = 2) by utilizing a non-adiabatic sweep of the radiofrequency effective field to generate the fictitious magnetic field. In the present study, the RAFF method is extended for generating MRI contrasts in rotating frames of ranks 1 ≤ n ≤ 5. The developed method is entitled RAFF in rotating frame of rank n (RAFFn). Methods RAFFn pulses were designed to generate fictitious fields that allow locking of magnetization in rotating frames of rank n. Contrast generated with RAFFn was studied using Bloch-McConnell formalism together with experiments on human and rat brains. Results Tolerance to B0 and B1 inhomogeneities and reduced specific absorption rate with increasing n in RAFFn were demonstrated. Simulations of exchange-induced relaxations revealed enhanced sensitivity of RAFFn to slow exchange. Consistent with such feature, an increased grey/white matter contrast was observed in human and rat brain as n increased. Conclusion RAFFn is a robust and safe rotating frame relaxation method to access slow molecular motions in vivo. PMID:24523028

  3. High contrast reflective liquid crystal display using a thermochromic reflector

    NASA Astrophysics Data System (ADS)

    Heo, Kyong Chan; Yi, Jonghoon; Kwon, Jin Hyuk; Seog Gwag, Jin

    2015-02-01

    This paper presents a reflective liquid crystal display (LCD) with a high contrast ratio (CR) combined with mono-type thermochromic materials to solve the low CR of reflective type LCDs. Here, reflective, wide-band, electrically controlled birefringence mode was used as the optical liquid crystal (LC) mode, and a thermochromic material was used as the reflector for the white state and an absorber for the dark state. The combination of LCD and thermochromic material can have a synergistic effect in achieving a better display. By controlling the reflectance of the thermochromic reflector using Joule heating, the proposed reflective LC cell exhibited a high CR of approximately 70:1. The figure was extremely high compared to the approximately 10:1 of a typical reflective LC cell with an optically wide band design. The proposed LC cell configuration is expected to find many outdoor applications which can admit slow response speed.

  4. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    SciTech Connect

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  5. Academic achievement in high functioning autistic individuals.

    PubMed

    Minshew, N J; Goldstein, G; Taylor, H G; Siegel, D J

    1994-04-01

    Academic achievement levels in 54 high functioning (IQ > 70) autistic subjects were compared with those of 41 normal controls, who did not differ significantly in age, IQ, gender, race, or SES from the autistic subjects. The measures of academic achievement used included portions of the Detroit Tests of Learning Aptitude-2, the Woodcock Reading Mastery Test, and the Kaufman Test of Educational Achievement. Based on prior neuropsychological findings, it was hypothesized that autistic subjects would not differ from controls on subtests assessing mechanical and procedural skills, but would differ on subtests measuring comprehension and interpretive skills. As predicted, the autistic subjects performed significantly less well than controls on comprehension tasks, but not on mechanical reading, spelling, and computational tasks. This pattern is at variance with the typical academic profile of individuals with disabilities in reading or spelling, but shares some features with the nonverbal learning disabilities. PMID:8021313

  6. High contrast gratings for high-precision metrology

    NASA Astrophysics Data System (ADS)

    Kroker, Stefanie; Steiner, Stefan; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2013-03-01

    Experiments in the field of high-precision optical metrology are crucially limited by thermal noise of the optical components such as mirrors or beam splitters. Amorphous coatings stacks are found to be a main source for these thermal fluctuations. In this contribution we present approaches to realize coating free optical components based on resonant high contrast gratings (HCGs) made of crystalline silicon. It is shown that beside classical cavity mirrors the concept of HCGs can also be used for reflective cavity couplers. We compare the advantages and challenges of these HCG reflectors with distributed Bragg reflectors made of crystalline coatings for applications in optical metrology.

  7. Achieving high performance on the Intel Paragon

    SciTech Connect

    Greenberg, D.S.; Maccabe, B.; Riesen, R.; Wheat, S.; Womble, D.

    1993-11-01

    When presented with a new supercomputer most users will first ask {open_quotes}How much faster will my applications run?{close_quotes} and then add a fearful {open_quotes}How much effort will it take me to convert to the new machine?{close_quotes} This paper describes some lessons learned at Sandia while asking these questions about the new 1800+ node Intel Paragon. The authors conclude that the operating system is crucial to both achieving high performance and allowing easy conversion from previous parallel implementations to a new machine. Using the Sandia/UNM Operating System (SUNMOS) they were able to port a LU factorization of dense matrices from the nCUBE2 to the Paragon and achieve 92% scaled speed-up on 1024 nodes. Thus on a 44,000 by 44,000 matrix which had required over 10 hours on the previous machine, they completed in less than 1/2 hour at a rate of over 40 GFLOPS. Two keys to achieving such high performance were the small size of SUNMOS (less than 256 kbytes) and the ability to send large messages with very low overhead.

  8. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  9. Polarization interferometric nulling coronagraph for high-contrast imaging.

    PubMed

    Murakami, Naoshi; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo; Baba, Naoshi

    2010-06-01

    We propose a novel, high-contrast imager called a polarization interferometric nulling coronagraph (PINC) for direct detection of extrasolar planets. The PINC uses achromatic half-wave plates (HWPs) installed in a fully symmetric beam combiner based on polarizing beam splitters. Jones calculus suggests that a stellar halo suppression level of 10(-10) can be achieved at 5 lambda/D for a broad wavelength range from 1.6 to 2.2 microm by using Fresnel-rhomb HWPs made of BK7. Laboratory experiments on the PINC used two laser light sources (wavelengths of lambda=532 and 671 nm), and we obtained a halo suppression level of approximately 10(-6) at 5 lambda/D for both wavelengths. PMID:20517351

  10. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  11. 21st Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted by Who's Who Among American High School Students during the spring of 1990, to determine the attitudes of student leaders in U.S. high schools. A survey of high achievers sent to 5,000 students was completed and returned by approximately 2,000 students. All students were members of the junior or senior class during the…

  12. High contrast holograms using nanotube forest

    NASA Astrophysics Data System (ADS)

    Montelongo, Yunuen; Chen, Bingan; Butt, Haider; Robertson, John; Wilkinson, Timothy D.

    2013-09-01

    Nanotube forest behaves as highly absorbent material when they are randomly placed in sub-wavelength scales. Furthermore, it is possible to create diffractive structures when these bulks are patterned in a substrate. Here, we introduce an alternative to fabricate intensity holograms by patterning fringes of nanotube forest on a substrate. The result is an efficient intensity hologram that is not restricted to sub-wavelength patterning. Both the theoretical and experimental analysis was performed with good agreement. The produced holograms show a uniform behaviour throughout the visible spectra.

  13. High contrast laminography using iterative algorithms

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Jakubek, J.

    2011-01-01

    3D X-ray imaging of internal structure of large flat objects is often complicated by limited access to all viewing angles or extremely high absorption in certain directions, therefore the standard method of computed tomography (CT) fails. This problem can be solved by the method of laminography. During a laminographic measurement the imaging detector is placed close to the sample while the X-ray source irradiates both sample and detector at different angles. The application of the state-of-the-art pixel detector Medipix in laminography together with adapted tomographic iterative alghorithms for 3D reconstruction of sample structure has been investigated. Iterative algorithms such as EM (Expectation Maximization) and OSEM (Ordered Subset Expectation Maximization) improve the quality of the reconstruction and allow including more complex physical models. In this contribution results and proposed future approaches which could be used for resolution enhancement are presented.

  14. Academic Attitudes of High Achieving and Low Achieving Academically Able Black Male Adolescents.

    ERIC Educational Resources Information Center

    Trotter, John Rhodes

    1981-01-01

    In order to identify the relationships between the attitudes and perceptions of peer pressure and the academic achievement of academically able male adolescents, this study compares the school attitudes of high achieving and low achieving Black male youth. (EF)

  15. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  16. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  17. High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

    2006-06-15

    In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still

  18. Contrast medium usage reduction in abdominal computed tomography by using high-iodinated concentration contrast medium

    NASA Astrophysics Data System (ADS)

    Suwannasri, A.; Kaewlai, R.; Asavaphatiboon, S.

    2016-03-01

    This study was to determine if administration of a low volume high-concentration iodinated contrast medium can preserve image quality in comparison with regular-concentration intravenous contrast medium in patient undergoing contrast-enhancement abdominal computed tomography (CT). Eighty-four patients were randomly divided into 3 groups of similar iodine delivery rate; A: 1.2 cc/kg of iomeprol-400, B: 1.0 cc/kg of iomeprol-400 and C: 1.5 cc/kg of ioversol-350. Contrast enhancement of the liver parenchyma, pancreas and aorta was quantitatively measured in Hounsfield units and qualitative assessed by a radiologist. T-test was used to evaluate contrast enhancement, and Chi-square test was used to evaluate qualitative image assessment, at significance level of 0.05 with 95% confidence intervals. There were no statistically significant differences in contrast enhancement of liver parenchyma and pancreas between group A and group C in both quantitative and qualitative analyses. Group C showed superior vascular enhancement to group A and B on quantitative analysis.

  19. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  20. Fox baiting against Echinococcus multilocularis: contrasted achievements among two medium size cities.

    PubMed

    Comte, S; Raton, V; Raoul, F; Hegglin, D; Giraudoux, P; Deplazes, P; Favier, S; Gottschek, D; Umhang, G; Boué, F; Combes, B

    2013-08-01

    In Europe, most cities are currently colonized by red foxes (Vulpes vulpes), which are considered to be the main definitive host of the zoonotic cestode Echinococcus multilocularis. The risk of transmission to humans is of particular concern where high fox populations overlap with high human populations. The distribution of baits containing praziquantel has successfully reduced the infection pressure in rural areas and in small plots within large cities. The purpose of this study was to assess its efficiency in two medium size cities (less than 100,000 inhabitants) in areas of high human alveolar echinococcosis incidence. From August 2006 to March 2009, 14 baiting campaigns of praziquantel treatment were run in Annemasse and Pontarlier (Eastern France), each of which encompassed 33 km(2), with a density of 40 baits/km(2). The bait consumption appeared to be lower in strictly urban context compared to suburban areas (78.9% vs. 93.4%) and lower in Annemasse than in Pontarlier (82.2% vs. 89.5%). During our study, the prevalence of E. multilocularis, as assessed by EM-ELISA on fox faeces collected in the field in Annemasse, was lower within the treated area than in the rural control area. A "before/during" treatment comparison revealed a significant decrease of spring prevalence from 13.3% to 2.2%. No significant change in prevalence was detected in Pontarlier (stable prevalence: 9.1%) where the contamination of the treated area followed the temporal trend observed in the control area. There, a greater resilience of the parasite's life cycle, probably due to a strong pressure of recontamination from outside the treated area, may have counteracted the prophylaxis treatment. These contrasted outcomes suggest that the frequency of fox anthelmintic treatment should be adapted to the local situation. PMID:23642656

  1. High-contrast pattern reconstructions using a phase-seeded point CGH method.

    PubMed

    McWilliam, Richard; Williams, Gavin L; Cowling, Joshua J; Seed, Nicholas L; Purvis, Alan

    2016-03-01

    A major challenge encountered in digital holography applications is the need to synthesize computer-generated holograms (CGHs) that are realizable as phase-only elements while also delivering high quality reconstruction. This trade-off is particularly acute in high-precision applications such as photolithography where contrast typically must exceed 0.6. A seeded-phase point method is proposed to address this challenge, whereby patterns composed of fine lines that intersect and form closed shapes are reconstructed with high contrast while maintaining a phase-only CGH. The method achieves superior contrast to that obtained by uniform or random seeded-phase methods while maintaining computational efficiency for large area exposures. It is also shown that binary phase modulation achieves similar contrast performance with benefits for the fabrication of simpler diffractive optical elements. PMID:26974633

  2. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  3. Beam collimation with polycapillary x-ray optics for high contrast high resolution monochromatic imaging

    SciTech Connect

    Sugiro, Francisca R.; Li Danhong; MacDonald, C.A.

    2004-12-01

    Monochromatic imaging can provide better contrast and resolution than conventional broadband radiography. In broadband systems, low energy photons do not contribute to the image, but are merely absorbed, while high energy photons produce scattering that degrades the image. By tuning to the optimal energy, one can eliminate undesirable lower and higher energies. Monochromatization is achieved by diffraction from a single crystal. A crystal oriented to diffract at a particular energy, in this case the characteristic line energy, diffracts only those photons within a narrow range of angles. The resultant beam from a divergent source is nearly parallel, but not very intense. To increase the intensity, collimation was performed with polycapillary x-ray optics, which can collect radiation from a divergent source and redirect it into a quasi parallel beam. Contrast and resolution measurements were performed with diffracting crystals with both high and low angular acceptance. Testing was first done at 8 keV with an intense copper rotating anode x-ray source, then 17.5 keV measurements were made with a low power molybdenum source. At 8 keV, subject contrast was a factor of five higher than for the polychromatic case. At 17.5 keV, monochromatic contrast was two times greater than the conventional polychromatic contrast. The subject contrasts measured at both energies were in good agreement with theory. An additional factor of two increase in contrast, for a total gain of four, is expected at 17.5 keV from the removal of scatter. Scatter might be simply removed using an air gap, which does not degrade resolution with a parallel beam.

  4. Monochromatic verification of high-contrast imaging with an occulter.

    PubMed

    Sirbu, Dan; Kasdin, N Jeremy; Vanderbei, Robert J

    2013-12-30

    One of the most promising concepts of starlight suppression for direct imaging of exoplanets is flying a specially-shaped external occulter in formation with a space telescope. Here we present contrast performance verification of an occulter design scaled to laboratory-size using Fresnel numbers corresponding to the space design. Experimental design innovations include usage of an expanding beam to minimize phase aberrations, and an outer ring to minimize hard-edge diffraction effects. The apodizing performance of the optimized occulter edge is compared with a baseline case of a circular occulter and shown to result in contrast improvements. Experimental results in red monochromatic light show that the achieved laboratory contrast exceeds ten orders of magnitude, but with differences from the theoretical diffraction analysis limited by specular reflection from the mask edges. PMID:24514818

  5. Closed loop, DM diversity-based, wavefront correction algorithm for high contrast imaging systems.

    PubMed

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-09-17

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(-10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling. PMID:19547602

  6. Factors Implicated in High Mathematics Achievement

    ERIC Educational Resources Information Center

    Forgasz, Helen J.; Hill, Janelle C.

    2013-01-01

    The most recent Program for International Student Assessment (PISA) (2009) mathematical literacy results provide evidence that in Western English-speaking countries, including Australia, the gender gap in achievement appears to be widening in favour of males. In the study reported in this article, the aim was to explore the effects of gender,…

  7. High Ability Readers and the Achievement Gap

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.; Parke, Cynthia J.; Bramble, Joan G.

    2004-01-01

    To close the achievement gap, the "No Child Left Behind" law calls for all students to make appropriate yearly progress. This presumably means that progress is being made by capable readers at the same time progress is being made by struggling readers. However, there appear to be unintended effects of "No Child Left Behind" that may impede the…

  8. Parameter-tolerant design of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Chevallier, Christyves; Fressengeas, Nicolas; Jacquet, Joel; Almuneau, Guilhem; Laaroussi, Youness; Gauthier-Lafaye, Olivier; Cerutti, Laurent; Genty, Frédéric

    2015-02-01

    This work is devoted to the design of high contrast grating mirrors taking into account the technological constraints and tolerance of fabrication. First, a global optimization algorithm has been combined to a numerical analysis of grating structures (RCWA) to automatically design HCG mirrors. Then, the tolerances of the grating dimensions have been precisely studied to develop a robust optimization algorithm with which high contrast gratings, exhibiting not only a high efficiency but also large tolerance values, could be designed. Finally, several structures integrating previously designed HCGs has been simulated to validate and illustrate the interest of such gratings.

  9. Phase contrast imaging with coherent high energy X-rays

    SciTech Connect

    Snigireva, I.

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  10. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  11. Organic light-emitting devices integrated with solar cells: High contrast and energy recycling

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Jen; Cho, Ting-Yi; Lin, Chun-Liang; Wu, Chung-Chih

    2007-04-01

    In this letter, the authors report that by integrating organic light-emitting devices (OLEDs) with solar cells, luminous ambient-light reflection as low as 1.4% (even superior to that achieved with polarizers) can be achieved without compromising the electroluminescence efficiency for high-contrast display applications. Furthermore, in such a configuration, the photon energies of the incident ambient light and the portion of OLED emission not getting outside of the device can be recycled into useful electrical power via the photovoltaic action, instead of being totally wasted as in other reported contrast-enhancement techniques. These features, the authors believe, shall make this technique attractive for high-contrast display applications and portable/mobile electronics that are highly power aware.

  12. A Kindergarten Number-Sense Intervention with Contrasting Practice Conditions for Low-Achieving Children

    ERIC Educational Resources Information Center

    Dyson, Nancy; Jordan, Nancy C.; Beliakoff, Amber; Hassinger-Das, Brenna

    2015-01-01

    The efficacy of a research-based number-sense intervention for low-achieving kindergartners was examined. Children (N = 126) were randomly assigned to 1 of 3 conditions: a number-sense intervention followed by a number-fact practice session, an identical number-sense intervention followed by a number-list practice session, or a business-as-usual…

  13. Achieving strategic surety for high consequence software

    SciTech Connect

    Pollock, G.M.

    1996-09-01

    A strategic surety roadmap for high consequence software systems under the High Integrity Software (HIS) Program at Sandia National Laboratories guides research in identifying methodologies to improve software surety. Selected research tracks within this roadmap are identified and described detailing current technology and outlining advancements to be pursued over the coming decade to reach HIS goals. The tracks discussed herein focus on Correctness by Design, and System Immunology{trademark}. Specific projects are discussed with greater detail given on projects involving Correct Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects; and Correct Implementation of Components.

  14. Norview High School: Leadership Fosters Achievment

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    Often little unsaid things demonstrate what is truly important in a school. When teachers have common planning time and all of the department chairs share a single space as they do at Norview High School in Norfolk, VA, the unmistakable message is that instructional collaboration and leadership are expected and valued. Norview, an urban,…

  15. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  16. A Kindergarten Number-Sense Intervention With Contrasting Practice Conditions for Low-Achieving Children

    PubMed Central

    Dyson, Nancy; Jordan, Nancy C.; Beliakoff, Amber; Hassinger-Das, Brenna

    2015-01-01

    The efficacy of a research-based number-sense intervention for low-achieving kinder-gartners was examined. Children (N = 126) were randomly assigned to 1 of 3 conditions: a number-sense intervention followed by a number-fact practice session, an identical number-sense intervention followed by a number-list practice session, or a business-as-usual control group. The interventions were delivered in a small-group setting over 24 half-hour lessons. Both intervention groups performed better than controls on measures of number sense, arithmetic fluency, and general mathematics calculation achievement at immediate posttest. However, the number-fact practice condition gave children an additional advantage over the number-list practice condition on the outcomes at delayed posttest 8 weeks later. The number-fact practice condition was especially effective for producing gains in English learners. PMID:26388651

  17. Ion acceleration using high-contrast ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-06-01

    We have compared the acceleration of high-energy ions from the rear-surface of thin foils for various contrast conditions of the ultra-intense laser pulse irradiating the targets. The experiments were performed using the LULI 100 TW facility. We used Al targets of variable thicknesses and the laser pulse contrast ratio ahead of the main pulse was varied using either a fast Pockels cell or a single or double plasma mirror. The latter was installed at an intermediate field position, in between the focusing optics and the target, so that its effect was optimized. By improving with these two methods the laser pulse contrast, we have observed that we could significantly reduce the thickness of the target used for proton acceleration and at the same time increase both the cut-off energy of the accelerated protons and the energy conversion efficiency of the process.

  18. Novel diffraction properties of high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Pesala, Bala; Madhusudan, Mridula

    2013-03-01

    High contrast sub-wavelength gratings (HCGs) possess unique diffraction properties such as steep angle diffraction, high diffraction efficiency with large spectral bandwidth. Here, we discuss the application of diffraction optimized HCG's as security tags with color shifting properties. Simulations of the gratings carried out using rigorous coupled wave analysis clearly show distinguishable color features for different angles of viewing. The designed security tags find application in documents which are prone to risk of counterfeiting.

  19. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    SciTech Connect

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  20. Potential of high-Z contrast agents in clinical contrast-enhanced computed tomography

    SciTech Connect

    Nowak, Tristan; Hupfer, Martin; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2011-12-15

    Purpose: Currently, only iodine- and barium-based contrast media (CM) are used in clinical contrast-enhanced computed tomography (CE-CT). High-Z metals would produce a higher contrast at equal mass density for the x-ray spectra used in clinical CT. Using such materials might allow for significant dose reductions in CE-CT. The purpose of this study was to quantify the potential for dose reduction when using CM based on heavy metals. Methods: The contrast-to-noise ratio weighted by dose (CNRD) was determined as a function of scan protocol by means of measurements and simulations on a clinical CT scanner. For simulations, water cylinders with diameters 160, 320, 480, and 640 mm were used to cover a broad range of patient sizes. Measurements were conducted with 160 and 320 mm water-equivalent plastic cylinders. A central bore of 13 mm diameter was present in all phantoms. The tube voltage was varied from 80 to 140 kV for measurements and from 60 to 180 kV for simulations. Additional tin filtration of thicknesses 0.4, 0.8, and 1.2 mm was applied in the simulation to evaluate a range of spectral hardness. The bore was filled with a mixture of water and 10 mg/ml of pure iodine, holmium, gadolinium, ytterbium, osmium, tungsten, gold, and bismuth for the simulations and with aqueous solutions of ytterbium, tungsten, gold, and bismuth salts as well as Iopromid containing 10 mg/ml of the pure materials for the measurements. CNRDs were compared to iodine at phantom size-dependent reference voltages for all high-Z materials and the resulting dose reduction was calculated for equal contrast-to-noise ratio. Results: Dose reduction potentials strongly depended on phantom size, spectral hardness, and tube voltage. Depending on the added filtration, a dose reduction of 19%-60% could be reached at 80 kV with gadolinium for the 160 mm phantom, 52%-69% at 100 kV with holmium for the 320 mm phantom, 62%-78% with 120 kV for hafnium and the 480 mm phantom and 74%-86% with 140 kV for gold

  1. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  2. Microfabricated High-Moment Micrometer-sized MRI Contrast Agents

    PubMed Central

    Zabow, Gary; Dodd, Stephen J.; Shapiro, Erik; Moreland, John; Koretsky, Alan P.

    2010-01-01

    While chemically synthesized superparamagnetic microparticles have enabled much new research based on MRI-tracking of magnetically labeled cells, signal-to-noise levels still limit the potential range of applications. Here it is shown how, through top-down microfabrication, contrast agent relaxivity can be increased several-fold, which should extend the sensitivity of such cell tracking studies. Microfabricated agents can benefit from both higher magnetic moments and higher uniformity than their chemically synthesized counterparts, implying increased label visibility and more quantitative image analyses. To assess the performance of microfabricated micrometer-sized contrast agent particles, analytic models and numerical simulations are developed and tested against new microfabricated agents described in this paper, as well as against results of previous imaging studies of traditional chemically synthesized microparticle agents. Experimental data showing signal effects of 500-nanometer thick, 2-micrometer diameter, gold-coated iron and gold-coated nickel disks verify the simulations. Additionally, it is suggested that measures of location better than the pixel resolution can be obtained and that these are aided using well-defined contrast agent particles achievable through microfabrication techniques. PMID:20928829

  3. Optimal Phase Masks for High Contrast Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth J.

    Phase-only optical elements can provide a number of important functions for high-contrast imaging. This thesis presents analytical and numerical optical design methods for accomplishing specific tasks, the most significant of which is the precise suppression of light from a distant point source. Instruments designed for this purpose are known as coronagraphs. Here, advanced coronagraph designs are presented that offer improved theoretical performance in comparison to the current state-of-the-art. Applications of these systems include the direct imaging and characterization of exoplanets and circumstellar disks with high sensitivity. Several new coronagraph designs are introduced and, in some cases, experimental support is provided. In addition, two novel high-contrast imaging applications are discussed: the measurement of sub-resolution information using coronagraphic optics and the protection of sensors from laser damage. The former is based on experimental measurements of the sensitivity of a coronagraph to source displacement. The latter discussion presents the current state of ongoing theoretical work. Beyond the mentioned applications, the main outcome of this thesis is a generalized theory for the design of optical systems with one of more phase masks that provide precise control of radiation over a large dynamic range, which is relevant in various high-contrast imaging scenarios. The optimal phase masks depend on the necessary tasks, the maximum number of optics, and application specific performance measures. The challenges and future prospects of this work are discussed in detail.

  4. Laboratory Demonstrations of High-contrast Imaging for Space Coronagraphy

    NASA Technical Reports Server (NTRS)

    Trauger, John; Giveon, Amir; Gordon, Brian; Kern, Brian; Krist, John; Kuhnert, Andreas; Moody, Dwight; Traub, Wes; Wilson, Dan

    2008-01-01

    This slide presentation reviews the use of the High Contrast Imaging Testbed (HCIT) in the design and improvement of space coronagraphs. The objectives of the work are to: (1) Advance the technology readiness of space coronagraph hardware, techniques, algorithms, and predictive models; (2) Provide proof-of-concept demonstrations of coronagraph techniques; and (3) Support collaborations across the exoplanet community in pursuit of the optimal space coronagraph architecture.

  5. Advances in engineering of high contrast CARS imaging endoscopes

    PubMed Central

    Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.

    2014-01-01

    The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538

  6. High Contrast Imaging with an Arbitrary Aperture: Active Correction of Aperture Discontinuities

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Remi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie

    2013-12-01

    We discuss the application of a new method to achieve high-contrast images with Extremely Large Telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We quantify the performances of this technique on various ELTs geometries. We illustrate its application when seeking to maintain high contrast in the configuration for which some of the primary mirror's segments might be missing.

  7. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  8. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  9. High Contrast Imaging with the JWST NIRCAM Coronagraph

    NASA Technical Reports Server (NTRS)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  10. Toward high-contrast breast CT at low radiation dose.

    PubMed

    Keyriläinen, Jani; Fernández, Manuel; Karjalainen-Lindsberg, Marja-Liisa; Virkkunen, Pekka; Leidenius, Marjut; von Smitten, Karl; Sipilä, Petri; Fiedler, Stefan; Suhonen, Heikki; Suortti, Pekka; Bravin, Alberto

    2008-10-01

    This study was approved by the local research ethics committee, and patient informed consent was obtained. The purpose of this study was to demonstrate that high-spatial-resolution low-dose analyzer-based x-ray computed tomography (CT) can substantially improve the radiographic contrast of breast tissue in vitro when compared with that attained by using diagnostic mammography and CT. An excised human breast tumor was examined by using analyzer-based x-ray imaging with synchrotron radiation. The correspondence between analyzer-based x-ray images and diagnostic mammograms, CT images, and histopathologic findings was determined. Calcifications and fine details of soft tissue, which are at the contrast detection limit on diagnostic mammograms, are clearly visible on planar analyzer-based x-ray images. Analyzer-based x-ray CT yields high contrast from smoothly varying internal structures, such as tumorous mass lesions, corresponding to information on actual structures seen at histopathologic analysis. The mean glandular dose of 1.9 mGy in analyzer-based x-ray CT is approximately equivalent to the dose administered during single-view screening mammography. The improved visibility of mammographically indistinguishable lesions in vitro suggests that analyzer-based x-ray CT may be a valuable method in radiographic evaluation of the breast, thereby justifying further investigations. PMID:18796684

  11. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  12. Optimal parameters of monolithic high-contrast grating mirrors.

    PubMed

    Marciniak, Magdalena; Gębski, Marcin; Dems, Maciej; Haglund, Erik; Larsson, Anders; Riaziat, Majid; Lott, James A; Czyszanowski, Tomasz

    2016-08-01

    In this Letter a fully vectorial numerical model is used to search for the construction parameters of monolithic high-contrast grating (MHCG) mirrors providing maximal power reflectance. We determine the design parameters of highly reflecting MHCG mirrors where the etching depth of the stripes is less than two wavelengths in free space. We analyze MHCGs in a broad range of real refractive index values corresponding to most of the common optoelectronic materials in use today. Our results comprise a complete image of possible highly reflecting MHCG mirror constructions for potential use in optoelectronic devices and systems. We support the numerical analysis by experimental verification of the high reflectance via a GaAs MHCG designed for a wavelength of 980 nm. PMID:27472602

  13. Setting Educational Priorities: High Achievers Speak Out. White Paper.

    ERIC Educational Resources Information Center

    Dickeson, Robert C.

    Noting that high achieving Indiana high school students can provide important insights into the educational system in the state, this study examined the opinions of recipients of Ameritchieve recognition, National Merit finalists, African-American students who were National Achievement finalists, and national Hispanic Scholar finalists, all from…

  14. Full color high contrast front projection on black emissive display

    NASA Astrophysics Data System (ADS)

    Sun, Ted; Pettitt, Greg; Ho, Nguyen T.; Eckles, Kurt; Clifton, Ben; Cheng, Botao

    2012-03-01

    Front digital projection (FDP) displays have the features of being portable, economical and scalable for large size displays. Unfortunately, existing FDP technologies suffer with poor image contrast in well-lighted environments, due to the "black-level" issues of the conventional white diffusive screens. More powerful projectors can be applied to enhance contrasts by increasing the brightness, at the expenses of significantly increased cost, weight, power consumption, and viewer eye fatigue due to the bright projection. In this joint paper, we demonstrate an innovative full color, high contrast front projective display system on a black emissive screen (BES). It comprises of a novel transparent fluorescent screen on pitch-black substrate, and a digital image projector with optic output that excite the fluorescent screen. The fluorescent layered screen is comprised of at least 3 layers of RGB emissive materials, which are made in fully transparent form. The "excitation" projector is based on DLP® projector platform, where a UHP lamp is filtered by a color filter wheel which sequentially excites the RGB emissive layers resulting in RGB emissions from the screen. This display combines the best of both worlds of front projection and emissive display technologies. Like projection displays, it is scalable and economic at large displays, the screen has no pixel structure and can be manufactured using a roll to roll method. Like emissive displays (e.g. plasma or field emission displays with phosphor screen), the quality of the emissive images on black back-plate is superior, with large viewing angles and superior contrasts in any environments. The new projection display can favorably compete with existing flat panel displays and other projection displays.

  15. Electron acceleration via high contrast laser interacting with submicron clusters

    SciTech Connect

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  16. High contrast imaging and thickness determination of graphene with in-column secondary electron microscopy

    NASA Astrophysics Data System (ADS)

    Kochat, Vidya; Nath Pal, Atindra; Sneha, E. S.; Sampathkumar, Arjun; Gairola, Anshita; Shivashankar, S. A.; Raghavan, Srinivasan; Ghosh, Arindam

    2011-07-01

    We report a new method for quantitative estimation of graphene layer thicknesses using high contrast imaging of graphene films on insulating substrates with a scanning electron microscope. By detecting the attenuation of secondary electrons emitted from the substrate with an in-column low-energy electron detector, we have achieved very high thickness-dependent contrast that allows quantitative estimation of thickness up to several graphene layers. The nanometer scale spatial resolution of the electron micrographs also allows a simple structural characterization scheme for graphene, which has been applied to identify faults, wrinkles, voids, and patches of multilayer growth in large-area chemical vapor deposited graphene. We have discussed the factors, such as differential surface charging and electron beam induced current, that affect the contrast of graphene images in detail.

  17. The CHARIS IFS for high contrast imaging at Subaru

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norman; Mede, Kyle; McElwain, Michael W.; Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Hayashi, Masahiko

    2015-09-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems.1, 2 The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.

  18. High index contrast polymer waveguide platform for integrated biophotonics.

    PubMed

    Halldorsson, Jennifer; Arnfinnsdottir, Nina B; Jonsdottir, Asta B; Agnarsson, Björn; Leosson, Kristjan

    2010-07-19

    We present detailed characterization of a unique high-index-contrast integrated optical polymer waveguide platform where the index of the cladding material is closely matched to that of water. Single-mode waveguides designed to operate across a large part of the visible spectrum have been fabricated and waveguide properties, including mode size, bend loss and evanescent coupling have been modeled using effective-index approximation, finite-element and finite-difference time domain methods. Integrated components such as directional couplers for wavelength splitting and ring resonators for refractive-index or temperature sensing have been modeled, fabricated and characterized. The waveguide platform described here is applicable to a wide range of biophotonic applications relying on evanescent-wave sensing or excitation, offering a high level of integration and functionality. The technology is biocompatible and suitable for wafer-level mass production. PMID:20721007

  19. Test-Taking Strategies of High and Low Mathematics Achievers

    ERIC Educational Resources Information Center

    Hong, Eunsook; Sas, Maggie; Sas, John C.

    2006-01-01

    The authors explored test-preparation and test-taking strategies that high school students used in algebra tests. From a pool of high school students (N = 156), 61 students participated in interviews, and of those interviewed, 26 represented those who were high achieving as well as highly interested in mathematics (n = 15) vs. those who were low…

  20. Biculturalism and Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Rust, Jonathan P.; Jackson, Margo A.; Ponterotto, Joseph G.; Blumberg, Fran C.

    2011-01-01

    Biculturalism was examined as a factor that may positively affect the academic achievement of African American high school students, beyond cultural identity and self-esteem. Hierarchical regression analyses determined that cultural identity and academic self-esteem were important factors for academic achievement, but not biculturalism.…

  1. Tracking and Detracking: High Achievers in Massachusetts Middle Schools

    ERIC Educational Resources Information Center

    Loveless, Tom

    2009-01-01

    This study examines tracking--the practice of grouping students into separate classes or courses based on their prior academic achievement--at the middle-school level, and the percentage of high-achieving students in tracked and untracked schools. It focuses on Massachusetts, a leader in "reforming" tracking, and the changes that have…

  2. Mobility and Student Achievement in High Poverty Schools

    ERIC Educational Resources Information Center

    Dalton, Janet Denise

    2013-01-01

    Student mobility is an issue for high poverty schools in the shadow of increased rigor and accountability for student performance. Whereas mobility is not a sole cause for poor achievement, it is a contributing factor for students in poverty who are already considered to be at risk of low achievement. Student mobility creates a hardship for…

  3. A high-contrast imaging polarimeter with a stepped-transmission filter based coronagraph

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Chao; Ren, De-Qing; Zhu, Yong-Tian; Dou, Jiang-Pei; Guo, Jing

    2016-05-01

    The light reflected from planets is polarized mainly due to Rayleigh scattering, but starlight is normally unpolarized. Thus it provides an approach to enhance the imaging contrast by inducing the imaging polarimetry technique. In this paper, we propose a high-contrast imaging polarimeter that is optimized for the direct imaging of exoplanets, combined with our recently developed stepped-transmission filter based coronagraph. Here we present the design and calibration method of the polarimetry system and the associated test of its high-contrast performance. In this polarimetry system, two liquid crystal variable retarders (LCVRs) act as a polarization modulator, which can extract the polarized signal. We show that our polarimeter can achieve a measurement accuracy of about 0.2% at a visible wavelength (632.8 nm) with linearly polarized light. Finally, the whole system demonstrates that a contrast of 10‑9 at 5λ/D is achievable, which can be used for direct imaging of Jupiter-like planets with a space telescope.

  4. Attitudes and Opinions from the Nation's High Achieving Teens: 29th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report presents the 1998 statistical findings of the annual survey to determine the attitudes of national high school student leaders. Questionnaires were completed by 3,123 high school juniors and seniors, all of whom were selected for recognition in "Who's Who among American High School Students." In addition to demographic information, the…

  5. Principals’ Perception of Influence on Factors Affecting Student Achievement in Low- and High-Achieving Urban High Schools

    ERIC Educational Resources Information Center

    Bloom, Collette M.; Owens, Emiel W.

    2013-01-01

    The purpose of the study was to compare and contrast influences principals have on staffing, curriculum issues, and discipline policies in high- and low-performing urban high schools. The data for the present study were drawn from the first year follow up of the Educational Longitudinal Survey of 2002-2004 (ELS: 02), administered by the National…

  6. Associations of Future Expectations, Negative Friends, and Academic Achievement in High-Achieving African American Adolescents

    ERIC Educational Resources Information Center

    Cunningham, Michael; Corprew, Charles S., III; Becker, Jonathan E.

    2009-01-01

    The relations of future expectations (general and academic) to academic outcomes were examined in a sample of 129 African American high-achieving adolescents (majority female participants, n = 92). This study was interested in the multidimensional nature of future expectations. Results from the study confirm the hypothesis that academic future…

  7. The "Renaissance Child": High Achievement and Gender in Late Modernity

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky

    2012-01-01

    This paper draws on the concept of the "Renaissance Child" to illustrate the ways in which gender influences the opportunities and possibilities of high-achieving pupils. Using data from a study of 12-13-year high-achieving boys and girls based in schools in England, the paper considers the ways in which a group of popular boys was able to show an…

  8. Double high refractive-index contrast grating VCSEL

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz

    2015-03-01

    Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.

  9. High-contrast, all-optical switching in bacteriorhodopsin films

    NASA Astrophysics Data System (ADS)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  10. High-contrast, all-optical switching in bacteriorhodopsin films.

    PubMed

    Banyal, Ravinder Kumar; Prasad, B Raghavendra

    2005-09-10

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films. PMID:16161665

  11. High-Contrast Gratings based Spoof Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-02-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics.

  12. High-Contrast Gratings based Spoof Surface Plasmons

    PubMed Central

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-01-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics. PMID:26879637

  13. High-Contrast Gratings based Spoof Surface Plasmons.

    PubMed

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-01-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics. PMID:26879637

  14. The Effects of Block Scheduling on High School Academic Achievement

    ERIC Educational Resources Information Center

    Lewis, Chance W.; Dugan, James J.; Winokur, Marc A.; Cobb, Brian R.

    2005-01-01

    The effect of block scheduling on high school student achievement in mathematics and reading was investigated in this study through the use of an ex post-facto, longitudinal research design. Specifically, student scores from 9th and 11th-grade standardized tests were matched and sorted by junior high and high school attended. Outcome measures…

  15. Attitudes and Opinions from the Nation's High Achieving Teens: 28th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 28th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,210 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1997 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  16. Attitudes and Opinions from the Nation's High Achieving Teens: 27th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 27th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,370 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1996 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  17. Improved recovery strategies for heterogeneous reservoir with high permeability contrast

    SciTech Connect

    Surguchev, L.M.; Hanssen, J.E.; Johannessen, H.M.; Abusdal, T.

    1994-12-31

    The present paper is a case study of improved oil recovery (IOR) process evaluation for a reservoir in the North Sea that has been particularly difficult to develop by waterflooding--the method of first choice in the area--due to its complex geology and faulting and to the coexistence of regions of very high and very low permeability. First, a multicriterion analysis based on general IOR experience and the applicability of specific processes in different geophysical conditions was used for a first-order screening of promising IOR technologies. Next, possible development scenarios for a particular stratified formation with high permeability contrast were modeled analytically, using an IOR screening tool developed in-house, and numerically, using a commercial reservoir simulator. Conventional water and gas injection, various horizontal well injection and production scenarios, as well as traditional enhanced oil recovery (EOR) methods, such as surfactant and polymer flooding and Water-Alternating-Gas (WAG) injection, all showed limited efficiency for the reservoir in question. However, the study also showed that novel, innovative water/gas injection processes and foam-assisted WAG injection, in combination with horizontal production wells, may give considerable improvement of reservoir sweep efficiency. Field model simulations demonstrated high recovery potential of these new processes. The practical applicability in offshore and deep-water completions for these processes were considered with the conclusion that field-scale implementation may be quite feasible.

  18. Monolithic subwavelength high refractive-index-contrast grating VCSELs

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz

    2016-03-01

    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  19. High contrast single molecule tracking in the pericellular coat

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  20. A Study on the Relationship between Logical Thinking Level and the Achievement in Enrichment Physics of School Science High Achievers.

    ERIC Educational Resources Information Center

    Kim, Young-Min; Lee, Sung-Yi

    2001-01-01

    Investigates science high achievers' achievement in enrichment physics and logical thinking levels, and analyzes the relationship between logical thinking level and achievement in enrichment physics of high achievers in science. Involves (n=35) 7th and 8th grade junior high school students in the study. Uses the Group Assessment of Logical…

  1. Enhanced K-edge plasma angiography achieved with tungsten Kα rays utilizing gadolinium-based contrast media

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Kimura, Koji; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Sato, Shigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2005-08-01

    The tungsten plasma flash x-ray generator is useful in order to perform high-speed enhanced K-edge angiography using cone beams because Kα rays from the tungsten target are absorbed effectively by gadolinium-based contrast media. In the flash x-ray generator, a 150 nF condenser is charged up to 80 kV by a power supply, and flash x-rays are produced by the discharging. The x-ray tube is a demountable diode, and the turbomolecular pump evacuates air from the tube with a pressure of approximately 1 mPa. Since the electric circuit of the high-voltage pulse generator employs a cable transmission line, the high-voltage pulse generator produces twice the potential of the condenser charging voltage. At a charging voltage of 80 kV, the estimated maximum tube voltage and current were approximately 160 kV and 40 kA, respectively. When the charging voltage was increased, the characteristic x-ray intensities of tungsten Kα lines increased. Using an ytterbium oxide filter, the Kα lines were clean, and hardly any Kβ lines and bremsstrahlung rays were detected. The x-ray pulse widths were approximately 60 ns, and the time-integrated x-ray intensity had a value of approximately 50 μGy at 1.0 m from the x-ray source with a charging voltage of 80 kV. Angiography was performed using a film-less computed radiography system and gadolinium-based contrast media. In angiography of non-living animals, we observed fine blood vessels of approximately 100 μm with high contrasts.

  2. Student Achievement for Whom? High-Performing and Still "Playing the Game," the Meaning of School Achievement among High Achieving African American Students

    ERIC Educational Resources Information Center

    Wiggan, Greg

    2014-01-01

    The preponderance of the research on African American students has generally focused on issues of school failure and underperformance. While the literature on high achieving Black students is sparse, very little is known about these students' school experiences and the meanings that they assign to achievement. Using student-based inquiry…

  3. Attitudes and Opinions from the Nation's High Achieving Teens. 25th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted during the spring of 1994 for the purpose of determining the attitudes of student leaders in the nation's high schools. Eight thousand surveys were sent out to students, of which 3177 were returned. All students surveyed were members of the junior or senior class during the 1993-94 academic year. They were selected for…

  4. A qualitative analysis of the nonverbal and verbal interactions of low achieving students in two contrasting science instructional settings

    NASA Astrophysics Data System (ADS)

    Logan, Laverne K.

    This research project was designed to describe and analyze the verbal and non-verbal interactions of low achieving students during science lessons taught in two contrasting science instructional settings. (1) Teacher-centered, textbook-dominated instruction and (2) Student-centered, materials-dominated instruction. This study provided the unique opportunity to observe individual students under both sets of conditions. Systematic classroom observation, non-structured student interviews, and student documents were used in the analysis. Levels of behavioral involvement were found to be lower during student-centered, materials-dominated lessons, however, increased frequencies, more varied types, and higher cognitive levels of verbal interaction were observed. Teacher-centered, text-dominated lessons yielded increased levels of on-task behavior, however, incidences of verbal interaction were observed to be decreased, less varied, and lower in cognitive level. The findings of this study suggest that the levels of behavioral involvement of low achieving students may be enhanced by increased structuring of the science learning environment. The findings suggest that additional structure in the form of task-specific directions and specific, short time allotments would enable low achieving students to better define a researchable question, and plan and conduct an investigation to answer the question. Low achieving students appeared to lack small group interaction skills needed to complete activities in the materials-dominated format. Groups of four tended to splinter: pairs would break off or students just worked individually. If groups of four are desired, the evidence from this study would suggest clearly defined expectations and shorter work times and more structure are needed for more effective group work. Questions remain concerning the ability for elementary science teachers to monitor the learning environment and learning processes, particularly in less structured

  5. High index contrast hole-free photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lipovskii, Andrey; Anan'ev, Anatoly; Maksimov, Leonid; Polukhin, Vladimir; Tagantsev, Dmitry; Tatarintsev, Boris

    2007-05-01

    A couple of multicomponent glasses was used to produce solid hole-free photonic crystal fiber (PCF) with high contrast of index. These glasses were a high index barium-lanthanum flint-glass (n~1.8) and a low index cron-glass (n~1.5). The compositions of selected glasses provided the coincidence of their viscosities in the temperature range of drawing, close thermal expansion coefficients, and chemical compatibility. To produce the PCF densely packed bundles of glass rods (elements) of 1 mm diameter assembled in a given structures were multiply co-drawn down to 0.2-2.0 microns diameter of a single element. This procedure allowed scaling of initial structures and resulted in two PCF structures: axially symmetrical eight-period structure and five-period "birefringent" structure. Optical transmission of the resultant PCF demonstrates the existence of photonic band-gaps, and intensity distribution of propagating mode corresponds to the results of numerical simulation performed.

  6. GaN-based surface-emitting lasers using high-contrast grating

    NASA Astrophysics Data System (ADS)

    Lu, Tien-Chang; Wang, Shing-Chung; Wu, Tzeng-Tsong; Wu, Shu-Hsien; Syu, Yu-Cheng

    2014-02-01

    GaN-based surface-emitting lasers (SELs) using high contrast grating (HCG) with AlN/GaN distributed Bragg reflectors were reported. The laser device achieved a threshold energy density of about 0.56 mJ/cm2 and the lasing wavelength was at 393.6 nm with a high degree of polarization of 73% at room temperature. The resonant mode and polarization characteristics matched to the theoretical prediction. GaN-based SELs using HCG supported by the Fano resonance can be potential for development of blue surface emitting laser sources

  7. Compressive high speed flow microscopy with motion contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Stroud, Jasper R.; Tran, Dung N.; Tran, Trac D.; Chin, Sang; Foster, Mark A.

    2016-03-01

    High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=&phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.

  8. Student Achievement Levels Raised at Chandler High School.

    ERIC Educational Resources Information Center

    Profiles, Programs & Products, 1983

    1983-01-01

    Chandler (Arizona) High School has reported a dramatic increase in student achievement levels since implementing a number of management, curriculum, and discipline policy changes. Among the program changes that contributed to these gains are: (1) creation of a positive school environment, with high expectations for teachers, emphasis on high…

  9. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  10. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  11. High School Employment and Academic Achievement: A Note for Educators

    ERIC Educational Resources Information Center

    Keister, Mary; Hall, Joshua

    2010-01-01

    Educators are often in a position to affect student decisions to work during the school term. This study reviews and summarizes the literature on the effect that employment during high school has on academic achievement. The available evidence suggests that part-time jobs for high school students are beneficial as long as the number of hours…

  12. What Does Quality Programming Mean for High Achieving Students?

    ERIC Educational Resources Information Center

    Samudzi, Cleo

    2008-01-01

    The Missouri Academy of Science, Mathematics and Computing (Missouri Academy) is a two-year accelerated, early-entrance-to-college, residential school that matches the level, complexity and pace of the curriculum with the readiness and motivation of high achieving high school students. The school is a part of Northwest Missouri State University…

  13. Octapod iron oxide nanoparticles as high-performance T₂ contrast agents for magnetic resonance imaging.

    PubMed

    Zhao, Zhenghuan; Zhou, Zijian; Bao, Jianfeng; Wang, Zhenyu; Hu, Juan; Chi, Xiaoqin; Ni, Kaiyuan; Wang, Ruifang; Chen, Xiaoyuan; Chen, Zhong; Gao, Jinhao

    2013-01-01

    Spherical superparamagnetic iron oxide nanoparticles have been developed as T2-negative contrast agents for magnetic resonance imaging in clinical use because of their biocompatibility and ease of synthesis; however, they exhibit relatively low transverse relaxivity. Here we report a new strategy to achieve high transverse relaxivity by controlling the morphology of iron oxide nanoparticles. We successfully fabricate size-controllable octapod iron oxide nanoparticles by introducing chloride anions. The octapod iron oxide nanoparticles (edge length of 30 nm) exhibit an ultrahigh transverse relaxivity value (679.3 ± 30 mM(-1) s(-1)), indicating that these octapod iron oxide nanoparticles are much more effective T2 contrast agents for in vivo imaging and small tumour detection in comparison with conventional iron oxide nanoparticles, which holds great promise for highly sensitive, early stage and accurate detection of cancer in the clinic. PMID:23903002

  14. MISR empirical stray light corrections in high-contrast scenes

    NASA Astrophysics Data System (ADS)

    Limbacher, J. A.; Kahn, R. A.

    2015-07-01

    We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Stray light in the MISR instrument is responsible for a large portion of the high AOD bias in high-contrast scenes, such as broken-cloud scenes that are quite common over ocean. Discrepancies among MODIS and MISR nadir-viewing blue, green, red, and near-infrared images are used to optimize seven parameters individually for each wavelength, along with a background reflectance modulation term that is modeled separately, to represent the observed features. Independent surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR research aerosol retrieval algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. With these corrections, plus the baseline RA corrections and enhanced cloud screening applied, the median AOD bias for all data in the mid-visible (green, 558 nm) band decreases from 0.006 (0.020 for the MISR standard algorithm (SA)) to 0.000, and the RMSE decreases by 5 % (27 % compared to the SA). For AOD558 nm < 0.10, which includes about half the validation data, 68th percentile absolute AOD558 nm errors for the RA have dropped from 0.022 (0.034 for the SA) to < 0.02 (~ 0.018).

  15. High-resolution seismic imaging applied to the characterization of very shallow highly contrasted structures

    NASA Astrophysics Data System (ADS)

    Roques, A.; Brossier, R.; Virieux, J.; Mars, J.

    2010-12-01

    High resolution seismic imaging could be achieved through the so-called full waveform inversion (FWI) which attempts to extract the information from the whole seismogram. This technique has been applied successfully in the characterization of deep structures for oil and gas industry. Near surface applications are less numerous as various seismic phases coming from the free surface interaction and the weathered layer zone introduce an increasing complexity in the signal, leading to optimization difficulties for the FWI. Both surface and body waves should be considered in the optimization procedure as independent or collaborative contributions. We present a numerical investigation of FWI performances for imaging very shallow and highly contrasted structures with velocity contrasts up to ten for P wave velocity and to twenty for S wave velocity as often met for very superficial investigation to a depth of few meters and at frequencies of few hundreds of hertz. Seismic wave modeling is performed by a discontinuous Galerkin (DG) finite element method in the frequency domain for 2D visco-elastic geometries: technique suitable for high contrasts of material properties. The related discretization of the medium is performed through a unstructured triangular mesh.The optimization approach is based on the estimation of a misfit function between observed data and synthetic data in the frequency domain. We shall update velocity quantities independently at each node of the meshing which acts as a diffractor. Because the forward modeling is time-consuming, we proceed through a local Quasi-Newton approach: the gradient is estimated through the adjoint formulation while an estimation of an approximate Hessian is obtained through the LBFGS method. In order to mitigate non-linear effects of the optimization procedure which can be trapped into secondary minima, we perform a two-levels strategy: we invert sequentially from low to high frequencies where the reconstructed medium at a

  16. Construction and status of the CHARIS high contrast imaging spectrograph

    NASA Astrophysics Data System (ADS)

    Groff, Tyler D.; Kasdin, N. J.; Limbach, Mary A.; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norm; Mede, Kyle; McElwain, Michael W.; Janson, Markus; Guyon, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Martinache, Frantz; Hayashi, Masahiko

    2014-07-01

    Princeton University is building the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), an integral field spectrograph (IFS) for the Subaru telescope. CHARIS is funded by the National Astronomical Observatory of Japan and is designed to take high contrast spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Coronagraphic Extreme Adaptive Optics (SCExAO) and the AO188 adaptive optics systems. The project is now in the build and test phase at Princeton University. Once laboratory testing has been completed CHARIS will be integrated with SCExAO and AO188 in the winter of 2016. CHARIS has a high-resolution characterization mode in J, H, and K bands. The average spectral resolution in J, H, and K bands are R82, R68, and R82 respectively, the uniformity of which is a direct result of a new high index material, L-BBH2. CHARIS also has a second low-resolution imaging mode that spans J,H, and K bands with an average spectral resolution of R19, a feature unique to this instrument. The field of view in both imaging modes is 2.07x2.07 arcseconds. SCExAO+CHARIS will detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. The primary challenge with exoplanet imaging is the presence of quasi-static speckles in the coronagraphic image. SCExAO has a wavefront control system to suppress these speckles and CHARIS will address their impact on spectral crosstalk through hardware design, which drives its optical and mechanical design. CHARIS constrains crosstalk to be below 1% for an adjacent source that is a full order of magnitude brighter than the neighboring spectra. Since CHARIS is on the Nasmyth platform, the optical alignment between the lenslet array and prism is highly stable. This improves the stability of the spectra and their orientation on the detector and results in greater stability in the wavelength solution for the data pipeline. This means less

  17. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    SciTech Connect

    Pueyo, Laurent; Norman, Colin

    2013-06-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10{sup –7} in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking

  18. An Analysis of High School Mathematics Achievement and English Language Arts Achievement as Predictors of Science Achievement

    ERIC Educational Resources Information Center

    Edwards, Anthony C.

    2012-01-01

    Science assessments require students to read and comprehend questions and to solve mathematical problems. The purpose of this study is to determine whether the following variables can be used to predict science achievement: English language arts achievement, mathematics achievement, socioeconomic status (SES), limited English proficiency (LEP)…

  19. Fundamental Limitations of High Contrast Imaging Set by Small Sample Statistics

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Milli, J.; Wahhaj, Z.; Pelat, D.; Absil, O.; Delacroix, C.; Boccaletti, A.; Kasper, M.; Kenworthy, M.; Marois, C.; Mennesson, B.; Pueyo, L.

    2014-09-01

    In this paper, we review the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high-contrast imaging at small angles. When looking close to the star, the number of resolution elements decreases rapidly toward small angles. This reduction of the number of degrees of freedom dramatically affects CLs and false alarm probabilities. Naively using the same ideal hypothesis and methods as for larger separations, which are well understood and commonly assume Gaussian noise, can yield up to one order of magnitude error in contrast estimations at fixed CL. The statistical penalty exponentially increases toward very small inner working angles. Even at 5-10 resolution elements from the star, false alarm probabilities can be significantly higher than expected. Here we present a rigorous statistical analysis that ensures robustness of the CL, but also imposes a substantial limitation on corresponding achievable detection limits (thus contrast) at small angles. This unavoidable fundamental statistical effect has a significant impact on current coronagraphic and future high-contrast imagers. Finally, the paper concludes with practical recommendations to account for small number statistics when computing the sensitivity to companions at small angles and when exploiting the results of direct imaging planet surveys.

  20. Fundamental limitations of high contrast imaging set by small sample statistics

    SciTech Connect

    Mawet, D.; Milli, J.; Wahhaj, Z.; Pelat, D.; Absil, O.; Delacroix, C.; Boccaletti, A.; Kasper, M.; Kenworthy, M.; Marois, C.; Mennesson, B.; Pueyo, L.

    2014-09-10

    In this paper, we review the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high-contrast imaging at small angles. When looking close to the star, the number of resolution elements decreases rapidly toward small angles. This reduction of the number of degrees of freedom dramatically affects CLs and false alarm probabilities. Naively using the same ideal hypothesis and methods as for larger separations, which are well understood and commonly assume Gaussian noise, can yield up to one order of magnitude error in contrast estimations at fixed CL. The statistical penalty exponentially increases toward very small inner working angles. Even at 5-10 resolution elements from the star, false alarm probabilities can be significantly higher than expected. Here we present a rigorous statistical analysis that ensures robustness of the CL, but also imposes a substantial limitation on corresponding achievable detection limits (thus contrast) at small angles. This unavoidable fundamental statistical effect has a significant impact on current coronagraphic and future high-contrast imagers. Finally, the paper concludes with practical recommendations to account for small number statistics when computing the sensitivity to companions at small angles and when exploiting the results of direct imaging planet surveys.

  1. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    PubMed Central

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders. PMID:26576198

  2. High-Contrast NIR Polarization Imaging of MWC480

    NASA Technical Reports Server (NTRS)

    McElwain, M. W.; Kusakabe, N.; Hashimoto, J.; Kudo, T.; Kandori, R.; Miyama, S.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Grady, C. A.; Sitko, M. L.; Werren, C.; Day, A. N.; Beerman, C.; Iye, M.; Lynch, D. K.; Russell, R. W.; Brafford, S. M.

    2012-01-01

    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in H band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0".2-1"0 (27.4-137 AU). Together with the marginal detection of the disk from 1998 February 24 by HST / NICMOS, our data constrain the opening half angle for the disk to lie between 1.3 <= Theta <=2.2 deg. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only approx 30% of the gas disk scale height (H/R approx 0. 03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.

  3. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C

    2007-11-07

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  4. Confidence Level and Sensitivity Limits in High Contrast Imaging

    SciTech Connect

    Marois, C; LaFreniere, D; Macintosh, B; Doyon, R

    2008-06-02

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground and space-based telescopes. Previous theoretical analysis have shown that the time intensity variations of a single speckle follows a modified Rician. It is first demonstrated here that for a circular pupil this temporal intensity distribution also represents the speckle spatial intensity distribution at a fix separation from the point spread function center; this fact is demonstrated using numerical simulations for coronagraphic and non-coronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level. In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding confidence level as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckles noise, a detection threshold up to three times higher is required to obtain a confidence level equivalent to that at 5{sigma} for Gaussian noise. The technique is then tested using TRIDENT CFHT and angular differential imaging NIRI Gemini adaptive optics data. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. A power-law is finally derived to predict the 1-3 x 10{sup -7} confidence level detection threshold when averaging a partially correlated non-Gaussian noise.

  5. Supplementary Education: The Hidden Curriculum of High Academic Achievement

    ERIC Educational Resources Information Center

    Gordon, Edmund W., Ed.; Bridglall, Beatrice L., Ed.; Meroe, Aundra Saa, Ed.

    2004-01-01

    In this book, the editors argue that while access to schools that enable and expect academic achievement is a necessary ingredient for the education of students, schools alone may not be sufficient to ensure universally high levels of academic development. Supplemental educational experiences may also be needed. The idea of supplementary education…

  6. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  7. Student Achievement Levels Climb at Ribault Senior High School.

    ERIC Educational Resources Information Center

    Profiles, Programs & Products, 1983

    1983-01-01

    Ribault (Florida) Senior High School has reported a dramatic increase in student achievement levels since implementing a comprehensive college preparation curriculum. Among the program changes that contributed to those gains are: (1) the establishment and consistent enforcement of a strong discipline program, including rules for student conduct, a…

  8. Middle School Practices Improve Student Achievement in High Poverty Schools.

    ERIC Educational Resources Information Center

    Mertens, Steven B.; Flowers, Nancy

    2003-01-01

    Examined how interdisciplinary team practices and classroom instructional practices affected student achievement in high poverty middle schools in Arkansas, Louisiana, and Mississippi. Found that when the combined effects of family poverty level, teaming and common planning time, and duration of teaming were considered, there was a relationship…

  9. Student Achievement through the Development of Complete High School Culture

    ERIC Educational Resources Information Center

    Lamphere, Michael Frederick, Jr.

    2012-01-01

    This dissertation undertook an investigation of school culture and achievement in the high school setting. The national data set ELS:2002 was used as the pool of variables because it allows for a complete picture of school culture comprising students, parents, administrators, and teachers. The data were selected based on current literature and…

  10. Mercer Middle School Case Study: High Science and Math Achievement

    ERIC Educational Resources Information Center

    Washington State Board of Education, 2010

    2010-01-01

    To spotlight effective practices, the Washington State Board of Education (SBE) is highlighting schools that are closing achievement gaps and performing at high levels. In 2009, the SBE partnered with the Office of Superintendent of Public Instruction (OSPI) to create the Washington Accountability Index. The Index is a new way to measure schools'…

  11. The High Trust Classroom: Raising Achievement from the Inside Out

    ERIC Educational Resources Information Center

    Moore, Lonnie

    2009-01-01

    This book provides a roadmap to developing a high-trust classroom, a classroom: (1) With increased student achievement; (2) With few discipline problems; (3) Where students are intrinsically motivated; and (4) Where the teacher can confidently use creative lesson planning. The author presents a simple step by step approach to earning the trust of…

  12. Best Practices for Achieving High, Rapid Reading Gains

    ERIC Educational Resources Information Center

    Carbo, Marie

    2008-01-01

    The percentage of students who read at the proficient level on the National Assessment of Educational Progress (NAEP) has not improved, and is appallingly low. In order for students to achieve high reading gains and become life-long readers, reading comprehension and reading enjoyment must be the top two goals. This article presents several…

  13. Relationship between High School Leadership Team Practices and Student Achievement

    ERIC Educational Resources Information Center

    McInnis, Timothy M.

    2009-01-01

    This study investigated if a relationship existed between student achievement in 10th grade Missouri Assessment Program mathematics and 11th grade communication arts scores in 2007 and high school leadership team perceptions of the extent to which they demonstrated leadership practices. The secondary purpose was to compare perceptional…

  14. Achievement of U.S. High-School Physics Students.

    ERIC Educational Resources Information Center

    Chandavarkar, Marilda S.; And Others

    1991-01-01

    Reports results of the Second International Science Study concerning achievement in physics of U.S. high school students. Makes comparisons between students of 13 other countries and U.S. students, between first- and second-year U.S. physics students, and between U.S. students tested in the mid-1980s and those tested in 1970. (MDH)

  15. Progress Lags in High School, Especially for Advanced Achievers

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2012

    2012-01-01

    This report by the Center on Education Policy (CEP), an independent nonprofit organization, examines trends in the achievement of high school students on the state reading/English language arts (ELA) and mathematics tests used for accountability under the No Child Left Behind Act (NCLB). This study confirms that there is reason for concern about…

  16. Confidence Level and Sensitivity Limits in High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Lafrenière, David; Macintosh, Bruce; Doyon, René

    2008-01-01

    In long adaptive optics corrected exposures, exoplanet detections are currently limited by speckle noise originating from the telescope and instrument optics, and it is expected that such noise will also limit future high-contrast imaging instruments for both ground- and space-based telescopes. Previous theoretical analyses have shown that the time intensity variations of a single speckle follow a modified Rician. It is first demonstrated here that for a circular pupil, this temporal intensity distribution also represents the speckle spatial intensity distribution at a fixed separation from the point-spread function center; this fact is demonstrated using numerical simulations for coronagraphic and noncoronagraphic data. The real statistical distribution of the noise needs to be taken into account explicitly when selecting a detection threshold appropriate for some desired confidence level (CL). In this paper, a technique is described to obtain the pixel intensity distribution of an image and its corresponding CL as a function of the detection threshold. Using numerical simulations, it is shown that in the presence of speckle noise, a detection threshold up to 3 times higher is required to obtain a CL equivalent to that at 5 σ for Gaussian noise. The technique is then tested on data acquired by simultaneous spectral differential imaging with TRIDENT and by angular differential imaging with NIRI. It is found that the angular differential imaging technique produces quasi-Gaussian residuals, a remarkable result compared to classical adaptive optic imaging. Finally, a power law is derived to predict the 1 - 3 × 10-7 CL detection threshold when averaging a partially correlated non-Gaussian noise. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of

  17. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  18. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  19. The Will to Achieve: A Phenomenological Study of the Experiences of African American High Achieving Students and Their Parents

    ERIC Educational Resources Information Center

    Spencer, Natalie Faye

    2012-01-01

    The purpose of this research study was to understand the experiences of high achieving African American students and their parents. The experiences of high achieving African American students and their parents have been missing from literature on the academic achievement of African American students. Much of the literature that has been published…

  20. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, H. V.

    2015-06-01

    We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin

  1. Characterization of a high-energy in-line phase contrast tomosynthesis prototype

    PubMed Central

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D.; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-01-01

    Purpose: In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. Methods: The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. Results: The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. Conclusions: This research successfully demonstrated a high-energy in

  2. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    SciTech Connect

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G.

    2015-10-01

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but under these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.

  3. High-index-contrast multilayer hollow waveguides for mid-IR laser delivery

    NASA Astrophysics Data System (ADS)

    Melzer, Jeffrey E.; Kendall, Wesley Y.; Harrington, James A.

    2016-03-01

    Hollow glass waveguides (HGWs) have been researched extensively for the efficient transmission of radiation over a broad spectral range spanning from the visible region to the far-IR. One such HGW film structure consists of a metallic substrate with overlaying multilayer dielectric thin film stack of alternating high and low refractive index films. The optical properties of such multilayer thin film stacks are well established and provide a method for developing photonic bandgap fibers with exceptionally low attenuation losses at a desired wavelength. Transmission losses can be minimized in multilayer waveguides through two main approaches; either maximizing the number of alternating layer pairs or maximizing the index contrast between adjacent films. In practice, it has been shown that for liquid-phase deposition-based procedures, the former approach leads to compounding surface and interface roughness, negating the low-loss advantage of a multilayer waveguide. Thus, this research focuses on maximizing index contrast between adjacent dielectrics in an attempt to minimize the number of films required to achieve acceptable transmission characteristics both in theory and in practice. In this study, multilayer waveguides are fabricated using three dielectric materials: silver iodide, lead sulfide, and cyclic olefin copolymer. Through exploitation of their high index contrast, these materials are used to develop low-film-count multilayer waveguides designed for enhanced transmission at both Er:YAG and CO2 laser wavelengths.

  4. High index contrast polysiloxane waveguides fabricated by dry etching

    SciTech Connect

    Madden, S. J.; Zhang, M. Y.; Choi, D.-Y.; Luther-Davies, B.; Charters, R.

    2009-05-15

    The authors demonstrate the production of low loss enhanced index contrast waveguides by reactive ion etching of IPG trade mark sign polysiloxane thin films. The use of a silica mask and CHF{sub 3}/O{sub 2} etch gas led to large etch selectivity between the silica and IPG trade mark sign of >20 and etch rates of >100 nm/min. This work indicates that compact optical circuits could be successfully fabricated for telecommunication applications using polysiloxane films.

  5. High contrast radiography of normal and cataractous canine lenses

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Hönnicke, M. G.; Cusatis, C.; Morelhão, S. L.

    2005-05-01

    Cataract is a disease that degrades the transparency of crystalline lenses. The crystalline lens is a cellular structure that has a unique shape and protein composition. Cataract is associated with changes in the structure and composition of the lenses. Analyser-based x-ray phase contrast imaging (PCI) is a non-destructive technique that presents images with more contrast and details than the images acquired with conventional synchrotron radiography. Here, an analyser-based x-ray PCI set-up was optimized in the XRD2 beamline at Brazilian Synchrotron Light Laboratory for comparative studies on PCI and conventional synchrotron radiography, for non-cataractous (healthy tissue) and cataractous crystalline (diseased tissue) lenses. Refraction angle and apparent absorption contrast images (diffraction enhanced imaging—DEI) were also obtained. The present PCI and DEI images indicate that the healthy tissue shows enhanced shell structures, while in the diseased tissue these are almost absent. This is associated with the clinical case of total opacity of the cataractous crystalline lenses when it is exposed to visible light.

  6. Diffraction-Based Techniques For High Contrast X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Peerzada, Lubna Naseem

    Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging. DEI produces contrast in images based upon the difference in the X-ray refractive indices of materials or tissues. Two DEI systems were devised. Both were comprised of a conventional polychromatic copper X-ray source, polycapillary collimating optics and two silicon crystals.Lucite step phantoms and nylon tubing were imaged. No fringe effects were observed. The lack of observable edge enhancement may have been due to the optic structure which obscured refraction effects. Better results might have been achieved if a higher resolution detector or phantom of larger step size or larger diameter thin walled tubing had been used. The second technique was coherent scatter X-ray imaging. The purpose of this work was to differentiate between healthy and diseased human breast tissues. For instance, breast carcinoma is known to have a peak coherent scattering angle at 12.2° for Mo Ka radiation at 17.5 keV, whereas fatty tissue peaks around 9°. A system which would be compatible with screening mammography was developed. The system was expanded to include sample scanning to allow for a larger image area. The modulation transfer function was computed for static and scanned images of a resolution phantom. These showed good agreement, indicating that the scanning was properly aligned and timed. Static and scanned images of phantoms were taken and the contrast was calculated for a series of experimental parameters including, grid tilt angle. A complex phantom was also then imaged. It was possible to distinguish tissue-equivalent phantom types. Good contrast resolution scanned images were obtained which is promising for a diagnostic system.

  7. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  8. High-contrast qubit interactions using multimode cavity QED.

    PubMed

    McKay, David C; Naik, Ravi; Reinhold, Philip; Bishop, Lev S; Schuster, David I

    2015-02-27

    We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600  MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000. PMID:25768741

  9. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Ruane, G. J.; Huby, E.; Absil, O.; Mawet, D.; Delacroix, C.; Carlomagno, B.; Swartzlander, G. A.

    2015-11-01

    Context. The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. Aims: We introduce a phase-only Lyot-plane optic to the vortex coronagraph, which offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described. Methods: Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane, thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Results: Numerically, we achieve a contrast on the order of 10-6 for a companion with angular displacement as small as 4λ/D with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or an optimized pupil plane phase element alone.

  10. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Mitra, Arijit; Tyagi, Himanshu; Bahadur, D.; Aslam, M.

    2015-05-01

    An efficient magnetic resonance imaging (MRI) contrast agent with a high R2 relaxivity value is achieved by controlling the shape of iron oxide to rod like morphology with a length of 30-70 nm and diameter of 4-12 nm. Fe3O4 nanorods of 70 nm length, encapsulated with polyethyleneimine show a very high R2 relaxivity value of 608 mM-1 s-1. The enhanced MRI contrast of nanorods is attributed to their higher surface area and anisotropic morphology. The higher surface area induces a stronger magnetic field perturbation over a larger volume more effectively for the outer sphere protons. The shape anisotropy contribution is understood by calculating the local magnetic field of nanorods and spherical nanoparticles under an applied magnetic field (3 Tesla). As compared to spherical geometry, the induced magnetic field of a rod is stronger and hence the stronger magnetic field over a large volume leads to a higher R2 relaxivity of nanorods.An efficient magnetic resonance imaging (MRI) contrast agent with a high R2 relaxivity value is achieved by controlling the shape of iron oxide to rod like morphology with a length of 30-70 nm and diameter of 4-12 nm. Fe3O4 nanorods of 70 nm length, encapsulated with polyethyleneimine show a very high R2 relaxivity value of 608 mM-1 s-1. The enhanced MRI contrast of nanorods is attributed to their higher surface area and anisotropic morphology. The higher surface area induces a stronger magnetic field perturbation over a larger volume more effectively for the outer sphere protons. The shape anisotropy contribution is understood by calculating the local magnetic field of nanorods and spherical nanoparticles under an applied magnetic field (3 Tesla). As compared to spherical geometry, the induced magnetic field of a rod is stronger and hence the stronger magnetic field over a large volume leads to a higher R2 relaxivity of nanorods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00055f

  11. High contrast imaging with an arbitrary aperture: active correction of aperture discontinuities: fundamental limits and practical trade- offs

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Élodie; Hoffmann, Jordan; Carlotti, Alexis; Mawet, Dimitri

    2014-08-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and / or segment gaps. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a "missing segment" . Because the converging non-linear mappings resulting from our Deformable Mirror shapes damps near-field diffraction artifacts in the vicinity of the discontinuities this solution is particularly appealing in terms of spectral bandwidth. We present preliminary results that illustrate the performances of ACAD in the presence of diffraction for apertures for with secondary support structures of varying width and argue that the ultimate contrast achieved can by combining ACAD with modern wavefront control algorithms.

  12. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-16

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite. PMID:26918285

  13. Non-periodic high-index contrast gratings reflector with large-angle beam forming ability

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min

    2016-05-01

    A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.

  14. On-chip broadband spectral filtering using planar double high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2015-02-01

    We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.

  15. High dynamic range measurement of the pulse contrast in a Ti:sapphire/Nd:glass multiterawatt laser

    NASA Astrophysics Data System (ADS)

    Castanheira, Ana; Cardoso, Luís; Pires, Hugo; Figueira, Gonçalo

    2011-05-01

    We describe the design and implementation study of a high dynamic range, third order contrast-ratio measurement diagnostic for a high power laser chain. The device, known as Optical Parametric Amplification Correlator (OPAC) is based on degenerate three-wave mixing in a nonlinear crystal, it is self-referencing and compact. By measuring the idler pulse with a slow detector and a set of calibrated filters, a dynamic range of up to 1010 is achievable. The pulse contrast is to be characterized at the mJ-level, 10 Hz, Ti:sapphire pre-amplifier stage, in a time window of 100 ps.

  16. Unlocking Emergent Talent: Supporting High Achievement of Low-Income, High Ability Students

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Clarenbach, Jane

    2012-01-01

    This report takes a comprehensive look at achievement for low-income promising learners--past, present, and future. At its core, it challenges the nation to move beyond its near-singular focus of achieving minimum performance for all students, to identifying and developing the talent of all students who are capable of high achievement, including…

  17. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  18. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    PubMed Central

    Sarapata, A.; Stayman, J. W.; Finkenthal, M.; Siewerdsen, J. H.; Pfeiffer, F.; Stutman, D.

    2014-01-01

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  19. High-contrast photopatterning of photoluminescence within quantum dot films through degradation of a charge-transfer quencher.

    PubMed

    Tagliazucchi, Mario; Amin, Victor A; Schneebeli, Severin T; Stoddart, J Fraser; Weiss, Emily A

    2012-07-17

    Diffraction-limited, high-contrast photopatterning of the photoluminescence of layer-by-layer films comprising CdSe@CdS@ZnS quantum dots and polyviologen is reported. The photoluminescence of the quantum dots is initially quantitatively quenched due to ultrafast photoinduced electron transfer to polyviologen. Photopatterning is achieved by high-power or prolonged illumination in air, which photochemically degrades the polyviologen and thereby restores the photoluminescence of the quantum dots. PMID:22678816

  20. Measurements of High-Contrast Starshade Performance in the Field

    NASA Astrophysics Data System (ADS)

    Smith, Daniel; Glassman, Tiffany M.; Warwick, Steve; Novicki, Megan; Richards, Michael; Patterson, Keith; Harness, Anthony

    2016-01-01

    The external Starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. In an effort to validate the starlight-suppression performance of the Starshade, we have measured contrast better than 1X10-9 using 60 cm Starshades at points just beyond the Starshade tips. These measurements were made over a 50% spectral bandpass, using an incoherent light source (a white LED), and in challenging outdoor test environments. Our experimental setup is designed to provide Starshade to telescope separation and telescope aperture size that are scaled as closely as possible to the flight system. The measurements confirm not only the overall starlight-suppression capability of the Starshade concept but also the robustness of the setup to optical disturbances such as atmospheric effects at the test site. The spectral coverage is limited only by the optics and detectors in our test setup, not by the Starshade itself. Here we describe our latest results as well as detailed comparisons of the measured results to model predictions. Plans and status of the next phase of ground testing are also discussed.

  1. High contrast Kr gas jet Kα x-ray source for high energy density physics experimentsa)

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Neumayer, P.; Döppner, T.; Chung, H.-K.; Constantin, C. G.; Girard, F.; Glenzer, S. H.; Kemp, A.; Niemann, C.

    2008-10-01

    A high contrast 12.6keV Kr Kα source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (Kα to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10-5. Filtered shadowgraphy indicates that the Kr Kα and Kβ x rays are emitted from a roughly 1×2mm2 emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70eV (i.e., mean ionization state 13-16), based on the observed ratio of Kα to Kβ. Kr gas jets provide a debris-free high energy Kα source for time-resolved diagnosis of dense matter.

  2. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    SciTech Connect

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  3. High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip; Esposito, Simone; Skrutskie, Michael F.; Defrère, Denis; Bailey, Vanessa; Leisenring, Jarron; Apai, Daniel; Biller, Beth; Bonnefoy, Mickaël.; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Maire, Anne-Lise; Males, Jared R.; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Su, Kate; Vaz, Amali; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.; Zimmerman, Neil

    2014-07-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its ~130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 μm), as opposed to the shorter wavelength near-infrared bands (1-2.4 μm) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (~0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μm in preparation for JWST.

  4. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    NASA Astrophysics Data System (ADS)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  5. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography

    PubMed Central

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-01-01

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies. PMID:27040492

  6. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  7. Achieving high energy absorption capacity in cellular bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-05-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed.

  8. High contrast two-photon imaging of fingermarks

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  9. High contrast two-photon imaging of fingermarks.

    PubMed

    Stoltzfus, Caleb R; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  10. High contrast two-photon imaging of fingermarks

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples. PMID:27053515

  11. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  12. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  13. Progress on achieving the ICF conditions needed for high gain

    SciTech Connect

    Lindl, J.D.

    1988-12-23

    Progress during the past two years has moved us much closer to demonstrating the scientific and technological requirements for high gain ICF in the laboratory. This progress has been made possible by operating at the third harmonic of 1..mu..m light which dramatically reduces concern about hot electrons and by advances in diagnostics such as 100 ps x-ray framing cameras which greatly increase the data available from each experiment. Making use of many of these new capabilities, major improvements in confinement conditions have been achieved for ICF implosions. In particular, in an optimized hohlraum on Nova, radiation driven implosions with convergence ratio in excess of 30 (volume compression /approximately/3 /times/ 10/sup 4/) have performed essentially as predicted by spherical implosion calculations. This paper presents these results as well as examples of advances in several other areas and discusses the implications for the future of ICF with lasers and heavy ion beam drivers. 8 refs., 10 figs.

  14. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  15. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  16. Characterizing Galbumin as a high molecular weight contrast agent in MRI - A novel dual contrast agent protocol

    NASA Astrophysics Data System (ADS)

    Moosvi, Firas; Reinsberg, Stefan; Baker, Jennifer

    2009-05-01

    In studying cancer and tumours, traditional biochemical methods call for analyzing frozen cross sections of tumour tissues, staining and then fluorescently imaging them at high resolution. While this method has served its purpose for decades, situations and conditions are arising that require dynamic imaging in live animals. Recent advances in the field of Biophysics have allowed researchers the ability to correlate images taken with Magnetic Resonance Imaging (MRI) to those using high- resolution fluorescent microscopy. While live imaging is possible using MRI, it is certainly not possible to reproduce much of the biologically relevant data acquired by fluorescent microscopy. In this proposal, we set the stage for the biological problem, cover some basic tumour biology then outline the basic principles of imaging with NMR. Finally, we characterize the use of a new contrast agent, Galbumin, to conduct a pilot study for a new class of animal MRI experiments.Finally, we present a novel protocol for a dual contrast agent MR protocol to extract permeability and flow information to improve characterization of drug delivery. Our over-arching goal is to use the live imaging capabilities of MR, and combine them with traditional fluorescent microscopy techniques to get a more accurate biological picture of a tumour.

  17. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.

    PubMed

    Hager, Roland; Burns, Jonathan R; Grydlik, Martyna J; Halilovic, Alma; Haselgrübler, Thomas; Schäffler, Friedrich; Howorka, Stefan

    2016-06-01

    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays. PMID:27062557

  18. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  19. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing.

    PubMed

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing. PMID:23942634

  20. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing

    NASA Astrophysics Data System (ADS)

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.

  1. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  2. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  3. Comparison of the Level of Using Metacognitive Strategies during Study between High Achieving and Low Achieving Prospective Teachers

    ERIC Educational Resources Information Center

    Doganay, Ahmet; Demir, Ozden

    2011-01-01

    The main purpose of this study is to compare the level of using metacognitive strategies during study between high achieving and low achieving prospective classroom teachers. This study was designed as a mixed method study. Metacognitive Learning Strategies Scale developed by Namlu (2004) was used to measure the use of metacognitive strategies…

  4. Gender Differences in Attitudes toward Mathematics between Low-Achieving and High-Achieving Fifth Grade Elementary Students.

    ERIC Educational Resources Information Center

    Rathbone, A. Sue

    Possible gender differences in attitudes toward mathematics were studied between low-achieving and high-achieving fifth-grade students in selected elementary schools within a large, metropolitan area. The attitudes of pre-adolescent children at an intermediate grade level were assessed to determine the effects of rapidly emerging gender-related…

  5. Maskless, High-Precision, Persistent, and Extreme Wetting-Contrast Patterning in an Environmental Scanning Electron Microscope.

    PubMed

    Liimatainen, Ville; Shah, Ali; Johansson, Leena-Sisko; Houbenov, Nikolay; Zhou, Quan

    2016-04-13

    A maskless and programmable direct electron beam writing method is reported for making high-precision superhydrophilic-superhydrophobic wetting patterns with 152° contact angle contrast using an environmental scanning electron microscope (ESEM). The smallest linewidth achieved is below 1 μm. The reported effects of the electron beam induced local plasma may also influence a variety of microscopic wetting studies in ESEM. PMID:26880568

  6. Improving AIRS radiance spectra in high contrast scenes using MODIS

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan M.; Elliott, Denis A.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in 2378 channels ranging in wavelength from 3.7-15.4 um with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS is designed to measure temperature and water vapor profiles for improvement in weather forecast accuracy and improved understanding of climate processes. As with most instruments, the AIRS Point Spread Functions (PSFs) are not the same for all detectors. When viewing a non-uniform scene, this causes a significant radiometric error in some channels that is scene dependent and cannot be removed without knowledge of the underlying scene. The magnitude of the error depends on the combination of non-uniformity of the AIRS spatial response for a given channel and the non-uniformity of the scene, but is typically only noticeable in about 1% of the scenes and about 10% of the channels. The current solution is to avoid those channels when performing geophysical retrievals. In this effort we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument to provide information on the scene uniformity that is used to correct the AIRS data. For the vast majority of channels and footprints the technique works extremely well when compared to a Principal Component (PC) reconstruction of the AIRS channels. In some cases where the scene has high inhomogeneity in an irregular pattern, and in some channels, the method can actually degrade the spectrum. Most of the degraded channels appear to be slightly affected by random noise introduced in the process, but those with larger degradation may be affected by alignment errors in the AIRS relative to MODIS or uncertainties in the PSF. Despite these errors, the methodology shows the ability to correct AIRS radiances in non-uniform scenes under some of the worst case conditions and improves the ability to match

  7. High contrast ratio and fast-switching dual polymer electrochromic devices

    SciTech Connect

    Sapp, S.A.; Sotzing, G.A.; Reynolds, J.R.

    1998-08-01

    A series of dual polymer electrochromic devices (ECDs) based on 12 complementary pairs of conducting polymer films have been constructed using 3,4-ethylenedioxythiophene-containing conducting polymers. Poly[3,6-bis(2-(3,4-ethylenedioxythiophene))-N-methylcarbazole] (PBEDOT-NCH{sub 3}Cz), poly[3,6-bis(2-(3,4-ethylenedioxythiophene))-N-eicosylcarbazole] (PBEDOT-NC{sub 20}H{sub 41}Cz), and poly[4,4{prime}-bis(2-(3,4-ethylenedioxythiophene))biphenyl] (PBEDOT-BP) were utilized as anodically coloring polymers that electrochemically switch between an oxidized deep blue absorptive state and a transmissive (orange or yellow) reduced state. Poly(3,4-ethylenedioxythiophene)(PEDOT) and its alkyl derivatives (PEDOT-C{sub 14}H{sub 29} and PEDOT-C{sub 16}H{sub 33}) have been used as high-contrast cathodically coloring polymers that switch between a deep blue absorptive state in the reduced form and a sky blue, highly transmissive state in the oxidized form. The dual polymer ECDs were constructed by separating complementary pairs of EC polymer films, deposited on ITO glass, with a gel electrolyte composed of a lithium salt and plasticized poly(methyl methacrylate) (PMMA). Device contrast ratios, measured as {Delta}%T, ranged from 27% to 63%, and subsecond switching times for full color change were achieved. These devices were found to exhibit extremely high coloration efficiencies of up to 1400 cm{sup 2}/C over narrow (ca. 100 nm) wavelength ranges and to retain up to 60% of their optical response after 10,000 deep, double potential steps, rendering them useful for EC applications.

  8. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  9. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  10. Learning Styles and High School Students' Chemistry Achievement

    ERIC Educational Resources Information Center

    Uzuntiryaki, Esen

    2007-01-01

    The aim of the present study was to investigate the effects of students' learning styles on their chemistry achievement, and whether matching between teaching and learning styles also affects students' chemistry achievement. Two hundred and sixty-five tenth-grade students enrolled in a chemistry course and seven chemistry teachers participated in…

  11. Does Recreational Computer Use Affect High School Achievement?

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Berland, Matthew

    2013-01-01

    Historically, the relationship between student academic achievement and use of computers for fun and video gaming has been described from a multitude of perspectives, from positive, to negative, to neutral. However, recent research has indicated that computer use and video gaming may be positively associated with achievement, yet these studies…

  12. Student Perception of Academic Achievement Factors at High School

    ERIC Educational Resources Information Center

    Bahar, Mustafa

    2016-01-01

    Measuring the quality of the "product" is elemental in education, and most studies depend on observational data about student achievement factors, focusing overwhelmingly on quantitative data namely achievement scores, school data like attendance, facilities, expenditure class size, etc. But there is little evidence of learner…

  13. End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Hewasawam, Kuravi; Mendillo, Christopher B.; Cahoy, Kerri L.; Cook, Timothy A.; Finn, Susanna C.; Howe, Glenn A.; Kuchner, Marc J.; Lewis, Nikole K.; Marinan, Anne D.; Mawet, Dimitri; Chakrabarti, Supriya

    2015-09-01

    We describe a set of numerical approaches to modeling the performance of space flight high-contrast imaging payloads. Mission design for high-contrast imaging requires numerical wavefront error propagation to ensure accurate component specifications. For constructed instruments, wavelength and angle-dependent throughput and contrast models allow detailed simulations of science observations, allowing mission planners to select the most productive science targets. The PICTURE family of missions seek to quantify the optical brightness of scattered light from extrasolar debris disks via several high-contrast imaging techniques: sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment) and balloon flights of a visible nulling coronagraph, as well as a balloon flight of a vector vortex coronagraph (the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph, PICTURE-C). The rocket mission employs an on-axis 0.5m Gregorian telescope, while the balloon flights will share an unobstructed off-axis 0.6m Gregorian. This work details the flexible approach to polychromatic, end-to-end physical optics simulations used for both the balloon vector vortex coronagraph and rocket visible nulling coronagraph missions. We show the preliminary PICTURE-C telescope and vector vortex coronagraph design will achieve 10-8 contrast without post-processing as limited by realistic optics, but not considering polarization or low-order errors. Simulated science observations of the predicted warm ring around Epsilon Eridani illustrate the performance of both missions.

  14. High Contrast.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2002-01-01

    Presents an art lesson in which drawing students learn to use scratchboard to create a picture of a skeleton part that they find interesting. Describes how the students create pictures using this technique. Includes a list of materials and objectives. (CMK)

  15. Combining high-dispersion spectroscopy with high contrast imaging: Probing rocky planets around our nearest neighbors

    NASA Astrophysics Data System (ADS)

    Snellen, I.; de Kok, R.; Birkby, J. L.; Brandl, B.; Brogi, M.; Keller, C.; Kenworthy, M.; Schwarz, H.; Stuik, R.

    2015-04-01

    Context. Ground-based high-dispersion (R ~ 100 000) spectroscopy (HDS) is proving to be a powerful technique with which to characterize extrasolar planets. The planet signal is distilled from the bright starlight, combining ral and time-differential filtering techniques. In parallel, high-contrast imaging (HCI) is developing rapidly, aimed at spatially separating the planet from the star. While HDS is limited by the overwhelming noise from the host star, HCI is limited by residual quasi-static speckles. Both techniques currently reach planet-star contrast limits down to ~10-5, albeit for very different types of planetary systems. Aims: In this work, we discuss a way to combine HDS and HCI (HDS+HCI). For a planet located at a resolvable angular distance from its host star, the starlight can be reduced up to several orders of magnitude using adaptive optics and/or coronography. In addition, the remaining starlight can be filtered out using high-dispersion spectroscopy, utilizing the significantly different (or Doppler shifted) high-dispersion spectra of the planet and star. In this way, HDS+HCI can in principle reach contrast limits of ~10-5 × 10-5, although in practice this will be limited by photon noise and/or sky-background. In contrast to current direct imaging techniques, such as Angular Differential Imaging and Spectral Differential Imaging, it will work well at small working angles and is much less sensitive to speckle noise. For the discovery of previously unknown planets HDS+HCI requires a high-contrast adaptive optics system combined with a high-dispersion R ~ 100 000 integral field spectrograph (IFS). This combination currently does not exist, but is planned for the European Extremely Large Telescope. Methods: We present simulations of HDS+HCI observations with the E-ELT, both probing thermal emission from a planet at infrared wavelengths, and starlight reflected off a planet atmosphere at optical wavelengths. For the infrared simulations we use the

  16. Achievement of Hispanic Students in American High Schools: Background Characteristics and Achievement. Contractor Report.

    ERIC Educational Resources Information Center

    Nielsen, Francois; Fernandez, Roberto M.

    Presenting data and analyses from the first wave of the study "High School and Beyond" (HS&B), a longitudinal study of United States high school sophomores and seniors, the report focuses on the composition of the Hispanic tenth and twelfth grade student population with respect to various characteristics; i.e., language use and proficiency, length…

  17. Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions

    SciTech Connect

    Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher; Bulanov, Stepan S.; Chvykov, Vladimir; Kalintchenko, Galina; Thomas, Alec G. R.; Willingale, Louise; Yanovsky, Victor; Maksimchuk, Anatoly; Krushelnick, Karl; Davis, Jack; Petrov, George

    2010-11-04

    Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughput with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.

  18. High refractive index substrates for fluorescence microscopy of biological interfaces with high z contrast

    PubMed Central

    Ajo-Franklin, Caroline M.; Kam, Lance; Boxer, Steven G.

    2001-01-01

    Total internal reflection fluorescence microscopy is widely used to confine the excitation of a complex fluorescent sample very close to the material on which it is supported. By working with high refractive index solid supports, it is possible to confine even further the evanescent field, and by varying the angle of incidence, to obtain quantitative information on the distance of the fluorescent object from the surface. We report the fabrication of hybrid surfaces consisting of nm layers of SiO2 on lithium niobate (LiNbO3, n = 2.3). Supported lipid bilayer membranes can be assembled and patterned on these hybrid surfaces as on conventional glass. By varying the angle of incidence of the excitation light, we are able to obtain fluorescent contrast between 40-nm fluorescent beads tethered to a supported bilayer and fluorescently labeled protein printed on the surface, which differ in vertical position by only tens of nm. Preliminary experiments that test theoretical models for the fluorescence-collection factor near a high refractive index surface are presented, and this factor is incorporated into a semiquantitative model used to predict the contrast of the 40-nm bead/protein system. These results demonstrate that it should be possible to profile the vertical location of fluorophores on the nm distance scale in real time, opening the possibility of many experiments at the interface between supported membranes and living cells. Improvements in materials and optical techniques are outlined. PMID:11717428

  19. Taming the non-linearity problem in GPR full-waveform inversion for high contrast media

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni; Greenhalgh, Stewart; van der Kruk, Jan; Green, Alan; Maurer, Hansruedi

    2012-03-01

    We present a new algorithm for the inversion of full-waveform ground-penetrating radar (GPR) data. It is designed to tame the non-linearity issue that afflicts inverse scattering problems, especially in high contrast media. We first investigate the limitations of current full-waveform time-domain inversion schemes for GPR data and then introduce a much-improved approach based on a combined frequency-time-domain analysis. We show by means of several synthetic tests and theoretical considerations that local minima trapping (common in full bandwidth time-domain inversion) can be avoided by starting the inversion with only the low frequency content of the data. Resolution associated with the high frequencies can then be achieved by progressively expanding to wider bandwidths as the iterations proceed. Although based on a frequency analysis of the data, the new method is entirely implemented by means of a time-domain forward solver, thus combining the benefits of both frequency-domain (low frequency inversion conveys stability and avoids convergence to a local minimum; whereas high frequency inversion conveys resolution) and time-domain methods (simplicity of interpretation and recognition of events; ready availability of FDTD simulation tools).

  20. Taming the non-linearity problem in GPR full-waveform inversion for high contrast media

    NASA Astrophysics Data System (ADS)

    Meles, Giovanni; Greenhalgh, Stewart; van der Kruk, Jan; Green, Alan; Maurer, Hansruedi

    2011-02-01

    We present a new algorithm for the inversion of full-waveform ground-penetrating radar (GPR) data. It is designed to tame the non-linearity issue that afflicts inverse scattering problems, especially in high contrast media. We first investigate the limitations of current full-waveform time-domain inversion schemes for GPR data and then introduce a much-improved approach based on a combined frequency-time-domain analysis. We show by means of several synthetic tests and theoretical considerations that local minima trapping (common in full bandwidth time-domain inversion) can be avoided by starting the inversion with only the low frequency content of the data. Resolution associated with the high frequencies can then be achieved by progressively expanding to wider bandwidths as the iterations proceed. Although based on a frequency analysis of the data, the new method is entirely implemented by means of a time-domain forward solver, thus combining the benefits of both frequency-domain (low frequency inversion conveys stability and avoids convergence to a local minimum; whereas high frequency inversion conveys resolution) and time-domain methods (simplicity of interpretation and recognition of events; ready availability of FDTD simulation tools).

  1. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  2. Preferences of High Achieving High School Students in Their Career Development

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2010-01-01

    The intent of this study was to identify the needs and preference of high-achieving high school students. In terms of career related programs in high school, students listed AP courses and mentoring as their preferred career-related programs. Also, students stated that career guidance by counselors, workshops or sessions, and tech prep were the…

  3. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  4. The Effect of Music Participation on Mathematical Achievement and Overall Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Cox, H. A.; Stephens, L. J.

    2006-01-01

    A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least…

  5. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  6. Fast Decompression Of Ultra-Thin Targets For High-Energy, High-Contrast Laser Pulses

    SciTech Connect

    Antici, P.; Fuchs, J.; Brambrink, E.; Audebert, P.; Lefebvre, E.; Gremillet, L.; Pepin, H.

    2010-02-02

    In the laser-plasma interaction process, for ultra-high temporal contrast laser pulses, experimental measurements show that reducing the thickness of solid targets increases the laser-to-fast electrons energy conversion and the hot electron temperature. We have performed an experiment using the LULI 100 TW laser facility working in the chirped pulse amplification (CPA) mode at a wavelength {lambda}{sub 0} = 1.057 {mu}m, pulse duration 320 fs, laser spot size FWHM {approx}6 {mu}m and intensity {approx}1x10{sup 18} W/cm{sup 2} in which the laser pulses were temporal-contrast enhanced by the use of two plasma mirrors. Shots were performed on Si{sub 3}N{sub 4} aluminum coated targets of thickness 30 nm to 500 nm. Spectra of the laser-accelerated electrons were recorded with a spectrometer and are compared to PIC simulations performed with the CALDER code. The simulations allow an insight into the electron heating process during the laser-matter interaction.

  7. Fast Decompression Of Ultra-Thin Targets For High-Energy, High-Contrast Laser Pulses

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Lefebvre, E.; Gremillet, L.; Brambrink, E.; Audebert, P.; Pépin, H.

    2010-02-01

    In the laser-plasma interaction process, for ultra-high temporal contrast laser pulses, experimental measurements show that reducing the thickness of solid targets increases the laser-to-fast electrons energy conversion and the hot electron temperature. We have performed an experiment using the LULI 100 TW laser facility working in the chirped pulse amplification (CPA) mode at a wavelength λ0 = 1.057 μm, pulse duration 320 fs, laser spot size FWHM ˜6 μm and intensity ˜1×1018 W/cm2 in which the laser pulses were temporal-contrast enhanced by the use of two plasma mirrors. Shots were performed on Si3N4 aluminum coated targets of thickness 30 nm to 500 nm. Spectra of the laser-accelerated electrons were recorded with a spectrometer and are compared to PIC simulations performed with the CALDER code. The simulations allow an insight into the electron heating process during the laser-matter interaction.

  8. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings.

    PubMed

    Haglund, E; Gustavsson, J S; Bengtsson, J; Haglund, Å; Larsson, A; Fattal, D; Sorin, W; Tan, M

    2016-02-01

    We demonstrate, for the first time, post-growth wavelength setting of electrically-injected vertical-cavity surface-emitting lasers (VCSELs) by using high-contrast gratings (HCGs) with different grating parameters. By fabricating HCGs with different duty cycle and period, the HCG reflection phase can be varied, in effect giving different optical cavity lengths for HCG-VCSELs with different grating parameters. This enables fabrication of monolithic multi-wavelength HCG-VCSEL arrays for wavelength-division multiplexing (WDM). The GaAs HCG is suspended in air by removing a sacrificial layer of InGaP. Electrically-injected 980-nm HCG-VCSELs with sub-mA threshold currents indicate high reflectivity from the GaAs HCGs. Lasing over a wavelength span of 15 nm was achieved, enabling a 4-channel WDM array with 5 nm channel spacing. A large wavelength setting span was enabled by an air-coupled cavity design and the use of only the HCG as top mirror. PMID:26906776

  9. Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team

    2015-03-01

    Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  10. Academic attainment and the high school science experiences among high-achieving African American males

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  11. High-contrast coronagraph performance in the presence of DM actuator defects

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  12. Simultaneous high-resolution scanning Bragg contrast and ptychographic imaging of a single solar cell nanowire

    PubMed Central

    Wallentin, Jesper; Wilke, Robin N.; Osterhoff, Markus; Salditt, Tim

    2015-01-01

    Simultaneous scanning Bragg contrast and small-angle ptychographic imaging of a single solar cell nanowire are demonstrated, using a nanofocused hard X-ray beam and two detectors. The 2.5 µm-long nanowire consists of a single-crystal InP core of 190 nm diameter, coated with amorphous SiO2 and polycrystalline indium tin oxide. The nanowire was selected and aligned in real space using the small-angle scattering of the 140 × 210 nm X-ray beam. The orientation of the nanowire, as observed in small-angle scattering, was used to find the correct rotation for the Bragg condition. After alignment in real space and rotation, high-resolution (50 nm step) raster scans were performed to simultaneously measure the distribution of small-angle scattering and Bragg diffraction in the nanowire. Ptychographic reconstruction of the coherent small-angle scattering was used to achieve sub-beam spatial resolution. The small-angle scattering images, which are sensitive to the shape and the electron density of all parts of the nanowire, showed a homogeneous profile along the nanowire axis except at the thicker head region. In contrast, the scanning Bragg diffraction microscopy, which probes only the single-crystal InP core, revealed bending and crystalline inhomogeneity. Both systematic and non-systematic real-space movement of the nanowire were observed as it was rotated, which would have been difficult to reveal only from the Bragg scattering. These results demonstrate the advantages of simultaneously collecting and analyzing the small-angle scattering in Bragg diffraction experiments. PMID:26664342

  13. Silicate all-solid photonic crystal fibers with a glass high index contrast

    NASA Astrophysics Data System (ADS)

    Buczynski, Ryszard; Pysz, Dariusz; Kujawa, Ireneusz; Fita, Piotr; Pawlowska, Monika; Nowosielski, J.; Radzewicz, Czeslaw; Stepien, Ryszard

    2007-05-01

    An all-solid photonic crystal fiber can be developed using two thermally matched glasses with one glass forming the background, and the other the lattice of inclusions. Optical properties of all-solid holey fibers (SOHO) are sensitive to the photonic cladding configuration, much the same as PCFs with air holes, and strongly depend on dispersion properties of the materials used. When a high index contrast between the glasses is assured photonic crystal fiber can effectively guide light with photonic band gap mechanism. This can be easily achieved when multicomponent soft glass is used for fiber fabrication. We report on new developments of F2/NC-21 silicate all-glass PCFs. F2 is a commercially available glass (Schott Inc.) with a high concentration of lead-oxide (PbO=45.5%) and the refractive index n D=1.619. It can be used both as the background material and as a material for micro-rods (inclusions). A borosilicate glass (B IIO 3=26.0%) NC-21 glass has been synthesized in-house at IEMT. NC21 has the index n D=1.533 and was used as the material for micro-rods (inclusions) or as a background glass in the structures. The two selected glasses have a high index contrast equal to 0,084 at 1,55μm wavelength. In this report we present new results on optimization of the filling factor d/Λ and reduction of the lattice pitch Λ necessary to obtain efficient guidance at 1.55 μm. The numerical analysis of SOHO F2/NC21 fibers has been carried out using a full-vector mode solver based on the plane-wave expansion method. In our paper we report on photonic crystal fibers with two guiding mechanisms: an effective index with a high index core (low index inclusions made of NC21 glass and F2 used as a background glass) and a photonic band gap with a low index core (high index inclusions made of F2 glass and NC21 used as a background glass).

  14. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  15. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  16. "Brains before "Beauty"?" High Achieving Girls, School and Gender Identities

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky; Read, Barbara

    2010-01-01

    In recent years educational policy on gender and achievement has concentrated on boys' underachievement, frequently comparing it with the academic success of girls. This has encouraged a perception of girls as the "winners" of the educational stakes and assumes that they no longer experience the kinds of gender inequalities identified in earlier…

  17. Cooperative Learning: A Standard for High Achievement. The Nutshell Series.

    ERIC Educational Resources Information Center

    Williams, R. Bruce

    2007-01-01

    This book reveals some of the structural complexities involved in implementing authentic cooperative learning in the classroom. It also suggests that when full cooperative learning structures are implemented, the benefits in student achievement often can be astounding. Descriptions, decisions, designs, and developments, a simple four-part scheme,…

  18. Dominant Achievement Goals across Tracks in High School

    ERIC Educational Resources Information Center

    Scheltinga, Peter A. M.; Kuyper, Hans; Timmermans, Anneke C.; van der Werf, Greetje P. C.

    2016-01-01

    The dominant achievement goals (DAGs) of 7,008 students in the third grade of Dutch secondary education (US grade 9) were investigated, based on Elliot & McGregors' 2 × 2 framework (2001), in relation to track-level and motivational variables. We found the mastery-approach goal and the performance-approach goal, generally considered adaptive,…

  19. Integrated laser with low-loss high index-contrast waveguides for OEICs

    SciTech Connect

    Welty, R J; Bond, T C; Behymer, E; Pocha, M; Loomis, G; Wolfe, J; Vernon, S

    2004-11-22

    Photonic integrated circuits require the ability to integrate both lasers and waveguides with low absorption and coupling loss. This technology is being developed at LLNL for digital logic gates for optical key generation circuits to facilitate secure communications. Here, we demonstrate an approach of integrating InGaAs DQW edge emitting lasers (EEL) with electron beam evaporated dielectric waveguides. The EELs are defined by electron cyclotron resonance etching (ECR). This approach results in highly anisotropic etched mirrors with smooth etched features (sidewall rms roughness = 28 {angstrom}, surface rms roughness = 10 {angstrom}). The mirror is etched to form both the laser cavity and define the waveguide mesa, which accommodates a dielectric stack, where the core is aligned with the active region of the laser to achieve maximum vertical mode overlapping. The waveguides are based on SiO{sub 2}/Ta{sub 2}O{sub 5}/SiO{sub 2} which yields a high index contrast of 0.6, resulting in low loss guides ({approx}2-3dB/cm). The design of the interface has taken into account the waveguide transmission loss, air gap spacing and tilt between the laser and waveguide. The critical feature for this deposition technique is its required high directionality or minimal sidewall deposition and corner effects. In the butt coupled EEL/waveguide system we have measured a slope efficiency to be as high as 0.45 W/A. We have in conclusion demonstrated a technology that allows direct coupling of a dielectric optical interconnect to a semiconductor laser monolithically fabricated on the semiconductor substrate.

  20. Integrated laser with low-loss high-index-contrast waveguides for OEICs

    NASA Astrophysics Data System (ADS)

    Welty, Rebecca J.; Bond, Tiziana C.; Behymer, Elaine; Pocha, Michael; Loomis, Gary; Wolfe, Jesse; Vernon, Stephen

    2005-03-01

    Photonic integrated circuits require the ability to integrate both lasers and waveguides with low absorption and coupling loss. This technology is being developed at LLNL for digital logic gates for optical key generation circuits to facilitate secure communications. Here, we demonstrate an approach of integrating InGaAs DQW edge emitting lasers (EEL) with electron beam evaporated dielectric waveguides. The EELs are defined by electron cyclotron resonance etching (ECR). This approach results in highly anisotropic etched mirrors with smooth etched features (sidewall rms roughness = 28 Å, surface rms roughness = 10 Å). The mirror is etched to form both the laser cavity and define the waveguide mesa, which accommodates a dielectric stack, where the core is aligned with the active region of the laser to achieve maximum vertical mode overlapping. The waveguides are based on SiO2/Ta2O5/SiO2 which yields a high index contrast of 0.6, resulting in low loss guides (~2-3dB/cm). The design of the interface has taken into account the waveguide transmission loss, air gap spacing and tilt between the laser and waveguide. The critical feature for this deposition technique is its required high directionality or minimal sidewall deposition and corner effects. In the butt coupled EEL/waveguide system we have measured a slope efficiency to be as high as 0.45 W/A. We have in conclusion demonstrated a technology that allows direct coupling of a dielectric optical interconnect to a semiconductor laser monolithically fabricated on the semiconductor substrate.

  1. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.

    PubMed

    Zhang, Xi; Zhang, Mingshu; Li, Dong; He, Wenting; Peng, Jianxin; Betzig, Eric; Xu, Pingyong

    2016-09-13

    Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm(2)) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. PMID:27562163

  2. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  3. Hybrid pupil mapping/masking systems for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Vanderbei, Robert J.

    2006-06-01

    Pupil mapping, also known as phase induced amplitude apodization or PIAA, has emerged as an interesting design concept for NASA's Terrestrial Planet Finder space telescope. However, in a previous paper it was demonstrated that diffraction effects limit the best achievable contrast to about 10 -5, which is 5 orders of magnitude short of the required level. Recent work by Olivier Guyon and his collaborators shows that a certain hybrid system can restore the contrast to the required level without degrading significantly the attractive throughput, achromaticity, and inner working angle advantages. In this paper, efficient computational tools are described that can be used to evaluate such designs. It is shown that a design similar to the one proposed by Guyon does indeed meet the contrast requirement.

  4. High temporal resolution dynamic contrast MRI in a high risk group for placenta accreta.

    PubMed

    Tanaka, Y O; Sohda, S; Shigemitsu, S; Niitsu, M; Itai, Y

    2001-06-01

    Antenatal diagnosis of placenta accreta with MR is not easy even now because T2-weighted images (T2WI) cannot differentiate chorionic villi from decidua basalis. We performed dynamic contrast MRI to study whether trophoblastic villi could be separately demonstrated from the decidua basalis, and whether the contrast resolution between the placenta and myometrium could improve compared to T2WI. Six pregnant women with prior cesarean section were examined at 34-38 gestational weeks. Sagittal T2-weighted images with fast spin echo sequences and dynamic contrast studies with fast field echo sequence every 10-14 s after contrast injection were performed. We analyzed the enhancing pattern of the placenta and compared the contrast between placenta and myometrium. We reviewed medical records to identify complications during the placental delivery and the complications of their newborns. In the early phase after contrast enhancement, multiple foci of the strong lobular enhancement were observed in all cases. Other parts of placenta were slowly but strongly enhanced following them. We speculated that the former corresponded to intervillous space and the latter decidua basalis. The contrast between placenta and myometrium tended to be distinct near the inner cervical os on both T2WI and dynamic contrast study. On the other hand, it was indistinct in the upper part of the uterine body on T2WI despite it was clearly demonstrated on dynamic contrast study. The placentae were delivered without any complication in all cases. Although two neonates showed fetal distress, none of the infant remained any sequelae at the time of the discharge. The other four were well although one of them complicated with meconium staining. As dynamic contrast MRI can differentiate chorionic villi and decidua basalis, and can provide excellent contrast between placenta and myometrium at anywhere within the uterus, it may be a promising technique for antepartum diagnosis of the placenta accreta. PMID

  5. The Relationship between Self-Esteem and Academic Achievement in a Group of High, Medium, and Low Secondary Public High School Achievers.

    ERIC Educational Resources Information Center

    Thomas-Brantley, Betty J.

    This study investigated the relationship between self-esteem and academic achievement in a group of 150 high, medium, and low achievers at a large midwestern public high school. Correlating data from the Coopersmith Inventory of self-esteem with grades, cumulative grade point averages, and class rank, the study disclosed a positive correlation…

  6. Managing the optical wavefront for high contrast exoplanet imaging with the WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Trauger, John T.; Krist, John E.; Moody, Dwight

    2016-01-01

    The prospect of extreme high contrast astronomical imaging from space has inspired developments of new coronagraph methods for exoplanet imaging and spectroscopy. However, the requisite contrast, at levels of a billion to one or better for the direct imaging of cool mature exoplanets in reflected visible starlight, leads to challenging new requirements on the stability and control of the optical wavefront at levels currently beyond the reach of ground based telescopes. We briefly review the designs, laboratory validations, and science prospects for direct imaging and spectroscopic characterization of exoplanet systems with an actively corrected Lyot coronagraph. We review exoplanet science performance predicted for NASA's WFIRST-AFTA coronagraph. Together with a pair of deformable mirrors for optical wavefront control, the Lyot coronagraph creates high contrast dark fields of view extending to angular separations within 0.1 arcsec from the central star at visible wavelengths. Performance metrics are presented, including image contrast and spectral bandwidth, and laboratory validation experience.

  7. 10-TW high-contrast double CPA laser system for ion acceleration

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sakaki, H.; Fukuda, Y.; Jinno, S.; Kanasaki, M.; Kiriyama, H.; Shimomura, T.; Ogura, K.; Mori, M.; Bolton, P. R.; Kondo, K.

    2016-03-01

    We demonstrate an insertable pulse cleaning module (IPCM) that is connected to a commercial CPA Ti:sapphire laser system and reduces the background of amplified spontaneous emission (ASE), when the output energy and repetition rate of the original laser system is completely preserved. The ASE temporal contrast is suppressed by three orders of magnitude on the benefit of double saturable absorbers involved in the module. Our method can reform old conventional lasers into high-contrast advanced systems.

  8. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    PubMed

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system. PMID:26195163

  9. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  10. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  11. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  12. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  13. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  14. The Relationship to Achievement on the California High School Exit Exam for Language Minority Students.

    ERIC Educational Resources Information Center

    Garcia, Paul A.; Gopal, Malati

    2003-01-01

    Examines first year results of the California High School Exit Exam (CAHSEE) required for students to earn a high school diploma. Results suggest this high stakes test failed to meet legislative objectives to increase achievement and close the achievement gap. Instead, language-minority students with passing scores achieved significantly below…

  15. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast.

    PubMed

    Schneider, G

    1998-11-01

    The resolution of transmission X-ray microscopes (TXMs) using zone plate optics is presently about 30 nm. Theory and experiments presented here show that this resolution can be obtained in radiation sensitive hydrated biological material by using shock frozen samples. For this purpose the interaction of X-rays with matter and the image formation with zone plates is described. For the first time the influence of the limited apertures of the condenser and the zone plate objective are in included in calculations of the image contrast, the photon density and radiation dose required for the object illumination. Model considerations show that lowest radiation dose and high image contrast are obtained in optimized phase contrast which exploits absorption as well as phase shift. The damaging effect of the absorbed X-rays is quantitatively evaluated by radiation-induced kinetics showing that cryogenic samples are structurally stable. To verify these theoretical models the TXM was modified to allow imaging of frozen-hydrated samples at atmospheric pressure. Details inside cells and algae as small as 35 nm are visible at 2.4 nm wavelength in amplitude contrast mode. At this resolution the cryogenic samples show no structural changes. As predicted, optimized phase contrast shows structures inside the frozen-hydrated objects with high contrast. Stereo-pair images of algae reveal the 3D organization of the organelles. Element analysis and micro-tomography of whole cryogenic cells are possible. PMID:9836467

  16. High contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy

    PubMed Central

    Tapia, Juan C.; Kasthuri, Narayanan; Hayworth, Kenneth; Schalek, Richard; Lichtman, Jeff W.; Smith, Stephen J; Buchanan, JoAnn

    2013-01-01

    Conventional heavy metal post staining methods on thin sections lend contrast but often cause contamination. To avoid this problem, we tested several en bloc staining techniques to contrast tissue in serial sections mounted on solid substrates for examination by Field Emission Scanning Electron Microscope (FESEM). Because FESEM section imaging requires that specimens have higher contrast and greater electrical conductivity than transmission electron microscope (TEM) samples, our technique utilizes osmium impregnation (OTO) to make the samples conductive while heavily staining membranes for segmentation studies. Combining this step with other classic heavy metal en bloc stains including uranyl acetate, lead aspartate, copper sulfate and lead citrate produced clean, highly contrasted TEM and SEM samples of insect, fish, and mammalian nervous system. This protocol takes 7–15 days to prepare resin embedded tissue, cut sections and produce serial section images. PMID:22240582

  17. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy.

    PubMed

    Tapia, Juan Carlos; Kasthuri, Narayanan; Hayworth, Kenneth J; Schalek, Richard; Lichtman, Jeff W; Smith, Stephen J; Buchanan, JoAnn

    2012-02-01

    Conventional heavy metal poststaining methods on thin sections lend contrast but often cause contamination. To avoid this problem, we tested several en bloc staining techniques to contrast tissue in serial sections mounted on solid substrates for examination by field emission scanning electron microscopy (FESEM). Because FESEM section imaging requires that specimens have higher contrast and greater electrical conductivity than transmission electron microscopy (TEM) samples, our technique uses osmium impregnation (OTO) to make the samples conductive while heavily staining membranes for segmentation studies. Combining this step with other classic heavy metal en bloc stains, including uranyl acetate (UA), lead aspartate, copper sulfate and lead citrate, produced clean, highly contrasted TEM and scanning electron microscopy (SEM) samples of insect, fish and mammalian nervous systems. This protocol takes 7-15 d to prepare resin-embedded tissue, cut sections and produce serial section images. PMID:22240582

  18. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  19. Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph.

    PubMed

    Mawet, Dimitri; Serabyn, Eugene; Wallace, J Kent; Pueyo, Laurent

    2011-04-15

    The vortex coronagraph is one of the most promising coronagraphs for high-contrast imaging because of its simplicity, small inner working angle, high throughput, and clear off-axis discovery space. However, as with most coronagraphs, centrally obscured on-axis telescopes degrade contrast. Based on the remarkable ability of vortex coronagraphs to move light between the interior and exterior of pupils, we propose a method based on multiple vortices, that without sacrificing throughput, reduces the residual light leakage to (a/A)(n), with n ≥ 4, and a and A being the radii of the central obscuration and primary mirror, respectively. This method thus enables high contrasts to be reached even with an on-axis telescope. PMID:21499405

  20. Achieving high CRI from warm to super white

    NASA Astrophysics Data System (ADS)

    Bailey, Edward; Tormey, Ellen S.

    2007-09-01

    Light sources which produce a high color rendering index (CRI) have many applications in the lighting industry today. High color rendering accents the rich color which abounds in nature, interior design, theatrical costumes and props, clothing and fabric, jewelry, and machine vision applications. Multi-wavelength LED sources can pump phosphors at multiple stokes shift emission regimes and when combined with selected direct emission sources can allow for greater flexibility in the production of warm-white and cool white light of specialty interest. Unique solutions to R8 and R14 CRI >95 at 2850K, 4750K, 5250K, and 6750K presented.

  1. Impact of learning orientation on African American children's attitudes toward high-achieving peers.

    PubMed

    Marryshow, Derrick; Hurley, Eric A; Allen, Brenda A; Tyler, Kenneth M; Boykin, A Wade

    2005-01-01

    This study examined Ogbu's widely accepted thesis that African American students reject high academic achievement because they perceive its limited utility in a world where their upward mobility is constrained by racial discrimination. Boykin's psychosocial integrity model contends that Black students value high achievement but that discrepancies between their formative cultural experiences and those imposed in school lead them to reject the modes of achievement available in classrooms. Ninety Black children completed a measure of attitudes toward students who achieve via mainstream or African American cultural values. Participants rejected the mainstream achievers and embraced the African American cultural achievers. Moreover, they expected their teachers to embrace the mainstream achievers and reject those who achieved through high-verve behavior. Results suggest that Boykin's thesis is a needed refinement to Ogbu's ideas. They indicate that Black children may reject not high achievement but some of the mainstream cultural values and behaviors on which success in mainstream classrooms is made contingent. PMID:16402748

  2. Technology's Achilles Heel: Achieving High-Quality Implementation

    ERIC Educational Resources Information Center

    Hall, Gene E.

    2010-01-01

    An inherent characteristic of technology education is the continual development of new technologies and creating innovative applications of already existing technologies. As exciting as these innovations can be, technology educators and school staffs are frequently challenged to accomplish high levels of implementation. The metaphor of the…

  3. Vocational Interests of Intellectually Gifted and Highly Achieving Young Adults

    ERIC Educational Resources Information Center

    Vock, Miriam; Koller, Olaf; Nagy, Gabriel

    2013-01-01

    Background: Vocational interests play a central role in the vocational decision-making process and are decisive for the later job satisfaction and vocational success. Based on Ackerman's (1996) notion of "trait complexes," specific interest profiles of gifted high-school graduates can be expected. Aims: Vocational interests of gifted and highly…

  4. Academic Dishonesty among Gifted and High-Achieving Students

    ERIC Educational Resources Information Center

    Geddes, Kimberly A.

    2011-01-01

    Gifted high school students are essentially absent in the research concerning academic integrity; however, over the past few years, educators of gifted students have noticed an increase in the occurrences of academic dishonesty among students in gifted classrooms (Abilock, 2009). This research may be analyzed to provide some insight into the…

  5. Student Achievement Data Systems in High and Low Performing Schools

    ERIC Educational Resources Information Center

    Stachowiak, Jeannie E.

    2013-01-01

    The purpose of this study was to determine if there was a difference in how high and low performing elementary school districts use and analyze data to differentiate instruction, make changes to district/grade level curriculum, determine professional development needs, determine teacher effectiveness, and determine the use of school district…

  6. Community Schools Seek to Improve High School Achievement, College Readiness

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    The Coalition for Community Schools, an alliance of more than 150 national, state, and local organizations, is bringing public schools in partnership with community resources to improve student success. While that might seem like an abstract idea, it has very concrete goals, such as boosting high school graduation rates and college readiness.…

  7. Scientific Reasoning and Achievement in a High School English Course.

    ERIC Educational Resources Information Center

    Kral, E. A.

    1997-01-01

    A Piagetian-based, systematic instructional theory developed by A. E. Lawson was used as a reasoning model in a 12th-grade English course at Grand Island Senior High in Grand Island, Nebraska, from 1982 to 1991. The thinking patterns that comprised the hypothetical-deductive stage of human intellectual development used in the course were…

  8. Common Core and America's High-Achieving Students

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.

    2015-01-01

    While the merit and politics of the Common Core State Standards (CCSS) have been much debated and discussed, one topic has been virtually ignored: What do the standards portend for America's high-ability students? This brief addresses that question and provides guidance for CCSS-implementing districts and schools as they seek to help these…

  9. Achieving High Performance with FPGA-Based Computing

    PubMed Central

    Herbordt, Martin C.; VanCourt, Tom; Gu, Yongfeng; Sukhwani, Bharat; Conti, Al; Model, Josh; DiSabello, Doug

    2011-01-01

    Numerous application areas, including bioinformatics and computational biology, demand increasing amounts of processing capability. In many cases, the computation cores and data types are suited to field-programmable gate arrays. The challenge is identifying the design techniques that can extract high performance potential from the FPGA fabric. PMID:21603088

  10. Organizational Citizenship of Faculty and Achievement of High School Students

    ERIC Educational Resources Information Center

    DiPaola, Michael F.; Hoy, Wayne K.

    2005-01-01

    All successful organizations, including successful high schools, have employees who go beyond their formal job responsibilities and freely give of their time and energy to succeed. Organ was the first to use the phrase "organizational citizenship behavior" (OCB) to denote organizationally beneficial behavior of workers that was not prescribed but…

  11. High-Achieving Schools Put Equity Front and Center

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2014-01-01

    How does professional learning look and feel in high-poverty schools where every student makes at least one year's worth of progress every year? How do schools and leaders put all the varied components of professional learning together so that they support all students learning every day? What professional learning grounds and sustains…

  12. Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system.

    PubMed

    Jullien, Aurélie; Ricci, Aurélien; Böhle, Frederik; Rousseau, Jean-Philippe; Grabielle, Stéphanie; Forget, Nicolas; Jacqmin, Hermance; Mercier, Brigitte; Lopez-Martens, Rodrigo

    2014-07-01

    We present the first carrier-envelope-phase stable chirped-pulse amplifier (CPA) featuring high temporal contrast for relativistic intensity laser-plasma interactions at 1 kHz repetition rate. The laser is based on a double-CPA architecture including cross-polarized wave (XPW) filtering technique and a high-energy grism-based compressor. The 8 mJ, 22 fs pulses feature 10⁻¹¹ temporal contrast at -20  ps and a carrier-envelope-phase drift of 240 mrad root mean square. PMID:24978734

  13. Configuration Optimization of a Reflective Bistable-Twisted-Nematic Cell for High-Contrast Operation

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Dong; Kim, Gi-Hong; Yoon, Tae-Hoon; Kim, Jae Chang

    2000-05-01

    In this study, the configuration of a reflective bistable-twisted-nematic (BTN) liquid-crystal cell is optimized for high contrast and high brightness operation. We searched for the optimum optical parameters of a reflective BTN cell by calculating its optical performances at three wavelengths; red, green, and blue. By studying the effect of each optical parameter on the optical performances, we found that the angle of the polarizer is more important than any other optical parameter in the design of a reflective BTN cell. We fabricated a reflective BTN cell with a wide-band retardation film, whose measured contrast ratio is 10.6:1.

  14. VIP: Vortex Image Processing pipeline for high-contrast direct imaging of exoplanets

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Christiaens, Valentin; Absil, Olivier; Mawet, Dimitri

    2016-03-01

    VIP (Vortex Image Processing pipeline) provides pre- and post-processing algorithms for high-contrast direct imaging of exoplanets. Written in Python, VIP provides a very flexible framework for data exploration and image processing and supports high-contrast imaging observational techniques, including angular, reference-star and multi-spectral differential imaging. Several post-processing algorithms for PSF subtraction based on principal component analysis are available as well as the LLSG (Local Low-rank plus Sparse plus Gaussian-noise decomposition) algorithm for angular differential imaging. VIP also implements the negative fake companion technique coupled with MCMC sampling for rigorous estimation of the flux and position of potential companions.

  15. Wavefront Amplitude Variation of TPF's High Contrast Imaging Testbed: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Lowman, Andrew E.; Moody, Dwight C.; Niessner, Albert F.; Trauger, John T.

    2005-01-01

    Knowledge of wavefront amplitude is as important as the knowledge of phase for a coronagraphic high contrast imaging system. Efforts have been made to understand various contributions of the amplitude variation in Terrestrial Planet Finder's (TPF) High Contrast Imaging Testbed (HCIT). Modeling of HCIT with as-built mirror surfaces has shown an amplitude variation of 1.3% due to the phase-amplitude mixing for the testbed's front-end optics. Experimental measurements on the testbed have shown the amplitude variation is about 2.5% with the testbed's illumination pattern has a major contribution as the low order amplitude variation.

  16. Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing.

    PubMed

    Song, Kahye; Comolli, Luis R; Horowitz, Mark

    2012-05-01

    To cope with poor quality in cryo-electron tomography images, electron-dense markers, such as colloidal goldbeads, are often used to assist image registration and analysis algorithms. However, these markers can create artifacts that occlude a specimen due to their high contrast, which can also cause failure of some image processing algorithms. One way of reducing these artifacts is to replace high contrast objects with pixel densities that blend into the surroundings in the projection domain before volume reconstruction. In this paper, we propose digital inpainting via compressed sensing (CS) as a new method to achieve this goal. We show that cryo-ET projections are sparse in the discrete cosine transform (DCT) domain, and, by finding the sparsest DCT domain decompositions given uncorrupted pixels, we can fill in the missing pixel values that are occluded by high contrast objects without discontinuities. Our method reduces visual artifacts both in projections and in tomograms better than conventional algorithms, such as polynomial interpolation and random noise inpainting. PMID:22248454

  17. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    SciTech Connect

    Brun, E.; Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S.; Barbone, G.; Mittone, A.; Coan, P.; Bravin, A.

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  18. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu.

    PubMed

    Sigg, Severin J; Santini, Francesco; Najer, Adrian; Richard, Pascal U; Meier, Wolfgang P; Palivan, Cornelia G

    2016-08-01

    Current magnetic resonance imaging (MRI) contrast agents often produce insufficient contrast for diagnosis of early disease stages, and do not sense their biochemical environments. Herein, we report a highly sensitive nanoparticle-based MRI probe with r1 relaxivity up to 51.7 ± 1.2 mM(-1) s(-1) (3T). Nanoparticles were co-assembled from Gd(3+) complexed to heparin-poly(dimethylsiloxane) copolymer, and a reduction-sensitive amphiphilic peptide serving to induce responsiveness to environmental changes. The release of the peptide components leads to a r1 relaxivity increase under reducing conditions and increases the MRI contrast. In addition, this MRI probe has several advantages, such as a low cellular uptake, no apparent cellular toxicity (tested up to 1 mM Gd(3+)), absence of an anticoagulation property, and a high shelf stability (no increase in free Gd(3+) over 7 months). Thus, this highly sensitive T1 MRI contrast nanoparticle system represents a promising probe for early diagnosis through possible accumulation and contrast enhancement within reductive extracellular tumour tissue. PMID:27435820

  19. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  20. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  1. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  2. Achieving high data reduction with integral cubic B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.

    1993-01-01

    During geometry processing, tangent directions at the data points are frequently readily available from the computation process that generates the points. It is desirable to utilize this information to improve the accuracy of curve fitting and to improve data reduction. This paper presents a curve fitting method which utilizes both position and tangent direction data. This method produces G(exp 1) non-rational B-spline curves. From the examples, the method demonstrates very good data reduction rates while maintaining high accuracy in both position and tangent direction.

  3. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  4. The Relationship between Parental Involvement and Student Achievement in a Rural Florida High School

    ERIC Educational Resources Information Center

    Jackson, Willie A.

    2011-01-01

    Parental involvement is viewed as critical to the development of effective schools and student achievement. The relationship between parental involvement and achievement test scores at a rural high school in Florida was not known. This high school has not met the state standards as determined by the Florida Comprehensive Achievement Test (FCAT)…

  5. Calibrating apodizer fabrication techniques for high-contrast coronagraphs on segmented and monolithic space telescopes

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Greenbaum, Alexandra Z.; Carr, G. Lawrence; Smith, Randy J.; Xi, Xiaoxiang; Zimmerman, Neil T.

    2013-09-01

    High contrast imaging can use pupil apodizers to suppress diffracted starlight from a bright source in order to observe its environs. Metallic half-tone dot transmissive apodizers were developed for the Gemini Planet Imager (GPI) and ESO SPHERE coronagraphs for use in the near-IR. Dot sizes on the scale of the wavelength of the light often result in unexpected variations in the optical transmission vs. superficial dot density relation. We measured 5 and 10 micron half-tone microdot screens' transmissions between 550 -1050 nm to prepare to fabricate apodizations that mitigate diffraction by segments gaps and spiders on future large space telescopes. We utilized slow test beams (f/40, f/80) to estimate the on-axis (far-field, or zero-order) transmission of test patches using a Fourier Transform Spectrograph on Beamline U10B at Brookhaven National Laboratory's National Synchrotron Light Source (BNL NSLS). We also modified our previous GPI IR characterization hardware and methods for this experiment. Our measurements show an internal consistency of 0.1% in transmission, a factor of 5 better than our near-IR GPI work on the NSLS U4IR beamline. The systematics of the set-up appeared to limit the absolute calibration for our f/40 data on the 50-patch, maximum Optical Density 3 (OD3), sample. Credible measurements of transmissions down to about 3% transmission were achieved for this sample. Future work on apodizers for obstructed and segmented primary mirror coronagraphs will require configurations that mimic the intended diffractive configurations closely in order to tune apodizer fabrication to any particular application, and measure chromatic effects in representative diffractive regimes. Further experimental refinements are needed to measure the densest test patches which possess transmissions less than a few percent. The new NSLS-II should provide much greater spectral stability of its synchrotron beam, which will improve measurement accuracy and reduce systematics.

  6. Estimation of chromatic errors from broadband images for high contrast imaging: sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2016-01-01

    Many concepts have been proposed to enable direct imaging of planets around nearby stars, and which would enable spectroscopic observations of their atmospheric observations and the potential discovery of biomarkers. The main technical challenge associated with direct imaging of exoplanets is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. Usage of an internal coronagraph with an adaptive optical system for wavefront correction is one of the most mature methods and is being developed as an instrument addition to the WFIRST-AFTA space mission. In addition, such instruments as GPI and SPHERE are already being used on the ground and are yielding spectra of giant planets. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, mid-spatial frequency wavefront errors must be estimated. To date, most broadband lab demonstrations use narrowband filters to obtain an estimate of the the chromaticity of the wavefront error and this can result in usage of a large percentage of the total integration time. Previously, we have proposed a method to estimate the chromaticity of wavefront errors using only broadband images; we have demonstrated that under idealized conditions wavefront errors can be estimated from images composed of discrete wavelengths. This is achieved by using DM probes with sufficient spatially-localized chromatic diversity. Here we report on the results of a study of the performance of this method with respect to realistic broadband images including noise. Additionally, we study optimal probe patterns that enable reduction of the number of probes used and compare the integration time with narrowband and IFS estimation methods.

  7. High-contrast coherent population trapping based on crossed polarizers method.

    PubMed

    Yano, Yuichiro; Goka, Shigeyoshi

    2014-12-01

    A method based on crossed polarizers to observe high-contrast coherent population trapping (CPT) resonance has been developed. Because crossed polarizers have a simple optical system, our method is suitable for chip-scale atomic clocks (CSACs). In CPT, the Faraday rotation in a linearly polarized light field (lin||lin) was calculated using two pairs of Λ-system models; the spectrum of the Faraday rotation is also estimated. After measuring the contrast and linewidth with the crossed-polarizer method, a comparison of the theoretical model and experimental data showed they were in good agreement. Moreover, the experimental results showed that a high contrast (88.4%) and narrow linewidth (1.15 kHz) resonance could be observed using a Cs gas cell and D1-line verticalcavity surface-emitting laser (VCSEL). PMID:25474771

  8. Optimal pupil apodizations of arbitrary apertures for high-contrast imaging.

    PubMed

    Carlotti, A; Vanderbei, R; Kasdin, N J

    2011-12-19

    In the context of exoplanet direct detection and characterization, where high-contrast imaging is mandatory, we present fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without a central obstruction and spiders. We can now optimize apodizers for any aperture shape, and examples of optimal masks are shown for the Subaru telescope, the Space Infrared telescope for Cosmology and Astrophysics (SPICA) and the James Webb Space Telescope (JWST). Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile. PMID:22274262

  9. Prevention of contrast induced nephropathy: recommendations for the high risk patient undergoing cardiovascular procedures.

    PubMed

    Schweiger, Marc J; Chambers, Charles E; Davidson, Charles J; Zhang, Shaoheng; Blankenship, James; Bhalla, Narinder P; Block, Peter C; Dervan, John P; Gasperetti, Christine; Gerber, Lowell; Kleiman, Neal S; Krone, Ronald J; Phillips, William J; Siegel, Robert M; Uretsky, Barry F; Laskey, Warren K

    2007-01-01

    Contrast induced nephropathy (CIN) is the third leading cause of hospital acquired renal failure and is associated with significant morbidity and mortality. Chronic kidney disease is the primary predisposing factor for CIN. As estimated glomerular filtration rate<60 ml/1.73 m2 represents significant renal dysfunction and defines patients at high risk. Modifiable risk factors for CIN include hydration status, the type and amount of contrast, use of concomitant nephrotoxic agents and recent contrast administration. The cornerstone of CIN prevention, in both the high and low risk patients, is adequate parenteral volume repletion. In the patient at increased risk for CIN it is often appropriate to withhold potentially nephrotoxic medications, and consider the use of n-acetylcysteine. In patients at increased risk for CIN the use of low or iso-osomolar contrast agents should be utilized and strategies employed to minimize contrast volume. In these patients serum creatinine should be obtained forty-eight hours post procedure and it is often appropriate to continue withholding medications such as metformin or non steroidal anti-inflammatories until renal function returns to normal. PMID:17139671

  10. Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.

    2012-01-01

    Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.

  11. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  12. Rectangular Dielectric-loaded Structures for Achieving High Acceleration Gradients

    SciTech Connect

    Wang Changbiao; Yakovlev, V. P.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    2006-11-27

    Rectangular dielectric-loaded structures are described that may sustain higher acceleration gradients than conventional all-metal structures with similar apertures. One structure is a test cavity designed to ascertain the breakdown limits of dielectrics, while a second structure could be the basis for a two-beam accelerator. CVD diamond is an attractive dielectric for a high-gradient structure, since the published DC breakdown limit for CVD diamond is {approx} 2 GV/m, although the limit has never been determined for RF fields. Here we present a design of a diamond-lined test cavity to measure the breakdown limit. The designed cavity operates at 34 GHz, where with 10-MW input power it is expected to produce an {approx}800 MV/m field on the diamond surface - provided breakdown is avoided. The two channel rectangular dielectric-loaded waveguide could be a two-beam accelerator structure, in which a drive beam is in one channel and an accelerated beam is in the other. The RF power produced by drive bunches in the drive channel is continuously coupled to the acceleration channel. The ratio of fields in the channels (transformer ratio) for the operating mode can be designed by adjusting the dimensions of the structure. An example of the two-channel structure is described, in which a train of five 3-nC drive bunches excites wake fields in the accelerator channel of up to 1.3 GV/m with a transformer ratio of 10 for the design mode.

  13. High contrast imaging with an arbitrary aperture: active correction of aperture discontinuities: fundamental limits and practical trades offs

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Norman, Colin Arthur; Soummer, Remi; Perrin, Marshall D.; N'Diaye, Mamadou; Choquet, Elodie

    2015-01-01

    In a recent paper we discussed a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach, named Active Compensation of Aperture Discontinuities (ACAD) relies on two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum. In particular we showed that broadband high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies for a variety of telescope pupil geometries. In this paper we first focus on the fundamental limits and practical trade-offs associated with ACAD. In a first part we will study the fundamental limits and practical tradeoffs associated with ACAD, regardless of the downstream coronagraphic architecture. The mathematical techniques to finding ACAD DM shapes require to solve a complex differential equation. We will first discuss the scaling laws underlying this non-linear solution and their impact of DM placement and geometry wishing the optical design of an instrument. We will then consider the sensitivity to low order aberrations: in principle an ACAD solution that comprises large strokes will be more sensitive to these aberrations than one with smaller strokes. As a consequence, we will quantify this sensitive both using analytical models and numerical simulations. We will present diffractive end to end simulations and quantify the ultimate contrast and bandwidth achievable with ACAD, which can be reached by superposing using a classical linear wavefront control algorithms on top of the Monge Ampere solution. Finally, recent work has shown that coronagraph designs can also accommodate for secondary support structures and/or segments gaps, at a

  14. A low-threshold high-index-contrast grating (HCG)-based organic VCSEL

    NASA Astrophysics Data System (ADS)

    Shayesteh, Mohammad Reza; Darvish, Ghafar; Ahmadi, Vahid

    2015-12-01

    We propose a low-threshold high-index-contrast grating (HCG)-based organic vertical-cavity surface-emitting laser (OVCSEL). The device has the feasibility to apply both electrical and optical excitation. The microcavity of the laser is a hybrid photonic crystal (HPC) in which the top distributed Bragg reflector (DBR) is replaced by a sub-wavelength high-contrast-grating layer, and provides a high-quality factor. The simulated quality factor of the microcavity is shown to be as high as 282,000. We also investigate the threshold behavior and the dynamics of the OVCSEL optically pumped with sub-picosecond pulses. Results from numerical simulation show that lasing threshold is 75 nJ/cm2.

  15. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    SciTech Connect

    Evans, J W

    2006-08-18

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10{sup -6} and 10{sup -7} at angles of 4-24 {lambda}/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10{sup -8} contrast measurements with a prolate shaped pupil and flat mirror

  16. Survey of Experimental Results in High-Contrast Imaging for Future Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Lawson, P. R.; Belikov, R.; Cash, W.; Clampin, M.; Glassman, T.; Guyon, O.; Kasdin, N. J.; Kern, B. D.; Lyon, R.; Mawet, D.; Moody, D.; Samuele, R.; Serabyn, E.; Sirbu, D.; Trauger, J.

    2013-01-01

    We present and compare experimental results in high contrast imaging representing the state of the art in coronagraph and starshade technology. These experiments have been undertaken with the goal of demonstrating the capability of detecting Earth-like planets around nearby Sun-like stars. The contrast of an Earth seen in reflected light around a Sun-like star would be about 1.2 x 10(exp -10). Several of the current candidate technologies now yield raw contrasts of 1.0 x 10(exp -9) or better, and so should enable the detection of Earths, assuming a gain in sensitivity in post-processing of a factor of 10. We present results of coronagraph and starshade experiments conducted at visible and infrared wavelengths. Cross-sections of dark fields are directly compared as a function of field angle and bandwidth. The strength and differences of the techniques are compared.

  17. K-Stacker, a new way of detecting and characterizing exoplanets with high contrast imaging instruments

    NASA Astrophysics Data System (ADS)

    Le Coroller, Herve; Nowak, Mathias; Arnold, Luc; Dohlen, Kjetil; Fusco, Thierry; Sauvage, Jean-François; Vigan, Arthur

    2015-12-01

    This year, a second generation of coronagraphs dedicated to high-contrast direct imaging of exoplanets is starting operations. Among them, SPHERE, installed at the focus of the UT3 Very Large Telescope, reaches unprecedented contrast ratios up to 10-6 -10-7, using eXtreme Adaptive Optics and the Angular Differential Imaging (ADI) technics. In this paper, we present a new method called Keplerian-Stacker that improves the detection limit of high contrast instruments like SPHERE, by up to a factor of 10. It consists of observing a star on a long enough period to let a hypothetical planet around that star move along its orbit. Even if in each individual observation taken during one night, we do not detect anything, we show that it is possible, using an optimization algorithm, to re-center the images according to keplerian motions (ex: 10-100 images taken over a long period of typically 1-10 years) and detect planets otherwise unreachable. This method can be used in combination with the ADI technics (or possibly any other high contrast data reduction method) to improve the Signal to Noise Ratio in each individual image, and to further improve the global detection limit. It also directly provides orbital parameters of the detected planets, as a by-product of the optimization algorithm.

  18. Bounds and Estimates for Transport Coefficients of Random and Porous Media with High Contrasts

    SciTech Connect

    Berryman, J G

    2004-09-24

    Bounds on transport coefficients of random polycrystals of laminates are presented, including the well-known Hashin-Shtrikman bounds and some newly formulated bounds involving two formation factors for a two-component porous medium. Some new types of self-consistent estimates are then formulated based on the observed analytical structure both of these bounds and also of earlier self-consistent estimates (of the CPA or coherent potential approximation type). A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of a system being modeled when such organized internal structure is present in the medium but detailed spatial correlation information may or (more commonly) may not be available. Some methods of estimating formation factors from data are also presented and then applied to a high-contrast fluid-permeability data set. Hashin-Shtrikman bounds are found to be very accurate estimates for low contrast heterogeneous media. But formation factor lower bounds are superior estimates for high contrast situations. The new self-consistent estimators also tend to agree better with data than either the bounds or the CPA estimates, which themselves tend to overestimate values for high contrast conducting composites.

  19. HiCIAO: A High-contrast Instrument for the Next Generation Subaru Adaptive Optics

    SciTech Connect

    Suzuki, Ryuji; Takami, Hideki; Guyon, Olivier; Nishimura, Tetsuo; Hayashi, Masahiko; Tamura, Motohide; Suto, Hiroshi; Morino, Jun-ichi; Hashimoto, Jun; Kudo, Tomoyuki; Kandori, Ryo; Murakami, Naoshi; Nishikawa, Jun; Ukita, Nobuharu; Izumiura, Hideyuki; Abe, Lyu; Tavrov, Alexander; Jacobson, Shane; Shelton, Richard; Hodapp, Klaus

    2009-08-05

    HiCIAO (the High-Contrast Instrument with Adaptive Optics) is a high-contrast instrument for the 8.2-meter Subaru Telescope. The instrument is a near-infrared camera which benefits from a new adaptive optics (AO) system on the Subaru Telescope (AO188). The instrument realizes the high contrast with a help of AO188, a classical Lyot coronagraph, and three differential imaging techniques (polarimetric, spectral, and angular). Besides the differential imaging modes, HiCIAO also offers a normal imaging mode which covers 20''x20'' FOV with 0.''01 pixel{sup -1} resolution, and a pupil viewing mode for a precise alignment of the Lyot stop on the pupil image. The expected contrasts are 10{sup 5.5} at 1.''0 separation and 10{sup 4} at 0.''1 separation from a central star in the spectral differential imaging mode. The instrument is currently in its commissioning phase after the first-light observation in December 2008. This paper is an introductory review of the instrument.

  20. High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems.

    PubMed

    Paul, B; Mugnier, L M; Sauvage, J-F; Dohlen, K; Ferrari, M

    2013-12-30

    The estimation and compensation of quasi-static aberrations is mandatory to reach the ultimate performance of high-contrast imaging systems. COFFEE is a focal plane wave-front sensing method that consists in the extension of phase diversity to high-contrast imaging systems. Based on a Bayesian approach, it estimates the quasi-static aberrations from two focal plane images recorded from the scientific camera itself. In this paper, we present COFFEE's extension which allows an estimation of low and high order aberrations with nanometric precision for any coronagraphic device. The performance is evaluated by realistic simulations, performed in the SPHERE instrument framework. We develop a myopic estimation that allows us to take into account an imperfect knowledge on the used diversity phase. Lastly, we evaluate COFFEE's performance in a compensation process, to optimize the contrast on the detector, and show it allows one to reach the 10(-6) contrast required by SPHERE at a few resolution elements from the star. Notably, we present a non-linear energy minimization method which can be used to reach very high contrast levels (better than 10(7) in a SPHERE-like context). PMID:24514771

  1. Ultrahigh spatial-frequency, high-contrast periodic structures produced by interference lithography

    SciTech Connect

    Nguyen, H. T.; Britten, J. A.; Boyd, R. D.; Shore, B. D.; Perry, M. D.

    1996-04-01

    We have developed a process to produce high-aspect ratio, high- frequency periodic profiles recorded in a photoresist layer by interference lithography. We are able to independently control the period, duty cycle, and sidewall angle of the profiles. High-contrast diazonapthoquinone-based photoresist and single mode operation of the exposure laser are critical. The high-aspect ratio profiles are necessary for many applications such as transfer etch masks for etching oxides and field emitter array patterning. 5 refs., 5 figs.

  2. Beyond Academic Reputation: Factors that Influence the College of First Choice for High Achieving Students

    ERIC Educational Resources Information Center

    Schoenherr, Holly J.

    2009-01-01

    Studies that have investigated college choice factors for high-achieving students repeatedly cite academic reputation as one of the top indicators of choice but have not indicated why some high-achieving students choose to attend universities with a less prestigious reputation than the more highly prestigious options available to them. The purpose…

  3. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  4. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  5. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Kashino, Junichi; Matsutani, Akihiro; Ohtsuki, Hideo; Miyashita, Takahiro; Koyama, Fumio

    2014-09-01

    We report on the design and fabrication of a highly angular dependent high contrast grating (HCG) mirror. The modeling and experiment on amorphous-Si/SiO2 HCG clearly show the large angular dependence of reflectivity, which enables single transverse-mode operations of large-area VCSELs. We fabricate 980 nm VCSELs with the angular dependent HCG functioning as a spatial frequency filter. We obtained the single transverse mode operation of the fabricated device in contrast to conventional VCSELs with semiconductor multilayer mirrors.

  6. High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma.

    PubMed

    Monot, Pascal; Doumy, Gilles; Dobosz, Sundrine; Perdrix, Michel; D'Oliveira, Pascal; Quéré, Fabion; Réau, Fabrice; Martin, Philippe; Audebert, Patrick; Gauthier, Jean-Claude; Geindre, Jean-Paul

    2004-04-15

    We demonstrate the use of a plasma mirror to obtain 60-fs 10-TW laser pulses with a temporal contrast of 10(8) on a nanosecond time scale and 10(6) on a picosecond time scale, and we use these high-contrast pulses to generate high harmonics by nonlinear reflection on a plasma with a steep electronic density gradient. Well-collimated harmonics up to 20th order are observed for a laser intensity of approximately equal to 3 x 10(17) W/cm2, whereas no harmonics are obtained without the plasma mirror. PMID:15119413

  7. The Effects of Web-Based/Non-Web-Based Problem-Solving Instruction and High/Low Achievement on Students' Problem-Solving Ability and Biology Achievement

    ERIC Educational Resources Information Center

    Yu, Wen-Feng; She, Hsiao-Ching; Lee, Yu-Mei

    2010-01-01

    This study investigates the effects of two factors: the mode of problem-solving instruction (i.e. Web-based versus non-Web-based) and the level of academic achievement (i.e. high achievers versus low achievers) on students' problem-solving ability and biology achievement. A quasi-experimental design was used, in which the experimental group…

  8. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder.

    PubMed

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, "eagle-like" visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection. PMID:26379525

  9. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder

    PubMed Central

    Tebartz van Elst, Ludger; Bach, Michael; Blessing, Julia; Riedel, Andreas; Bubl, Emanuel

    2015-01-01

    A common neurodevelopmental disorder, autism spectrum disorder (ASD), is defined by specific patterns in social perception, social competence, communication, highly circumscribed interests, and a strong subjective need for behavioral routines. Furthermore, distinctive features of visual perception, such as markedly reduced eye contact and a tendency to focus more on small, visual items than on holistic perception, have long been recognized as typical ASD characteristics. Recent debate in the scientific community discusses whether the physiology of low-level visual perception might explain such higher visual abnormalities. While reports of this enhanced, “eagle-like” visual acuity contained methodological errors and could not be substantiated, several authors have reported alterations in even earlier stages of visual processing, such as contrast perception and motion perception at the occipital cortex level. Therefore, in this project, we have investigated the electrophysiology of very early visual processing by analyzing the pattern electroretinogram-based contrast gain, the background noise amplitude, and the psychophysical visual acuities of participants with high-functioning ASD and controls with equal education. Based on earlier findings, we hypothesized that alterations in early vision would be present in ASD participants. This study included 33 individuals with ASD (11 female) and 33 control individuals (12 female). The groups were matched in terms of age, gender, and education level. We found no evidence of altered electrophysiological retinal contrast processing or psychophysical measured visual acuities. There appears to be no evidence for abnormalities in retinal visual processing in ASD patients, at least with respect to contrast detection. PMID:26379525

  10. Laboratory experiment of a high-contrast imaging coronagraph with new step-transmission filters

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi

    2009-08-01

    We present the latest results of our laboratory experiment of the coronagraph with step-transmission filters. The primary goal of this work is to test the stability of the coronagraph and identify the main factors that limit its performance. At present, a series of step-transmission filters has been designed. These filters were manufactured with Cr film on a glass substrate with a high surface quality. During the process of the experiment of each filter, we have identified several contrast limiting factors, which includes the non-symmetry of the coating film, transmission error, scattered light and the optical aberration caused by the thickness difference of coating film. To eliminate these factors, we developed a procedure for the correct test of the coronagraph and finally it delivered a contrast in the order of 10-6~10-7 at an angular distance of 4λD, which is well consistent with theoretical design. As a follow-up effort, a deformable mirror has been manufactured to correct the wave-front error of the optical system, which should deliver better performance with an extra contrast improvement in the order of 10-2~10-3. It is shown that the step-transmission filter based coronagraph is promising for the high-contrast imaging of earth-like planets.

  11. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling.

    PubMed

    Kuipers, Jeroen; de Boer, Pascal; Giepmans, Ben N G

    2015-10-01

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but under these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. PMID:26272543

  12. On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging.

    PubMed

    Peyman, Sally A; McLaughlan, James R; Abou-Saleh, Radwa H; Marston, Gemma; Johnson, Benjamin R G; Freear, Steven; Coletta, P Louise; Markham, Alexander F; Evans, Stephen D

    2016-02-21

    Micron-sized lipid-stabilised bubbles of heavy gas have been utilised as contrast agents for diagnostic ultrasound (US) imaging for many years. Typically bubbles between 1 and 8 μm in diameter are produced to enhance imaging in US by scattering sound waves more efficiently than surrounding tissue. A potential area of interest for Contrast Enhanced Ultrasound (CEUS) are bubbles with diameters <1 μm or 'nanobubbles.' As bubble diameter decreases, ultrasonic resonant frequency increases, which could lead to an improvement in resolution for high-frequency imaging applications when using nanobubbles. In addition, current US contrast agents are limited by their size to the vasculature in vivo. However, molecular-targeted nanobubbles could penetrate into the extra-vascular space of cancerous tissue providing contrast in regions inaccessible to traditional microbubbles. This paper reports a new microfluidic method for the generation of sub-micron sized lipid stabilised particles containing perfluorocarbon (PFC). The nanoparticles are produced in a unique atomisation-like flow regime at high production rates, in excess of 10(6) particles per s and at high concentration, typically >10(11) particles per mL. The average particle diameter appears to be around 100-200 nm. These particles, suspected of being a mix of liquid and gaseous C4F10 due to Laplace pressure, then phase convert into nanometer sized bubbles on the application of US. In vitro ultrasound characterisation from these nanoparticle populations showed strong backscattering compared to aqueous filled liposomes of a similar size. The nanoparticles were stable upon injection and gave excellent contrast enhancement when used for in vivo imaging, compared to microbubbles with an equivalent shell composition. PMID:26689151

  13. High-contrast grating MEMS optical phase-shifters for two-dimensional free-space beam steering

    NASA Astrophysics Data System (ADS)

    Megens, Mischa; Yoo, Byung-Wook; Chan, Trevor; Yang, Weijian; Sun, Tianbo; Chang-Hasnain, Connie J.; Wu, Ming C.; Horsley, David A.

    2014-02-01

    We report an optical phased array (OPA) for two-dimensional free-space beam steering. The array is composed of tunable MEMS all-pass filters (APFs) based on polysilicon high contrast grating (HCG) mirrors. The cavity length of each APF is voltage controlled via an electrostatically-actuated HCG top mirror and a fixed DBR bottom mirror. The HCG mirrors are composed of only a single layer of polysilicon, achieving >99% reflectivity through the use of a subwavelength grating patterned into the polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1-50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results in a high degree of flatness even in a thin 350 nm HCG mirror. Relative to beamsteering systems based on a single rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The APF structure affords large (~2π) phase shift at a small displacement (< 50 nm), an order-of-magnitude smaller than the displacement required in a single-mirror phase-shifter design. Precise control of each all-pass-filter is achieved through an interferometric phase measurement system, and beam steering is demonstrated using binary phase patterns.

  14. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  15. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    SciTech Connect

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  16. High-contrast germanium-doped silica-on-silicon waveguides

    NASA Astrophysics Data System (ADS)

    Dumais, Patrick; Callender, Claire; Blanchetière, Chantal; Ledderhof, Chris

    2012-10-01

    Silica-on-silicon planar lightwave circuits have a number of advantages including stability and low insertion loss to optical fiber networks. Standard GeO2 doping levels in the waveguide cores lead to a refractive index contrast, n/n, of 0.75%-2%. This range of index contrast requires relatively large bend radii in order to minimize bend losses. This limits the density scaling of these circuits. By using high dopant levels for a Δn/n of 4%, the bend radius can be decreased to less than 1 mm, from which significant gains in optical circuit density can be obtained. In addition, low-loss ring resonators with free spectral ranges of a few tens of gigahertz can be realized, enabling some additional optical signal processing and filtering on that scale. Optical devices with such high dopant levels have been reported by Bellman et al. in 2004 [1] but to the authors' knowledge, no other experimental work on high-delta GeO2-doped waveguides has been reported since. In this paper, we present experimental measurements on high-delta devices including directional couplers, MMI couplers, Mach-Zehnder interferometers, and ring resonators. Device performance, including propagation loss, bend loss, interferometer contrast ratio and birefringence will be presented. We demonstrate that ring resonators with 40 GHz free spectral range can be fabricated for optical signal processing.

  17. Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Jingui; Wang, Jing; Yuan, Peng; Xie, Guoqiang; Ge, Xulei; Liu, Feng; Yuan, Xiaohui; Zhu, Heyuan; Qian, Liejia

    2014-01-01

    Real-time pulse-contrast observation with a high dynamic range is a prerequisite to tackle the contrast challenge in ultra-high peak-power lasers. However, the commonly used delay-scanning cross-correlator (DSCC) can only provide the time-consumed measurements for repetitive lasers. Single-shot cross-correlator (SSCC) becomes essential in optimizing laser systems and exploring contrast mechanisms. Here we report our progress in developing SSCC towards its practical use. By integrating both the techniques of scattering-noise reduction and sensitive parallel detection into SSCC, we demonstrate a high dynamic range of >1010, which, to our best knowledge, is the first demonstration of an SSCC with a dynamic range comparable to that of commercial DSCCs. The comparison of high-dynamic measurement performances between SSCC and a standard DSCC (Sequoia, Amplitude Technologies) is also carried out on a 200 TW Ti:sapphire laser, and the consistency of results verifies the veracity of our SSCC.

  18. Engineering of angular dependence of high-contrast grating mirror for transverse mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Koyama, Fumio

    2014-02-01

    We present our recent activity on highly angular-dependent high contrast grating (HCG) for the transverse mode control of VCSELs. The modeling and the experiment show the design flexibility of HCG to manage the angular dependence of HCG. The optimized angular dependent HCG functions as a spatial frequency filter. We are able to use the engineered angular dependence of HCG for the transverse-mode control of VCSELs by filtering out high-order transverse-modes. We fabricated and characterized amorphous Si HCG mirrors, which clearly show the large angular dependence. We demonstrated single-mode 980nm VCSELs with a HCG mirror functioning as a spatial frequency filter.

  19. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    SciTech Connect

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-09-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study.

  20. Speckle level suppression using an unbalanced nulling interferometer in a high-contrast imaging system.

    PubMed

    Yokochi, Kaito; Murakami, Naoshi; Nishikawa, Jun; Abe, Lyu; Tamura, Motohide; Tavrov, Alexander V; Takeda, Mistuo; Kurokawa, Takashi

    2011-03-14

    High-contrast imaging systems with a stellar halo suppression level of 10(-10) are required for direct detection of Earth-like extra-solar planets. We investigated a novel high-contrast imaging system with an unbalanced nulling interferometer (UNI) followed by phase and amplitude correction (PAC), which not only can reduce starlight but also can suppress the speckle level caused by wavefront aberrations. We successfully demonstrated that wavefront aberrations were sufficiently magnified by the UNI and the magnified aberrations were effectively corrected in amplitude and phase with two deformable mirrors. We confirmed that the suppression level of the speckle pattern with the proposed optics was beyond the limit of the adaptive optics performance. PMID:21445131

  1. The HST/STIS BAR5 Occulter: High Contrast in Space at Visible Wavelengths

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Gaspar, Andras; Schneider, Glenn; Proffitt, Charles

    2015-11-01

    The Hubble Space Telescope currently has only one operational high contrast imaging coronagraphic mode, the 50CORON imaging mode of the Space Telescope Imaging Spectrograph (STIS). 50CORON includes two intersecting wedges and two bar occulting masks in an image plane ahead of the detector that block light from bright stars to reveal the faint emission from circumstellar disks or faint companions. Recently, the smallest supported inner working angle for these occulters was 0.3". We present in this poster the commissioning of new occulting locations on the detector that allow for inner working angles as close as 0.15" at the new BAR5 position. We show preliminary results for BAR5 using two nearby debris disks, AU Mic and Beta Pictoris, and provide interested users with a prescription for how to design their own high contrast imaging observations.

  2. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  3. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials. PMID:26619244

  4. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    ERIC Educational Resources Information Center

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  5. NOTE: Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    NASA Astrophysics Data System (ADS)

    Jansen, S. A.; Fan, X.; Medved, M.; Abe, H.; Shimauchi, A.; Yang, C.; Zamora, M.; Foxley, S.; Olopade, O. I.; Karczmar, G. S.; Newstead, G. M.

    2010-10-01

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T1-weighted DCE-MRI with ~7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C1 min) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS.

  6. Semi-vector iterative method for modes of high-index-contrast nanoscale waveguides.

    PubMed

    Gehlot, K; Sharma, A

    2013-04-22

    An approximate semi-analytical iterative method is presented to find vector modes of high-index contrast single mode waveguides. Present method is developed to provide improvement over scalar analysis of Vopt method. To illustrate the accuracy and efficiency of this method, modal properties of silicon strip nanoscale waveguide are studied in detail and compared with other approximate and rigorous numerical analysis. PMID:23609687

  7. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  8. GaAs/AlOx high contrast gratings for 980nm VCSELs

    NASA Astrophysics Data System (ADS)

    Gebski, M.; Dems, M.; Chen, J.; Qijie, W.; Dao Hua, Z.; Czyszanowski, T.

    2014-02-01

    In this paper we present results of computer optical simulations of VCSEL with modified high refractive index contrast grating (HCG) as a top mirror. We consider the HCG of two different designs which determine the lateral aperture. Such HCG mirror provides selective guiding effect. We show that proper design of aperture of HCG results in almost sixfold increase in cavity Q-factor for zero order mode and a discrimination of higher order modes.

  9. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    NASA Astrophysics Data System (ADS)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  10. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast.

    PubMed

    Sztrókay, A; Diemoz, P C; Schlossbauer, T; Brun, E; Bamberg, F; Mayr, D; Reiser, M F; Bravin, A; Coan, P

    2012-05-21

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm² pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. PMID:22516937

  11. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    SciTech Connect

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  12. Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Albertazzi, B.; Antici, P.; Bocker, J.; Borghesi, M.; Chen, S.; Dervieux, V.; d'Humières, E.; Lancia, L.; Nakatsutsumi, M.; Shepherd, R.; Romagnagni, L.; Sentoku, Y.; Swantusch, M.; Willi, O.; Pépin, H.; Fuchs, J.

    2013-11-01

    We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ˜ 110 J) split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material.

  13. Parent-Child Relations and Psychological Adjustment among High-Achieving Chinese and European American Adolescents

    ERIC Educational Resources Information Center

    Qin, Desiree Baolian; Rak, Eniko; Rana, Meenal; Donnellan, M. Brent

    2012-01-01

    Chinese American students are often perceived as problem-free high achievers. Recent research, however, suggests that high-achieving Chinese American students can experience elevated levels of stress, especially comparing to their peers from other ethnic groups. In this paper, we examine how family dynamics may influence psychological adjustment…

  14. International Note: Between-Domain Relations of Chinese High School Students' Academic Achievements

    ERIC Educational Resources Information Center

    Yangyang, Liu

    2012-01-01

    The present study examined the between-domain relations of Chinese high school students' academic achievements. In a sample of 1870 Chinese 10th grade students, the results indicated that Chinese high school students' academic achievements were correlated across nine subjects. In line with the previous Western findings, the findings suggested that…

  15. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan

    ERIC Educational Resources Information Center

    Al-Zoubi, Maysoon

    2016-01-01

    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  16. A Longitudinal Investigation of Project-Based Instruction and Student Achievement in High School Social Studies

    ERIC Educational Resources Information Center

    Summers, Emily J.; Dickinson, Gail

    2012-01-01

    This longitudinal study focused on how project-based instruction (PBI) influenced secondary social studies students' academic achievement and promoted College and Career Readiness (CCR). We explored and compared student achievement in a PBI high school versus a traditional instruction high school within the same rural school district. While…

  17. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    ERIC Educational Resources Information Center

    Hong, Zuway-R.

    2010-01-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized…

  18. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  19. Manifest Needs of High Ability Achieving and Underachieving Elementary School Children in a Culturally Disadvantaged Setting

    ERIC Educational Resources Information Center

    Masih, Lalit K.

    1974-01-01

    Study samples suggest that the high ability underachiever is characterized by low need for order and higher need to belong to supportive groups; the high ability achiever seems more independent and less attached to his peer group. (Author)

  20. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Horie, Yu; Ball, Alexander J.; Bagheri, Mahmood; Faraon, Andrei

    2015-05-01

    Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

  1. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays.

    PubMed

    Arbabi, Amir; Horie, Yu; Ball, Alexander J; Bagheri, Mahmood; Faraon, Andrei

    2015-01-01

    Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption. PMID:25947118

  2. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  3. The Meaning High-Achieving African-American Males in an Urban High School Ascribe to Mathematics

    ERIC Educational Resources Information Center

    Thompson, LaTasha; Davis, Julius

    2013-01-01

    Many researchers, educators, administrators, policymakers and members of the general public doubt the prevalence of high-achieving African-American males in urban high schools capable of excelling in mathematics. As part of a larger study, the current study explored the educational experiences of four high-achieving African-American males…

  4. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure.

    PubMed

    Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni

    2016-06-01

    Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709

  5. GaN-based high contrast grating surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Wu, Tzeng-Tsong; Wu, Shu-Hsien; Lu, Tien-Chang; Wang, Shing-Chung

    2013-02-01

    GaN-based high contrast grating surface-emitting lasers (HCG SELs) with AlN/GaN distributed Bragg reflectors were reported. The device exhibited a low threshold pumping energy density of about 0.56 mJ/cm2 and the lasing wavelength was at 393.6 nm with a high degree of polarization of 73% at room temperature. The specific lasing mode and polarization characterisitcs agreed well with the theoretical modeling. The low threshold characteristics of our GaN-based HCG SELs faciliated by the Fano resonance can serve as the best candidate in blue surface emitting laser sources.

  6. Investigation on the angular dependent reflectance of coupled high-contrast gratings

    NASA Astrophysics Data System (ADS)

    Kroker, Stefanie; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2014-02-01

    In this contribution we discuss configurations of stacked silicon high contrast gratings (HCGs) which are separated by a thin silicon dioxide grating such that they are coupled via their near-fields. For a given configuration altering incidence angle allows to either benefit from the optical performance of two separated HCGs or one single grating with enhanced thickness. This effect can serve to realize filters with tailored optical properties and for diffractive cavity couplers. We experimentally demonstrate the coupling effect on a stack of two HCGs for a wavelength of 1550nm and transverse-magnetic polarization. The investigated structure provides a nearly angular independent high reflectance.

  7. Fano resonances GaN-based high contrast grating surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Wu, Tzeng-Tsong; Wu, Shu-Hsien; Lu, Tien-Chang; Kuo, Hao-Chung; Wang, Shing-Chung

    2013-03-01

    GaN-based high contrast grating surface-emitting lasers (HCG SELs) with AlN/GaN distributed Bragg reflectors were reported. The device exhibited a low threshold pumping energy density of about 0.56 mJ/cm2 and the lasing wavelength was at 393.6 nm with a high degree of polarization of 73% at room temperature. The specific lasing mode and polarization characteristics agreed well with the theoretical modeling. The low threshold characteristics of our GaNbased HCG SELs utilized by the Fano resonance can be potential for development of blue surface emitting laser sources

  8. Color and contrast sensitivity after glare from high-brightness LEDs

    NASA Astrophysics Data System (ADS)

    Reidenbach, H.-D.

    2008-02-01

    The color contrast capability was investigated for 3 volunteers with 7 specially developed test charts in red, green, blue, cyan, magenta, yellow and black as a reference, namely without and after glare from 4 colored high-brightness LEDs. Each subject completed 56 tests in order to check especially the ability to discriminate low contrast. It was found that a contrast decrease of one level is equivalent to an increase of about 4 s in the required identification time and in addition a delay time between about 14 s and 16 s has been measured at the beginning of the respective test as a result of the dazzling glare from an LED. In addition trials have been performed with 4 different pseudoisochromatic color plates designed by Ishihara for color vision. These plates have been used to determine temporary color deficiencies after an exposure from a high-brightness LED. For this purpose 40 volunteers have been included in a laboratory test. Color vision was impaired for periods between 27 s and 186 s depending on the applied color plate and respective LED color.

  9. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  10. Phantom study based on a high-energy in-line phase contrast tomosynthesis prototype

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yan, Aimin; Li, Yuhua; Chen, Wei R.; Wu, Xizeng; Liu, Hong

    2014-02-01

    The objective of this research is to demonstrate an in-line phase contrast tomosynthesis prototype operated under high x-ray tube voltage, and a phantom study was conducted to characterize the potentials of this system. The prototype is based on an in-line phase contrast system accompanying with digital tomosynthesis imaging mechanism; and the tube voltage is operated at 120 kVp. A phantom study was conducted by using a custom-designed fish bone phantom to demonstrate the ability of this imaging system in edge enhancement and noise suppression. As the result, edge enhancement could be observed on the in-plane slices by plotting and comparing the intensity profiles with DTS images. As employing phase retrieval method onto the original angular projections could dramatically improve the image quality in edge enhancement, 3D imaging box was preliminarily constructed by using reconstructed in-plane slices acquired with PAD phase retrieval. As expected, high-energy in-line phase contrast tomosynthesis imaging system shows its potentials in edge enhancement and noise suppression by introducing phase retrieval method. Dose studies and perfecting photon energies and phantom designs will be our future interest.

  11. Anti-biofouling polymer-decorated lutetium-based nanoparticulate contrast agents for in vivo high-resolution trimodal imaging.

    PubMed

    Liu, Zhen; Dong, Kai; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang

    2014-06-25

    Nanomaterials have gained considerable attention and interest in the development of novel and high-resolution contrast agents for medical diagnosis and prognosis in clinic. A classical urea-based homogeneous precipitation route that combines the merits of in situ thermal decomposition and surface modification is introduced to construct polyethylene glycol molecule (PEG)-decorated hybrid lutetium oxide nanoparticles (PEG-UCNPs). By utilizing the admirable optical and magnetic properties of the yielded PEG-UCNPs, in vivo up-conversion luminescence and T1 -enhanced magnetic resonance imaging of small animals are conducted, revealing obvious signals after subcutaneous and intravenous injection, respectively. Due to the strong X-ray absorption and high atomic number of lanthanide elements, X-ray computed-tomography imaging based on PEG-UCNPs is then designed and carried out, achieving excellent imaging outcome in animal experiments. This is the first example of the usage of hybrid lutetium oxide nanoparticles as effective nanoprobes. Furthermore, biodistribution, clearance route, as well as long-term toxicity are investigated in detail after intravenous injection in a murine model, indicating the overall safety of PEG-UCNPs. Compared with previous lanthanide fluorides, our nanoprobes exhibit more advantages, such as facile construction process and nearly total excretion from the animal body within a month. Taken together, these results promise the use of PEG-UCNPs as a safe and efficient nanoparticulate contrast agent for potential application in multimodal imaging. PMID:24610806

  12. Detection of high k turbulence using two dimensional phase contrast imaging on LHD

    SciTech Connect

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Kawahata, K.; Vyacheslavov, L. N.; Sanin, A.; Kharchev, N. K.; Okajima, S.

    2008-10-15

    High k turbulence, up to 30 cm{sup -1}, can be measured using the two dimensional CO2 laser phase contrast imaging system on LHD. Recent hardware improvements and experimental results are presented. Precise control over the lens positions in the detection system is necessary because of the short depth of focus for high k modes. Remote controllable motors to move optical elements were installed, which, combined with measurements of the response to ultrasound injection, allowed experimental verification and shot-to-shot adjustment of the object plane. Strong high k signals are observed within the first 100-200 ms after the initial electron cyclotron heating (ECH) breakdown, in agreement with gyrotron scattering. During later times in the discharge, the entire k spectrum shifts to lower values (although the total amplitude does not change significantly), and the weaker high k signals are obscured by leakage of low k components at low frequency, and detector noise, at high frequency.

  13. Detection of high k turbulence using two dimensional phase contrast imaging on LHD.

    PubMed

    Michael, C A; Tanaka, K; Vyacheslavov, L N; Sanin, A; Kharchev, N K; Akiyama, T; Kawahata, K; Okajima, S

    2008-10-01

    High k turbulence, up to 30 cm(-1), can be measured using the two dimensional CO2 laser phase contrast imaging system on LHD. Recent hardware improvements and experimental results are presented. Precise control over the lens positions in the detection system is necessary because of the short depth of focus for high k modes. Remote controllable motors to move optical elements were installed, which, combined with measurements of the response to ultrasound injection, allowed experimental verification and shot-to-shot adjustment of the object plane. Strong high k signals are observed within the first 100-200 ms after the initial electron cyclotron heating (ECH) breakdown, in agreement with gyrotron scattering. During later times in the discharge, the entire k spectrum shifts to lower values (although the total amplitude does not change significantly), and the weaker high k signals are obscured by leakage of low k components at low frequency, and detector noise, at high frequency. PMID:19044541

  14. Optical contrast enhancement of high-resolution ocular fundus imaging in vivo using polarimetry

    NASA Astrophysics Data System (ADS)

    Yang, Hansheng; Rao, Xuejun; Zhang, Yudong

    2007-11-01

    The adaptive optics (AO) retina imaging was performed with contrast enhancement by characterizing polarization parameters of the living retina. A removable pair of polarization state generating unit near the optical source and analysis unit near the CCD camera was incorporated into the basic 37-channle deformable mirror AO microscopic ophthalmoscope. Double-pass imaging polarimetry of the human eye was carried out, then incomplete Mueller matrix was calculated and analyzed to optimize the retina imaging condition using polarized light, which caused the subretinal structures with different polarization properties to emerge from the scattering light background, so the contrast of the image can be substantially enhanced. This method is demonstrated briefly and its validity was tested in the laboratory. The high-resolution images of ocular fundus are compared with 8-frame-averaging images we obtained prior to this method. The experiment results now show improved visualization of fundus structures to some extent without greatly sacrificing image resolution.

  15. Modeling the subjective quality of highly contrasted videos displayed on LCD with local backlight dimming.

    PubMed

    Mantel, Claire; Bech, Søren; Korhonen, Jari; Forchhammer, Søren; Pedersen, Jesper Melgaard

    2015-02-01

    Local backlight dimming is a technology aiming at both saving energy and improving visual quality on television sets. As the rendition of the image is specified locally, the numerical signal corresponding to the displayed image needs to be computed through a model of the display. This simulated signal can then be used as input to objective quality metrics. The focus of this paper is on determining which characteristics of locally backlit displays influence quality assessment. A subjective experiment assessing the quality of highly contrasted videos displayed with various local backlight-dimming algorithms is set up. Subjective results are then compared with both objective measures and objective quality metrics using different display models. The first analysis indicates that the most significant objective features are temporal variations, power consumption (probably representing leakage), and a contrast measure. The second analysis shows that modeling of leakage is necessary for objective quality assessment of sequences displayed with local backlight dimming. PMID:25532206

  16. High ambient contrast ratio OLED and QLED without a circular polarizer

    NASA Astrophysics Data System (ADS)

    Tan, Guanjun; Zhu, Ruidong; Tsai, Yi-Shou; Lee, Kuo-Chang; Luo, Zhenyue; Lee, Yuh-Zheng; Wu, Shin-Tson

    2016-08-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized.

  17. High Contrast Ramsey Fringes with Coherent-Population-Trapping Pulses in a Double Lambda Atomic System

    SciTech Connect

    Zanon, T.; Guerandel, S.; Clercq, E. de; Holleville, D.; Dimarcq, N.; Clairon, A.

    2005-05-20

    We report the observation of Raman-Ramsey fringes using a double lambda scheme creating coherent population trapping in an atomic ensemble combined with pulsed optical radiations. The observation was made in a Cs vapor mixed with N{sub 2} buffer gas in a closed cell. The double lambda scheme is created with lin perpendicular lin polarized laser beams leading to higher contrast than the usual simple lambda scheme. The pulsed trapping technique leads to narrow fringe widths scaling as 1/(2T) with high contrasts which are no longer limited by the saturation effect. This technique operates in a different way from the classical Ramsey sequence: the signal is done by applying a long trapping pulse to prepare the atomic state superposition, and fringe detection is accomplished by optical transmission during a short second trapping pulse without any perturbation of the dark state.

  18. Dark-field hyperlens for high-contrast sub-wavelength imaging

    NASA Astrophysics Data System (ADS)

    Repän, Taavi; Zhukovsky, Sergei; Lavrinenko, Andrei; Willatzen, Morten

    2016-04-01

    By now superresolution imaging using hyperbolic metamaterial (HMM) structures - hyperlenses - has been demonstrated both theoretically and experimentally. The hyperlens operation relies on the fact that HMM allows propagation of waves with very large transverse wavevectors, which would be evanescent in common isotropic media (thus giving rise to the diffraction limit). However, nearly all hyperlenses proposed so far have been suitable only for very strong scatterers - such as holes in a metal film. When weaker scatterers, dielectric objects for example, are imaged then incident light forms a very strong background, and weak scatterers are not visible due to a poor contrast. We propose a so-called dark-field hyperlens, which would be suitable for imaging of weakly scattering objects. By designing parameters of the HMM, we managed to obtain its response in such way that the hyperlens structure exhibits a cut-off for waves with small transverse wavevectors (low-k waves). This allows the structure to filter out the background illumination, which is contained in low-k waves. We numerically demonstrate that our device achieves superresolution imaging while providing the strong contrast for weak dielectric scatterers. These findings hold a great promise for dark-field superresolution, which could be important in real-time dynamic nanoscopy of label-free biological objects for example.

  19. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    SciTech Connect

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  20. An optimal point spread function subtraction algorithm for high-contrast imaging: a demonstration with angular differential imaging

    SciTech Connect

    Lafreniere, D; Marois, C; Doyon, R; Artigau, E; Nadeau, D

    2006-09-19

    Direct imaging of exoplanets is limited by bright quasi-static speckles in the point spread function (PSF) of the central star. This limitation can be reduced by subtraction of reference PSF images. We have developed an algorithm to construct an optimal reference PSF image from an arbitrary set of reference images. This image is built as a linear combination of all available images and is optimized independently inside multiple subsections of the image to ensure that the absolute minimum residual noise is achieved within each subsection. The algorithm developed is completely general and can be used with many high contrast imaging observing strategies, such as angular differential imaging (ADI), roll subtraction, spectral differential imaging, reference star observations, etc. The performance of the algorithm is demonstrated for ADI data. It is shown that for this type of data the new algorithm provides a gain in sensitivity by up 22 to a factor 3 at small separation over the algorithm previously used.

  1. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses

    PubMed Central

    Poole, P. L.; Krygier, A.; Cochran, G. E.; Foster, P. S.; Scott, G. G.; Wilson, L. A.; Bailey, J.; Bourgeois, N.; Hernandez-Gomez, C.; Neely, D.; Rajeev, P. P.; Freeman, R. R.; Schumacher, D. W.

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  2. Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses.

    PubMed

    Poole, P L; Krygier, A; Cochran, G E; Foster, P S; Scott, G G; Wilson, L A; Bailey, J; Bourgeois, N; Hernandez-Gomez, C; Neely, D; Rajeev, P P; Freeman, R R; Schumacher, D W

    2016-01-01

    We describe the first demonstration of plasma mirrors made using freely suspended, ultra-thin films formed dynamically and in-situ. We also present novel particle-in-cell simulations that for the first time incorporate multiphoton ionization and dielectric models that are necessary for describing plasma mirrors. Dielectric plasma mirrors are a crucial component for high intensity laser applications such as ion acceleration and solid target high harmonic generation because they greatly improve pulse contrast. We use the liquid crystal 8CB and introduce an innovative dynamic film formation device that can tune the film thickness so that it acts as its own antireflection coating. Films can be formed at a prolonged, high repetition rate without the need for subsequent realignment. High intensity reflectance above 75% and low-field reflectance below 0.2% are demonstrated, as well as initial ion acceleration experimental results that demonstrate increased ion energy and yield on shots cleaned with these plasma mirrors. PMID:27557592

  3. High-contrast Adaptive Optics and a Search for Late-type Companions to Hyades FGK Dwarfs

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    2011-01-01

    The Hyades is an intermediate-age open cluster with hundreds of main-sequence stars and is thus well-suited to stellar formation and evolution studies. Being nearby with high proper motion, it is a choice cluster for direct-imaging surveys. We conduct a high-contrast adaptive optics (AO) search for late-type companions as faint as MH 15 (late-L/early-T) within 5-230 AU around 88 FGK main-sequence Hyades dwarfs. Departures from the ideal point-spread function (PSF) in the image plane are caused by phase and amplitude errors that redistribute stellar light and limit the achievable contrast. An AO system on a ground-based telescope mitigates the phase errors in the pupil, but constructive interference of spatially coherent light causes amplitude spikes in the PSF called speckles. The locally-optimized combination of images (LOCI) algorithm is used to identify and subtract the quasistatic speckles and static PSF structure, allowing imaging of faint point-source companions. We use LOCI on deep near-infrared AO Hyad imaging at Keck and Lick Observatories. Background objects are subsequently ruled out by comparing relative astrometry in two epochs separated by five years. We present our confirmed Hyades companions. Furthermore, we look ahead to AO for exoplanet-imaging wherein a ''dark hole'' in the PSF facilitates high-contrast imaging. The size of the dark hole is set by the highest spatial frequency controllable by the deformable mirror (DM). Decreasing rejection at increasing spatial frequencies reduces the correction efficiency within the high-contrast region, owing to the nature of the MEMS (micro-electro-mechanical systems) DM transfer function. This effect can be mitigated by a dual-DM ''woofer/tweeter'' AO system whereby each DM controls a different spatial frequency regime. We present empirical results on selecting a woofer DM in order to maintain the dark hole for the upcoming Gemini Planet Imager. (Supported by NASA Michelson Fellowship, NSF Center for

  4. The impact of collective teacher efficacy on student achievement in high school science

    NASA Astrophysics Data System (ADS)

    Burcham, Mark W.

    This dissertation was designed to examine the impact of collective teacher efficacy on high school science achievement by looking at relationships among collective teacher efficacy, its two constructs, group competence and group task analysis, and high school science achievement scores at four rural high schools in Northwestern North Carolina. The researcher gathered historical test data from the testing coordinator from the school system and then administered the Collective Teacher Efficacy Instrument, developed by Goddard, Hoy, and Woolfolk Hoy (2000), to 24 science teachers from the four high schools. Using this information, the researcher conducted statistical analyses to determine the relationships among collective teacher efficacy, group competence, and group task analysis as compared with the tested science curriculum (physical science, biology, chemistry, and physics). The researcher also examined which construct was the most contributing factor and examined differences in efficacy levels and student achievement levels at each high school. Analysis of the data from this study indicated collective teacher efficacy, as well as its two constructs, group competence and group task analysis, does have a positive impact on student achievement in high school science. Analysis of the data revealed group competence is the major contributing factor for student achievement in biology and group task analysis is the major contributing factor for student achievement in physical science, chemistry, and physics. Further analysis of the data in this study, also revealed that the two high schools with the highest levels of collective teacher efficacy had the highest levels of student achievement.

  5. Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.

    2015-11-01

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  6. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    PubMed Central

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-01-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4–6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models. PMID:26564785

  7. Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil T.; Eldorado Riggs, A. J.; Jeremy Kasdin, N.; Carlotti, Alexis; Vanderbei, Robert J.

    2016-01-01

    Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.

  8. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    NASA Astrophysics Data System (ADS)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  9. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    SciTech Connect

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.

  10. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    PubMed Central

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s−1 and 5000 s−1 strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates. PMID:25537588

  11. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE PAGESBeta

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shownmore » that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  12. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  13. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    PubMed Central

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30–60 μm, exhibiting a typical basal texture, fine grains of 1–5 μm and ultrafine (sub) grains of 200–500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  14. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  15. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging.

    PubMed

    Martina, Marie-Sophie; Fortin, Jean-Paul; Ménager, Christine; Clément, Olivier; Barratt, Gillian; Grabielle-Madelmont, Cécile; Gazeau, Florence; Cabuil, Valérie; Lesieur, Sylviane

    2005-08-01

    Maghemite (gamma-Fe2O3) nanocrystals stable at neutral pH and in isotonic aqueous media were synthesized and encapsulated within large unilamellar vesicles of egg phosphatidylcholine (EPC) and distearoyl-SN-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000), 5 mol %), formed by film hydration coupled with sequential extrusion. The nonentrapped particles were removed by flash gel exclusion chromatography. The magnetic-fluid-loaded liposomes (MFLs) were homogeneous in size (195 +/- 33 hydrodynamic diameters from quasi-elastic light scattering). Iron loading was varied from 35 up to 167 Fe(III)/lipid mol %. Physical and superparamagnetic characteristics of the iron oxide particles were preserved after liposome encapsulation as shown by cryogenic transmission electron microscopy and magnetization curve recording. In biological media, MFLs were highly stable and avoided ferrofluid flocculation while being nontoxic toward the J774 macrophage cell line. Moreover, steric stabilization ensured by PEG-surface-grafting significantly reduced liposome association with the macrophages. The ratios of the transversal (r2) and longitudinal (r1) magnetic resonance (MR) relaxivities of water protons in MFL dispersions (6 < r2/r1 < 18) ranked them among the best T2 contrast agents, the higher iron loading the better the T2 contrast enhancement. Magnetophoresis demonstrated the possible guidance of MFLs by applying a magnetic field gradient. Mouse MR imaging assessed MFLs efficiency as contrast agents in vivo: MR angiography performed 24 h after intravenous injection of the contrast agent provided the first direct evidence of the stealthiness of PEG-ylated magnetic-fluid-loaded liposomes. PMID:16045355

  16. Exploratory studies of new avenues to achieve high electromechanical response and high dielectric constant in polymeric materials

    NASA Astrophysics Data System (ADS)

    Huang, Cheng

    High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented

  17. Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation

    SciTech Connect

    Jensen, B. J.; Luo, S. N.; Hooks, D. E.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.; Dattelbaum, D. M.; Fezzaa, K.

    2012-03-15

    Understanding the dynamic response of materials at extreme conditions requires diagnostics that can provide real-time, in situ, spatially resolved measurements on the nanosecond timescale. The development of methods such as phase contrast imaging (PCI) typically used at synchrotron sources offer unique opportunities to examine dynamic material response. In this work, we report ultrafast, high-resolution, dynamic PCI measurements of shock compressed materials with 3 {mu}m spatial resolution using a single 60 ps synchrotron X-ray bunch. These results firmly establish the use of PCI to examine dynamic phenomena at ns to {mu}s timescales.

  18. Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity

    SciTech Connect

    Fischer, J.; Brodbeck, S.; Worschech, L.; Kamp, M.; Schneider, C.; Höfling, S.; Zhang, B.; Wang, Z.; Deng, H.

    2014-03-03

    We comparably investigate the diamagnetic shift of an uncoupled quantum well exciton with a microcavity exciton-polariton condensate on the same device. The sample is composed of multiple GaAs quantum wells in an AlAs microcavity, surrounded by a Bragg reflector and a sub-wavelength high contrast grating reflector. Our study introduces an independent and easily applicable technique, namely, the measurement of the condensate diamagnetic shift, which directly probes matter contributions in polariton condensates and hence discriminates it from a conventional photon laser.

  19. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    SciTech Connect

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  20. High-contrast grating resonators for label-free detection of disease biomarkers

    NASA Astrophysics Data System (ADS)

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-06-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI.

  1. High-contrast grating resonators for label-free detection of disease biomarkers.

    PubMed

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-01-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI. PMID:27265624

  2. High-contrast grating hollow-core waveguide splitter applied to optical phased array

    NASA Astrophysics Data System (ADS)

    Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei

    2014-11-01

    A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.

  3. Tunable 1550nm VCSELs using high-contrast grating for next-generation networks

    NASA Astrophysics Data System (ADS)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2013-12-01

    We demonstrate wavelength-tunable SFF transceivers operating at 1550 nm using a tunable VCSEL with a high contrast grating (HCG) as the output mirror. Tunable HCG VCSELs with a ~25 nm mechanical tuning range and over 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for next generation DWDM communications systems in access networks and data centers.

  4. Heterogeneously-integrated VCSEL using high-contrast grating on silicon

    NASA Astrophysics Data System (ADS)

    Ferrara, James; Zhu, Li; Yang, Weijian; Qiao, Pengfei; Chang-Hasnain, Connie J.

    2015-02-01

    We present a unique heterogeneous integration approach for VCSELs on silicon using eutectic bonding. An electrically pumped III-V - silicon heterogeneous VCSEL is demonstrated using a high-contrast grating (HCG) reflector on silicon. CW output power >1.5 mW, thermal resistance of 1.46 K/mW, and 5 Gb/s direct modulation is demonstrated. We also explore the possibility of an all-HCG VCSEL structure that would benefit from stronger thermal performance, larger tuning efficiency, and higher direct modulation speeds.

  5. Suspended Si/air high contrast subwavelength gratings for long-wavelength infrared reflectors

    NASA Astrophysics Data System (ADS)

    Foley, Justin M.; Phillips, Jamie D.

    2013-03-01

    We report broadband reflectance in the long-wavelength infrared (LWIR, 8-12 μm) utilizing suspended-Si, high-index-contrast subwavelength gratings (HCGs). Iterative design optimization using finite element analysis software has been performed accounting for silicon's wavelength-dependent index of refraction and extinction coefficient. Grating arrays were fabricated using commercial silicon-on-insulator (SOI) substrates, photolithography and reactive ion etching; subsequent selective wet etching of SiO2 was used to provide suspended Si/air gratings. Fourier transform infrared (FTIR) spectroscopy demonstrates broadband, polarization-dependent reflectance between 8.5 and 12 μm, which agrees with the simulated response.

  6. High-contrast grating reflectors for 980 nm vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Gebski, M.; Kuzior, O.; Wasiak, M.; Szerling, A.; Wójcik-Jedlińska, A.; Pałka, N.; Dems, M.; Xie, Y. Y.; Xu, Z. J.; Wang, Q. J.; Zhang, D. H.; Czyszanowski, T.

    2015-02-01

    This paper presents results of computer simulation of 1D monolithic high refractive index contrast grating (MHCG) reflector also called surface grating reflector (SGR). We analyzed optical properties of the GaAs reflector designed for 980 nm wavelength with respect to the grating parameters variation. We also determined the electric field patterns after reflection from the structure in several cases of parameters variation. We show that thanks to the scalability and design simplicity, proposed design is a promising candidate for simple, next generation vertical cavity surface emitting lasers emitting from ultra-violet to infrared.

  7. Determining Chemically and Spatially Resolved Atomic Profile of Low Contrast Interface Structure with High Resolution

    PubMed Central

    Nayak, Maheswar; Pradhan, P. C.; Lodha, G. S.

    2015-01-01

    We present precise measurements of atomic distributions of low electron density contrast at a buried interface using soft x-ray resonant scattering. This approach allows one to construct chemically and spatially highly resolved atomic distribution profile upto several tens of nanometer in a non-destructive and quantitative manner. We demonstrate that the method is sensitive enough to resolve compositional differences of few atomic percent in nano-scaled layered structures of elements with poor electron density differences (0.05%). The present study near the edge of potential impurities in soft x-ray range for low-Z system will stimulate the activity in that field. PMID:25726866

  8. Determining chemically and spatially resolved atomic profile of low contrast interface structure with high resolution.

    PubMed

    Nayak, Maheswar; Pradhan, P C; Lodha, G S

    2015-01-01

    We present precise measurements of atomic distributions of low electron density contrast at a buried interface using soft x-ray resonant scattering. This approach allows one to construct chemically and spatially highly resolved atomic distribution profile upto several tens of nanometer in a non-destructive and quantitative manner. We demonstrate that the method is sensitive enough to resolve compositional differences of few atomic percent in nano-scaled layered structures of elements with poor electron density differences (0.05%). The present study near the edge of potential impurities in soft x-ray range for low-Z system will stimulate the activity in that field. PMID:25726866

  9. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching

    NASA Astrophysics Data System (ADS)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-01

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  10. High-contrast grating resonators for label-free detection of disease biomarkers

    PubMed Central

    Sun, Tianbo; Kan, Shu; Marriott, Gerard; Chang-Hasnain, Connie

    2016-01-01

    A label-free optical biosensor is described that employs a silicon-based high-contrast grating (HCG) resonator with a spectral linewidth of ~500 pm that is sensitive to ligand-induced changes in surface properties. The device is used to generate thermodynamic and kinetic data on surface-attached antibodies with their respective antigens. The device can detect serum cardiac troponin I, a biomarker of cardiac disease to 100 pg/ml within 4 mins, which is faster, and as sensitive as current enzyme-linked immuno-assays for cTnI. PMID:27265624

  11. An Investigation of Student Characteristics as Related to Achievement in an Individualized High School Biology Program.

    ERIC Educational Resources Information Center

    Littlefield, David L.

    Reported is a study of possible differences in student characteristics between high, expected, and low achievers in an individualized learning biology program. Nine variables, ranging from biographical data through attitudinal data were studied. Effects on achievement and explanation of some of the differences were determined by examination of…

  12. The Effects of Cooperative Learning on Student Achievement and Motivation in a High School Geometry Class.

    ERIC Educational Resources Information Center

    Nichols, Joe D.; Hall, Neff

    In this study, the effects of a form of cooperative group instruction (Student Teams Achievement Divisions) on student motivation and achievement in a high school geometry class were examined. Ninety (mostly 10th-grade) students were randomly assigned to either a control group receiving traditional instruction or one of two treatment groups…

  13. The Effects of Explicit Teaching of Metastrategic Knowledge on Low- And High-Achieving Students

    ERIC Educational Resources Information Center

    Zohar, Anat; Peled, Bracha

    2008-01-01

    This study assessed the effects of explicit teaching of metastrategic knowledge (MSK) on gains of low-achieving (LA) and high-achieving (HA) 5th grade students (N=41). Gains in reasoning scores of students from the Experimental group (compared to students from the control group) were obtained on the strategic and on the metastrategic level. Gains…

  14. A Quantitative Comparison of Pennsylvania High School Student Achievement by Middle States Association's Accreditation Status

    ERIC Educational Resources Information Center

    Johnson, Christopher A.

    2012-01-01

    As public school accountability for student achievement has continued to increase, prior to and as a result of the No Child Left Behind Act of 2001, schools have sought ways of bringing new instructional services to their students to raise their levels of achievement. Some Pennsylvania public high schools have attempted to improve student…

  15. Unforgiving Confucian Culture: A Breeding Ground for High Academic Achievement, Test Anxiety and Self-Doubt?

    ERIC Educational Resources Information Center

    Stankov, Lazar

    2010-01-01

    This paper reviews findings from several studies that contribute to our understanding of cross-cultural differences in academic achievement, anxiety and self-doubt. The focus is on comparisons between Confucian Asian and European regions. Recent studies indicate that high academic achievement of students from Confucian Asian countries is…

  16. An Analysis of Mathematics Course Sequences for Low Achieving Students at a Comprehensive Technical High School

    ERIC Educational Resources Information Center

    Edge, D. Michael

    2011-01-01

    This non-experimental study attempted to determine how the different prescribed mathematic tracks offered at a comprehensive technical high school influenced the mathematics performance of low-achieving students on standardized assessments of mathematics achievement. The goal was to provide an analysis of any statistically significant differences…

  17. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  18. Scholastic Achievement in High School Explained? Validation of a Longitudinal Structural Equations Model

    ERIC Educational Resources Information Center

    Hellle, Laura; Tuijula, Tiina; Laakkonen, Eero

    2009-01-01

    The purpose of the study is to shed light on the mechanisms behind scholastic achievement in high school by testing a structural equations model based on the work by Vermunt (1998). It was presumed that self-regulation of learning would predict scholastic achievement and that learning orientations would predict self-regulation of learning. A…

  19. Predicting Early Academic Failure in High School from Prior Academic Achievement, Psychosocial Characteristics, and Behavior

    ERIC Educational Resources Information Center

    Casillas, Alex; Robbins, Steve; Allen, Jeff; Kuo, Yi-Lung; Hanson, Mary Ann; Schmeiser, Cynthia

    2012-01-01

    The authors examined the differential effects of prior academic achievement, psychosocial, behavioral, demographic, and school context factors on early high school grade point average (GPA) using a prospective study of 4,660 middle-school students from 24 schools. The findings suggest that (a) prior grades and standardized achievement are the…

  20. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  1. Early Reading Skills and Academic Achievement Trajectories of Students Facing Poverty, Homelessness, and High Residential Mobility

    ERIC Educational Resources Information Center

    Herbers, Janette E.; Cutuli, J. J.; Supkoff, Laura M.; Heistad, David; Chan, Chi-Keung; Hinz, Elizabeth; Masten, Ann S.

    2012-01-01

    This investigation tested the importance of early academic achievement for later achievement trajectories among 18,011 students grouped by level of socioeconomic risk. Students considered to be at highest risk were those who experienced homelessness or high residential mobility (HHM). HHM students were compared with students eligible for free…

  2. Gender and High School Chemistry: Student Perceptions on Achievement in a Selective Setting

    ERIC Educational Resources Information Center

    Cousins, Andrew; Mills, Martin

    2015-01-01

    This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students' engagement with high school chemistry. Achievement data from many OECD [Organisation for Economic Co-operation and Development] countries suggest that middle-class girls are achieving equally…

  3. Cohort versus Non-Cohort High School Students' Math Performance: Achievement Test Scores and Coursework

    ERIC Educational Resources Information Center

    Parke, Carol S.; Keener, Dana

    2011-01-01

    The purpose of this study is to compare multiple measures of mathematics achievement for 1,378 cohort students who attended the same high school in a district from 9th to 12th grade with non-cohort students in each grade level. Results show that mobility had an impact on math achievement. After accounting for gender, ethnicity, and SES, adjusted…

  4. The Impact of Charter Schools on Promoting High Levels of Mathematics Achievement

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.; Makel, Matthew C.; Rapp, Kelly E.

    2007-01-01

    This study compares achievement levels for high ability students attending charter schools and students in traditional public schools in Georgia. Researchers examined student achievement (as assessed by the state's Criterion-Referenced Competency Tests) using three comparison groups: students in the closest traditional schools with similar grade…

  5. The Impact of Placement on Reading and Mathematics Achievement of Students with High Incidence Disabilities

    ERIC Educational Resources Information Center

    Harrington, Jennifer Stell

    2011-01-01

    The question of where best to educate students with disabilities to maximize their academic achievement has been discussed and researched for over four decades, with inconsistent and contradictory results. This study focused on the mathematics and reading achievement of middle and high school students with mild disabilities in an urban district in…

  6. Parental Involvement, Homework, and TV Time: Direct and Indirect Effects on High School Achievement.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; And Others

    1986-01-01

    A set of High School and Beyond data was used to study the effect of three variables on academic achievement. Homework had a positive effect, TV a negative, and parental involvement no direct effect on seniors' achievement scores, but influenced the amount of time students spent on homework. (Author/JAZ)

  7. Low and High Mathematics Achievement in Japanese, Chinese, and American Elementary-School Children.

    ERIC Educational Resources Information Center

    Uttal, David H.; And Others

    1988-01-01

    First and fifth grade students who scored high or low on a mathematics test were tested for intellectual ability and reading achievement. Students and their mothers were interviewed. Results indicated that factors associated with levels of achievement in mathematics operate in a similar fashion across three cultures that differ greatly in their…

  8. Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-01-01

    For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stellar electric field and suppress it with active optics. The estimation requires several images from the science camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar electric field. Such techniques assume a high level of stability found only on space-based observatories and possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear estimator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light. In Princeton's High Contrast Imaging Laboratory, we demonstrate that the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as parameter estimation to improve wavefront correction.

  9. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well

  10. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.

    PubMed

    Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C

    2011-04-25

    Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results. PMID:21643098

  11. Modeling and optimization of high index contrast gratings with aperiodic topologies

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan

    2013-05-01

    High-contrast gratings (HCG) are the ultra-thin elements set to operate in near-wavelength regime with the period of the grating smaller then wavelength and with the high-index grating fully surrounded by low-index material. We concentrate on topics scarcely explored in the literature such as the spectral response phenomenology of HCGs with the complex unit cells. We show that the spectral response is robust under the symmetric unit cell perturbations, while asymmetric unit cell perturbations may introduce completely new spectral response. Further, we show examples of highly fragmented spectra present in the case of HCGs with the aperiodic topology in the unit cell. Our results can serve as guidance for the design of the complex HCGs and help with the choice of the efficient initial grating topology prior to global optimization procedure.

  12. Specular reflectivity and hot-electron generation in high-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, Gregory Elijah

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  13. Electron energy transport in the thin foil driven by high contrast high intensity laser pulse

    SciTech Connect

    Tanimoto, T.; Nishiuchi, M.; Mishima, Y.; Kikuyama, K.; Morioka, T.; Morita, K.; Kanasaki, M.; Pirozhkov, A. S.; Yogo, A.; Ogura, K.; Fukuda, Y.; Sakaki, H.; Sagisaka, A.; Habara, H.; Tanaka, K. A.; Kondo, K.

    2012-07-11

    The fast electron spectrum was measured for the interaction between the thin foil and the relativistic optical high field. There were two components in the electron spectrum. The higher temperature component was almost explained by the ponderomotive formula T{sub e}[MeV] = 0.511({radical}(1+I{sub 18}{lambda}{sup 2}{sub {mu}m}/1.37)-1). The total electron spectrum including the lower temperature component was also explained by a simple model.

  14. High-resolution wide-field imaging of perfused capillaries without the use of contrast agent

    PubMed Central

    Nelson, Darin A; Burgansky-Eliash, Zvia; Barash, Hila; Loewenstein, Anat; Barak, Adiel; Bartov, Elisha; Rock, Tali; Grinvald, Amiram

    2011-01-01

    Purpose: Assessment of capillary abnormalities facilitates early diagnosis, treatment, and follow-up of common retinal pathologies. Injected contrast agents like fluorescein are widely used to image retinal capillaries, but this highly effective procedure has a few disadvantages, such as untoward side effects, inconvenience of injection, and brevity of the time window for clear visualization. The retinal function imager (RFI) is a tool for monitoring retinal functions, such as blood velocity and oximetry, based on intrinsic signals. Here we describe the clinical use of hemoglobin in red blood cells (RBCs) as an intrinsic motion-contrast agent in the generation of detailed noninvasive capillary-perfusion maps (nCPMs). Patients and methods: Multiple series of nCPM images were acquired from 130 patients with diabetic retinopathy, vein occlusion, central serous retinopathy, age-related macular degeneration, or metabolic syndrome, as well as from 37 healthy subjects. After registration, pixel value distribution parameters were analyzed to locate RBC motion. Results: The RFI yielded nCPMs demonstrating microvascular morphology including capillaries in exquisite detail. Maps from the same subject were highly reproducible in repeated measurements, in as much detail and often better than that revealed by the very best fluorescein angiography. In patients, neovascularization and capillary nonperfusion areas were clearly observed. Foveal avascular zones (FAZ) were sharply delineated and were larger in patients with diabetic retinopathy than in controls (FAZ diameter: 641.5 ± 82.3 versus 463.7 ± 105 μm; P < 0.001). Also visible were abnormal vascular patterns, such as shunts and vascular loops. Conclusion: Optical imaging of retinal capillaries in human patients based on motion contrast is noninvasive, comfortable, safe, and can be repeated as often as required for early diagnosis, treatment guidance, and follow up of retinal disease progression. PMID:21887088

  15. Manifest Needs of High Ability Achieving and Underachieving Elementary School Children in a Culturally Disadvantaged Setting

    ERIC Educational Resources Information Center

    Masih, Lalit K.

    1974-01-01

    This study, conducted in conjunction with a larger project entitled "Project Able" (part of the Madison Area Project), compared manifest needs of high ability achieving and underachieving elementary school children in a culturally disadvantaged setting. (EAK)

  16. Understanding the Elements of Operational Reliability: A Key for Achieving High Reliability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2010-01-01

    This viewgraph presentation reviews operational reliability and its role in achieving high reliability through design and process reliability. The topics include: 1) Reliability Engineering Major Areas and interfaces; 2) Design Reliability; 3) Process Reliability; and 4) Reliability Applications.

  17. Contrast transfer and resolution limits for sub-angstrom high-resolution transmission electron microscopy.

    PubMed

    Lentzen, Markus

    2008-02-01

    The optimum imaging of an object structure at the sub-angstrom length scale requires precise adjustment of the lens aberrations of a high-resolution instrument up to the fifth order. A least-squares optimization of defocus aberration C1, third-order spherical aberration C3, and fifth-order spherical aberration C5 yields two sets of aberration coefficients for strong phase contrast up to the information limit: one for variable C1 and C3, at fixed C5, another for variable C1, C3, and C5. An additional correction to the defocus aberration, dependent on object thickness, is described, which becomes important for the use of image simulation programs in predicting optimum high-resolution contrast from thin objects at the sub-angstrom scale. For instruments with a sub-angstrom information limit the ultimate structure resolution, the power to resolve adjacent atom columns in a crystalline object, depends on both the instrumental pointspread and an object pointspread due to finite width of the atomic column potentials. A simulation study on a simple double-column model yields a range for structure resolutions, dependent on the atomic scattering power, from 0.070 nm down to 0.059 nm, for a hypothetical 300-kV instrument with an information limit of 0.050 nm. PMID:18096097

  18. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes.

    PubMed

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A; Vajtai, Robert; Ajayan, Pulickel M; Kaipparettu, Benny Abraham

    2016-01-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2-xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu(3+) nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu(3+) nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu(3+) nanorods were compared with the spherical nanoparticles of Gd2O3:Eu(3+). PMID:27585638

  19. Bifunctional Luminomagnetic Rare-Earth Nanorods for High-Contrast Bioimaging Nanoprobes

    PubMed Central

    Gupta, Bipin Kumar; Singh, Satbir; Kumar, Pawan; Lee, Yean; Kedawat, Garima; Narayanan, Tharangattu N.; Vithayathil, Sajna Antony; Ge, Liehui; Zhan, Xiaobo; Gupta, Sarika; Martí, Angel A.; Vajtai, Robert; Ajayan, Pulickel M.; Kaipparettu, Benny Abraham

    2016-01-01

    Nanoparticles exhibiting both magnetic and luminescent properties are need of the hour for many biological applications. A single compound exhibiting this combination of properties is uncommon. Herein, we report a strategy to synthesize a bifunctional luminomagnetic Gd2−xEuxO3 (x = 0.05 to 0.5) nanorod, with a diameter of ~20 nm and length in ~0.6 μm, using hydrothermal method. Gd2O3:Eu3+ nanorods have been characterized by studying its structural, optical and magnetic properties. The advantage offered by photoluminescent imaging with Gd2O3:Eu3+ nanorods is that this ultrafine nanorod material exhibits hypersensitive intense red emission (610 nm) with good brightness (quantum yield more than 90%), which is an essential parameter for high-contrast bioimaging, especially for overcoming auto fluorescent background. The utility of luminomagnetic nanorods for biological applications in high-contrast cell imaging capability and cell toxicity to image two human breast cancer cell lines T47D and MDA-MB-231 are also evaluated. Additionally, to understand the significance of shape of the nanostructure, the photoluminescence and paramagnetic characteristic of Gd2O3:Eu3+ nanorods were compared with the spherical nanoparticles of Gd2O3:Eu3+. PMID:27585638

  20. A novel high temporal resolution phase contrast MRI technique for measuring mitral valve flows

    NASA Astrophysics Data System (ADS)

    Voorhees, Abram; Bohmann, Katja; McGorty, Kelly Anne; Wei, Timothy; Chen, Qun

    2005-11-01

    Mitral valve flow imaging is inherently difficult due to valve plane motion and high blood flow velocities, which can range from 200 cm/s to 700 cm/s under regurgitant conditions. As such, insufficient temporal resolution has hampered imaging of mitral valve flows using magnetic resonance imaging (MRI). A novel phase contrast MRI technique, phase contrast using phase train imaging (PCPTI), has been developed to address the high temporal resolution needs for imaging mitral valve flows. The PCPTI sequence provides the highest temporal resolution to-date (6 ms) for measuring in-plane and through-plane flow patterns, with each velocity component acquired in a separate breathhold. Tested on healthy human volunteers, comparison to a conventional retrogated PC-FLASH cine sequence showed reasonable agreement. Results from a more rigorous validation using digital particle image velocimetry technique will be presented. The technique will be demonstrated in vitro using a physiological flow phantom and a St. Jude Medical Masters Series prosthetic valve.

  1. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.

    PubMed

    Schuh, Andreas; Bozchalooi, Iman Soltani; Rangelow, Ivo W; Youcef-Toumi, Kamal

    2015-06-12

    High speed imaging and mapping of nanomechanical properties in atomic force microscopy (AFM) allows the observation and characterization of dynamic sample processes. Recent developments involve several cantilever frequencies in a multifrequency approach. One method actuates the first eigenmode for topography imaging and records the excited higher harmonics to map nanomechanical properties of the sample. To enhance the higher frequencies' response two or more eigenmodes are actuated simultaneously, where the higher eigenmode(s) are used to quantify the nanomechanics. In this paper, we combine each imaging methodology with a novel control approach. It modifies the Q factor and resonance frequency of each eigenmode independently to enhance the force sensitivity and imaging bandwidth. It allows us to satisfy the different requirements for the first and higher eigenmode. The presented compensator is compatible with existing AFMs and can be simply attached with minimal modifications. Different samples are used to demonstrate the improvement in nanomechanical contrast mapping and imaging speed of tapping mode AFM in air. The experiments indicate most enhanced nanomechanical contrast with low Q factors of the first and high Q factors of the higher eigenmode. In this scenario, the cantilever topography imaging rate can also be easily improved by a factor of 10. PMID:25994333

  2. Large infrared absorptance of bimaterial microcantilevers based on silicon high contrast grating

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Seong, Myunghoon; Liu, Jui-Nung; Rosenberger, Matthew R.; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.; King, William P.

    2013-10-01

    Manufacturing sensors for the mid-IR spectral region (3-11 μm) are especially challenging given the large spectral bandwidth, lack of convenient material properties, and need for sensitivity due to weak sources. Here, we present bimaterial microcantilevers based on silicon high contrast grating (HCG) as alternatives. The grating integrated into the cantilevers leverages the high refractive index contrast between the silicon and its surrounding medium, air. The cantilevers with HCG exhibit larger active spectral range and absorptance in mid-IR as compared to cantilevers without HCG. We design and fabricate two types of HCG bimaterial cantilevers such that the HCG resonance modes occur in mid-IR spectral region. Based on the measurements using a Fourier transform infrared (FTIR) microspectrometer, we show that the HCG cantilevers have 3-4X wider total IR absorptance bandwidths and 30% larger absorptance peak amplitude than the cantilever without HCG, over the 3-11 μm wavelength region. Based on the enhanced IR absorptance, HCG cantilevers show 13-47X greater responsivity than the cantilever without HCG. Finally, we demonstrate that the enhanced IR sensitivity of the HCG cantilever enables transmission IR spectroscopy with a Michelson interferometer. The HCG cantilever shows comparable signal to noise ratio to a low-end commercial FTIR system and exhibits a linear response to incident IR power.

  3. Teachable, high-content analytics for live-cell, phase contrast movies.

    PubMed

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings. PMID:20639505

  4. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    NASA Astrophysics Data System (ADS)

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  5. Diamond Turned High Precision PIAA Optics and Four Mirror PIAA System for High Contrast Imaging of Exo-planets

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan

    2011-01-01

    Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.

  6. Post-processing methods for high-contrast imaging in the context of the WFIRST-AFTA telescope

    NASA Astrophysics Data System (ADS)

    Ygouf, Marie; Soummer, Remi; Perrin, Marshall D.; Pueyo, Laurent; N'Diaye, Mamadou; Macintosh, Bruce

    2015-01-01

    Direct detection and characterization of Earth-like exoplanets with contrasts of 109 require space-based instruments optimized for high-contrast imaging. In this context, the Wide-Field Infrared Survey Telescope - Astrophysics Focused Telescope Assets (WFIRST-AFTA) project will reach contrasts of about 108, using state-of-the-art starlight suppression and wavefront control techniques. A ten-fold contrast improvement to reach the required contrast of 109 is expected to come from post-processing. But the methods of point spread function (PSF) subtraction techniques currently used on both ground-based and space-based instruments have not yet been demonstrated at such high contrast level. In this communication, we explore new ways of implementing post-processing methods on AFTA-like simulated images, taking into account the presence of deformable mirrors, coronagraph and an IFS.

  7. Bullying and Victimization Rates among Gifted and High-Achieving Students

    ERIC Educational Resources Information Center

    Peters, Megan Parker; Bain, Sherry K.

    2011-01-01

    Bullying and victimization rates among 90 gifted and nongifted, high-achieving (HA) high school students were assessed by using the Reynolds Bully Victimization Scale (BVS; W. M. Reynolds, 2003). The mean scores indicate that gifted and HA high school students bully others and are victimized by others generally at unelevated rates based on BVS…

  8. A Study of Professional Learning Communities and Science Achievement in Large High Schools

    ERIC Educational Resources Information Center

    Kincannon, Susan D.

    2010-01-01

    The purpose of this study was to compare the science achievement and high school completion rates of students in a large high school implementing professional learning community concepts and practices with two large high schools not participating in professional learning community concepts and practices. The primary methodology employed was a…

  9. Do Peers Influence Achievement in High School Economics? Evidence from Georgia's Economics End of Course Test

    ERIC Educational Resources Information Center

    Clark, Christopher; Scafidi, Benjamin; Swinton, John R.

    2011-01-01

    The authors provide the first estimates of the impact of peers on achievement in high school economics. The estimates are obtained by analyzing three years of data on all high school students who take Georgia's required economics course and its accompanying high-stakes End of Course Test (Georgia Department of Education). They use an instrumental…

  10. High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}

    SciTech Connect

    Dollar, F.; Zulick, C.; Matsuoka, T.; McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Kalinchenko, G.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-05-15

    Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.

  11. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    NASA Astrophysics Data System (ADS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-02-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences.

  12. High contrast ion acceleration at intensities exceeding 1021 Wcm-2a)

    NASA Astrophysics Data System (ADS)

    Dollar, F.; Zulick, C.; Matsuoka, T.; McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Davis, J.; Kalinchenko, G.; Petrov, G. M.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2013-05-01

    Ion acceleration from short pulse laser interactions at intensities of 2×1021Wcm-2 was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.

  13. High contrast hollow-cone dark field transmission electron microscopy for nanocrystalline grain size quantification.

    PubMed

    Yao, Bo; Sun, Tik; Warren, Andrew; Heinrich, Helge; Barmak, Katayun; Coffey, Kevin R

    2010-04-01

    In this paper, we describe hollow-cone dark field (HCDF) transmission electron microscopy (TEM) imaging, with a slightly convergent beam, as an improved technique that is suitable to form high contrast micrographs for nanocrystalline grain size quantification. We also examine the various factors that influence the HCDF TEM image quality, including the conditions of microscopy (alignment, focus and objective aperture size), the properties of the materials imaged (e.g., atomic number, strain, defects), and the characteristics of the TEM sample itself (e.g., thickness, ion milling artifacts). Sample preparation was found to be critical and an initial thinning by wet etching of the substrate (for thin film samples) or tripod polishing (for bulk samples), followed by low-angle ion milling was found to be the preferred approach for preparing high-quality electron transparent samples for HCDF imaging. PMID:20018512

  14. High-contrast gratings for long-wavelength laser integration on silicon

    NASA Astrophysics Data System (ADS)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  15. SPHERE: exo-planets science with the new frontier of high contrast imaging

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Beuzit, J.-L.; Feldt, M.; Mouillet, D.; Dohlen, K.; Puget, P.; Wildi, F.; Baruffolo, A.; Charton, J.; Antichi, J.; Boccaletti, A.; Desidera, S.; Fusco, T.; Gratton, R.; Langlois, M.; Mesa, D.; Pragt, J.; Raboub, P.; Roelfsema, R.; Saisse, M.; Schmid, H.-M.; Turatto, M.; Moutou, C.; Henning, T.; Udry, S.; Vakili, F.; Waters, R.

    2008-09-01

    ABSTRACT High contrast imaging will be the new frontier of exoplanets search providing the opportunity to have at once a deep glance in the neighborhood of the target star. In addition, coupling integral field spectrographs to extreme adaptive optics module at the focus of 8m telescope class and in future to ELTs, gives also the possibility to have a first order characterization of the exoplanets itself. SPHERE, second generation instrument for VLT, is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars and to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an extreme-Adaptive Optics (AO) turbulence correction, pupil tracker and interferential coronagraphs. At its back end, a differential dual imaging camera (IRDIS) and an integral field spectrograph (IFS) work in the Near Infrared (NIR) Y, J, H and Ks bands (0.95-2.32 μm) and a high resolution polarization camera (ZIMPOL) covers the visible (0.6 - 0.9 μm). The three instruments could work simultaneously. As matter of fact, as the instrument has been thought and designed, It should be considered more like an experiment than a typical ancillary instrumentation. The prime objective of SPHERE is the discovery and study of new planets orbiting stars by direct imaging of the circumstellar environment. The challenge consists in the very large contrast of luminosity between the star and the planet (larger than " 12.5 magnitudes or " 105 flux ratio), at very small angular separations, typically inside the seeing halo. The whole design of SPHERE is therefore optimized towards high contrast performance in a limited field of view and at short distances from the central star. Both evolved and young planetary systems will be detected, respectively through their reflected light (mostly by ZIMPOL) and through the intrinsic planet emission (IRDIS+IFS modes). Both components of the near-infrared arm of SPHERE

  16. Broadband Performance of TPF's High-contrast Imaging Testbed: Modeling and Simulations

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Kuhnert, Andreas C.; Trauger, John T.

    2006-01-01

    The broadband performance of the high-contrast imaging testbed (HCIT) at JPL is investigated through optical modeling and simulations. The analytical tool is an optical simulation algorithm developed by combining the HCIT's optical model with a speckle-nulling algorithm that operates directly on coronagraphic images, an algorithm identical to the one currently being used on the HCIT to actively suppress scattered light via a deformable mirror. It is capable of performing full three-dimensional end-to-end near-field diffraction analysis on the HCIT's optical system. By conducting speckle-nulling optimization, we clarify the HCIT's capability and limitations in terms of its broadband contrast performance under various realistic conditions. Considered cases include non-ideal occulting masks, such as a mask with optical density and wavelength dependent parasitic phase-delay errors (i.e., a not band-limited occulting mask) and the one with an optical-density profile corresponding to a measured, non-standard profile, as well as the independently measured phase errors of all optics. Most of the information gathered on the HCIT's optical components through measurement and characterization over the last several years at JPL has been used in this analysis to make the predictions as accurate as possible. The best contrast values predicted so far by our simulations obtainable on the HCIT illuminated with a broadband light having a bandwidth of 80nm and centered at 800nm wavelength are Cm=1.1x10-8 (mean) and C4=4.9x10-8 (at 4(lamda)/D), respectively. In this paper we report our preliminary findings about the broadband light performance of the HCIT.

  17. Contrast-enhanced MR Angiography of the Abdomen with Highly Accelerated Acquisition Techniques

    PubMed Central

    Mostardi, Petrice M.; Glockner, James F.; Young, Phillip M.

    2011-01-01

    Purpose: To demonstrate that highly accelerated (net acceleration factor [Rnet] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material–enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material. Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27–62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37–68 years; three men; average age, 60 years; range, 50–67 years; composite average age, 54 years; range, 38–68 years). The two-part protocol consisted of a low-dose (2 mL contrast material) 3D timing image with approximate 1-second frame time, followed by a high-spatial-resolution (1.0–1.6-mm isotropic voxels) breath-hold 3D renal MR angiogram (18 mL) over the full abdominal field of view. Both acquisitions used two-dimensional (2D) sensitivity encoding acceleration factor (R) of eight and 2D homodyne (HD) acceleration (RHD) of 1.4–1.8 for Rnet = R · RHD of 10 or higher. Statistical analysis included determination of mean values and standard deviations of image quality scores performed by two experienced reviewers with use of eight evaluation criteria. Results: The 2-mL 3D time-resolved image successfully portrayed progressive arterial filling in all 22 studies and provided an anatomic overview of the vasculature. Successful timing was also demonstrated in that the renal MR angiogram showed adequate or excellent portrayal of the main renal arteries in 21 of 22 studies. Conclusion: Two-dimensional acceleration techniques with Rnet of 10 or higher can be used in CE MR angiography to acquire (a) a 3D image series with 1-second frame time, allowing accurate

  18. High Contrast Science Program for the Exo-C Space Telescope Mission

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.; Marley, Mark S.; Bryden, Geoffrey; Meadows, Victoria; Belikov, Ruslan; McElwain, Michael W.; Exo-C Science; Technology Definition Team

    2015-01-01

    Exo-C is a detailed study of the science capability, engineering design, technology requirements, and costing for a modest-aperture space telescope with an internal coronagraph that could directly image exoplanetary systems. During its three year mission, Exo-C will carry out imaging and spectroscopy over the wavelength range 0.45-1.0 um towards the following goals: 1) Characterize the atmospheres of at least a dozen known, nearby radial velocity planets. Exo-C spectra will diagnose their atmospheric composition and the presence of clouds, performing the first such measurements of cool giant exoplanets like those in our own solar system. 2) Conduct an imaging survey of at least 100 additional nearby stars down to ~3e-10 contrast, enabling the discovery of new exoplanets down to super-Earth sizes. Sub-Neptune and super-Earth planets are relatively common in the exoplanet population, but have no counterparts in our Solar System. Exo-C spectra will provide the first atmospheric characterization for these intriguing objects. 3) Image several hundred circumstellar disks, revealing structures induced by planetary perturbations and the time evolution of disk properties. If exozodi is low and a very stable telescope can be achieved, habitable zone planets down to Earth size might be detected in a small sample of nearby stars including the alpha Cen system. Science targets, observing protocols, and future work will be discussed.

  19. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides.

    PubMed

    Dhakal, Ashim; Raza, Ali; Peyskens, Frédéric; Subramanian, Ananth Z; Clemmen, Stéphane; Le Thomas, Nicolas; Baets, Roel

    2015-10-19

    We develop and experimentally verify a theoretical model for the total efficiency η0 of evanescent excitation and subsequent collection of spontaneous Raman signals by the fundamental quasi-TE and quasi-TM modes of a generic photonic channel waveguide. Single-mode silicon nitride (Si3N4) slot and strip waveguides of different dimensions are used in the experimental study. Our theoretical model is validated by the correspondence between the experimental and theoretical absolute values within the experimental errors. We extend our theoretical model to silicon-on-insulator (SOI) and titanium dioxide (TiO2) channel waveguides and study η0 as a function of index contrast, polarization of the mode and the geometry of the waveguides. We report nearly 2.5 (4 and 5) times larger η0 for the fundamental quasi-TM mode when compared to η0 for the fundamental quasi-TE mode of a typical Si3N4 (TiO2 and SOI) strip waveguide. η0 for the fundamental quasi-TE mode of a typical Si3N4, (TiO2 and SOI) slot waveguide is about 7 (22 and 90) times larger when compared to η0 for the fundamental quasi-TE mode of a strip waveguide of the similar dimensions. We attribute the observed enhancement to the higher electric field discontinuity present in high index contrast waveguides. PMID:26480401

  20. Contrast enhancing and adjusting advanced very high resolution radiometer scenes for solar illumination

    USGS Publications Warehouse

    Zokaites, David M.

    1993-01-01

    The AVHRR (Advanced Very High Resolution Radiometer) satellite sensors provide daily coverage of the entire Earth. As a result, individual scenes cover broad geographic areas (roughly 3000 km by 5000 km) and can contain varying levels of solar illumination. Mosaics of AVHRR scenes can be created for large (continental and global) study areas. As the north-south extent of such mosaics increases, the lightness variability within the mosaic increases. AVHRR channels one and two of multiple daytime scenes were histogrammed to find a relationship between solar zenith and scene lightness as described by brightness value distribution. This relationship was used to determine look-up tables (luts) which removed effects of varying solar illumination. These luts were combined with a contrast enhancing lut and stored online. For individual scenes, one precomputed composite lut was applied to the entire scene based on the solar zenith at scene center. For mosaicked scenes, each pixel was adjusted based on the solar zenith at that pixel location. These procedures reduce lightness variability within and between scenes and enhance scene contrast to provide visually pleasing imagery.

  1. Improvement of the temporal and spatial contrast of high-brightness laser beams

    NASA Astrophysics Data System (ADS)

    Szatmári, S.; Dajka, R.; Barna, A.; Gilicze, B.; Földes, I. B.

    2016-07-01

    A novel method is suggested for temporal and spatial cleaning of high-brightness laser pulses, which seems more energy-scalable than that based on crossed polarizers and offers better contrast improvement compared to the plasma mirror technique. The suggested arrangement utilizes nonlinear modulation of the beam in the Fourier-plane leading both to directional and to temporal modulation. By the use of a ‘conjugate’ aperture arrangement before and after the nonlinear spatial selector, intensity dependent transmission is obtained; simultaneous temporal and spatial filtering can be realized both for amplitude and phase modulation. In the case of phase modulation introduced by plasma generation in noble gases the experimental observations are in good agreement with the theory; demonstrating  >103 improvement in the temporal contrast, ~40% throughput, associated with effective spatial filtering. Due to the broad spectral and power durability of the optical arrangement used here, the method is widely applicable for energetic beams even of UV wavelengths, where most of the former techniques have limited throughput.

  2. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Nie, Liming; Chen, Mei; Sun, Xiaolian; Rong, Pengfei; Zheng, Nanfeng; Chen, Xiaoyuan

    2014-01-01

    A stable and efficient contrast agent is highly desirable for photoacoustic (PA) imaging applications. Recently gold nanostructures have been widely reported and studied for PA imaging and photothermal therapy. However, the structures of the nonspherical gold nanoparticles are easily destroyed after laser irradiation and thus may fail to complete the intended tasks. In this study, we propose to apply palladium nanosheets (PNSs), with strong optical absorption in the near-infrared (NIR) region, as a new class of exogenous PA contrast agents. PA and ultrasound (US) images were acquired sequentially by a portable and fast photoacoustic tomography (PAT) system with a hand-held transducer. Significant and long-lasting imaging enhancement in SCC7 head and neck squamous cell carcinoma was successfully observed in mice by PAT over time after tail vein administration of PNSs. The morphology and functional perfusion of the tumors were delineated in PA images due to the nanoparticle accumulation. PAT of the main organs was also conducted ex vivo to trace the fate of PNSs, which was further validated by inductively coupled plasma atomic emission spectrometry (ICP-AES). No obvious toxic effect was observed by in vitro MTT assay and ex vivo histological examination 7 days after PNS administration. With the combination of a portable imaging instrument and signal specificity, PNSs might be applied as stable and effective agents for photoacoustic cancer detection, diagnosis and treatment guidance.

  3. Long-Term Follow-Up of Patients at High Risk for Nephropathy After Contrast Exposure.

    PubMed

    Abaci, Okay; Harmankaya, Ozlem; Kocas, Betul; Kocas, Cuneyt; Bostan, Cem; Coskun, Ugur; Yildiz, Ahmet; Ersanli, Murat

    2015-07-01

    Contrast medium-induced acute kidney injury (CI-AKI) is associated with morbidity and mortality, but the long-term outcomes of patients who do not develop CI-AKI remain unknown. We assessed clinical end points during long-term follow-up in patients at high risk for nephropathy who did not develop CI-AKI. Patients (n = 135) with impaired renal function (estimated glomerular filtration rate: 30-60 mL/min/1.73 m(2)) were divided into 2 groups according to contrast media (CM) exposure. The primary end point of this study was a composite outcome measure of death or renal failure requiring dialysis. Multivariate analyses identified CM exposure to be independently associated with major adverse long-term outcomes (hazard ratio: 2.3; 95% confidence interval, 1.34-6.52; P = .018). Even when CM exposure does not cause CI-AKI in patients with impaired renal function, in the long term, primary end points occur more frequently in patients exposed to CM than in those with no CM exposure. PMID:25115554

  4. GaAs/AlOx high-contrast grating mirrors for mid-infrared VCSELs

    NASA Astrophysics Data System (ADS)

    Almuneau, G.; Laaroussi, Y.; Chevallier, C.; Genty, F.; Fressengeas, N. s.; Cerutti, L.; Gauthier-Lafaye, Olivier

    2015-02-01

    Mid-infrared Vertical cavity surface emitting lasers (MIR-VCSEL) are very attractive compact sources for spectroscopic measurements above 2μm, relevant for molecules sensing in various application domains. A long-standing issue for long wavelength VCSEL is the large structure thickness affecting the laser properties, added for the MIR to the tricky technological implementation of the antimonide alloys system. In this paper, we propose a new geometry for MIR-VCSEL including both a lateral confinement by an oxide aperture, and a high-contrast sub-wavelength grating mirror (HCG mirror) formed by the high contrast combination AIOx/GaAs in place of GaSb/A|AsSb top Bragg reflector. In addition to drastically simplifying the vertical stack, HCG mirror allows to control through its design the beam properties. The robust design of the HCG has been ensured by an original method of optimization based on particle swarm optimization algorithm combined with an anti-optimization one, thus allowing large error tolerance for the nano-fabrication. Oxide-based electro-optical confinement has been adapted to mid-infrared lasers, byusing a metamorphic approach with (Al) GaAs layer directly epitaxially grown on the GaSb-based VCSEL bottom structure. This approach combines the advantages of the will-controlled oxidation of AlAs layer and the efficient gain media of Sb-based for mid-infrared emission. We finally present the results obtained on electrically pumped mid-IR-VCSELs structures, for which we included oxide aperturing for lateral confinement and HCG as high reflectivity output mirrors, both based on AlxOy/GaAs heterostructures.

  5. High spatial and temporal resolution imaging of the arterial vasculature of the lower extremity with contrast enhanced MR angiography.

    PubMed

    Mostardi, Petrice M; Haider, Clifton R; Glockner, James F; Young, Phillip M; Riederer, Stephen J

    2011-05-01

    Vascular imaging can be essential in the diagnosis, monitoring, and planning and assessment of treatment of patients with peripheral vascular disease. The purpose of this work is to describe a recently developed three-dimensional (3D) time-resolved contrast-enhanced MR angiography (CE-MRA) technique, Cartesian Acquisition with Projection Reconstruction-like sampling (CAPR), and its application to imaging of the vasculature of the lower legs and feet. CAPR implements accelerated imaging techniques and uses specialized multielement imaging coil arrays to achieve high temporal and high spatial resolution imaging. Volunteer and patient studies of the vasculature of the lower legs and feet have been performed. Temporal resolution of 4.9-6.5 sec and spatial resolution less than or equal to 1 mm in all directions allow for the depiction of progressive arterial filling and complex flow patterns as well as sharp visualization of vascular structure as small as the fine muscular branches. High-quality diagnostic imaging is made possible with CAPR's advanced acquisition and reconstruction techniques and the use of specialized coil arrays. PMID:21509813

  6. High Spatial and Temporal Resolution Imaging of the Arterial Vasculature of the Lower Extremity With Contrast Enhanced MR Angiography

    PubMed Central

    MOSTARDI, PETRICE M.; HAIDER, CLIFTON R.; GLOCKNER, JAMES F.; YOUNG, PHILLIP M.; RIEDERER, STEPHEN J.

    2011-01-01

    Vascular imaging can be essential in the diagnosis, monitoring, and planning and assessment of treatment of patients with peripheral vascular disease. The purpose of this work is to describe a recently developed three-dimensional (3D) time-resolved contrast-enhanced MR angiography (CE-MRA) technique, Cartesian Acquisition with Projection Reconstruction-like sampling (CAPR), and its application to imaging of the vasculature of the lower legs and feet. CAPR implements accelerated imaging techniques and uses specialized multielement imaging coil arrays to achieve high temporal and high spatial resolution imaging. Volunteer and patient studies of the vasculature of the lower legs and feet have been performed. Temporal resolution of 4.9–6.5 sec and spatial resolution less than or equal to 1 mm in all directions allow for the depiction of progressive arterial filling and complex flow patterns as well as sharp visualization of vascular structure as small as the fine muscular branches. High-quality diagnostic imaging is made possible with CAPR’s advanced acquisition and reconstruction techniques and the use of specialized coil arrays. PMID:21509813

  7. Integrated Wavefront Correction and Bias Estimation for the High-Contrast Imaging of Exoplanets

    NASA Astrophysics Data System (ADS)

    Riggs, A. J. Eldorado

    Just over two decades ago the first planet outside our solar system was found, and thousands more have been discovered since. Nearly all these exoplanets were indirectly detected by sensing changes in their host stars' light. However, exoplanets must be directly imaged to determine their atmospheric compositions and the orbital parameters unavailable from only indirect detections. The main challenge of direct imaging is to observe stellar companions much fainter than the star and at small angular separations. Coronagraphy is one method of suppressing stellar diffraction to provide high star-to-planet contrast, but coronagraphs are extremely sensitive to quasi-static aberrations in the optical system. Active correction of the stellar wavefront is performed with deformable mirrors to recover high-contrast regions in the image. Estimation and control of the stellar electric field is performed iteratively in the camera's focal plane to avoid non-common path aberrations arising from a separate pupil sensor. Estimation can thus be quite time consuming because it requires several high-contrast intensity images per correction iteration. This thesis focuses on efficient focal plane wavefront correction (FPWC) for coronagraphy. Time is a precious commodity for a space telescope, so there is a strong incentive to reduce the total exposure time required for focal plane wavefront estimation. Much of our work emphasizes faster, more robust estimation via Kalman filtering, which optimally combines prior data with new measurements. The other main contribution of this thesis is a paradigm shift in the use of estimation images. Time for FPWC has generally been considered to be lost overhead, but we demonstrate that estimation images can be used for the detection and characterization of exoplanets and disks. These science targets are incoherent with their host stars, so we developed and implemented an iterated extended Kalman filter (IEKF) for simultaneous estimation of the stellar

  8. Short Term Reproducibility of a High Contrast 3-D Isotropic Optic Nerve Imaging Sequence in Healthy Controls

    PubMed Central

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-01-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON. PMID:27175048

  9. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  10. Social Goals, Social Status, and Problem Behavior among Low-Achieving and High-Achieving Adolescents from Rural Schools

    ERIC Educational Resources Information Center

    Ludden, Alison Bryant

    2012-01-01

    The current research examines how social goals and perceptions of what is needed for social status at school relate to school misbehavior and substance use among rural adolescents (N = 683). Results indicate that social goals and perceptions of social status have differential links to problem behaviors depending upon adolescents' achievement.…

  11. Evaluation of English Achievement Test: A Comparison between High and Low Achievers amongst Selected Elementary School Students of Pakistan

    ERIC Educational Resources Information Center

    Haider, Zubair; Latif, Farah; Akhtar, Samina; Mushtaq, Maria

    2012-01-01

    Validity, reliability and item analysis are critical to the process of evaluating the quality of an educational measurement. The present study evaluates the quality of an assessment constructed to measure elementary school student's achievement in English. In this study, the survey model of descriptive research was used as a research method.…

  12. Enhanced Isochoric Heating in High Contrast Laser-Nano-Cone Interactions

    NASA Astrophysics Data System (ADS)

    Cowan, T. E.; Rassuchine, J.; D'Humieres, E.; Sentoku, Y.; Baton, S.; Gillou, P.; Koenig, M.; Fuchs, J.; Audebert, P.; Kodama, R.; Nakatsutsumi, M.; Norimatsu, T.; Batani, D.; Morace, A.; Bedaello, R.; Gremillet, L.; Rousseaux, C.; Dorchies, F.; Fourment, C.; Santos, J. J.; Hansen, S.

    2007-11-01

    We discuss the interaction of very high-contrast high-intensity laser pulses with sharp-tipped, nanofabricated Cu cone targets (see [1]), using frequency doubled light at the LULI 100 TW laser (λ=0.53 um, I=4x10^18 W/cm^2). Previous work at 1φ showed that pre-formed plasma, due to ASE, degraded the laser-cone coupling. At 2φ, high-resolution spectroscopy of Cu Kα emission shows high charge states, implying peak temperatures of up to 400 eV, comparable to the smallest reduced mass targets (50 μm dia x 20 μm thick). This implies a new confinement mechanism which, from 2D collisional PIC simulations, is due to self-generated resistive magnetic fields (up to 10 MG) which confine the hot electrons to the tip region of the cone. Supported by Access to Research Infrastructures in the EU Sixth Framework Programme (contract RII3-CT-2003-506350, Laserlab Europe), and UNR DOE/NNSA grant DE-FC52-01NV14050. [1] Y. Sentoku et al., Phys. Plasmas, 11 3083 (2004).

  13. The Relationship between Cognitive and Emotional Intelligence and High School Academic Achievement.

    PubMed

    Matešić, Krunoslav

    2015-06-01

    The study investigated the relationship between intelligence, emotional intelligence and academic achievement in high school. The study was conducted within the standardization of two instruments for Croatian samples. A total of 369 high school students from the Republic of Croatia participated in the study. They completed the Naglieri Nonverbal Ability Test (NNAT)--a test of cognitive intelligence and the BarOn Emotional Quotient Inventory: Youth Version (EQ-i:YV). Academic achievement criteria were general school achievement, Croatian language and mathematics. Several regression analyses were conducted on the results. The results show that cognitive intelligence and the adaptability scale to be consistent predictors of academic achievement. Emotional intelligence was not shown to be a significant predictor of school success. PMID:26753453

  14. Polarization-independent beam focusing by high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zheng, Gaige; Jiang, Liyong; Li, Xiangyin

    2014-08-01

    A kind of high-contrast grating (HCG) reflector for beam focusing has been proposed. We design a planar grating structure with a parabolic surface and numerical simulations using a finite different time domain (FDTD) method to verify that the structure has the capability of focusing both transverse-magnetic (TM) and transverse-electric (TE) polarized lights. Finally, we expand the design structure into a three-dimensional (3D) case. Numerical results demonstrate that the power intensities at the focal point are all greater than 8.5 dB compared with incident intensity, which means the structure has a better focusing effect. Further analysis of incident wavelength sensitivity (1.55, 1.79 and 2 μm) reveals that the proposed structure has a wide range of working wavelength.

  15. High-index contrast/photonic crystal gratings: a wealth of new photonic functionality

    NASA Astrophysics Data System (ADS)

    Viktorovitch, Pierre; Letartre, Xavier; Ben Bakir, Badhise; Menezo, Sylvie

    2014-02-01

    High index contrast / Photonic Crystal membrane (HCG/PCM) resonators can be exploited to perform an arbitrarily adjustable molding of light at the wavelength scale: they can process free-space as well as wave-guided optical modes along a variety of addressing configurations and transfer functions, where the spectral, spatial, polarization, phase, group delay… characteristics can be resolved accurately and adjusted at will. The physics of HCG resonators will be revisited based on a simple analytical approach and intuitive arguments, thus providing direct routes for design rules. Specifically, such desired functionalities as wavelength tuning and beam steering will be emphasized. Practical implementation of these functionalities will be presented in the case of VCSEL devices, where silicon HCG/PCM resonators are used as reflectors and are heterogeneously integrated with III-V semiconductor gain material, along a CMOS compatible technological approach.

  16. Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.; Kahle, Anne B.; Walker, Richard E.

    1986-01-01

    Conventional enhancements for the color display of multispectral images are based on independent contrast modifications or 'stretches' of three input images. This approach is not effective if the image channels are highly correlated or if the image histograms are strongly bimodal or more complex. Any of several procedures that tend to 'stretch' color saturation while leaving hue unchanged may better utilize the full range of colors for the display of image information. Two conceptually different enhancements are discussed: the 'decorrelation stretch', based on principal-component (PC) analysis, and the 'stretch' of 'hue' - 'saturation' - intensity (HSI) transformed data. The PC transformation in scene-dependent, but the HSI transformation is invariant. Examples of images enhanced by conventional linear stretches, decorrelation stretch, and by stretches of HSI transformed data are compared. Schematic variation diagrams or two- and three-dimensional histograms are used to illustrate the 'decorrelation stretch' method and the effect of the different enhancements.

  17. Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Prada, Camilo Mejia; An, Xin; Balasubramanian, Kunjithapatham; Diaz, Rosemary; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Poberezhskiy, Ilya; Eldorado Riggs, A. J.; Zimmer, Robert; Zimmerman, Neil

    2016-01-01

    The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2-a narrowband 10-8 contrast test with static aberrations for the shaped pupil-and the plans for the upcoming broadband coronagraph milestone 5.

  18. High Contrast Internal and External Coronagraph Masks Produced by Various Techniques

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian; Belikov, Ruslan; Guyon, Olivier; Kasdin, N. Jeremy

    2013-01-01

    Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.

  19. An infrared small target detection algorithm based on high-speed local contrast method

    NASA Astrophysics Data System (ADS)

    Cui, Zheng; Yang, Jingli; Jiang, Shouda; Li, Junbao

    2016-05-01

    Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.

  20. Low-Cost High-Precision PIAA Optics for High Contrast Imaging with Exo-Planet Coronagraphs

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham; Shaklan, Stuart B.; Pueyo, Laurent; Wilson, Daniel W.; Guyon, Olivier

    2010-01-01

    PIAA optics for high contrast imaging present challenges in manufacturing and testing due to their large surface departures from aspheric profiles at the aperture edges. With smaller form factors and consequent smaller surface deformations (<50 microns), fabrication of these mirrors with diamond turning followed by electron beam lithographic techniques becomes feasible. Though such a design reduces the system throughput to approx.50%, it still provides good performance down to 2 lambda/D inner working angle. With new achromatic focal plane mask designs, the system performance can be further improved. We report on the design, expected performance, fabrication challenges, and initial assessment of such novel PIAA optics.

  1. High relaxivity MRI contrast agents part 2: Optimization of inner- and second-sphere relaxivity

    PubMed Central

    Jacques, Vincent; Dumas, Stephane; Sun, Wei-Chuan; Troughton, Jeffrey S.; Greenfield, Matthew T.; Caravan, Peter

    2011-01-01

    Rationale and objectives The observed relaxivity of gadolinium based contrast agents has contributions from the water molecule(s) that bind directly to the gadolinium ion (inner-sphere water), long lived water molecules and exchangeable protons that make up the second-sphere of coordination, and water molecules that diffuse near the contrast agent (outer-sphere). Inner- and second-sphere relaxivity can both be increased by optimization of the lifetimes of the water molecules and protons in these coordination spheres, the rotational motion of the complex, and the electronic relaxation of the gadolinium ion. We sought to identify new high relaxivity contrast agents by systematically varying the donor atoms that bind directly to gadolinium to increase inner-sphere relaxivity and concurrently including substituents that influence the second-sphere relaxivity. Methods Twenty GdDOTA derivatives were prepared and their relaxivity determined in presence and absence of human serum albumin as a function of temperature and magnetic field. Data was analyzed to extract the underlying molecular parameters influencing relaxivity. Each compound had a common albumin-binding group and an inner-sphere donor set comprising the 4 tertiary amine N atoms from cyclen, an α-substituted acetate oxygen atom, two amide oxygen atoms, an inner-sphere water oxygen atom, and a variable donor group. Each amide nitrogen was substituted with different groups to promote hydrogen bonding with second-sphere water molecules. Results Relaxivites at 0.47T and 1.4T, 37 °C, in serum albumin ranged from 16.0 to 58.1 mM−1s−1 and from 12.3 to 34.8 mM−1s−1 respectively. The reduction of inner-sphere water exchange typical of amide donor groups could be offset by incorporating a phosphonate or phenolate oxygen atom donor in the first coordination sphere resulting in higher relaxivity. Amide nitrogen substitution with pendant phosphonate or carboxylate groups increased relaxivity by as much as 88

  2. High-Pitch Coronary CT Angiography at 70 kVp With Low Contrast Medium Volume

    PubMed Central

    Zhang, Long Jiang; Qi, Li; De Cecco, Carlo N.; Zhou, Chang Sheng; Spearman, James V.; Schoepf, U. Joseph; Lu, Guang Ming

    2014-01-01

    Abstract The purpose of this article is to evaluate image quality and radiation dose of prospectively electrocardiogram (ECG)-triggered high-pitch coronary computed tomography angiography (CCTA) at 70 kVp and 30 mL contrast medium. One hundred fifty patients with a heart rate ≤70 beats per minute (bpm) underwent CCTA using a second-generation dual-source computed tomography (CT) scanner and were randomized into 3 groups according to tube voltage and contrast medium volume (370 mg/mL iodine concentration) (100 kVp group, 100 kVp/60 mL, n = 55; 80 kVp group, 80 kVp/60 mL, n = 44; 70 kVp group, 70 kVp/30 mL, n = 51). Objective and subjective image quality along with the effect of heart rate (HR) and body mass index (BMI) was evaluated and compared between the groups. Radiation dose was estimated for each patient. CT attenuation and image noise were higher in the 80 and 70 kVp groups than in the 100 kVp group (all P < 0.001). Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were lower in the 70 kVp group than in the 80 and 100 kVp groups (all P < 0.05). There was no difference for subjective image quality between the groups (P > 0.05). HR did not affect subjective image quality (all P > 0.05), while patients with BMI <23 kg/m2 had higher image quality than patients with BMI ≥23 kg/m2 (P < 0.05). Compared with the 100 kVp group, the radiation dose of the 70 kVp group was reduced by 75%. In conclusion, prospectively ECG-triggered high-pitch 70 kVp/30 mL CCTA can obtain diagnostic image quality with lower radiation dose in selected patients with BMI <23 kg/m2 compared with 80/100 kVp/60 mL CCTA. PMID:25396334

  3. A format standard for efficient interchange of high-contrast direct imaging science products

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Vigan, Arthur; Soummer, Rémi; Chauvin, Gaël.; Pueyo, Laurent; Perrin, Marshall D.; Hines, Dean C.

    2014-07-01

    The present and next few years will see the arrival of several new coronagraphic instruments dedicated to the detection and characterization of planetary systems. These ground- and space-based instruments (Gemini/GPI, VLT/SPHERE, Subaru/ CHARIS, JWST NIRCam and MIRI coronagraphs among others), will provide a large number of new candidates, through multiple nearby-star surveys and will complete and extend those acquired with current generation instruments (Palomar P1640, VLT/NACO, Keck, HST). To optimize the use of the wealth of data, including non-detection results, the science products of these instruments will require to be shared among the community. In the long term such data exchange will significantly ease companion confirmations, planet characterization via different type of instruments (integral field spectrographs, polarimetric imagers, etc.), and Monte-Carlo population studies from detection and non-detection results. In this context, we initiated a collaborative effort between the teams developing the data reduction pipelines for SPHERE, GPI, and the JWST coronagraphs, and the ALICE (Archival Legacy Investigations of Circumstellar Environment) collaboration, which is currently reprocessing all the HST/NICMOS coronagraphic surveys. We are developing a standard format for the science products generated by high-contrast direct imaging instruments (reduced image, sensitivity limits, noise image, candidate list, etc.), that is directly usable for astrophysical investigations. In this paper, we present first results of this work and propose a preliminary format adopted for the science product. We call for discussions in the high-contrast direct imaging community to develop this effort, reach a consensus and finalize this standard. This action will be critical to enable data interchange and combination in a consistent way between several instruments and to stiffen the scientific production in the community.

  4. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  5. Impact of Principal Leadership on Catholic High School Students' Academic Achievement in Edo State, Nigeria

    ERIC Educational Resources Information Center

    Imhangbe, Osayamen Samson

    2012-01-01

    Over the years, students of Catholic High/Senior secondary schools in Edo state, Nigeria have maintained a significantly higher level of academic achievement than their counterparts in public schools in the state. This development has not only been a cause of serious concern for parents of students who attend public High/Senior secondary schools…

  6. The Effects of Guided Inquiry Instruction on Student Achievement in High School Biology

    ERIC Educational Resources Information Center

    Vass, Laszlo

    2010-01-01

    The purpose of this quantitative, quasi-experimental study was to measure the effect of a student-centered instructional method called guided inquiry on the achievement of students in a unit of study in high school biology. The study used a non-random sample of 109 students, the control group of 55 students enrolled in high school one, received…

  7. The Relationship between Self-Efficacy and Achievement in At-Risk High School Students

    ERIC Educational Resources Information Center

    Gold, Jarrett Graham

    2010-01-01

    The focus of this quantitative survey study was the examination of the relationship between self-efficacy and academic achievement in 164 at-risk high school students. The study used Bandura's self-efficacy as the theoretical framework. The research questions involved understanding the levels of self-efficacy in at-risk high school students and…

  8. What Works Clearinghouse Quick Review: "Expanding College Opportunities for High-Achieving, Low Income Students"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study examined the effects of providing low-income, high-achieving high school seniors with college application guidance and information about the costs of college. The "application guidance" included information about deadlines and requirements for college applications at nearby institutions, at the state's flagship institution, and at in-…

  9. The Relationship between Thinking Style Differences and Career Choices for High-Achieving Students

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2011-01-01

    The intent of this study was to present information about high-achieving students' career decision making associated with thinking styles. We gathered data from two International Baccalaureate (IB) programs and a Governor's School Program with a sample of 209 high-school students. The findings of this study demonstrated that the effect of program…

  10. Closing the Mathematics Achievement Gap in High-Poverty Middle Schools: Enablers and Constraints

    ERIC Educational Resources Information Center

    Balfanz, Robert; Byrnes, Vaughan

    2006-01-01

    The mathematics achievement levels of U.S. students fall far behind those of other developed nations; within the United States itself, the students who are falling behind come predominantly from high-poverty and high-minority areas. This article reports on a series of analyses that followed 4 cohorts of students from 3 such schools through the 5th…

  11. Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes

    ERIC Educational Resources Information Center

    Ferguson, Terri Lynn Kurley

    2014-01-01

    This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…

  12. Urban Students Achieve When High Schools Implement Proven Practices. Research Brief

    ERIC Educational Resources Information Center

    Bottoms, Gene; Han, Lingling; Presson, Alice

    2006-01-01

    Students benefit from a year or more gain in student achievement when urban district and high school leaders commit to the implementation of the "High Schools That Work" ("HSTW") design. It is not enough to be a "HSTW" site--it is about taking effective actions to implement the design. Schools that do take action witness significant progress in…

  13. The Effects of Modeling Instruction on High School Physics Academic Achievement

    ERIC Educational Resources Information Center

    Wright, Tiffanie L.

    2012-01-01

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an "ex post facto," quasi-experimental research methodology. The…

  14. School Context, Precollege Educational Opportunities, and College Degree Attainment among High-Achieving Black Males

    ERIC Educational Resources Information Center

    Rose, Valija C.

    2013-01-01

    Access to high-quality educational opportunities is central to growing postsecondary degree attainment. This study employs secondary data analysis of the public-use National Education Longitudinal Study (NELS:88/00) to examine how school context and precollege educational opportunities influence college degree attainment among high-achieving Black…

  15. Study-Orientation of High and Low Academic Achievers at Secondary Level in Pakistan

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Bashir, Muhammad; Khan, Muhammad Naemullah; Khan, Muhammad Saeed

    2009-01-01

    The study orientation of low and high academic achievers was compared, measured through a self-developed study orientation scale (SOS) primarily based on 47 items comparing study habits and attitude. Students' marks obtained in the 10th grade Examination determined the measure of academic performance. The analysis revealed that the high achievers…

  16. The Relationship between Principals' Instructional Focus and Academic Achievement of High Poverty Students

    ERIC Educational Resources Information Center

    Aste, Mahri

    2009-01-01

    The purpose of the study was to determine the relationship between teacher perceptions of the frequency and effectiveness of principal instructional leadership behaviors and student achievement in high-poverty elementary schools. In order to accomplish the purpose, survey methodology was employed. Teachers from six high-poverty elementary schools…

  17. Small Classes in the Early Grades, Academic Achievement, and Graduating From High School

    ERIC Educational Resources Information Center

    Finn, Jeremy D.; Gerber, Susan B.; Boyd-Zaharias, Jayne

    2005-01-01

    This investigation addressed 3 questions about the long-term effects of early school experiences: (a) Is participation in small classes in the early grades (K-3) related to high school graduation? (b) Is academic achievement in K-3 related to high school graduation? (c) If class size is related to graduation, is the relationship explained by the…

  18. Causes of Nonattendance and Its Effect on Student Achievement at the High School Level

    ERIC Educational Resources Information Center

    Bracht, Kelly D.

    2010-01-01

    Many high schools in America have issues with student nonattendance. The researcher designed this mixed methods study to determine the affect of nonattendance on student achievement and to ascertain whether home-related factors or school-related factors were more significant causes of nonattendance. Both the high school in this study and other…

  19. Improving High School Students' Mathematics Achievement through the Use of Motivational Strategies.

    ERIC Educational Resources Information Center

    Portal, Jamie; Sampson, Lisa

    This report describes a program for motivating students in mathematics in order to improve achievement at the high school level. The targeted population consisted of high school students in a middle class community located in a suburb of a large metropolitan area. The problems of underachievement were documented through data collected from surveys…

  20. Emotional Intelligence as a Predictor of Leadership of Kuwaiti High and Low Achieving 11th Graders

    ERIC Educational Resources Information Center

    Alnabhan, Mousa

    2010-01-01

    The current study examined the association between emotional intelligence (EI) and the Leadership components (L) of high school students in the state of Kuwait. The possibility of predicting each leadership component via emotional intelligence components was investigated for high and low achievers. A sample of 11th grade students from Kuwaiti…

  1. The Contribution of Limbic Learning Aptitude to Achievement in High School. Final Report.

    ERIC Educational Resources Information Center

    Ax, Albert F.; And Others

    Achievement in earning grades in high school was resolved into its intellectual and motivational components. This study employed tests of I.Q., personality inventories and classical and operant conditioning of autonomic nervous system controlled variables. Eleven procedures were given to 99 Black inner city high school seniors. Six physiological…

  2. A Case Study of 21st Century Skills in High Achieving Elementary Schools in Pennsylvania

    ERIC Educational Resources Information Center

    Egnor, Gregory P.

    2013-01-01

    This study examines if practices that advocate for 21st century skills are in conflict with the mandates of NCLB. Interviews with influential school leaders of high achieving elementary schools focused on collecting data about 21st century skills. This study was designed to (a) Determine if 21st century skills are addressed in high achieving…

  3. Technological progress of a ferrofluid deformable mirror with tunable nominal optical power for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Lemmer, Aaron J.; Groff, Tyler D.; Kasdin, N. Jeremy; Echeverri, Daniel; Cleff, Isabel R.

    2015-09-01

    The success of a space-borne direct-imaging mission pursuing earth-sized exoplanets in the habitable zone hinges on the ability to achieve high contrast over a maximum field of view. Coronagraphic instruments designed to address this challenge suffer from optical aberrations and rely on focal-plane wavefront control to suppress the resulting speckles and widen the search area. Even small-featured quasi-static speckles--which may obscure or be confused with a planet--must be suppressed to the order of 10-10 over the search region, placing extreme demands on the deformable mirrors (DMs) used to implement the closed-loop control, both in wavefront requirements and actuation resolution. The ideal DM for focal-plane wavefront control has high surface quality and is capable of high-precision, low-stroke actuation. Conventional mirror technologies such as MEMS DMs, with heritage in ground-based adaptive optics instruments that correct for dynamic atmosphere-induced aberrations, are nominally at and provide high-stroke, high-resolution control but at a cost of precision and surface quality. We present a new technology currently under development at Princeton, which features a ferrofluid-supported optical surface with local magnetic actuation. The actuation is transferred to the optical surface through a liquid medium which continuously supports it, decoupling the nominal surface profile from the actuator configuration and eliminating quilting. Additionally, the device carries tunable nominal optical power via regulation of the ferrofluid pressure, permitting a degree of high-fidelity low-order wavefront control impossible with current instrumentation. We report on the continuing technological growth of the prototype device, including progress with actuation, metrology, and modeling of the DM response.

  4. Academic achievement and career choice in science: Perceptions of African American urban high school students

    NASA Astrophysics Data System (ADS)

    Jones, Sheila Kay

    2007-12-01

    Low test scores in science and fewer career choices in science among African American high school students than their White counterparts has resulted in lower interest during high school and an underrepresentation of African Americans in science and engineering fields. Reasons for this underachievement are not known. This qualitative study used a grounded theory methodology to examine what influence parental involvement, ethnic identity, and early mentoring had on the academic achievement in science and career choice in science of African American urban high school 10th grade students. Using semi-structured open-ended questions in individual interviews and focus groups, twenty participants responded to questions about African American urban high school student achievement in science and their career choice in science. The median age of participants was 15 years; 85% had passed either high school biology or physical science. The findings of the study revealed influences and interactions of selected factors on African American urban high school achievement in science. Sensing potential emerged as the overarching theme with six subthemes; A Taste of Knowledge, Sounds I Hear, Aromatic Barriers, What Others See, The Touch of Others, and The Sixth Sense. These themes correlate to the natural senses of the human body. A disconnect between what science is, their own individual learning and success, and what their participation in science could mean for them and the future of the larger society. Insight into appropriate intervention strategies to improve African American urban high school achievement in science was gained.

  5. Factors That Influence School Board Actions to Support Student Achievement: A Multi-Case Study of High-Achieving Rural School Districts

    ERIC Educational Resources Information Center

    Timm, Colleen A.

    2012-01-01

    The purpose of this study is to examine the factors that influence the actions taken by school boards that advance student achievement in high-achieving rural public school districts. Much of what is discussed in the literature on school improvement efforts is centered on the work carried out by school personnel at the school level. What is…

  6. The Impact of Including Children with Intellectual Disability in General Education Classrooms on the Academic Achievement of Their Low-, Average-, and High-Achieving Peers

    ERIC Educational Resources Information Center

    Sermier Dessemontet, Rachel; Bless, Gerard

    2013-01-01

    Background: This study aimed at assessing the impact of including children with intellectual disability (ID) in general education classrooms with support on the academic achievement of their low-, average-, and high-achieving peers without disability. Method: A quasi-experimental study was conducted with an experimental group of 202 pupils from…

  7. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    PubMed Central

    Hagen, Charlotte K.; Maghsoudlou, Panagiotis; Totonelli, Giorgia; Diemoz, Paul C.; Endrizzi, Marco; Rigon, Luigi; Menk, Ralf-Hendrik; Arfelli, Fulvia; Dreossi, Diego; Brun, Emmanuel; Coan, Paola; Bravin, Alberto; De Coppi, Paolo; Olivo, Alessandro

    2015-01-01

    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds’ internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory. PMID:26657471

  8. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    NASA Astrophysics Data System (ADS)

    Hagen, Charlotte K.; Maghsoudlou, Panagiotis; Totonelli, Giorgia; Diemoz, Paul C.; Endrizzi, Marco; Rigon, Luigi; Menk, Ralf-Hendrik; Arfelli, Fulvia; Dreossi, Diego; Brun, Emmanuel; Coan, Paola; Bravin, Alberto; de Coppi, Paolo; Olivo, Alessandro

    2015-12-01

    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds’ internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.

  9. Does Homogeneous Ability Grouping for High School Honors English Instruction Benefit the High Achiever?

    ERIC Educational Resources Information Center

    Hostetter, Douglas Paul

    2013-01-01

    Public schools are examining their policies and instructional practices to address the achievement gap exposed by the reporting requirements of NCLB (Wenglinski, 2004). As accountability measures and stakes rise, there is a call for an improved use of scientific evidence to inform educational policymaking (Wiseman, 2010). In terms of the…

  10. Effects of a Collaborative Science Intervention on High Achieving Students' Learning Anxiety and Attitudes toward Science

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.

    2010-10-01

    This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.

  11. Effects of differential wavefront sensor bias drifts on high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sadakuni, Naru; Macintosh, Bruce A.; Palmer, David W.; Poyneer, Lisa A.; Max, Claire E.; Savransky, Dmitry; Thomas, Sandrine J.; Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Rantakyrö, Fredrik; Serio, Andrew

    2014-08-01

    The Gemini Planet Imager (GPI) is a new facility, extreme adaptive optics (AO), coronagraphic instrument, currently being integrated onto the 8-meter Gemini South telescope, with the ultimate goal of directly imaging extrasolar planets. To achieve the contrast required for the desired science, it is necessary to quantify and mitigate wavefront error (WFE). A large source of potential static WFE arises from the primary AO wavefront sensor (WFS) detector's use of multiple readout segments with independent signal chains including on-chip preamplifiers and external amplifiers. Temperature changes within GPI's electronics cause drifts in readout segments' bias levels, inducing an RMS WFE of 1.1 nm and 41.9 nm over 4.44 degrees Celsius, for magnitude 4 and 11 stars, respectively. With a goal of <2 nm of static WFE, these are significant enough to require remedial action. Simulations imply a requirement to take fresh WFS darks every 2 degrees Celsius of temperature change, for a magnitude 6 star; similarly, for a magnitude 7 star, every 1 degree Celsius of temperature change. For sufficiently dim stars, bias drifts exceed the signal, causing a large initial WFE, and the former periodic requirement practically becomes an instantaneous/continuous one, making the goal of <2 nm of static WFE very difficult for stars of magnitude 9 or fainter. In extreme cases, this can cause the AO loops to destabilize due to perceived nonphysical wavefronts, as some of the WFS's Shack-Hartmann quadcells are split between multiple readout segments. Presented here is GPI's AO WFS geometry, along with detailed steps in the simulation used to quantify bias drift related WFE, followed by laboratory and on sky results, and concluded with possible methods of remediation.

  12. Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.; Dohlen, K.

    2013-07-01

    The spectroscopy of faint planetary-mass companions to nearby stars is one of the main challenges that new-generation high-contrast spectro-imagers are going to face. However, the high contrast ratio between main-sequence stars and young planets makes it difficult to extract a companion spectrum that is not biased by the signal from the star. In a previous work we demonstrated that coupling long-slit spectroscopy (LSS) and classical Lyot coronagraphy (CLC) to form a long-slit coronagraph (LSC) allows low-mass companions to be properly characterized when combined with an innovative a posteriori data analysis methods based on the spectral deconvolution (SD). However, the presence of a slit in the coronagraphic focal plane induces a complex distribution of energy in the Lyot pupil plane that cannot be easily masked with a binary Lyot stop, creating strong diffraction residuals at close angular separation. To alleviate this concern, we propose to use a pupil apodization to suppress diffraction, creating an apodized long-slit coronagraph (ALSC). We show that this concept allows looking at a closer separation from the star, at deeper contrast, which enables the characterization of fainter substellar companions. After describing how the apodization was optimized, we demonstrate its advantages with respect to the CLC in the context of SPHERE/IRDIS LSS mode at low resolution with a 0.12'' slit and 0.18'' coronagraphic mask. We performed different sets of simulations with and without aberrations, and with and without a slit to demonstrate that the apodization is a more appropriate concept for LSS, at the expense of a significantly reduced throughput (37%) compared to the LSC. Then we performed detailed end-to-end simulations of the LSC and the ALSC that include realistic levels of aberrations to obtain several datasets representing 1 h of integration time on stars of spectral type A0 to M0 located at 10 pc. We inserted the spectra of planetary companions at different

  13. School factors affecting postsecondary career pursuits of high-achieving girls in mathematics and science

    NASA Astrophysics Data System (ADS)

    Yoo, Hyunsil

    This study examined the influences of secondary school experiences of high-achieving girls in math and science on their postsecondary career pursuits in science fields. Specifically, using the National Education Longitudinal Study of 1988 (NELS:88), the study investigated how science class experiences in high school affect science career persistence of high-achieving girls over and above personal and family factors. Selecting the top 10% on the 8 th grade math and science achievement tests from two panel samples of 1988--1994 and 1988--2000, this study examined which science instructional experiences (i.e., lecture-oriented, experiment-oriented, and student-oriented) best predicted college major choices and postsecondary degree attainments in the fields of science after controlling for personal and family factors. A two-stage test was employed for the analysis of each panel sample. The first test examined the dichotomous career pursuits between science careers and non-science careers and the second test examined the dichotomous pursuits within science careers: "hard" science and "soft" science. Logistic regression procedures were used with consideration of panel weights and design effects. This study identified that experiment-oriented and student-oriented instructional practices seem to positively affect science career pursuits of high-achieving females, while lecture-oriented instruction negatively affected their science career pursuits, and that the longitudinal effects of the two positive instructional contributors to science career pursuits appear to be differential between major choice and degree attainment. This study also found that the influences of instructional practices seem to be slight for general females, while those for high-achieving females were highly considerable, regardless of whether negative or positive. Another result of the study found that only student-oriented instruction seemed to have positive effects for high-achieving males. In

  14. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. III. A FAINT WHITE DWARF COMPANION ORBITING HD 114174

    SciTech Connect

    Crepp, Justin R.; Johnson, John Asher; Howard, Andrew W.; Marcy, Geoffrey W.; Gianninas, Alexandros; Kilic, Mukremin; Wright, Jason T.

    2013-09-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the ''trend''. HD 114174 B has a projected separation of 692 {+-} 9 mas (18.1 AU) and is 10.75 {+-} 0.12 mag (contrast of 5 Multiplication-Sign 10{sup -5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 yr demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M{sub J} = 13.97 {+-} 0.11, and colors, J - K = 0.12 {+-} 0.16 mag. These characteristics are consistent with an Almost-Equal-To T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of 0.260 {+-} 0.010 M{sub Sun }. We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature T{sub eff} = 8200 {+-} 4000 K, surface gravity log g = 8.90 {+-} 0.02, and cooling age of t{sub c} Almost-Equal-To 3.4 Gyr, which is consistent with the 4.7{sup +2.3}{sub -2.6} Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only 26.14 {+-} 0.37 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors.

  15. Time-dependent convective flows with high viscosity contrasts under micro gravity conditions.

    NASA Astrophysics Data System (ADS)

    Zaussinger, Florian; Egbers, Christoph; Krebs, Andreas; Schwarzbach, Felix; Kunze, Christian

    2015-04-01

    Thermal driven convection in spherical geometry is of main interest in geo- and astrophysical research. To capture certain aspects of temperature dependent viscosity we investigate the micro-gravity experiment GeoFlow-IIb, located on the ISS. This unique experimental setup consists of a bottom heated and top cooled spherical gap, filled with the silicon oil 1-Nonanol. However, rotation and varying temperature gradients can be applied, to spread the experimental parameter space. The main focus of the current mission is the investigation of time dependent convective flow structures. Since the ISS requirements makes it impossible to use tracer particles, the flow structures are captured by interferometry, whose outcome is analysed by an ground based adapted image processing technique. To guarantee valid results the experimental time of each parameter is in the order of the thermal time scale, which is about 40 min. We are presenting latest results of plume-like and sheet-like time-dependent convective patterns in the spherical shell, their evolution and temporal behaviour under high viscosity contrasts. Due to an unexpected nonlinear coupling between the temperature dependent viscosity of the working fluid and the applied dielectrophoretic force field, we are able to maintain a viscosity contrast of 50 and more. This gives the chance to compare cautiously our experimental results with theoretical assumptions of the mantle convection theory. Besides, numerical simulations in the same parameter regime are performed, which give the opportunity to deduce the internal structure of the experimental flow flied. The main focus of the presented results are the long time temporal evolution of convective plumes in the spherical gap, image capturing- and processing techniques and the deduction of the internal flow field based on planar interferometry pictures.

  16. The production and evaluation of contrast-carrying liposomes made with an automatic high-pressure system.

    PubMed

    Cheng, K T; Seltzer, S E; Adams, D F; Blau, M

    1987-01-01

    An automatic, high-pressure system (Microfluidizer) has been found useful for producing contrast-carrying liposomes on an industrial scale. The goal of this investigation was to determine the feasibility of using this new microemulsification process to manufacture contrast-carrying microemulsified liposomes (MELs). Seven contrast media (three ionic, four nonionic) were encapsulated into the MELs. Light and electron microscopy, light scattering, radioisotope, and CT scan techniques were used to characterize these MELs, and the contrast entrapments among the studied media were compared. The contrast-carrying MELs had good properties for imaging normal reticuloendothelial tissues, selectively. They had a narrow size range (0.1-3.0 micron), a single bilayer wall, high liver and spleen upake, and low leakage rates. The nonionic media were significantly more effectively entrapped in the MELs than the ionic media (P less than .05). The iodine-to-lipid weight ratio was about 1:16 for ionic media and 1:4 for nonionic media. Physical properties of the contrast media such as osmotic pressure and charge appeared to affect contrast entrapment. It was concluded that the microemulsification process is a useful system for producing contrast-carrying liposomes continuously, on a large scale and in a reproducible manner. PMID:3818235

  17. Examining the integrity of measurement of cognitive abilities in the prediction of achievement: Comparisons and contrasts across variables from higher-order and bifactor models.

    PubMed

    Benson, Nicholas F; Kranzler, John H; Floyd, Randy G

    2016-10-01

    Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. PMID:27586067

  18. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. II. DIRECT DETECTION OF THE HD 8375 TERTIARY

    SciTech Connect

    Crepp, Justin R.; Johnson, John Asher; Yantek, Scott M.; Howard, Andrew W.; Marcy, Geoff W.; Isaacson, Howard; Fischer, Debra A.; Wright, Jason T.; Feng Ying

    2013-07-01

    We present the direct imaging detection of a faint tertiary companion to the single-lined spectroscopic binary HD 8375 AB. Initially noticed as an 53 m s{sup -1} yr{sup -1} Doppler acceleration by Bowler et al., we have obtained high-contrast adaptive optics observations at Keck using NIRC2 that spatially resolve HD 8375 C from its host(s). Astrometric measurements demonstrate that the companion shares a common proper-motion. We detect orbital motion in a clockwise direction. Multiband relative photometry measurements are consistent with an early M-dwarf spectral type ({approx}M1V). Our combined Doppler and imaging observations place a lower-limit of m {>=} 0.297 M{sub Sun} on its dynamical mass. We also provide a refined orbit for the inner pair using recent radial velocity measurements obtained with the High Resolution Echelle Spectrometer. HD 8375 is one of many triple-star systems that are apparently missing in the solar neighborhood.

  19. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    NASA Astrophysics Data System (ADS)

    Taute, K. M.; Gude, S.; Tans, S. J.; Shimizu, T. S.

    2015-11-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments.

  20. Tunable resonant-cavity-enhanced photodetector with double high-index-contrast grating mirrors

    NASA Astrophysics Data System (ADS)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-03-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs lead to a narrow absorption linewidth of 0.38 nm and a broad tuning range of 111 nm. The peak absorption efficiency is 76-84% within the tuning range. This broadband-tunable and narrow-absorption-linewidth RCE-PD is desirable for applications where selective wavelength demultiplexing is required. Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.