Sample records for achieving high conversion

  1. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOEpatents

    Terwilliger, Steve [Albuquerque, NM

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  3. Molten Slag Would Boost Coal Conversion

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1984-01-01

    Reactor increases residence time of uncovered char. Near-100percent carbon conversion achievable in reactor incorporating moltenslag bath. Slag maintains unconverted carbon impinging on surface at high temperatures for longer period of time, enhancing conversion.

  4. Managing Conversations: The Medium for Achieving "Breakthrough" Results.

    ERIC Educational Resources Information Center

    Bolton, Robert

    1998-01-01

    Unlike traditional management development, use of conversations in coaching high-performance work teams addresses core processes of speaking and listening. Management of conversations aims to create learning that will lead to breakthroughs in team performance. (SK)

  5. Biorefinery of instant noodle waste to biofuels.

    PubMed

    Yang, Xiaoguang; Lee, Sang Jun; Yoo, Hah Young; Choi, Han Suk; Park, Chulhwan; Kim, Seung Wook

    2014-05-01

    Instant noodle waste, one of the main residues of the modern food industry, was employed as feedstock to convert to valuable biofuels. After isolation of used oil from the instant noodle waste surface, the starch residue was converted to bioethanol by Saccharomyces cerevisiae K35 with simultaneous saccharification and fermentation (SSF). The maximum ethanol concentration and productivity was 61.1g/l and 1.7 g/lh, respectively. After the optimization of fermentation, ethanol conversion rate of 96.8% was achieved within 36 h. The extracted oil was utilized as feedstock for high quality biodiesel conversion with typical chemical catalysts (KOH and H2SO4). The optimum conversion conditions for these two catalysts were estimated; and the highest biodiesel conversion rates were achieved 98.5% and 97.8%, within 2 and 3h, respectively. The high conversion rates of both bioethanol and biodiesel demonstrate that novel substrate instant noodle waste can be an attractive biorefinery feedstock in the biofuels industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficient 525 nm laser generation in single or double resonant cavity

    NASA Astrophysics Data System (ADS)

    Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen

    2018-03-01

    This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.

  7. Power conversion distribution system using a resonant high-frequency AC link

    NASA Technical Reports Server (NTRS)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  8. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  9. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    NASA Astrophysics Data System (ADS)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  10. All-optical 40Gbit/s format conversion from NRZ to RZ based on SFG in a PPLN waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang

    2006-01-01

    A novel all-optical 40Gbit/s NRZ-to-RZ data format conversion scheme based on sum-frequency generation (SFG) interaction in a periodically poled LiNbO 3 (PPLN) waveguide is presented for the first time, using a Mach-Zehnder interferometer (MZI). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift Φ NL induced on the signal field. The performance of the conversion is numerically evaluated, with the result showing that it is more effective to yield Φ NL when appropriately phase mismatched for SFG process but Φ NL~0 when quasi-phase-matching (QPM). Compared with the cascaded second-order nonlinear interactions (SHG+DFG) with the influence of walk-off effect, a high conversion efficiency and good performance are achieved with peak power 500mw and width 2ps of the pump, which can be used in super high-speed situation (40Gbit/s and above). Finally, the inverse process of SFG and corresponding walk-off effect are analyzed and the optimum arrangement of power is proposed, showing that proper power, pump width, and waveguide length are necessary for achieving a satisfied conversion effect.

  11. Laser source with high pulse energy at 3-5 μm and 8-12 μm based on nonlinear conversion in ZnGeP2

    NASA Astrophysics Data System (ADS)

    Lippert, Espen; Fonnum, Helge; Haakestad, Magnus W.

    2014-10-01

    We present a high energy infrared laser source where a Tm:fiber laser is used to pump a high-energy 2-μm cryogenically cooled Ho:YLF laser. We have achieved 550 mJ of output energy at 2.05 μm, and through non-linear conversion in ZnGeP2 generated 200 mJ in the 3-5-μm range. Using a numerical simulation tool we have also investigated a setup which should generate more than 70 mJ in the 8-12-μm range. The conversion stage uses a master-oscillator-power-amplifier architecture to enable high conversion efficiency and good beam quality.

  12. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.

    PubMed

    Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua

    2014-10-20

    The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  14. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  15. Silicon trench photodiodes on a wafer for efficient X-ray-to-current signal conversion using side-X-ray-irradiation mode

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2018-04-01

    In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.

  16. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%

    DOE PAGES

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...

    2016-08-29

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. Here, the PVSCs exhibit small photocurrent–voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

  17. Pyroelectric conversion in space: A conceptual design study

    NASA Technical Reports Server (NTRS)

    Olsen, R. B.

    1983-01-01

    Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.

  18. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  19. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    PubMed Central

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  20. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less

  1. Field trial of differential-phase-shift quantum key distribution using polarization independent frequency up-conversion detectors.

    PubMed

    Honjo, T; Yamamoto, S; Yamamoto, T; Kamada, H; Nishida, Y; Tadanaga, O; Asobe, M; Inoue, K

    2007-11-26

    We report a field trial of differential phase shift quantum key distribution (QKD) using polarization independent frequency up-conversion detectors. A frequency up-conversion detector is a promising device for achieving a high key generation rate when combined with a high clock rate QKD system. However, its polarization dependence prevents it from being applied to practical QKD systems. In this paper, we employ a modified polarization diversity configuration to eliminate the polarization dependence. Applying this method, we performed a long-term stability test using a 17.6-km installed fiber. We successfully demonstrated stable operation for 6 hours and achieved a sifted key generation rate of 120 kbps and an average quantum bit error rate of 3.14 %. The sifted key generation rate was not the estimated value but the effective value, which means that the sifted key was continuously generated at a rate of 120 kbps for 6 hours.

  2. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    NASA Technical Reports Server (NTRS)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.

  3. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less

  4. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22.

    PubMed

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-01

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystal conversion between metal-organic frameworks with different crystal topologies for efficient crystal design on two-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Takaaki; Inoue, Kohei; Miyanaga, Ayumi; Tobiishi, Kaho; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2018-04-01

    Crystal conversion of metal-organic frameworks (MOFs) between different crystal topologies on a polymer substrate has been successfully achieved by localized dissolution of MOF crystals followed by a rapid self-assembly of framework components. Upon addition of the desired organic linkers to the reaction system containing MOF crystals on the substrate, reversible crystal conversion between the [Cu2(btc)3]n and [Cu2(ndc)2(dabco)]n frameworks (btc = 1,3,5-benzene tricarboxylate, ndc = 1,4-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) could be routinely achieved in high yields. Most surprisingly, in the case of conversion from the [Cu2(ndc)2(dabco)]n to [Cu2(btc)3]n frameworks, the [Cu2(btc)3]n crystals with unique shapes (cuboctahedron and truncated cube) could be prepared using butanol as a reaction medium.

  6. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    PubMed

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  7. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  8. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xiulin; Hu, Enyuan; Ji, Xiao

    Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh Kg –1. However, poor electrochemical reversibility due to repeated breaking/reformation of metal-fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g –1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh Kg –1 with a decay rate of 0.03% per cycle is achieved. The anion and cation’s co-substitutions thermodynamicallymore » reduce conversion-reaction potential and shift the reaction from less reversible intercalation-conversion reaction in iron fluoride to a highly reversible intercalation-extrusion reaction in doped material. Furthermore, the co-substitution strategy to tune the thermodynamic features of the reactions could be extended to other high energy conversion materials for improved performance.« less

  9. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction

    DOE PAGES

    Fan, Xiulin; Hu, Enyuan; Ji, Xiao; ...

    2018-05-30

    Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh Kg –1. However, poor electrochemical reversibility due to repeated breaking/reformation of metal-fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g –1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh Kg –1 with a decay rate of 0.03% per cycle is achieved. The anion and cation’s co-substitutions thermodynamicallymore » reduce conversion-reaction potential and shift the reaction from less reversible intercalation-conversion reaction in iron fluoride to a highly reversible intercalation-extrusion reaction in doped material. Furthermore, the co-substitution strategy to tune the thermodynamic features of the reactions could be extended to other high energy conversion materials for improved performance.« less

  10. Control of particle size by feed composition in the nanolatexes produced via monomer-starved semicontinuous emulsion copolymerization.

    PubMed

    Sajjadi, Shahriar

    2015-05-01

    Conventional batch and semicontinuous emulsion copolymerizations often produce large particles whose size cannot be easily correlated with the comonomer feed compositions, and are to some degree susceptible to composition drift. In contrast, we found that copolymer nanolatexes made via semicontinuous monomer-starved emulsion copolymerizations are featured with an average nanoparticle size being controlled by the feed composition, a high conversion achieved, and a high degree of particle composition uniformity. This was achieved because the rate of particle growth, during nucleation, was controlled by the rate of comonomer addition, and the copolymer composition, surfactant parking area on the particles, and nucleation efficiency determined by the comonomer feed composition. Two model systems, methyl methacrylate/styrene and vinyl acetate/butyl acrylate, with significant differences in water solubility were studied. Monomers were added to the aqueous solution of sodium dodecylsulfate and potassium persulfate at a low rate to achieve high instantaneous conversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  12. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  13. High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal.

    PubMed

    Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M

    2012-11-19

    We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.

  14. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  15. A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver

    NASA Astrophysics Data System (ADS)

    Riyan, Wang; Jiwei, Huang; Zhengping, Li; Weifeng, Zhang; Longyue, Zeng

    2012-03-01

    A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, -7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply.

  16. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  17. The Kirkendall effect towards oxynitride nanotubes with improved visible light driven conversion of CO2 into CH4.

    PubMed

    Zhou, P; Gao, H L; Yan, S C; Zou, Z G

    2016-02-28

    Functional hollow nanomaterials are of great interest due to their unique physical-chemical properties. Oxynitride photocatalysts are a kind of promising material for solar energy conversion. However, nanoscale design of hollow oxynitrides was difficult to achieve due to the thermal instability of oxide precursors at high temperature. Here, single crystal zinc gallium oxynitride nanotubes were successfully synthesized via the Kirkendall effect with ZnO nanorods and Ga2O3 nanosheets as precursors, which can be attributed to the high diffusion rate of ZnO and the high melting point of oxynitride. Enhanced photocatalytic performance in CO2 reduction was achieved over the as-prepared ZnGaNO nanotubes, due to their higher specific surface area and less recombination of the photogenerated carriers. These results are expected to provide new guidance in the design and preparation of highly efficient nano-scaled oxynitride photocatalysts.

  18. Conversion therapy for inoperable advanced gastric cancer patients by docetaxel, cisplatin, and S-1 (DCS) chemotherapy: a multi-institutional retrospective study.

    PubMed

    Sato, Yasushi; Ohnuma, Hiroyuki; Nobuoka, Takayuki; Hirakawa, Masahiro; Sagawa, Tamotsu; Fujikawa, Koshi; Takahashi, Yasuo; Shinya, Minami; Katsuki, Shinich; Takahashi, Minoru; Maeda, Masahiro; Okagawa, Yutaka; Naoki, Uemura; Kikuch, Syouhei; Okamoto, Koichi; Miyamoto, Hiroshi; Shimada, Mitsuo; Takemasa, Ichiro; Kato, Junji; Takayama, Tetsuji

    2017-05-01

    Conversion therapy is an option for unresectable metastatic gastric cancer when distant metastases are controlled by chemotherapy; however, the feasibility and efficacy remain unclear. This study aimed to assess the feasibility and efficacy of conversion therapy in patients with initially unresectable gastric cancer treated with docetaxel, cisplatin, and S-1 (DCS) chemotherapy by evaluating clinical outcomes. One hundred unresectable metastatic gastric cancer patients, enrolled in three DCS chemotherapy clinical trials, were retrospectively evaluated. The patients received oral S-1 (40 mg/m 2 b.i.d.) on days 1-14 and intravenous cisplatin (60 mg/m 2 ) and docetaxel (50-60 mg/m 2 ) on day 8 every 3 weeks. Conversion therapy was defined when the patients could undergo R0 resection post-DCS chemotherapy and were able to tolerate curative surgery. Conversion therapy was achieved in 33/100 patients, with no perioperative mortality. Twenty-eight of the 33 patients (84.8 %) achieved R0 resection, and 78.8 % were defined as histological chemotherapeutic responders. The median overall survival (OS) of patients who underwent conversion therapy was 47.8 months (95 % CI 28.0-88.5 months). Patients who underwent R0 resection had significantly longer OS than those who underwent R1 and R2 resections (P = 0.0002). Of the patients with primarily unresectable metastases, 10 % lived >5 years. Among patients who underwent conversion therapy, multivariate analysis showed that the pathological response was a significant independent predictor for OS. DCS safely induced a high conversion rate, with very high R0 and pathological response rates, and was associated with a good prognosis; these findings warrant further prospective investigations.

  19. Fully Controllable Pancharatnam-Berry Metasurface Array with High Conversion Efficiency and Broad Bandwidth

    PubMed Central

    Liu, Chuanbao; Bai, Yang; Zhao, Qian; Yang, Yihao; Chen, Hongsheng; Zhou, Ji; Qiao, Lijie

    2016-01-01

    Metasurfaces have powerful abilities to manipulate the properties of electromagnetic waves flexibly, especially the modulation of polarization state for both linearly polarized (LP) and circularly polarized (CP) waves. However, the transmission efficiency of cross-polarization conversion by a single-layer metasurface has a low theoretical upper limit of 25% and the bandwidth is usually narrow, which cannot be resolved by their simple additions. Here, we efficiently manipulate polarization coupling in multilayer metasurface to promote the transmission of cross-polarization by Fabry-Perot resonance, so that a high conversion coefficient of 80–90% of CP wave is achieved within a broad bandwidth in the metasurface with C-shaped scatters by theoretical calculation, numerical simulation and experiments. Further, fully controlling Pancharatnam-Berry phase enables to realize polarized beam splitter, which is demonstrated to produce abnormal transmission with high conversion efficiency and broad bandwidth. PMID:27703254

  20. Thermionic/AMTEC cascade converter concept for high-efficiency space power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.

    1996-12-31

    This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less

  1. High-Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition

    DOE PAGES

    Yang, Zhibin; Chueh, Chu-Chen; Zuo, Fan; ...

    2015-04-30

    A fully printable perovskite solar cell (PVSC) is demonstrated using a blade-coating technique under ambient conditions with controlled humidity. The influence of humidity on perovskite's crystallization is systematically investigated to realize the ambient processing condition. A high power conversion efficiency of 10.44% is achieved after optimizing the blade-coating process and, more importantly, a high-performance flexible PVSC is demonstrated for the first time. A high efficiency of 7.14% is achieved.

  2. High-accurate optical vector analysis based on optical single-sideband modulation

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  3. High-efficiency frequency doubling of continuous-wave laser light.

    PubMed

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  4. Sequential EMT-MET induces neuronal conversion through Sox2

    PubMed Central

    He, Songwei; Chen, Jinlong; Zhang, Yixin; Zhang, Mengdan; Yang, Xiao; Li, Yuan; Sun, Hao; Lin, Lilong; Fan, Ke; Liang, Lining; Feng, Chengqian; Wang, Fuhui; Zhang, Xiao; Guo, Yiping; Pei, Duanqing; Zheng, Hui

    2017-01-01

    Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial–mesenchymal transition (EMT) to late mesenchymal–epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression. PMID:28580167

  5. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  6. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.

  7. Experimental demonstration of novel cascaded SFG+DFG wavelength conversion of picosecond pulses in LiNbO 3 waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Junqiang; Luo, Chuanhong

    2006-06-01

    A novel cascaded χ (2) wavelength conversion of picosecond pulses based on sum frequency generation and difference frequency generation (SFG+DFG) is proposed and experimentally demonstrated in LiNbO 3 waveguides. The signal pulse with 40-GHz repetition rate and 1.57-ps pulse width is adopted. First of all, high conversion efficiency about -18.93dB can be achieved with low power level required for both two pump lights, which is greatly enhanced approximately 8dB compared with the conventional cascaded second-order nonlinear interactions (SHG+DFG) with a single and much higher power pump. Secondly, the wavelength of the converted idler wave can be tuned from 1527.4 to 1540.5nm when the signal wavelength is changed from 1561.9 to 1548.4nm, and about 13.1nm converted idler bandwidth is achieved with the conversion efficiency higher than -31dB. Thirdly, two pump wavelengths can be separated as large as 17.3nm. Meanwhile, when one pump wavelength is fixed at 1549.1nm, the other can be tuned within a wide wavelength range about 7.6nm with the conversion efficiency higher than -34dB, which is much larger than that in the SHG+DFG situation. Finally, the temporal waveform of the converted idler pulse is observed with rather clear appearance achieved, and no obvious changes of the pulse shape and width are found compared with its corresponding original injected signal, showing that our proposed scheme exhibits a very good conversion performance.

  8. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  9. Holographic spectrum-splitting optical systems for solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.

  10. A double-blind, randomized comparative study to investigate the morphine to hydromorphone conversion ratio in Japanese cancer patients

    PubMed Central

    Inoue, Satoshi; Saito, Yoji; Tsuneto, Satoru; Aruga, Etsuko; Ogata, Takeshi; Uemori, Mitsutoshi

    2018-01-01

    Abstract Objective To confirm the morphine to hydromorphone conversion ratio for hydromorphone (DS-7113b) immediate-release tablets in cancer patients who achieved pain control with oral morphine. Methods This was a multicenter, active-controlled, randomized, double-blind, parallel-group, comparative study (July 2013 to December 2014) at 39 Japanese sites. Seventy-one patients (aged >20 years) who had achieved pain control with morphine 60 mg/day and 90 mg/day were randomly allocated 1:1 to hydromorphone immediate-release tablets at a dose converted at a hydromorphone:morphine ratio of 1:5 or 1:8, respectively, and treated for up to 5 days. The efficacy was evaluated as the pain control ratio. Results The pain control ratio in the full analysis set was 83.3% (25/30) in the conversion ratio 1:5 group and 95.0% (38/40) in the conversion ratio 1:8 group, and both groups demonstrated highly successful pain control. The incidence of adverse events was 46.7% (14/30) in the conversion ratio 1:5 group and 58.5% (24/41) in the 1:8 group; the difference was not clinically relevant. Frequently observed adverse events (incidence ≥5%) were nausea, vomiting, diarrhea, somnolence and dyspnea. Conclusions A high pain control ratio was maintained by a switch at either conversion ratio, and no notable difference was observed in the incidence of adverse events. A switch from morphine to hydromorphone is effective at a dose converted at ratios of 1:5 and 1:8. PMID:29635632

  11. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency.

    PubMed

    Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng

    2013-07-15

    Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-power 671  nm laser by second-harmonic generation with 93% efficiency in an external ring cavity.

    PubMed

    Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei

    2018-04-15

    Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.

  13. How Age, Linguistic Status, and the Nature of the Auditory Scene Alter the Manner in Which Listening Comprehension Is Achieved in Multitalker Conversations.

    PubMed

    Avivi-Reich, Meital; Jakubczyk, Agnes; Daneman, Meredyth; Schneider, Bruce A

    2015-10-01

    We investigated how age and linguistic status affected listeners' ability to follow and comprehend 3-talker conversations, and the extent to which individual differences in language proficiency predict speech comprehension under difficult listening conditions. Younger and older L1s as well as young L2s listened to 3-talker conversations, with or without spatial separation between talkers, in either quiet or against moderate or high 12-talker babble background, and were asked to answer questions regarding their contents. After compensating for individual differences in speech recognition, no significant differences in conversation comprehension were found among the groups. As expected, conversation comprehension decreased as babble level increased. Individual differences in reading comprehension skill contributed positively to performance in younger EL1s and in young EL2s to a lesser degree but not in older EL1s. Vocabulary knowledge was significantly and positively related to performance only at the intermediate babble level. The results indicate that the manner in which spoken language comprehension is achieved is modulated by the listeners' age and linguistic status.

  14. Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Galle, P

    2013-09-01

    Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less

  15. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  16. Highly efficient frequency conversion with bandwidth compression of quantum light

    PubMed Central

    Allgaier, Markus; Ansari, Vahid; Sansoni, Linda; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Harder, Georg; Brecht, Benjamin; Silberhorn, Christine

    2017-01-01

    Hybrid quantum networks rely on efficient interfacing of dissimilar quantum nodes, as elements based on parametric downconversion sources, quantum dots, colour centres or atoms are fundamentally different in their frequencies and bandwidths. Although pulse manipulation has been demonstrated in very different systems, to date no interface exists that provides both an efficient bandwidth compression and a substantial frequency translation at the same time. Here we demonstrate an engineered sum-frequency-conversion process in lithium niobate that achieves both goals. We convert pure photons at telecom wavelengths to the visible range while compressing the bandwidth by a factor of 7.47 under preservation of non-classical photon-number statistics. We achieve internal conversion efficiencies of 61.5%, significantly outperforming spectral filtering for bandwidth compression. Our system thus makes the connection between previously incompatible quantum systems as a step towards usable quantum networks. PMID:28134242

  17. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  18. Two-step photon up-conversion solar cells

    PubMed Central

    Asahi, Shigeo; Teranishi, Haruyuki; Kusaki, Kazuki; Kaizu, Toshiyuki; Kita, Takashi

    2017-01-01

    Reducing the transmission loss for below-gap photons is a straightforward way to break the limit of the energy-conversion efficiency of solar cells (SCs). The up-conversion of below-gap photons is very promising for generating additional photocurrent. Here we propose a two-step photon up-conversion SC with a hetero-interface comprising different bandgaps of Al0.3Ga0.7As and GaAs. The below-gap photons for Al0.3Ga0.7As excite GaAs and generate electrons at the hetero-interface. The accumulated electrons at the hetero-interface are pumped upwards into the Al0.3Ga0.7As barrier by below-gap photons for GaAs. Efficient two-step photon up-conversion is achieved by introducing InAs quantum dots at the hetero-interface. We observe not only a dramatic increase in the additional photocurrent, which exceeds the reported values by approximately two orders of magnitude, but also an increase in the photovoltage. These results suggest that the two-step photon up-conversion SC has a high potential for implementation in the next-generation high-efficiency SCs. PMID:28382945

  19. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    NASA Astrophysics Data System (ADS)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  20. A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback

    NASA Astrophysics Data System (ADS)

    Su, Fei; Ying, Rendong

    2016-01-01

    A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.

  1. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    PubMed

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.

  2. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.

    PubMed

    Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang

    2016-02-01

    A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.

    PubMed

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue

    2018-04-11

    Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.

  4. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    PubMed Central

    Ganeev, R. A.

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications. PMID:23864818

  5. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  6. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    PubMed

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With itsmore » high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.« less

  8. A photonic chip based frequency discriminator for a high performance microwave photonic link.

    PubMed

    Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel

    2010-12-20

    We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

  9. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function.

    PubMed

    Lim, Kyung-Geun; Kim, Hak-Beom; Jeong, Jaeki; Kim, Hobeom; Kim, Jin Young; Lee, Tae-Woo

    2014-10-08

    A self-organized hole extraction layer (SOHEL) with high work function (WF) is designed for energy level alignment with the ionization potential level of CH3 NH3 PbI3 . The SOHEL increases the built-in potential, photocurrent, and power conversion efficiency (PCE) of CH3 NH3 PbI3 perovskite solar cells. Thus, interface engineering of the positive electrode of solution-processed planar heterojunction solar cells using a high-WF SOHEL is a very effective way to achieve high device efficiency (PCE = 11.7% on glass). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SAFARI-1: Achieving conversion to LEU - A local challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piani, C.S.B.

    2008-07-15

    Two years have passed since the South African Department of Minerals and Energy authorised the conversion from High Enriched Uranium (HEU) to Low Enriched Uranium (LEU) of the South African Research Reactor (SAFARI-1) and the associated fuel manufacturing at Pelindaba. The scheduling, as originally proposed, allowed approximately three years for the full conversion of the reactor, anticipating simultaneous manufacturing ability from the fuel production plant. Due to technical difficulties experienced in the conversion of the local manufacturing plant from HEU (UAl alloy) to LEU (U Silicide) and the uncertainty as to costing and scheduling of such an achievement, the conversionmore » of SAFARI-1 based on local supply has been allocated a lower priority. The acquisition in mid-2006 of 2 LEU silicide elements of SA design, manufactured by AREVA- CERCA and irradiated as test elements in SAFARI-1 to burn-ups of {approx}65% each; was successfully accomplished within 9 cycles of irradiation each. Furthermore, four 'Hybrid' elements (AREVA-CERCA plates assembled locally at Pelindaba) are ready for irradiation and have received regulatory authorisation to load. This will enable the SAFARI-1 conversion program to continue systematically according to an agreed schedule. This paper will trace the developments of the above and reflect the current status and the rescheduled conversion phases of the reactor according to latest expectations. (author)« less

  11. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  12. Integrated test system of infrared and laser data based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Fu, Hui Quan; Tang, Lin Bo; Zhang, Chao; Zhao, Bao Jun; Li, Mao Wen

    2017-07-01

    Based on USB3.0, this paper presents the design method of an integrated test system for both infrared image data and laser signal data processing module. The core of the design is FPGA logic control, the design uses dual-chip DDR3 SDRAM to achieve high-speed laser data cache, and receive parallel LVDS image data through serial-to-parallel conversion chip, and it achieves high-speed data communication between the system and host computer through the USB3.0 bus. The experimental results show that the developed PC software realizes the real-time display of 14-bit LVDS original image after 14-to-8 bit conversion and JPEG2000 compressed image after decompression in software, and can realize the real-time display of the acquired laser signal data. The correctness of the test system design is verified, indicating that the interface link is normal.

  13. Developmental Considerations on the Free-Piston Stirling Power Convertor for Use in Space

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2006-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  14. Developmental Considerations on the Free-piston Stirling Power Convertor for Use in Space

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines with rotary alternators to convert heat to electricity. These systems were proposed with lightly loaded linkages to achieve the necessary life. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability. These features have consistently been recognized by teams that have studied technology options for radioisotope power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: demonstration of life and reliability, the success achieved by Stirling cryocoolers in flight, and the overall developmental maturity of the technology for both flight and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status, and discuss the challenges that remain.

  15. Claisen thermally rearranged (CTR) polymers

    PubMed Central

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  16. Claisen thermally rearranged (CTR) polymers.

    PubMed

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-07-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications.

  17. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad

    2018-05-01

    Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

  18. Refractory materials for high-temperature thermoelectric energy conversion

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.

    1983-01-01

    Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.

  19. Smear Conversion, Treatment Outcomes and the Time of Default in Registered Tuberculosis Patients on RNTCP DOTS in Puducherry, Southern India

    PubMed Central

    Jayakumar, Niranjana; Gnanasekaran, Dhivyalakshmi

    2014-01-01

    Background: Revised National Tuberculosis Control Programme (RNTCP) in India has achieved improved cure rates. Objectives: This study describes the achievements under RNTCP in terms of conversion rates, treatment outcomes and pattern of time of default in patients on directly observed short-course treatment for Tuberculosis in Puducherry, Southern India. Settings: Retrospective cohort study; Tuberculosis Unit in District Tuberculosis Centre, Puducherry, India. Materials and Methods: Cohort analysis of patients of registered at the Tuberculosis Unit during 1st and 2nd quarter of the year 2011. Details about sputum conversion, treatment outcome and time of default were obtained from the tuberculosis register. Statistical Analysis: Kaplan-Meier plots & log rank tests. Results: RNTCP targets with respect to success rate (85.7%), death rate (2.7%) and failure rate (2.1%) in new cases have been achieved but the sputum conversion rate (88%) and default rate (5.9%) targets have not been achieved. The overall default rate for all registered TB patients was 7.4%; significantly higher in category II. In retreatment cases registered as treatment after default, the default rate was high (9%). The cumulative default rate; though similar in the initial two months of treatment; was consistently higher in category II as compared to that in category I. Nearly 40% of all defaulters interrupted treatment between the second and fourth month after treatment initiation. Conclusion: Defaulting from treatment is more common among the retreatment cases and usually occurs during the transition phase from intensive phase to continuation phase. PMID:25478371

  20. Analysis of the reflective multibandgap solar cell concept

    NASA Technical Reports Server (NTRS)

    Stern, T. G.

    1983-01-01

    A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.

  1. 75 FR 20656 - Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals: smART Power: Visual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... specific projects must demonstrate high artistic ability, excellent interpersonal skills, and be conversant... progress towards outcomes or the results achieved. Examples of outputs include the number of people trained...

  2. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS.

    PubMed

    Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann

    2015-03-03

    A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.

  3. Intensification of steam explosion and structural intricacies impacting sugar recovery.

    PubMed

    Gaur, Ruchi; Semwal, Surbhi; Raj, Tirath; Yadav Lamba, Bhawna; Ramu, E; Gupta, Ravi P; Kumar, Ravindra; Puri, Suresh K

    2017-10-01

    Dilute acid (DA) pretreatment at pilot level failed for cotton stalk (CS) due to the technical issues posed by its inherent nature. Reasonable glucan conversion has been reported via two-stage pretreatment but adds on to the process cost. Proposed herewith is a single-stage steam explosion (SE) process preceded by water extraction resulting in high sugar recovery from CS. Raising the extraction temperature to 80°C increased the glucan conversion from 37.9 to 52.4%. Further improvement up to 68.4% was achieved when DA was incorporated during the room temperature extraction. LC-MS revealed the formation of xylo-oligomers limiting the glucan conversion in proportion to the length of xylo-oligomers. Varying extraction conditions induced structural alterations in biomass after SE evident by compositional analysis, Infrared Spectroscopy, X-Ray Diffraction and Scanning Electron Microscopy. Overall glucose recovery, i.e. 75.8-76.7% with and without DA extraction respectively was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less

  5. 1W frequency-doubled VCSEL-pumped blue laser with high pulse energy

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Xu, Guoyang; Seurin, Jean-Francois; Wang, Qing; Zhou, Delai; Ghosh, Chuni

    2015-02-01

    We report on a Q-switched VCSEL side-pumped 946 nm Nd:YAG laser that produces high average power blue light with high pulse energy after frequency doubling in BBO. The gain medium was water cooled and symmetrically pumped by three 1 kW 808 nm VCSEL pump modules. More than 1 W blue output was achieved at 210 Hz with 4.9 mJ pulse energy and at 340 Hz with 3.2 mJ pulse energy, with 42% and 36% second harmonic conversion efficiency respectively. Higher pulse energy was obtained at lower repetition frequencies, up to 9.3 mJ at 70 Hz with 52% conversion efficiency.

  6. Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting

    PubMed Central

    Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael

    2017-01-01

    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770

  7. Topological energy conversion through the bulk or the boundary of driven systems

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  8. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.

    PubMed

    Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo

    2013-12-01

    Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  10. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  11. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE PAGES

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...

    2018-04-03

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  12. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    PubMed

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  13. Solar energy conversion with photon-enhanced thermionic emission

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham; Segev, Gideon

    2016-07-01

    Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.

  14. Cellulose conversion of corn pericarp without pretreatment.

    PubMed

    Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R

    2017-12-01

    We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Conditions for a carrier multiplication in amorphous-selenium based photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuzawa, Tomoaki; Kuniyoshi, Shingo; Onishi, Masanori

    2013-02-18

    Amorphous selenium is a promising candidate for high sensitivity photodetector due to its unique carrier multiplication phenomenon. More than 10 carriers can be generated per incident photon, which leads to high photo-conversion efficiency of 1000% that allows real-time imaging in dark ambient. However, application of this effect has been limited to specific devices due to the lack in material characterization. In this article, mechanism of carrier multiplication has been clarified using time-of-flight secondary ion mass spectroscopy and Raman spectroscopy. A prototype photodetector achieved photo conversion efficiency of 4000%, which explains the signal enhancement mechanism in a-Se based photodetector.

  16. Graphene for thermoelectronic solar energy conversion

    NASA Astrophysics Data System (ADS)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  17. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Energy conversion system characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.

  18. Cardiothoracic and Vascular Surgeons Achieve High Rates of K-Award Conversion Into R01 Funding.

    PubMed

    Narahari, Adishesh K; Mehaffey, J Hunter; Hawkins, Robert B; Baderdinni, Pranav K; Chandrabhatla, Anirudha S; Tribble, Curtis G; Kron, Irving L; Roeser, Mark E; Walters, Dustin M; Ailawadi, Gorav

    2018-03-14

    Obtaining National Institutes of Health (NIH) R01 funding remains extremely difficult. The utility of career development grants (K awards) for achieving the goal of R01 funding remains debated, particularly for surgeon-scientists. We examined the success rate for cardiothoracic and vascular (CTV) surgeons compared to other specialties in converting K-level grants into R01 equivalents. All K (K08 and K23) grants awarded to surgeons by the NIH between 1992-2017 were identified through NIH RePORTER, an online database combining funding, publications, and patents. Only grants awarded to CTV surgeons were included. Grants active within the past year were excluded. Mann-Whitney U-tests and Chi-squared tests were used to compare groups. A total of 62 K grants awarded to CTV surgeons were identified during this period. Sixteen grants were still active within the last year and excluded from analysis. Twenty-two (48%) of the remaining K awardees successfully transitioned to an R01 or equivalent grant. Awardees with successful conversion published 9 publications per K grant compared to 4 publications for those who did not convert successfully (p=0.01). The median time for successful conversion to an R grant was 5.0 years after the K award start date. Importantly, the 10-year conversion rate to R01 was equal for CTV surgeons compared to other clinician-investigators (52.6% vs 42.5%). CTV surgeons have an equal 10-year conversion rate to first R01 award compared to other clinicians. These data suggest that NIH achieves a good return on investment when funding CTV surgeon-scientists with K-level funding. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  20. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 1. Effect of Catalyst Concentration

    NASA Astrophysics Data System (ADS)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    The hydrogenation of coal by molecular hydrogen has not been appreciable unless a catalyst has been used, especially at temperatures below 500 °C. Conversion under these conditions is essentially the result of the pyrolysis of coal, although hydrogen increases the yield of conversion due to the stabilization of radicals and other reactive species. Curtis and his co-workers has shown that highly effective and accessible catalyst are required to achieve high levels of oil production from the coprocessing of coal and heavy residua. In their work, powdered hydrotreating catalyst at high loadings an oil-soluble metal salts of organic acids as catalyst precursors achieved the highest levels of activity for coal conversion and oil production. Red mud which is iron-based catalysed has been used in several co-processing studies. It was used as an inexpensive sulphur sink for the H2S evolved to convert Fe into pyrrohotite during coal liquefaction. In this study, Elbistan Lignite (EL) processed with manure using red mud as a catalyst with the range of concentration from 3% to 12%. The main point of using red mud catalyst is to enhance oil products yield of coal liquefaction, which deals with its catalytic activity. On the other hand, red mud acts on EL liquefaction with manure as a catalyst and represents an environmental option to produce lower sulphur content oil products as well.

  1. Using Conversation MOPs in Natural Language Interfaces.

    ERIC Educational Resources Information Center

    Turner, Elise H.; Cullingford, Richard E.

    1989-01-01

    Explores a method of combining convention and intention by representing conversation structure with conversation MOPs (schematic structures that store conversation rules as generalized episodes associated with goals the episodes achieved). Discusses how conversation MOPs process the opening portion of a dialogue in an interactive advice-giving…

  2. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.

    PubMed

    Xie, Ming; Gruen, Dieter M

    2010-11-18

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  3. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide.

    PubMed

    Lee, Seunghwa; Lee, Jaeyoung

    2016-02-19

    At the beginning of the 21st century, our world is faced with a global-warming problem due to the continuous increase in carbon dioxide emission, and thus, the development of novel experimental techniques is needed. The electrochemical conversion of carbon dioxide into high-value organic compounds could be of vital importance to solve this issue. The biggest challenge has always been to develop an electrocatalyst that is chemically active and structurally stable. Herein, previous studies, recent approaches, and current points of view on the electrode structure of metal oxide composites for the advanced electrochemical conversion of carbon dioxide are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Status of the NASA Stirling Radioisotope Project

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2007-01-01

    Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

  5. NREL's Capabilities Boost a Wide Range of Innovative ARPA-E Research | News

    Science.gov Websites

    the United States reach its energy goals." ARPA-E announced its OPEN 2015 program awards under a highly competitive, open solicitation. Awards fund a broad spectrum of projects from across the country achieving greater than 30 percent solar conversion efficiency. This can open new markets to high-efficiency

  6. LSA silicon material task closed-cycle process development

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.

    1979-01-01

    The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.

  7. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Tao, Ling; Wyman, Charles E.

    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of themore » entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Furthermore, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.« less

  8. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries

    DOE PAGES

    Yang, Bin; Tao, Ling; Wyman, Charles E.

    2017-10-11

    Pretreatment prior to or during biological conversion is required to achieve high sugar yields essential to economic production of fuels and chemicals from low cost, abundant lignocellulosic biomass. Aqueous thermochemical pretreatments achieve this performance objective from pretreatment coupled with subsequent enzymatic hydrolysis, but chemical pretreatment can also suffer from additional costs for exotic materials of construction, the need to recover or neutralize the chemicals, introduction of compounds that inhibit downstream operations, and waste disposal, as well as for the chemicals themselves. The simplicity of hydrothermal pretreatment with just hot water offers the potential to greatly improve the cost of themore » entire conversion process if sugar degradation during pretreatment, production of un-fermentable oligomers, and the amount of expensive enzymes needed to obtain satisfactory yields from hydrothermally pretreated solids can be reduced. Biorefinery economics would also benefit if value could be generated from lignin and other components that are currently fated to be burned for power. However, achieving these goals will no doubt require development of advanced hydrothermal pretreatment configurations. For example, passing water through a stationary bed of lignocellulosic biomass in a flowthrough configuration achieves very high yields of hemicellulose sugars, removes more than 75% of the lignin for potential valorization, and improves sugar release from the pretreated solids with lower enzyme loadings. Unfortunately, the large quantities of water needed to achieve this performance result in very dilute sugars, high energy costs for pretreatment and product recover, and large amounts of oligomers. Furthermore, improving our understanding of hydrothermal pretreatment fundamentals is needed to gain insights into R&D opportunities to improve performance, and help identify novel configurations that lower capital and operating costs and achieve higher yields.« less

  9. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells.

    PubMed

    Varghese, Oomman K; Paulose, Maggie; Grimes, Craig A

    2009-09-01

    Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 microm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

  10. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production

    PubMed Central

    Niu, Kaiyang; Xu, You; Wang, Haicheng; Ye, Rong; Xin, Huolin L.; Lin, Feng; Tian, Chixia; Lum, Yanwei; Bustillo, Karen C.; Doeff, Marca M.; Koper, Marc T. M.; Ager, Joel; Xu, Rong; Zheng, Haimei

    2017-01-01

    Solar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour−1 g−1. No measurable H2 is generated during the reaction, leading to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy. PMID:28782031

  11. The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization.

    PubMed

    Wydra, James W; Cramer, Neil B; Stansbury, Jeffrey W; Bowman, Christopher N

    2014-06-01

    A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. High conversion of coal to transportation fuels for the future with low HC gas production. Progress report Number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, W.H.; Oblad, A.G.

    1995-04-01

    An objective of the Department of Energy in funding research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline-burning transportation vehicles of today. To meet this second objective, research was proposed for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B). Experimental coal liquefaction studiesmore » conducted in a batch microreactor have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly one may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous-flow reactor system is to be designed, constructed and operated. The system is to be computer-operated for process control and data logging, and is to be fully instrumented. The primary liquid products will be characterized by GC, FTIR, and GC/MS, to determine the types and quantities of the principal components produced under conditions of high liquids production with high ratios of liquids/HC gases. From these analyses, together with GC analyses of the HC gases, hydrogen consumption for the conversion to primary liquids will be calculated. Conversion of the aromatics of this liquid product to isoparaffins will be investigated. Results to date on both tasks are presented.« less

  13. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  14. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  15. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  16. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.

    PubMed

    St-Gelais, Raphael; Bhatt, Gaurang Ravindra; Zhu, Linxiao; Fan, Shanhui; Lipson, Michal

    2017-03-28

    Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the ∼1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems-after optimization of their thermal radiation spectrum-could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm 2 generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and-by relying solely on conventional thin film materials-to provide a path for the experimental demonstration of NFTPV energy conversion.

  17. High efficiency GaP power conversion for Betavoltaic applications

    NASA Astrophysics Data System (ADS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-09-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  18. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  19. 3.1 W narrowband blue external cavity diode laser

    NASA Astrophysics Data System (ADS)

    Peng, Jue; Ren, Huaijin; Zhou, Kun; Li, Yi; Du, Weichuan; Gao, Songxin; Li, Ruijun; Liu, Jianping; Li, Deyao; Yang, Hui

    2018-03-01

    We reported a high-power narrowband blue diode laser which is suitable for subsequent nonlinear frequency conversion into the deep ultraviolet (DUV) spectral range. The laser is based on an external cavity diode laser (ECDL) system using a commercially available GaN-based high-power blue laser diode emitting at 448 nm. Longitudinal mode selection is realized by using a surface diffraction grating in Littrow configuration. The diffraction efficiency of the grating was optimized by controlling the polarization state of the laser beam incident on the grating. A maximum optical output power of 3.1 W in continuous-wave operation with a spectral width of 60 pm and a side-mode suppression ratio (SMSR) larger than 10 dB at 448.4 nm is achieved. Based on the experimental spectra and output powers, the theoretical efficiency and output power of the subsequent nonlinear frequency conversion were calculated according to the Boyd- Kleinman theory. The single-pass conversion efficiency and output power is expected to be 1.9×10-4 and 0.57 mW, respectively, at the 3.1 W output power of the ECDL. The high-power narrowband blue diode laser is very promising as pump source in the subsequent nonlinear frequency conversion.

  20. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less

  1. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion

    DOE PAGES

    Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less

  2. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.

    PubMed

    Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J

    2017-07-13

    Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Phillips Petroleum Co. is poised to license its high conversion process to produce fuel ethers for blending in reformulated gasolines. The technology has been proven in a Phillips semiworks at Bartlesville, Okla. The process can produce methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, or tertiary amyl ethyl ether with typical refinery process equipment and techniques. Phillips said it can achieve conversion levels of 92-99%, depending on the ether. The ether produced is determined by which hydrocarbon fraction is used for feedstock and which alcohol is chosen for reaction. The process is described.

  4. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  5. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  6. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the morphology of nanostructured photocatalysts can reduce the migration distance of charge carriers. Improving the conductivity of photocatalysts by using graphitic materials can also improve the transport of charge carriers. Upon charge carrier migration, electrons and holes also tend to recombine. The suppression of recombination can be achieved by constructing heterojunctions that enhance charge separation in the photocatalysts. Surface states acting as recombination centers should also be removed to improve the photocatalytic efficiency. Moreover, surface reactions, which are the core chemical processes during the solar energy conversion, can be enhanced by applying cocatalysts as well as suppressing side reactions. All of these strategies have been proved to be essential for enhancing the activities of semiconductor photocatalysts. It is hoped that delicate manipulation of photogenerated charge carriers in semiconductor photocatalysts will hold the key to effective solar-to-chemical energy conversion.

  7. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  8. Power conversion process in magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Zhuang, X.; Leung, C. M.; Li, J.; Viehland, D.

    2017-09-01

    We have investigated the power conversion and loss processes in magnetoelectric gyrators. Two types of loss mechanisms were identified by using a transformer-gyrator structure, which transfers power between magnetic and magnetomechanical forms. A missing portion of the power in a gyrator was then identified to be a returned power from the load resistor under low drive conditions. Under high drive conditions, decreases in both the magnetostriction and mechanical quality factor resulted in additional inefficiencies. Power transfer efficiencies of greater than 70% and 50% were achieved for magnetoelectric (ME) gyrators based on Metglas/Pb(Zr,Ti)O3 laminated composites under low power drive and high power density drive (60 W/in.3) conditions, respectively.

  9. Conversion of municipal solid wastes to carboxylic acids by thermophilic fermentation.

    PubMed

    Chan, Wen Ning; Holtzapple, Mark T

    2003-11-01

    The purpose of this research is to generate carboxylic acids from the biodegradable fraction of municipal solid wastes (MSW) and municipal sewage sludge (MSS) by using a thermophilic (55 degrees C), anaerobic, high-solid fermentation. With terrestrial inocula, the highest total carboxylic acid concentration achieved was 20.5 g/L, the highest conversion obtained was 69%, and the highest acetic acid selectivity was 86.4%. Marine inocula were also used to compare against terrestrial sources. Continuum particle distribution modeling (CPDM) was used to predict the final acid product concentrations and substrate conversions at a wide range of liquid residence times (LRT) and volatile solid loading rates (VSLR). "Maps" showing the product concentration and conversion for various LRT and VSLR were generated from CPDM. The predictions were compared to the experimental results. On average, the difference between the predicted and experimental values were 13% for acid concentration and 10% for conversion. CPDM "maps" show that marine inocula produce higher concentrations than terrestrial inocula.

  10. Status of photoelectrochemical production of hydrogen and electrical energy

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  11. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  12. Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui

    2017-04-01

    The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.

    Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less

  14. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  15. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons

    PubMed Central

    Li, Yongfeng; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zheng, Qiqi; Chen, Hongya; Han, Yajuan; Zhang, Jieqiu; Qu, Shaobo

    2017-01-01

    A high-efficiency tri-band quasi-continuous phase gradient metamaterial is designed and demonstrated based on spoof surface plasmon polaritons (SSPPs). High-efficiency polarizaiton conversion transmission is firstly achieved via tailoring phase differece between the transmisive SSPP and the space wave in orthogonal directions. As an example, a tri-band circular-to-circular (CTC) polarization conversion metamateiral (PCM) was designed by a nonlinearly dispersive phase difference. Using such PCM unit cell, a tri-band quasi-continuous phase gradient metamaterial (PGM) was then realized by virtue of the Pancharatnam-Berry phase. The distribution of the cross-polarization transmission phase along the x-direction is continuous except for two infinitely small intervals near the phases 0° and 360°, and thus the phase gradient has definition at any point along the x-direction. The simulated normalized polarization conversion transmission spectrums together with the electric field distributions for circularly polarized wave and linearly polarized wave demonstrated the high-efficiency anomalous refraction of the quasi-continuous PGM. The experimental verification for the linearly polarized incidence was also provided. PMID:28079185

  16. Implications of metric conversion.

    PubMed

    Laros, R K

    1980-11-01

    The international scientific community is rapidly achieving conversion to the metric system, and the Système International (SI system) has been chosen for use by health scientists. Because the United States remains 1 of only 4 countries not now using part or all of the SI system, there is now a systematic effort toward rapid conversion. Although most of the SI system is not controversial, several SI units are highly so. Examples include joules instead of calories, pascals instead of millimeters of mercury, and moles per liter instead of milligrams per 100 milliliters. Obstetrician-gynecologists need to be familiar with the SI units and to voice their feelings about the various controversial units. There are decisions still to be made, and the time for discussion and advice is now.

  17. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. Asmore » opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.« less

  18. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.

    PubMed

    Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui

    2017-01-01

    Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    NASA Astrophysics Data System (ADS)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  20. Resonantly pumped high efficiency Ho:YAG laser.

    PubMed

    Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu

    2012-11-20

    High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.

  1. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  2. Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO2 to CH4.

    PubMed

    Long, Ran; Li, Yu; Liu, Yan; Chen, Shuangming; Zheng, Xusheng; Gao, Chao; He, Chaohua; Chen, Nanshan; Qi, Zeming; Song, Li; Jiang, Jun; Zhu, Junfa; Xiong, Yujie

    2017-03-29

    Photocatalytic conversion of CO 2 to CH 4 , a carbon-neutral fuel, represents an appealing approach to remedy the current energy and environmental crisis; however, it suffers from the large production of CO and H 2 by side reactions. The design of catalytic sites for CO 2 adsorption and activation holds the key to address this grand challenge. In this Article, we develop highly selective sites for photocatalytic conversion of CO 2 to CH 4 by isolating Cu atoms in Pd lattice. According to our synchrotron-radiation characterizations and theoretical simulations, the isolation of Cu atoms in Pd lattice can play dual roles in the enhancement of CO 2 -to-CH 4 conversion: (1) providing the paired Cu-Pd sites for the enhanced CO 2 adsorption and the suppressed H 2 evolution; and (2) elevating the d-band center of Cu sites for the improved CO 2 activation. As a result, the Pd 7 Cu 1 -TiO 2 photocatalyst achieves the high selectivity of 96% for CH 4 production with a rate of 19.6 μmol g cat -1 h -1 . This work provides fresh insights into the catalytic site design for selective photocatalytic CO 2 conversion, and highlights the importance of catalyst lattice engineering at atomic precision to catalytic performance.

  3. Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Bao-Jie; Shao, L.-B.; Zhang, Xin-Ding; Xue, Zheng-Yuan

    2017-09-01

    Adiabatic processes have found many important applications in modern physics, the distinct merit of which is that accurate control over process timing is not required. However, such processes are slow, which limits their application in quantum computation, due to the limited coherent times of typical quantum systems. Here, we propose a scheme to implement quantum state conversion in opto-electro-mechanical systems via a shortcut to adiabaticity, where the process can be greatly speeded up while precise timing control is still not necessary. In our scheme, by modifying only the coupling strength, we can achieve fast quantum state conversion with high fidelity, where the adiabatic condition does not need to be met. In addition, the population of the unwanted intermediate state can be further suppressed. Therefore, our protocol presents an important step towards practical state conversion between optical and microwave photons, and thus may find many important applications in hybrid quantum information processing.

  4. Population Pharmacokinetics of Colistin Methanesulfonate in Rats: Achieving Sustained Lung Concentrations of Colistin for Targeting Respiratory Infections

    PubMed Central

    W. S. Yapa, Shalini; Li, Jian; Porter, Christopher J. H.; Nation, Roger L.

    2013-01-01

    Colistin methanesulfonate (CMS), the inactive prodrug of colistin, is administered by inhalation for the management of respiratory infections. However, limited pharmacokinetic data are available for CMS and colistin following pulmonary delivery. This study investigates the pharmacokinetics of CMS and colistin following intravenous (i.v.) and intratracheal (i.t.) administration in rats and determines the targeting advantage after direct delivery into the lungs. In addition to plasma, bronchoalveolar lavage (BAL) fluid was collected to quantify drug concentrations in lung epithelial lining fluid (ELF). The resulting data were analyzed using a population modeling approach in S-ADAPT. A three-compartment model described the disposition of both compounds in plasma following i.v. administration. The estimated mean clearance from the central compartment was 0.122 liters/h for CMS and 0.0657 liters/h for colistin. Conversion of CMS to colistin from all three compartments was required to fit the plasma data. The fraction of the i.v. dose converted to colistin in the systemic circulation was 0.0255. Two BAL fluid compartments were required to reflect drug kinetics in the ELF after i.t. dosing. A slow conversion of CMS (mean conversion time [MCTCMS] = 3.48 h) in the lungs contributed to high and sustained concentrations of colistin in ELF. The fraction of the CMS dose converted to colistin in ELF (fm,ELF = 0.226) was higher than the corresponding fractional conversion in plasma after i.v. administration. In conclusion, pulmonary administration of CMS achieves high and sustained exposures of colistin in lungs for targeting respiratory infections. PMID:23917323

  5. Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR.

    PubMed

    Kuan, Yi-Chia; Xu, Yue-Bin; Wang, Wen-Ching; Yang, Ming-Te

    2018-03-01

    A short-chain dehydrogenase/reductase from Serratia marcescens BCRC10948, SM_SDR, has been cloned and expressed in Escherichia coli for the bioconversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (R)-phenylephrine[(R)-PE]. However, only 5.11mM (R)-PE was obtained from 10mM HPMAE after a 9h conversion in the previous report. To improve the biocatalytic efficiency, the homologous expression of the SM_SDR in S. marcescens BCRC10948 was achieved using the T5 promoter for expression. By using 2% glycerol as carbon source, we found that 8.00±0.15mM of (R)-PE with more than 99% enantiomeric excess was produced from 10mM HPMAE after 12h conversion at 30°C and pH 7.0. More importantly, by using 50mM HPMAE as the substrate, 23.78±0.84mM of (R)-PE was produced after a 12h conversion with the productivity and the conversion yield of 1.98mmol (R)-PE/lh and 47.50%, respectively. The recombinant S. marcescens cells could be recycled 6 times for the production of (R)-PE, and the bioconversion efficiency remained at 85% when compared to that at the first cycle. Our data indicated that a high conversion efficiency of HPMAE to (R)-PE could be achieved using S. marcescens BCRC10948 cells that homologously express the SM_SDR. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effective conversion of biomass tar into fuel gases in a microwave reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com; Zainal, Z. A., E-mail: mezainal@usm.my

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved bymore » thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.« less

  7. Metric System.

    ERIC Educational Resources Information Center

    Del Mod System, Dover, DE.

    This autoinstructional unit deals with the identification of units of measure in the metric system and the construction of relevant conversion tables. Students in middle school or in grade ten, taking a General Science course, can handle this learning activity. It is recommended that high, middle or low level achievers can use the program.…

  8. A New CuO-Fe2 O3 -Mesocarbon Microbeads Conversion Anode in a High-Performance Lithium-Ion Battery with a Li1.35 Ni0.48 Fe0.1 Mn1.72 O4 Spinel Cathode.

    PubMed

    Di Lecce, Daniele; Verrelli, Roberta; Campanella, Daniele; Marangon, Vittorio; Hassoun, Jusef

    2017-04-10

    A ternary CuO-Fe 2 O 3 -mesocarbon microbeads (MCMB) conversion anode was characterized and combined with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 spinel cathode in a lithium-ion battery of relevant performance in terms of cycling stability and rate capability. The CuO-Fe 2 O 3 -MCMB composite was prepared by using high-energy milling, a low-cost pathway that leads to a crystalline structure and homogeneous submicrometrical morphology as revealed by XRD and electron microscopy. The anode reversibly exchanges lithium ions through the conversion reactions of CuO and Fe 2 O 3 and by insertion into the MCMB carbon. Electrochemical tests, including impedance spectroscopy, revealed a conductive electrode/electrolyte interface that enabled the anode to achieve a reversible capacity value higher than 500 mAh g -1 when cycled at a current of 120 mA g -1 . The remarkable stability of the CuO-Fe 2 O 3 -MCMB electrode and the suitable characteristics in terms of delivered capacity and voltage-profile retention allowed its use in an efficient full lithium-ion cell with a high-voltage Li 1.35 Ni 0.48 Fe 0.1 Mn 1.72 O 4 cathode. The cell had a working voltage of 3.6 V and delivered a capacity of 110 mAh g cathode -1 with a Coulombic efficiency above 99 % after 100 cycles at 148 mA g cathode -1 . This relevant performances, rarely achieved by lithium-ion systems that use the conversion reaction, are the result of an excellent cell balance in terms of negative-to-positive ratio, favored by the anode composition and electrochemical features. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOEpatents

    Skotheim, Terje

    1986-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  10. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity

    DOEpatents

    Skotheim, T.

    1984-09-28

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  11. Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.

    2018-03-01

    Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.

  12. Highly enantioselective reductive amination of simple aryl ketones catalyzed by Ir-f-Binaphane in the presence of titanium(IV) isopropoxide and iodine.

    PubMed

    Chi, Yongxiang; Zhou, Yong-Gui; Zhang, Xumu

    2003-05-16

    Using an Ir-f-Binaphane complex as the catalyst, complete conversions and high enantioselectivies (up to 96% ee) were achieved in the asymmetric reductive amination of aryl ketones in the presence of Ti(O(i)()Pr)(4) and I(2). A simple and efficient method of synthesizing chiral primary amines has been realized.

  13. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression.

    PubMed

    Zheng, Yuejun; Zhou, Yulong; Gao, Jun; Cao, Xiangyu; Yang, Huanhuan; Li, Sijia; Xu, Liming; Lan, Junxiang; Jidi, Liaori

    2017-11-23

    A double-layer complementary metasurface (MS) with ultra-wideband polarization conversion is presented. Then, we propose two application cases by applying the polarization conversion structures to aperture coupling patch antenna (ACPA). Due to the existence of air-filled gap of ACPA, air substrate and dielectric substrate are used to construct the double-layer MS. The polarization conversion bandwidth is broadened toward low-frequency range. Subsequently, two application cases of antenna are proposed and investigated. The simultaneous improvement of radiation and scattering performance of antenna is normally considered as a contradiction. Gratifyingly, the contradiction is addressed in these two application cases. According to different mechanism of scattering suppression (i.e., polarization conversion and phase cancellation), the polarization conversion structures are utilized to construct uniform and orthogonal arrangement configurations. And then, the configurations are integrated into ACPA and two different kinds of metasurface-based (MS-based) ACPA are formed. Radiation properties of the two MS-based ACPAs are improved by optimizing the uniform and orthogonal arrangement configurations. The measured results suggest that ultra-wideband polarization conversion properties of the MS are achieved and radiation enhancement and scattering suppression of the two MS-based ACPAs are obtained. These results demonstrate that we provide novel approach to design high-performance polarization conversion MS and MS-based devices.

  14. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  15. A polymer tandem solar cell with 10.6% power conversion efficiency

    PubMed Central

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  16. Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.

    PubMed

    Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T

    2007-08-01

    We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.

  17. Highly efficient enzymatic acetylation of flavonoids: Development of solvent-free process and kinetic evaluation

    DOE PAGES

    Milivojevic, Ana; Corovic, Marija; Carevic, Milica; ...

    2017-09-23

    Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less

  18. Highly efficient enzymatic acetylation of flavonoids: Development of solvent-free process and kinetic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milivojevic, Ana; Corovic, Marija; Carevic, Milica

    Solubility and stability of flavonoid glycosides, valuable natural constituents of cosmetics and pharmaceuticals, could be improved by lipase-catalyzed acylation. Focus of this study was on development of eco-friendly process for the production of flavonoid acetates. By using phloridzin as model compound and triacetin as acetyl donor and solvent, 100% conversion and high productivity (23.32 g l –1 day –1) were accomplished. Complete conversions of two other glycosylated flavonoids, naringin and esculin, in solvent-free system were achieved, as well. Comprehensive kinetic mechanism based on two consecutive mono-substrate reactions was established where first one represents formation of flavonoid monoacetate and within secondmore » reaction diacetate is being produced from monoacetate. Both steps were regarded as reversible Michaelis-Menten reactions without inhibition. Apparent kinetic parameters for two consecutive reactions (V m constants for substrates and products and K m constants for forward and reverse reactions) were estimated for three examined acetyl acceptors and excellent fitting of experimental data (R 2 > 0.97) was achieved. Obtained results showed that derived kinetic model could be applicable for solvent-free esterifications of different flavonoid glycosides. As a result, it was valid for entire transesterification course (72 h of reaction) which, combined with complete conversions and green character of synthesis, represents firm basis for further process development.« less

  19. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Herrault, F

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g.,more » higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.« less

  20. Highly efficient up-conversion and bright white light in RE co-doped KYF4 nanocrystals in sol-gel silica matrix

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Yanes, A. C.; Santana-Alonso, A.; del-Castillo, J.

    2013-01-01

    Transparent nano-glass-ceramics comprising Yb3+, Er3+ and Tm3+ co-doped KYF4 nanocrystals have been developed from sol-gel method. A structural analysis by means of X-ray diffraction confirmed the precipitation of cubic KYF4 nanocrystals into a silica matrix. Visible luminescence has been analyzed as function of treatment temperature of precursor sol-gel glasses. Highly efficient up-conversion emissions have been obtained under 980 nm excitation and studied by varying the doping level, processing temperature and pump power. Color tuneability has been quantified in terms of CIE diagram and in particular, a white-balanced overall emission has been achieved for a certain doping level and thermal treatment.

  1. High-Power Single- and Dual-Wavelength Nd:GdVO4 Lasers with Potential Application for the Treatment of Telangiectasia

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang

    2012-11-01

    Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.

  2. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  3. A spongy nickel-organic CO 2 reduction photocatalyst for nearly 100% selective CO production

    DOE PAGES

    Niu, Kaiyang; Xu, You; Wang, Haicheng; ...

    2017-07-28

    Solar-driven photocatalytic conversion of CO 2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO 2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H 2 evolution during photocatalytic CO 2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO 2 to CO, with a production rate of ~1.6 × 10 4 μmolmore » hour –1 g –1. No measurable H 2 is generated during the reaction, leading to nearly 100% selective CO production over H 2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO 2 reduction reactions generate formic acid and acetic acid. As a result, achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy.« less

  4. Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface

    NASA Astrophysics Data System (ADS)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-02-01

    Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.

  5. Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface.

    PubMed

    Owiti, Edgar O; Yang, Hanning; Liu, Peng; Ominde, Calvine F; Sun, Xiudong

    2018-02-03

    Previous studies on hybrid dielectric-graphene metasurfaces have been used to implement induced transparency devices, while exhibiting high Q-factors based on trapped magnetic resonances. Typically, the transparency windows are single wavelength and less appropriate for polarization conversion structures. In this work, a quarter-wave plate based on a hybrid silicon-graphene metasurface with controllable birefringence is numerically designed. The phenomena of trapped magnetic mode resonance and high Q-factors are modulated by inserting graphene between silicon and silica. This results in a broader transmission wavelength in comparison to the all-dielectric structure without graphene. The birefringence tunability is based on the dimensions of silicon and the Fermi energy of graphene. Consequently, a linear-to-circular polarization conversion is achieved at a high degree of 96%, in the near-infrared. Moreover, the polarization state of the scattered light is switchable between right and left hand circular polarizations, based on an external gate biasing voltage. Unlike in plasmonic metasurfaces, these achievements demonstrate an efficient structure that is free from radiative and ohmic losses. Furthermore, the ultrathin thickness and the compactness of the structure are demonstrated as key components in realizing integrable and CMOS compatible photonic sensors.

  6. A spongy nickel-organic CO 2 reduction photocatalyst for nearly 100% selective CO production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Kaiyang; Xu, You; Wang, Haicheng

    Solar-driven photocatalytic conversion of CO 2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO 2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H 2 evolution during photocatalytic CO 2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO 2 to CO, with a production rate of ~1.6 × 10 4 μmolmore » hour –1 g –1. No measurable H 2 is generated during the reaction, leading to nearly 100% selective CO production over H 2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO 2 reduction reactions generate formic acid and acetic acid. As a result, achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Shi, Hui; Szanyi, János

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivitiesmore » to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.« less

  8. A fully integrated direct-conversion digital satellite tuner in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Si, Chen; Zengwang, Yang; Mingliang, Gu

    2011-04-01

    A fully integrated direct-conversion digital satellite tuner for DVB-S/S2 and ABS-S applications is presented. A broadband noise-canceling Balun-LNA and passive quadrature mixers provided a high-linearity low noise RF front-end, while the synthesizer integrated the loop filter to reduce the solution cost and system debug time. Fabricated in 0.18 μm CMOS, the chip achieves a less than 7.6 dB noise figure over a 900-2150 MHz L-band, while the measured sensitivity for 4.42 MS/s QPSK-3/4 mode is -91 dBm at the PCB connector. The fully integrated integer-N synthesizer operating from 2150 to 4350 MHz achieves less than 1 °C integrated phase error. The chip consumes about 145 mA at a 3.3 V supply with internal integrated LDOs.

  9. Catalytic Conversion of Carbohydrates to Levulinate Ester over Heteropolyanion-Based Ionic Liquids.

    PubMed

    Song, Changhua; Liu, Sijie; Peng, Xinwen; Long, Jinxing; Lou, Wenyong; Li, Xuehui

    2016-12-08

    An efficient one-pot approach for the production of levulinate ester from renewable carbohydrates is demonstrated over heteropolyanion-based ionic liquid (IL-POM) catalysts with alcohols as the promoters and solvents. The relationships between the structure, acidic strength, and solubility of the IL-POM in methanol and the catalytic performance were studied intensively. A cellulose conversion of 100 % could be achieved with a 71.4 % yield of methyl levulinate over the catalyst [PyPS] 3 PW 12 O 40 [PyPS=1-(3-sulfopropyl)pyridinium] at 150 °C for 5 h. This high efficiency is ascribed to the reasonably high activity of the ionic liquid (IL) catalyst and reaction coupling with rapid in situ esterification of the generated levulinic acid with the alcohol promoter, which allows the insolubility of cellulose encountered in biomass conversion to be overcome. Furthermore, the present process exhibits high feedstock adaptability for typical carbohydrates and handy catalyst recovery by a simple self-separation procedure through temperature control. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  11. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  13. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts.

    PubMed

    Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia

    2012-01-01

    The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride.

    PubMed

    Qing, Qing; Guo, Qi; Zhou, Linlin; Wan, Yilun; Xu, Youqing; Ji, Huilong; Gao, Xiaohang; Zhang, Yue

    2017-02-01

    Catalytic conversion of corncob pretreatment hydrolysate and raw corncob into furfural in a modified biphasic system by SO 4 2- /SnO 2 - MMT solid catalyst has been developed. The influence of the organic solvent type, organic to water phase ratio, sodium chloride concentration, reaction temperature and time on the furfural production were comparatively evaluated. The results showed that furfural yields of 81.7% and 66.1% were achieved at 190°C for 15mins and 190°C for 20mins, respectively, for corncob pretreatment hydrolysate and raw corncob by this solid catalyst. The solid catalyst used in this study exhibited good stability and high efficiency applied in the modified biphasic system in addition to excellent recyclability. The proposed catalytic system displayed high performance for catalytic conversion of lignocellulosic biomass into important platform chemicals and has great potential in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    NASA Astrophysics Data System (ADS)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  16. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion

    PubMed Central

    Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo; Oulton, Rupert F.; Bragas, Andrea V.; Maier, Stefan A.

    2015-01-01

    Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field ‘hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments. PMID:26238815

  17. Graded bandgap perovskite solar cells.

    PubMed

    Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  18. A polymer scaffold for self-healing perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  19. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.

    PubMed

    Caldarola, Martín; Albella, Pablo; Cortés, Emiliano; Rahmani, Mohsen; Roschuk, Tyler; Grinblat, Gustavo; Oulton, Rupert F; Bragas, Andrea V; Maier, Stefan A

    2015-08-04

    Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale. Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into nanoscale field 'hot spots'. High field enhancement factors have been achieved in such optical nanoantennas, enabling transformative science in the areas of single molecule interactions, highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large enhancements come at the price of high optical losses due to absorption in the metal, severely limiting real-world applications. Via the realization of a novel nanophotonic platform based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-heat conversion, here we demonstrate an approach that overcomes these limitations. We show that dimer-like silicon-based single nanoantennas produce both high surface enhanced fluorescence and surface enhanced Raman scattering, while at the same time generating a negligible temperature increase in their hot spots and surrounding environments.

  20. A polymer scaffold for self-healing perovskite solar cells

    PubMed Central

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization. PMID:26732479

  1. A polymer scaffold for self-healing perovskite solar cells.

    PubMed

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-06

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ∼ 16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  2. Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates

    DOE PAGES

    Wood, Anthony; He, Hongpeng; Joia, Tahir; ...

    2016-01-20

    Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.

  3. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm.

    PubMed

    Laroche, M; Cadier, B; Gilles, H; Girard, S; Lablonde, L; Robin, T

    2013-08-15

    We demonstrate a double-clad fiber laser operating at 910 nm with a record power of 20 W. Laser emission on the three-level scheme is enabled by the combination of a small inner cladding-to-core diameter ratio and a high brightness pump source at 808 nm. A laser conversion efficiency as high as 44% was achieved in CW operating regime by using resonant fiber Bragg reflectors at 910 nm that prevent the lasing at the 1060 nm competing wavelength. Furthermore, in a master oscillator power-amplifier scheme, an amplified power of 14.8 W was achieved at 914 nm in the same fiber.

  4. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang

    2009-10-01

    The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  5. Simple modules for high efficiency conversion of standard ytterbium doped fiber lasers into octave spanning continuous-wave supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.

    2018-02-01

    We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.

  6. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  7. Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia

    2016-10-01

    With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.

  8. High Power Orbit Transfer Vehicle

    DTIC Science & Technology

    2003-07-01

    multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted

  9. Supported Pd nanoclusters with enhanced hydrogen spillover for NOx removal via H2-SCR: the elimination of "volcano-type" behaviour.

    PubMed

    Peng, Zhezhe; Li, Zongyuan; Liu, Yun-Quan; Yan, Shuai; Tong, Jianing; Wang, Duo; Ye, Yueyuan; Li, Shuirong

    2017-05-30

    A rational design of a Pd catalyst with highly dispersed Pd nanoclusters on an Al doped ceria-based oxide for low temperature selective catalytic reduction of NO x by hydrogen with excess O 2 was achieved. The supported Pd nanocluster shows a high hydrogen spillover ability and a NO x conversion of >84% within 100-300 °C.

  10. Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis.

    PubMed

    Eom, In-Yong; Yu, Ju-Hyun; Jung, Chan-Duck; Hong, Kyung-Sik

    2015-01-01

    Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is suggested as beneficial to extract most of the starch from OPT through autoclaving and subsequent amylolytic hydrolysis prior to pretreatment. However, this treatment requires high capital and operational costs, and there could be a high probability of microbial contamination during starch processing. In terms of biochemical conversion of OPT, this study aimed to develop a simple and efficient ethanol conversion process without any chemical use such as acids and bases or detoxification. For comparison with the proposed efficient ethanol conversion process, OPT was subjected to hydrothermal treatment at 180 °C for 30 min. After enzymatic hydrolysis of PWS, 43.5 g of glucose per 100 g dry biomass was obtained, which corresponds to 81.3 % of the theoretical glucose yield. Through subsequent alcohol fermentation, 81.4 % ethanol yield of the theoretical ethanol yield was achieved. To conduct the proposed new process, starch in OPT was converted to ethanol through enzymatic hydrolysis and subsequent fermentation prior to hydrothermal treatment, and the resulting slurry was subjected to identical processes that were applied to control. Consequently, a high-glucose yield of 96.3 % was achieved, and the resulting ethanol yield was 93.5 %. The proposed new process was a simple method for minimizing the loss of starch during biochemical conversion and maximizing ethanol production as well as fermentable sugars from OPT. In addition, this methodology offers the advantage of reducing operational and capital costs due to minimizing the process for ethanol production by excluding expensive processes related to detoxification prior to enzymatic hydrolysis and fermentation such as washing/conditioning and solid-liquid separation of pretreated slurry. The potential future use of xylose-digestible microorganisms could further increase the ethanol yield from the proposed process, thereby increasing its effectiveness for the conversion of OPT into biofuels and biochemicals.

  11. Bacteriologic monitoring of multidrug-resistant tuberculosis patients in five DOTS-Plus pilot projects.

    PubMed

    Gammino, V M; Taylor, A B; Rich, M L; Bayona, J; Becerra, M C; Bonilla, C; Gelmanova, I; Hollo, V; Jaramillo, E; Keshavjee, S; Leimane, V; Mitnick, C D; Quelapio, M I D; Riektsina, V; Tupasi, T E; Wells, C D; Zignol, M; Cegielski, P J

    2011-10-01

    Multidrug-resistant tuberculosis programs in DOTS-Plus pilot sites in five countries. To calculate sputum conversion time and its relationship to treatment outcome, document the frequency of culture reversions and examine concordance of smear and culture to assess the potential consequences of monitoring by smear microscopy alone. Retrospective cohort analysis of 1926 patients receiving individualized, second-line therapy. Among 1385 sputum culture-positive cases at baseline, 1146 (83%) experienced at least one culture conversion during treatment. Conversion, however, was not sustained in all patients: 201 (15%) experienced initial culture conversion and at least one subsequent culture reversion to positive; 1064 (77%) achieved sustained culture conversion. Median time to culture conversion was 3 months. Among 206 patients whose nal conversion occurred 7-18 months after the initiation of therapy, 71% were cured or had completed treatment. Prolonged treatment for patients with delayed conversion may be beneficial, as 71% of late converters still achieved cure or completed treatment. This has implications for programs with de ned end points for treatment failure. The interval between rst and nal conversion among patients whose initial con- version is not sustained raises concern with respect to the ongoing debate regarding duration of treatment and the definition of cure.

  12. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries.

    PubMed

    Liu, Zhenzhen; Zhou, Lei; Ge, Qi; Chen, Renjie; Ni, Mei; Utetiwabo, Wellars; Zhang, Xiaoling; Yang, Wen

    2018-06-13

    Lithium-sulfur batteries have been regarded as promising candidates for energy storage because of their high energy density and low cost. It is a main challenge to develop long-term cycling stability battery. Here, a catalytic strategy is presented to accelerate reversible transformation of sulfur and its discharge products in lithium-sulfur batteries. This is achieved with single-atomic iron active sites in porous nitrogen-doped carbon, prepared by polymerizing and carbonizing diphenylamine in the presence of iron phthalocyanine and a hard template. The Fe-PNC/S composite electrode exhibited a high discharge capacity (427 mAh g -1 ) at a 0.1 C rate after 300 cycles with the Columbic efficiency of above 95.6%. Besides, the electrode delivers much higher capacity of 557.4 mAh g -1 at 0.5 C over 300 cycles. Importantly, the Fe-PCN/S has a smaller phase nucleation overpotential of polysulfides than nitrogen-doped carbon alone for the formation of nanoscale of Li 2 S as revealed by ex situ SEM, which enhance lithium-ion diffusion in Li 2 S, and therefore a high rate performance and remarkable cycle life of Li-sulfur batteries were achieved. Our strategy paves a new way for polysulfide conversion with atomic iron catalysis to exploit high-performance lithium-sulfur batteries.

  13. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light

    NASA Astrophysics Data System (ADS)

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-01

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  14. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light.

    PubMed

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-03

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  15. Potentialities of silicon nanowire forests for thermoelectric generation

    NASA Astrophysics Data System (ADS)

    Dimaggio, Elisabetta; Pennelli, Giovanni

    2018-04-01

    Silicon is a material with very good thermoelectric properties, with regard to Seebeck coefficient and electrical conductivity. Low thermal conductivities, and hence high thermal to electrical conversion efficiencies, can be achieved in nanostructures, which are smaller than the phonon mean free path but large enough to preserve the electrical conductivity. We demonstrate that it is possible to fabricate a leg of a thermoelectric generator based on large collections of long nanowires, placed perpendicularly to the two faces of a silicon wafer. The process exploits the metal assisted etching technique which is simple, low cost, and can be easily applied to large surfaces. Copper can be deposited by electrodeposition on both faces, so that contacts can be provided, on top of the nanowires. Thermal conductivity of silicon nanowire forests with more than 107 nanowires mm-2 have been measured; the result is comparable with that achieved by several groups on devices based on few nanowires. On the basis of the measured parameters, numerical calculations of the efficiency of silicon-based thermoelectric generators are reported, and the potentialities of these devices for thermal to electrical energy conversion are shown. Criteria to improve the conversion efficiency are suggested and described.

  16. Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Niu, Haihong; Zhou, Ru; Cheng, Cong; Zhang, Gonghai; Hu, Yu; Huang, Bin; Zhang, Shouwei; Shang, Xin; Xia, Mei; Xu, Jinzhang

    2016-09-01

    Creating new functional materials derived from the structures seen on butterfly wings has achieved interest in a variety of research topics. However, there need a concision approach could result in a high-quality, precise, and convenient process for the fabrication of complex nanostructures replication with unique functionalities based on the butterfly wings. Here we developed a pithy approach based on a magnetron sputtering metal Ti process for biotemplating used to refine hierarchically porous titanium dioxide photonic crystal nanostructures (TiO2sbnd PCN), themselves derived from nanostructures present on the wings of Sasakia Charonda Formosana (S. Charonda) butterflies. For the first time, the TiO2sbnd PCN were deposited on the top of the P25 active layer and were used to fabricate DSSCs as the light-scattering layers of photoanodes with power conversion efficiencies of up to 8.7%. Remarkably, a much enhanced photocurrent density and a prominent photoelectrochemical conversion capability have been achieved, which are exceeding most of the previously reported photoanodes as well as a similar butterflies replication-based device structure. Our study suggests many exciting opportunities of developing artificially engineered butterfly wing-based solar-to-fuel conversion.

  17. Demonstration of Parallel Algal Processing: Production of Renewable Diesel Blendstock and a High-Value Chemical Intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Mohagheghi, Ali; Nagle, Nicholas J

    Co-production of high-value chemicals such as succinic acid from algal sugars is a promising route to enabling conversion of algal lipids to a renewable diesel blendstock. Biomass from the green alga Scenedesmus acutus was acid pretreated and the resulting slurry separated into its solid and liquor components using charged polyamide induced flocculation and vacuum filtration. Over the course of a subsequent 756 hours continuous fermentation of the algal liquor with Actinobacillus succinogenes 130Z, we achieved maximum productivity, process conversion yield, and titer of 1.1 g L-1 h-1, 0.7 g g-1 total sugars, and 30.5 g L-1 respectively. Succinic acid wasmore » recovered from fermentation media with a yield of 60% at 98.4% purity while lipids were recovered from the flocculated cake at 83% yield with subsequent conversion through deoxygenation and hydroisomerization to a renewable diesel blendstock. This work is a first-of-its-kind demonstration of a novel integrated conversion process for algal biomass to produce fuel and chemical products of sufficient quality to be blend-ready feedstocks for further processing.« less

  18. Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan

    2017-01-01

    We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.

  19. Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe 2 Films

    DOE PAGES

    Todt, Michael A.; Isenberg, Allan E.; Nanayakkara, Sanjini U.; ...

    2018-03-06

    Semiconducting transition-metal dichalcogenide (TMD) nanoflake thin films are promising large-area electrodes for photo-electrochemical solar energy conversion applications. However, their energy conversion efficiencies are typically much lower than those of bulk electrodes. It is unclear to what extent this efficiency gap stems from differences among nanoflakes (e.g., area, thickness, and surface structural features). It is also unclear whether individual exfoliated nanoflakes can achieve energy conversion efficiencies similar to those of bulk crystals. Here, we use a single-nanoflake photo-electrochemical approach to show that there are both highly active and completely inactive nanoflakes within a film. For the exfoliated MoSe 2 samples studiedmore » herein, 7% of nanoflakes are highly active champions, whose photocurrent efficiency exceeds that of the bulk crystal. However, 66% of nanoflakes are inactive spectators, which are mostly responsible for the overall lower photocurrent efficiency compared to the bulk crystal. The photocurrent collection efficiency increases with nanoflake area and decreases more at perimeter edges than at interior step edges. These observations, which are hidden in ensemble-level measurements, reveal the underlying performance issues of exfoliated TMD electrodes for photo-electrochemical energy conversion applications.« less

  20. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10% enhancement over those based on PBDTT-DPP. Finally, in Chapter 5, I demonstrate a new polymer system based on alternating dithienopyran and benzothiadiazole units with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions, which is the first certified polymer solar cell efficiency over 10%.

  2. The Effect of Mobile Learning on Students' Achievement and Conversational Skills

    ERIC Educational Resources Information Center

    Elfeky, Abdellah Ibrahim Mohammed; Masadeh, Thouqan Saleem Yakoub

    2016-01-01

    The present study aimed to examine the effect of Mobile Learning, which is a kind of E-learning that uses mobile devices, on the development of the academic achievement and conversational skills of English language specialty students at Najran University. The study used the quasi-experimental approach. Participants consisted of (50) students who…

  3. Conversations in Equity and Social Justice: Constructing Safe Schools for Queer Youth

    ERIC Educational Resources Information Center

    Short, Donn

    2010-01-01

    The paper is a critique of discourse focused on at-risk behaviour and homophobic bullying. The paper argues that conversations around homophobic bullying must include discussions of doing equity and achieving social justice,in which the ultimate goal of constructing safe schools is achieved through the utter transformation of school culture.…

  4. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  5. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  6. Evaluation of a Silicon 90Sr Betavoltaic Power Source.

    PubMed

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90 Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90 Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  7. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    PubMed Central

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-01-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles. PMID:27905521

  8. Evaluation of a Silicon 90Sr Betavoltaic Power Source

    NASA Astrophysics Data System (ADS)

    Dixon, Jefferson; Rajan, Aravindh; Bohlemann, Steven; Coso, Dusan; Upadhyaya, Ajay D.; Rohatgi, Ajeet; Chu, Steven; Majumdar, Arun; Yee, Shannon

    2016-12-01

    Betavoltaic energy converters (i.e., β-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching β-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary β-particles.

  9. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    PubMed

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  10. Experimental demonstration of four-photon entanglement and high-fidelity teleportation.

    PubMed

    Pan, J W; Daniell, M; Gasparoni, S; Weihs, G; Zeilinger, A

    2001-05-14

    We experimentally demonstrate observation of highly pure four-photon GHZ entanglement produced by parametric down-conversion and a projective measurement. At the same time this also demonstrates teleportation of entanglement with very high purity. Not only does the achieved high visibility enable various novel tests of quantum nonlocality, it also opens the possibility to experimentally investigate various quantum computation and communication schemes with linear optics. Our technique can, in principle, be used to produce entanglement of arbitrarily high order or, equivalently, teleportation and entanglement swapping over multiple stages.

  11. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    PubMed

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.

  12. Effects of radiation reaction in the interaction between cluster media and high intensity lasers in the radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Nagatomo, Hideo; Fukuda, Yuji; Matsui, Ryutaro; Kishimoto, Yasuaki

    2016-06-01

    Interaction between media composed of clusters and high intensity lasers in the radiation dominant regime, i.e., intensity of 10 22 - 23 W / cm 2 , is studied based on the particle-in-cell simulation that includes the radiation reaction. By introducing target materials that have the same total mass but different internal structures, i.e., uniform plasma and cluster media with different cluster radii, we investigate the effect of the internal structure on the interaction dynamics, high energy radiation emission, and its reaction. Intense radiation emission is found in the cluster media where electrons exhibit non-ballistic motions suffering from strong accelerations by both the penetrated laser field and charge separation field of clusters. As a result, the clustered structure increases the energy conversion into high energy radiations significantly at the expense of the conversion into particles, while the total absorption rate into radiation and particles remains unchanged from the absorption rate into particles in the case without radiation reaction. The maximum ion energy achieved in the interaction with cluster media is found to be decreased through the radiation reaction to electrons into the same level with that achieved in the interaction with the uniform plasma. The clustered structure thus enhances high energy radiation emission rather than the ion acceleration in the considered intensity regime.

  13. Setting a New Standard with a Common Career Technical Core

    ERIC Educational Resources Information Center

    Folkers, Dean R.

    2011-01-01

    The pursuit of common educational expectations, or standards, among the states has long been a conversation met with strong opinions--for and against. However, it seems clear that high standards and consistency are both critical characteristics to have in educational programs. The task to achieve such is certainly not expected to be easy. Using…

  14. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Treesearch

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  15. Visibility, Availability, Credibility: School Personnel and Community Involvement

    ERIC Educational Resources Information Center

    Wendt, David A.

    2012-01-01

    In these days of high stakes testing, it is imperative that a sense of trust and mutual respect be developed for all stakeholders--students, parents, and school personnel--as they work together for optimal student achievement. A simple conversation can often open the doors of understanding. If parents and guardians feel at ease with their child's…

  16. Woody biomass size reduction with selective material orientation

    DOE PAGES

    Dooley, James H.; Lanning, David N.; Lanning, Christopher J.

    2013-01-01

    Roundwood logs from forests and energy plantations must be chipped, ground, or otherwise comminuted into small particles prior to conversion to solid or liquid biofuels. Rotary veneer followed by cross-grain shearing is demonstrated to be a novel and low energy consuming method for primary breakdown of logs into a raw material having high transport and storage density. Processing of high moisture raw logs into 2.5 – 4.2 mm particles prior to drying or conversion consumes less than 20% of the energy required for achieving similar particle size with hammer mills while producing a more uniform particle shape and size. Asmore » a result, energy savings from the proposed method may reduce the comminution cost of woody feedstocks by more than half.« less

  17. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    PubMed

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  18. High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617  nm.

    PubMed

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2014-12-01

    An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz.

  19. Megahertz-resolution programmable microwave shaper.

    PubMed

    Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun

    2018-04-15

    A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.

  20. Optical actuators for fly-by-light applications

    NASA Astrophysics Data System (ADS)

    Chee, Sonny H. S.; Liu, Kexing; Measures, Raymond M.

    1993-04-01

    A review of optomechanical interfaces is presented. A detailed quantitative and qualitative analysis of the University of Toronto Institute for Aerospace Studies (UTIAS) box, optopneumatics, optical activation of a bimetal, optical activation of the shape memory effect, and optical activation of the pyroelectric effects is given. The UTIAS box is found to display a good conversion efficiency and a high bandwidth. A preliminary UTIAS box design has achieved a conversion efficiency of about 1/6 of the theoretical limit and a bandwidth of 2 Hz. In comparison to previous optomechanical interfaces, the UTIAS box has the highest pressure development to optical power ratio (at least an order of magnitude greater).

  1. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites

    PubMed Central

    Chala, Tolesa Fita; Wu, Chang-Mou; Chou, Min-Hui; Gebeyehu, Molla Bahiru; Cheng, Kuo-Bing

    2017-01-01

    In this work, novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3 → WO2.8 → WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780–2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt % concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications. PMID:28737689

  2. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    DOEpatents

    Skotheim, Terje

    1984-01-01

    There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  3. Design and Characterization of Dual-Curvature 1.5-Dimensional High-Intensity Focused Ultrasound Phased-Array Transducer

    PubMed Central

    Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk

    2013-01-01

    A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745

  4. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  5. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    PubMed

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  6. Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Ajuria, Jon; Pacios, Roberto

    2015-01-01

    In spite of the impressive development achieved by organic photovoltaics throughout the last decades, especially in terms of reported power conversion efficiencies, there are still important technological and fundamental obstacles to circumvent before they can be implemented into reliable and long-lasting applications. Regarding device processing, the synthesis of highly soluble polymeric semiconductors first, and then fullerene derivatives, was initially considered as an important breakthrough that would definitely change the fabrication of photovoltaics once and for all. The potential and the expectation raised by this technology is such that it is very difficult to keep track of the most significant progresses being now published in different and even monographic journals. In this paper, we review the development of polymeric solar cells from its origin to the most efficient devices published to date. We separate these achievements into three different categories traditionally followed by the scientific community to push devices over 10% power conversion efficiency: active materials, strategies-fabrication/processing procedures-that can mainly modify the active film morphology, and all the different cell layout/architectures that have been used in order to extract as high a photocurrent as possible from the Sun. The synthesis of new donors, the use of additives and postprocessing techniques, buffer interlayers, inverted and tandem designs are some of the most important aspects that are reviewed in detail in this paper. All have equally contributed to develop this technology and bring it at the doors of commercialization.

  7. Effect of phase assemblage of precursor on the fabrication process and properties of Bi2223 tape sheathed with Ag-alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shioiri, T.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.

    2008-09-01

    The use of alloy sheath is effective to increase the strength of Ag-sheathed Bi2223 tapes. However, the Jc value of alloy sheathed tapes was not high enough since the undesired reaction to form impurity phases and the change in formation rate of Bi2223 were disturbed by the microstructure of the filaments . In this study, the effect of 2223 contents in precursor on the formation and property of Bi2223 tapes sheathed with Ag-Mg alloy was investigated. The conversion rate of Bi2223 from Bi2212 was increased by the addition of Bi2223 phase in precursor but the conversion rate in Ag-Mg alloy sheathed tapes was slower than that in the Ag-Cu alloy sheathed tapes. This reduction of conversion speed of Bi2223 may be attributed to the decrease in the growth rate of Bi2223 crystals in Ag-Mg alloy sheath. Since the tapes with small Bi2223 crystals after first sintering showed many outgrowths after final sintering, the formation of outgrowth would be caused in the case of small crystal size. The Jc value of 2.2 × 10 4 A/cm 2 was achieved in the samples using the precursor with 10 wt.% 2223. The high Jc value can be achieved by the proper control of precursor condition including the contents of Bi2223 and corresponding heat treatment pattern in Ag-Mg alloy sheathed tapes.

  8. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elangovan, Elango; Rao, Ranjeet; Colella, Whitney

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lowermore » polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.« less

  9. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    PubMed

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  10. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography.

    PubMed

    Hu, Xin; Huang, Shisong; Gu, Ronghua; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2014-10-01

    In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Changing Our Conversations

    ERIC Educational Resources Information Center

    Porto, Mark

    2007-01-01

    In this article, a principal is inspired to change the conversations with students and staff members from discipline and deficit to hope and planning for future achievement. He wants conversations to be more about academic goals and decision making and less about discipline and random acceptance of postsecondary plans. He has asked all staff…

  12. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    ERIC Educational Resources Information Center

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  13. In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters.

    PubMed

    Gross, Elad; Shu, Xing-Zhong; Alayoglu, Selim; Bechtel, Hans A; Martin, Michael C; Toste, F Dean; Somorjai, Gabor A

    2014-03-05

    Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.

  14. Metamorphic III–V Solar Cells: Recent Progress and Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ivan; France, Ryan M.; Geisz, John F.

    Inverted metamorphic multijunction solar cells have been demonstrated to be a pathway to achieve the highest photovoltaic (PV) conversion efficiencies. Attaining high-quality lattice-mismatched (metamorphic) semiconductor devices is challenging. However, recent improvements to compositionally graded buffer epitaxy and junction structures have led to the achievement of high-quality metamorphic solar cells exhibiting internal luminescence efficiencies over 90%. For this high material quality, photon recycling is significant, and therefore, the optical environment of the solar cell becomes important. In this paper, we first present recent progress and performance results for 1- and 0.7-eV GaInAs solar cells grown on GaAs substrates. Then, an electroopticalmore » model is used to assess the potential performance improvements in current metamorphic solar cells under different realizable design scenarios. The results show that the quality of 1-eV subcells is such that further improving its electronic quality does not produce significant Voc increases in the four-junction inverted metamorphic subcells, unless a back reflector is used to enhance photon recycling, which would significantly complicate the structure. Conversely, improving the electronic quality of the 0.7-eV subcell would lead to significant Voc boosts, driving the progress of four-junction inverted metamorphic solar cells.« less

  15. [Pilot-scale cultivation of Spirulina plantensis with digested piggery wastewater ].

    PubMed

    Guo, Qing-qing; Liu, Rui; Luo, Jin-fei; Wang, Gen-rong; Chen, Lii-jun; Liu, Xiao

    2014-09-01

    The swine waste pretreated with coagulation sedimentation was used for the outdoor pilot-scale cultivation of Spirulina platensis isolated from digested piggery wastewater (DPW) in a raceway pond. The growth of S. platensis and removal of nitrogen/ phosphorus were studied, moreover, the conversion efficiency of total nitrogen (TN) or total phosphorus (TP) from DPW to S. platensis was calculated. On this basis, the existing problems and countermeasures during outdoor pilot-scale culture were analyzed and summarized combined with the laboratory research. We conducted 6 batches culture experiments, only 3 of which could reach the S. platensis harvest requirements (D560 >0. 8). Meanwhile, the 3 successful batches achieved removal of COD, ammonia nitrogen, TN, TP with corresponding 28. 6% -48. 5% , 0.4% -48. 5% , 41. 8% -48. 6% , 14. 3% -94. 5% , and the conversion efficiency of TN or TP from DPW to S. platensis reached 12. 1% -98. 5% , 21.2% -83.7% , respectively. High concentration of ammonia nitrogen and insect attack of remaining egg hatching in the pretreated swine waste were the main factors to cause the slow-growing of the 3 batches of S. platensis. Therefore, it is highly necessary for the removal of ammonia nitrogen with biological treatment technology and insect eggs with membrane to achieve a stable high productivity.

  16. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  17. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells.

    PubMed

    Li, Chang-Zhi; Huang, Jiang; Ju, Huanxin; Zang, Yue; Zhang, Jianyuan; Zhu, Junfa; Chen, Hongzheng; Jen, Alex K-Y

    2016-09-01

    By creating an effective π-orbital hybridization between the fullerene cage and the aromatic anchor (addend), the azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion efficiency of 10.3% can be achieved in organic solar cells using open-cage phenyl C61 butyric acid methyl ester (PCBM)-modified zinc oxide layer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermal modeling of high efficiency AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.

    1995-12-31

    Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Twomore » parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.« less

  19. On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass

    Treesearch

    Umesh Agarwal; Sally Ralph

    2014-01-01

    In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...

  20. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE PAGES

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...

    2017-08-18

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  1. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  2. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less

  3. Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jui-Cheng; Sun, I-Wen; Yang, Cheng-Hsien

    2011-01-15

    The influence of using pyridinium molten salts as co-adsorbents to modify the monolayer of a TiO{sub 2} semiconductor on the performance of a dye-sensitized solar cell is studied. The current-voltage characteristics are measured under AM 1.5 (100 mW cm{sup -2}). The pyridinium molten salts significantly enhance the open-circuit photovoltage (V{sub oc}), the short circuit photocurrent density (J{sub sc}) as well as the solar energy conversion efficiency ({eta}). 1-Ethyl-3-carboxypyridinium iodide ([ECP][I]) is applied successfully to prepare an insulating molecular layer with N719, and achieve high energy conversion efficiency as high as 4.49% at 100 mW cm{sup -2} and AM 1.5. Themore » resulting efficiency is 20% higher than that of a non-additive device. This enhancement of conversion efficiency is attributed to the negative shift of the conduction band (CB) edge and the abundant concentration of I{sup -} on the surface of the electrode when using [ECP][I] as the co-adsorbent. (author)« less

  4. Catalyst design with atomic layer deposition

    DOE PAGES

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...

    2015-02-06

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  5. Catalyst design with atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  6. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    NASA Technical Reports Server (NTRS)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  7. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  8. Nanoporous Cu–Al–Co Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Gregory S.; Luc, Wesley; Lu, Qi

    By finding new catalysts for selective and efficient conversion of biomass-derived products to industrially relevant chemicals and fuels, a transition from fossil fuel feedstocks may be achieved. Furfural (C 5H 4O 2) is a platform chemical which may be converted to multiple heterocyclic and ring-opening products, but to date there have been few catalysts which enable selective hydrodeoxygenation to 2-methylfuran (2-MF, C 5H 6O). Here, we present a self-supported nanoporous Cu–Al–Co ternary alloy catalyst with high furfural HDO activity toward 2-MF, achieving up to 66.0% selectivity and 98.2% overall conversion at 513 K with only a ~5 atomic % Comore » composition. Some further analysis over multiple temperature conditions and nominal Co concentrations was performed to examine optimal conditions and tune catalyst performance, and operando X-ray absorption spectroscopy experiments were conducted to elucidate the structure of the catalyst in the reaction environment.« less

  9. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating wasmore » effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.« less

  10. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.

    PubMed

    Han, Seungmin; Kwon, Taeyun; Um, Jo-Eun; Haam, Seungjoo; Kim, Woo-Jae

    2016-05-01

    Near-infrared (NIR) photothermal therapy using biocompatible single-walled carbon nanotubes (SWNTs) is advantageous because as-produced SWNTs, without additional size control, both efficiently absorb NIR light and demonstrate high photothermal conversion efficiency. In addition, covalent attachment of receptor molecules to SWNTs can be used to specifically target infected cells. However, this technique interrupts SWNT optical properties and inevitably lowers photothermal conversion efficiency and thus remains major hurdle for SWNT applications. This paper presents a smart-targeting photothermal therapy platform for inflammatory disease using newly developed phenoxylated-dextran-functionalized SWNTs. Phenoxylated dextran is biocompatible and efficiently suspends SWNTs by noncovalent π-π stacking, thereby minimizing SWNT bundle formations and maintaining original SWNT optical properties. Furthermore, it selectively targets inflammatory macrophages by scavenger-receptor binding without any additional receptor molecules; therefore, its preparation is a simple one-step process. Herein, it is experimentally demonstrated that phenoxylated dextran-SWNTs (pD-SWNTs) are also biocompatible, selectively penetrate inflammatory macrophages over normal cells, and exhibit high photothermal conversion efficiency. Consequently, NIR laser-triggered macrophage treatment can be achieved with high accuracy by pD-SWNT without damaging receptor-free cells. These smart targeting materials can be a novel photothermal agent candidate for inflammatory disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.

    PubMed

    Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio

    2018-08-17

    Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

  12. High-speed real-time image compression based on all-optical discrete cosine transformation

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Chen, Hongwei; Wang, Yuxi; Chen, Minghua; Yang, Sigang; Xie, Shizhong

    2017-02-01

    In this paper, we present a high-speed single-pixel imaging (SPI) system based on all-optical discrete cosine transform (DCT) and demonstrate its capability to enable noninvasive imaging of flowing cells in a microfluidic channel. Through spectral shaping based on photonic time stretch (PTS) and wavelength-to-space conversion, structured illumination patterns are generated at a rate (tens of MHz) which is three orders of magnitude higher than the switching rate of a digital micromirror device (DMD) used in a conventional single-pixel camera. Using this pattern projector, high-speed image compression based on DCT can be achieved in the optical domain. In our proposed system, a high compression ratio (approximately 10:1) and a fast image reconstruction procedure are both achieved, which implicates broad applications in industrial quality control and biomedical imaging.

  13. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    PubMed

    Straub, Anthony P; Elimelech, Menachem

    2017-11-07

    Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  14. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    PubMed

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  15. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    PubMed Central

    2011-01-01

    Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS) cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH) of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF) of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA) assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B') exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive information about the performance of four precommercial cellulase preparations. Though test conditions were not necessarily optimal for some of the enzymes, all were able to effectively saccharify PCS cellulose. Large differences in the estimated enzyme dosage requirements depending on the assay used to measure protein concentration highlight the need for better consensus methods to quantify enzyme protein. PMID:21899748

  16. Photon energy conversion by near-zero permittivity nonlinear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  17. Reverse electrowetting as a new approach to high-power energy harvesting

    PubMed Central

    Krupenkin, Tom; Taylor, J. Ashley

    2011-01-01

    Over the last decade electrical batteries have emerged as a critical bottleneck for portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but, until now, a suitable mechanical-to-electrical energy conversion technology did not exist. Here we describe a novel mechanical-to-electrical energy conversion method based on the reverse electrowetting phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 103 W m−2; the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. These advantages make this method uniquely suited for high-power energy harvesting from a wide variety of environmental mechanical energy sources. PMID:21863015

  18. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.

    PubMed

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-02

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.

  19. Shaping your career to maximize personal satisfaction in the practice of oncology.

    PubMed

    Shanafelt, Tait; Chung, Harold; White, Heather; Lyckholm, Laurie Jean

    2006-08-20

    The practice of oncology can be a source of both great satisfaction and great stress. Although many oncologists experience burnout, depression, and dissatisfaction with work, others experience tremendous career satisfaction and achieve a high overall quality of life. Identifying professional goals, optimizing career fit, identifying and managing stressors specific to practice type, and achieving the optimal personal work-life balance can increase the likelihood of individual oncologists' achieving personal and professional satisfaction. In this article, we will explore how oncologists can accomplish these tasks and will examine several pervasive professional myths that often distort perspective. The article concludes in a conversation with four oncologists regarding what they find most meaningful about their work, how they manage career-specific stressors, and how they achieve balance between their personal and professional lives.

  20. Achieving high performance on the Intel Paragon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, D.S.; Maccabe, B.; Riesen, R.

    1993-11-01

    When presented with a new supercomputer most users will first ask {open_quotes}How much faster will my applications run?{close_quotes} and then add a fearful {open_quotes}How much effort will it take me to convert to the new machine?{close_quotes} This paper describes some lessons learned at Sandia while asking these questions about the new 1800+ node Intel Paragon. The authors conclude that the operating system is crucial to both achieving high performance and allowing easy conversion from previous parallel implementations to a new machine. Using the Sandia/UNM Operating System (SUNMOS) they were able to port a LU factorization of dense matrices from themore » nCUBE2 to the Paragon and achieve 92% scaled speed-up on 1024 nodes. Thus on a 44,000 by 44,000 matrix which had required over 10 hours on the previous machine, they completed in less than 1/2 hour at a rate of over 40 GFLOPS. Two keys to achieving such high performance were the small size of SUNMOS (less than 256 kbytes) and the ability to send large messages with very low overhead.« less

  1. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  2. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts.

    PubMed

    Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi; Uemura, Keiko; Suzuki, Tomiko M; Tanaka, Hiromitsu; Kajino, Tsutomu

    2011-10-05

    Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which H(2)O was used as both an electron donor and a proton source. The so-called Z-scheme (or two-step photoexcitation) system operated with no external electrical bias. The selectivity for HCOO(-) production was >70%, and the conversion efficiency of solar energy to chemical energy was 0.03-0.04%.

  3. Anaerobic digestion of water hyacinth and sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.

    1986-01-01

    The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs.,more » 5 figs., 5 tabs.« less

  4. Coherent quantum control of internal conversion: {S}_{2}\\;\\leftrightarrow \\;{S}_{1} in pyrazine via {S}_{0}\\;\\to \\;{S}_{2}/{S}_{1} weak field excitation

    NASA Astrophysics Data System (ADS)

    Grinev, Timur; Shapiro, Moshe; Brumer, Paul

    2015-09-01

    Coherent control of internal conversion (IC) between the first (S1) and second (S2) singlet excited electronic states in pyrazine, where the S2 state is populated from the ground singlet electronic state S0 by weak field excitation, is examined. Control is implemented by shaping the laser which excites S2. Excitation and IC are considered simultaneously, using the recently introduced resonance-based control approach. Highly successful control is achieved by optimizing both the amplitude and phase profiles of the laser spectrum. The dependence of control on the properties of resonances in S2 is demonstrated.

  5. Syngas Conversion to Hydrocarbon Fuels through Mixed Alcohol Intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Lebarbier, Vanessa M.; Albrecht, Karl O.

    2013-05-13

    Synthesis gas (syngas) can be used to synthesize a variety of fuels and chemicals. Domestic transportation and military operational interests have driven continued focus on domestic syngas-based fuels production. Liquid transportation fuels may be made from syngas via four basic processes: 1) higher alcohols, 2) Fischer-Tropsch (FT), 3) methanol-to-gasoline (MTG), and 4) methanol-to-olefins (MTO) and olefins-to-gasoline/distillate (MOGD). Compared to FT and higher alcohols, MTG and MTO-MOGD have received less attention in recent years. Due to the high capital cost of these synthetic fuel plants, the production cost of the finished fuel cannot compete with petroleum-derived fuel. Pacific Northwest National Laboratorymore » has recently evaluated one way to potentially reduce capital cost and overall production cost for MTG by combining the methanol and MTG syntheses in a single reactor. The concept consists of mixing the conventional MTG catalyst (i.e. HZSM-5) with an alcohol synthesis catalyst. It was found that a methanol synthesis catalyst, stable at high temperature (i.e. Pd/ZnO/Al2O3) [1], when mixed with ZSM-5, was active for syngas conversion. Relatively high syngas conversion can be achieved as the equilibrium-driven conversion limitations for methanol and dimethyl ether are removed as they are intermediates to the final hydrocarbon product. However, selectivity control was difficult to achieve as formation of undesirable durene and light hydrocarbons was problematic [2]. The objective of the present study was thus to evaluate other potential composite catalyst systems and optimize the reactions conditions for the conversion of syngas to hydrocarbon fuels, through the use of mixed alcohol intermediates. Mixed alcohols are of interest as they have recently been reported to produce higher yields of gasoline compared to methanol [3]. 1. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., Palo, D.R., Catalyst Science & Technology, 2012, 2, 2116-2127. 2. Zhu, Y., Jones, S.B., Biddy, M.J., Dagle, R.A., Palo, D.P., Bioresource Technology, 2012, 117, 341-351. 3. Gujar, A.C., Guda, V.K., Nolan, M., Yan W., Toghiani, H., White, M.G., Applied Catalysis A: General, 2009, 363, 115-121.« less

  6. Mixed Redox Catalytic Destruction of Chlorinated Solvents in Soils and Groundwater: From the Laboratory to the Field

    PubMed Central

    Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric

    2010-01-01

    A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945

  7. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    PubMed

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  8. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  9. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  10. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  11. Investigations of Scope and Mechanism of Nickel-Catalyzed Transformations of Glycosyl Trichloroacetimidates to Glycosyl Trichloroacetamides and Subsequent, Atom-Economical, One-Step Conversion to α-Urea-Glycosides

    PubMed Central

    McKay, Matthew J.; Park, Nathaniel H.; Nguyen, Hien M.

    2014-01-01

    The development and mechanistic investigation of a highly stereoselective methodology for preparing α-linked-urea neo-glycoconjugates and pseudo-oligosaccharides is described. This two-step procedure begins with the selective nickel-catalyzed conversion of glycosyl trichloroacetimidates to the corresponding α-trichloroacetamides. The α-selective nature of the conversion is controlled with a cationic nickel(II) catalyst, Ni(dppe)(OTf)2. Mechanistic studies have identified the coordination of the nickel catalyst with the equatorial C2-ether functionality of the α-glycosyl trichloroacetimidate to be paramount for achieving an α-stereoselective transformation. A cross-over experiment has indicated that the reaction does not proceed in an exclusively-intramolecular fashion. The second step in this sequence is the direct conversion of α-glycosyl trichloroacetamide products into the corresponding α-urea glycosides by reacting them with a wide variety of amine nucleophiles in presence of cesium carbonate. Only α-urea-product formation is observed, as the reaction proceeds with complete retention of stereochemical integrity at the anomeric C-N bond. PMID:24905328

  12. Tunable Molecular-Scale Materials for Catalyzing the Low-Overpotential Electrochemical Conversion of CO2.

    PubMed

    Rosen, Brian A; Hod, Idan

    2018-04-25

    Electrochemical CO 2 reduction provides a clean and viable alternative for mitigating the environmental aspects of global greenhouse gas emissions. To date, the simultaneous goals of CO 2 reduction at high selectivity and activity have yet to be achieved. Here, the importance of engineering both sides of the electrode-electrolyte interface as a rational strategy for achieving this milestone is highlighted. An emphasis is placed on researchers contributing to the design of solid electrodes based on metal-organic frameworks (MOFs) and electrolytes based on room-temperature ionic liquids (RTILs). Future research geared toward optimizing the electrode-electrolyte interface for efficient and selective CO 2 reduction can be achieved by understanding the structure of newly designed RTILs at the electrified interface, as well as structure-activity relationships in highly tunable MOF platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tunable compensation of GVD-induced FM-AM conversion in the front end of high-power lasers.

    PubMed

    Li, Rao; Fan, Wei; Jiang, Youen; Qiao, Zhi; Zhang, Peng; Lin, Zunqi

    2017-02-01

    Group velocity dispersion (GVD) is one of the main factors leading to frequency modulation (FM) to amplitude modulation (AM) conversion in the front end of high-power lasers. In order to compensate the FM-AM modulation, the influence of GVD, which is mainly induced by the phase filter effect, is theoretically investigated. Based on the theoretical analysis, a high-precision, high-stability, tunable GVD compensatory using gratings is designed and experimentally demonstrated. The results indicate that the compensator can be implemented in high-power laser facilities to compensate the GVD of fiber with a length between 200-500 m when the bandwidth of a phase-modulated laser is 0.34 nm or 0.58 nm and the central wavelength is in the range of 1052.3217-1053.6008 nm. Due to the linear relationship between the dispersion and the spacing distance of the gratings, the compensator can easily achieve closed-loop feedback controlling. The proposed GVD compensator promises significant applications in large laser facilities, especially in the future polarizing fiber front end of high-power lasers.

  14. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program wasmore » to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality« less

  15. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.

    PubMed

    Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young

    2013-05-08

    We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.

  16. Promethium-147 capacitor.

    PubMed

    Kavetskiy, A; Yakubova, G; Lin, Q; Chan, D; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A; Meier, D

    2009-06-01

    Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4pi-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (TOmega) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load).

  17. Optoelectronic semiconductor device and method of fabrication

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Fan, Shanhui; Yu, Zongfu

    2014-11-25

    An optoelectronic device comprising an optically active layer that includes a plurality of domes is presented. The plurality of domes is arrayed in two dimensions having a periodicity in each dimension that is less than or comparable with the shortest wavelength in a spectral range of interest. By virtue of the plurality of domes, the optoelectronic device achieves high performance. A solar cell having high energy-conversion efficiency, improved absorption over the spectral range of interest, and an improved acceptance angle is presented as an exemplary device.

  18. Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells

    DOE PAGES

    Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu -Chen; ...

    2016-08-22

    A low-bandgap (1.33 eV) Sn-based MA 0.5FA 0.5Pb 0.75Sn 0.25I 3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Lastly, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI 3 cell to achieve a high efficiency of 19.08%.

  19. Conversations With Wargamers

    DTIC Science & Technology

    2009-01-01

    DATES COVERED (From To) 4 . TITLE AND SUBTITLE Conversations with Wargamers 5a. CONTRACT NUMBER N0O014-05-D-05O0 5b. GRANT NUMBER 5c...you sought to achieve in multi-level games? 3. What interfered with your ability to achieve your goals? 4 . What did you do to overcome the problems...scale. The Pacific Warapproach 4 . Herman, Mark. Gulf Strike. Boardgame. Baltimore: Victory Games. (1983) 5. Herman, Mark. Pacific War. Boardgame

  20. Reciprocal Effects between Adolescent Externalizing Problems and Measures of Achievement

    ERIC Educational Resources Information Center

    Zimmermann, Friederike; Schütte, Kerstin; Taskinen, Päivi; Köller, Olaf

    2013-01-01

    Student misbehavior is a pervasive problem and may seriously affect academic achievement. Previous research hints at different effects depending on whether achievement tests or achievement judgments are used as academic outcomes. Previous research also indicates that low achievement can conversely contribute to problem behavior and that low…

  1. A Dynamic Dialog System Using Semantic Web Technologies

    ERIC Educational Resources Information Center

    Ababneh, Mohammad

    2014-01-01

    A dialog system or a conversational agent provides a means for a human to interact with a computer system. Dialog systems use text, voice and other means to carry out conversations with humans in order to achieve some objective. Most dialog systems are created with specific objectives in mind and consist of preprogrammed conversations. The primary…

  2. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    PubMed

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  3. Comparison of holographic lens and filter systems for lateral spectrum splitting

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.

  4. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  5. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer.

    PubMed

    Arai, Takeo; Tajima, Shin; Sato, Shunsuke; Uemura, Keiko; Morikawa, Takeshi; Kajino, Tsutomu

    2011-12-21

    Highly selective photoelectrochemical CO(2) reduction (>80% selectivity) in water was successfully achieved by combining Cu(2)ZnSnS(4) (CZTS) with a metal-complex electrocatalyst. CZTS, a sulfide semiconductor that possesses a narrow band gap and consists of earth-abundant elements, is demonstrated to be a candidate photoabsorber for a CO(2) reduction hybrid photocatalyst.

  6. Do Teacher Absences Impact Student Achievement? Longitudinal Evidence from One Urban School District. NBER Working Paper No. 13356

    ERIC Educational Resources Information Center

    Miller, Raegen T.; Murnane, Richard J.; Willett, John B.

    2007-01-01

    Rates of employee absences and the effects of absences on productivity are topics of conversation in many organizations in many countries. One reason is that high rates of employee absence may signal weak management and poor labor-management relations. A second reason is that reducing rates of employee absence may be an effective way to improve…

  7. Reframing the Conversation about Students with Limited or Interrupted Formal Education: From Achievement Gap to Cultural Dissonance

    ERIC Educational Resources Information Center

    DeCapua, Andrea; Marshall, Helaine W.

    2015-01-01

    U.S. schools face increasing pressure to ensure that all students succeed, yet the dropout rate for English learners is alarmingly high, especially for those with limited or interrupted formal schooling (SLIFE). Serving SLIFE can be challenging because they not only need to master language and content but also need to develop literacy skills and…

  8. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    PubMed

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  9. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    PubMed

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  10. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  11. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  12. Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room-Temperature DC Magnetron Sputtered TiO2 Electron Extraction Layer.

    PubMed

    Huang, Aibin; Lei, Lei; Zhu, Jingting; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Cao, Xun; Jin, Ping

    2017-01-25

    The short circuit current density of perovskite solar cell (PSC) was boosted by modulating the dominated plane facets of TiO 2 electron transport layer (ETL). Under optimized condition, TiO 2 with dominant {001} facets showed (i) low incident light loss, (ii) highly smooth surface and excellent wettability for precursor solution, (iii) efficient electron extraction, and (iv) high conductivity in perovskite photovoltaic application. A current density of 24.19 mA cm -2 was achieved as a value near the maximum limit. The power conversion efficiency was improved to 17.25%, which was the record value of PSCs with DC magnetron sputtered carrier transport layer. What is more, the room-temperature process had a great significance for the cost reduction and flexible application of PSCs.

  13. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less

  14. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.

    PubMed

    Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter

    2009-12-07

    Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.

  15. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  16. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  17. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  18. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  19. Generation of sub-gigabar-pressure shocks by a hyper-velocity impact in the collider driven by laser-induced cavity pressure

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Kucharik, M.; Liska, R.

    2018-02-01

    The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.

  20. Silicon Carbide Radioisotope Batteries

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.

    2005-01-01

    The substantial radiation resistance and large bandgap of SiC semiconductor materials makes them an attractive candidate for application in a high efficiency, long life radioisotope battery. To evaluate their potential in this application, simulated batteries were constructed using SiC diodes and the alpha particle emitter Americium Am-241 or the beta particle emitter Promethium Pm-147. The Am-241 based battery showed high initial power output and an initial conversion efficiency of approximately 16%, but the power output decayed 52% in 500 hours due to radiation damage. In contrast the Pm-147 based battery showed a similar power output level and an initial conversion efficiency of approximately 0.6%, but no degradation was observed in 500 hours. However, the Pm-147 battery required approximately 1000 times the particle fluence as the Am-242 battery to achieve a similar power output. The advantages and disadvantages of each type of battery and suggestions for future improvements will be discussed.

  1. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    PubMed Central

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm−2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies. PMID:27243374

  2. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes.

    PubMed

    Selig, Michael J; Vinzant, Todd B; Himmel, Michael E; Decker, Stephen R

    2009-05-01

    Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan.

  3. Magneto-Electric Conversion of Optical Energy to Electricity

    DTIC Science & Technology

    2015-07-06

    thermodynamic limitations. The heat load accompanying magneto-electric rectification was theorized to be negligible, since the conversion process involves a...circles) and cross-polarized (filled circles) quasi-elastic light-scattering in Gadolinium Gallium Garnet (GGG). Right: Same data as on the left...of inertia and crystals achieved magnetic saturation at the lowest intensities. 4. Efficiency Limit – Thermodynamic limit of energy conversion

  4. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.

    PubMed

    Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon

    2017-05-01

    Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  6. Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes.

    PubMed

    Xiong, Weiwei; Liu, Hongliang; Zhou, Yahong; Ding, Yi; Zhang, Xiqi; Jiang, Lei

    2016-05-18

    To find a general strategy to realize confinement of the conductive layer for high-performance flexible electrodes, with improved interfacial adhesion and high conductivity, is of important scientific significance. In this work, superwettability-induced confined reaction is used to fabricate high-performance flexible Ag/polymer electrodes, showing significantly improved silver conversion efficiency and interfacial adhesion. The as-prepared flexible electrodes by superhydrophilic polymeric surface under oil are highly conductive with an order of magnitude higher than the Ag/polymer electrodes obtained from original polymeric surface. The high conductivity achieved via superhydrophilic confinement is ascribed to the fact that the superhydrophilic polymeric surface can enhance the reaction rate of silver deposition and reduce the size of silver nanoparticles to achieve the densest packing. This new approach will provide a simple method to fabricate flexible and highly conductive Ag/polymer electrodes with excellent adhesion between the conductive layer and the substrate, and can be extended to other metal/polymeric electrodes or alloy/polymeric electrodes.

  7. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  8. Producing ammonium sulfate from flue gas desulfurization by-products

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  9. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    PubMed Central

    Wang, Feng; Kim, Sung-Wook; Seo, Dong-Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Graetz, Jason

    2015-01-01

    Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2=Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries. PMID:25808876

  10. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    PubMed

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  13. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  14. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    PubMed

    Yan Lu; Wing-Hung Ki

    2014-06-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.

  15. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    PubMed Central

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741

  16. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  17. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  18. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    PubMed

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  19. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion

    NASA Astrophysics Data System (ADS)

    Erickson, S. D.; Smith, T. J.; Moses, L. M.; Watt, R. K.; Colton, J. S.

    2015-01-01

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

  20. Highly efficient and regioselective synthesis of dihydromyricetin esters by immobilized lipase.

    PubMed

    Li, Wei; Wu, Huan; Liu, Benguo; Hou, Xuedan; Wan, Duanji; Lou, Wenyong; Zhao, Jian

    2015-04-10

    Dihydromyricetin is the principle component of the Chinese herbal tea Teng-cha and a promising ingredient for functional food and nutraceuticals, but its low solubility limits its application potentials. This study explored enzymatic acylation of dihydromyricetin to improve its solubility in lipid systems. Acylation was achieved with several lipases with the synthesis of a major (>86%) product and a minor product. Isolation and purification of the products by preparative HPLC followed by LC-MS, (13)C NMR, (1)H NMR and 2 D-HSQC NMR analyses showed that the major product was a dihydromyricetin monoester with the acylation site at the 3-OH group of C ring. Quantum chemical calculations revealed that the 3-OH had the lowest antioxidant activity, and therefore acylation at this site was expected to have minimum impact on the antioxidant activity. Several factors, including solvent, acyl donor, enzyme origin, molar ratio of substrates and reaction temperature and time, exhibited significant effects on the initial rate, conversion yield and regioselectivity of the reaction. Acylation occurred only with vinyl acetate as the acyl donor, and highest conversion yields were achieved with immobilized Penicillium expansum lipase and Novozyme 435 with DMSO and acetonitrile being the best solvents. In general, the acylation results were found to be superior to previous reports on acylation of aglycone flavonoids with respects to conversion yield and regioselectivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    PubMed

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  2. Processing precious metals in a top-blown rotary converter

    NASA Astrophysics Data System (ADS)

    Whellock, John G.; Matousek, Jan W.

    1990-09-01

    Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.

  3. Lithography-free large-area metamaterials for stable thermophotovoltaic energy conversion

    DOE PAGES

    Coppens, Zachary J.; Kravchenko, Ivan I.; Valentine, Jason G.

    2016-02-08

    A large-area metamaterial thermal emitter is fabricated using facile, lithography-free techniques. The device is composed of conductive oxides, refractory ceramics, and noble metals and shows stable, selective emission after exposure to 1173 K for 22 h in oxidizing and inert atmospheres. Lastly, the results indicate that the metamaterial can be used to achieve high-performance thermophotovoltaic devices for applications such as portable power generation.

  4. Combination of molecular, morphological, and interfacial engineering to achieve highly efficient and stable plastic solar cells.

    PubMed

    Chang, Chih-Yu; Cheng, Yen-Ju; Hung, Shih-Hsiu; Wu, Jhong-Sian; Kao, Wei-Shun; Lee, Chia-Hao; Hsu, Chain-Shu

    2012-01-24

    A flexible solar device showing exceptional air and mechanical stability is produced by simultaneously optimizing molecular structure, active layer morphology, and interface characteristics. The PFDCTBT-C8-based devices with inverted architecture exhibited excellent power conversion efficiencies of 7.0% and 6.0% on glass and flexible substrates, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrastable, high efficiency picosecond green light generation using K3B6O10Br series nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Hou, Z. Y.; Xia, M. J.; Wang, L. R.; Xu, B.; Yan, D. X.; Meng, L. P.; Liu, L. J.; Xu, D. G.; Zhang, L.; Wang, X. Y.; Li, R. K.; Chen, C. T.

    2017-09-01

    Two perovskite-structure K3B6O10Br1-x Cl x (x  =  0 and 0.5) series nonlinear optical crystals were thoroughly investigated for their picosecond 532 nm laser pulses abilities and high power outputs were achieved via second harmonic generation (SHG) technique for the first time. SHG conversion efficiency of 57.3% with a 13.2 mm length K3B6O10Br (KBB) crystal was achieved using a laser source of pulse repetition rate of 10 Hz and pulse width of 25 ps, which is the highest conversion efficiency of ps visible laser based on KBB crystal. And by employing an 80 MHz, 10 ps fundamental laser beam, maximum power outputs of 12 W with K3B6O10Br0.5Cl0.5 (KBBC) and 11.86 W with KBB crystals were successfully demonstrated. Furthermore, the standard deviation jitters of the average power outputs are less than 0.6% and 1.17% by KBB and KBBC, respectively, showing ultrastable power stabilities favorable for practical applications. In addition, the other optical parameters including acceptance angle and temperature bandwidth were also investigated.

  6. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Menglin L. N.; Jiang, Li Jun; Sha, Wei E. I.

    2016-02-01

    Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel perfect electric conductor-perfect magnetic conductor anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the continuous metasurface shows very smooth phase pattern at the near-field region, which cannot be achieved by convectional metasurfaces composed of discrete scatterers. On the other hand, the metasurface with discrete dipole scatterers shows a great flexibility to generate OAM with arbitrary topological charges. Our work is fundamentally and practically important to high-performance OAM generation.

  7. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  8. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dewei; Wang, Changlei; Song, Zhaoning

    We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA 0.8Cs 0.2Pb(I 0.7Br 0.3) 3 perovskite top cells with 1.25 eV low-bandgap (FASnI 3) 0.6(MAPbI 3) 0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.

  9. System and method for single-phase, single-stage grid-interactive inverter

    DOEpatents

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  10. Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%

    DOE PAGES

    Zhao, Dewei; Wang, Changlei; Song, Zhaoning; ...

    2018-01-04

    We report on fabrication of 4-terminal all-perovskite tandem solar cells with power conversion efficiencies exceeding 23% by mechanically stacking semitransparent 1.75 eV wide-bandgap FA 0.8Cs 0.2Pb(I 0.7Br 0.3) 3 perovskite top cells with 1.25 eV low-bandgap (FASnI 3) 0.6(MAPbI 3) 0.4 bottom cells. The top cells use MoOx/ITO transparent electrodes and achieve transmittance up to 70% beyond 700 nm.

  11. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I second harmonic generation in a V- cavity is presented. Tens of watts of output power for both blue and green wavelengths prove the viability for VECSELs to replace the other types of lasers currently used for applications in laser light shows, for Ti:Sapphire pumping, and for medical applications such as laser skin resurfacing. The novel, recently patented, two-chip T-cavity configuration allowing for spatial overlap of two, separate VECSEL cavities is described in detail. This type of setup is further used to demonstrate type II sum frequency generation to green with multi-watt output, and the full potential of the T-cavity is utilized by achieving type II difference frequency generation to the mid-IR spectral region. The tunable output around 5.4 microm with over 10 mW power is showcased. In the same manner the first attempts to generate THz radiation are discussed. Finally, a slightly modified T-cavity VECSEL is used to reach the UV spectral regions thanks to type I fourth harmonic generation. Over 100 mW at around 265 nm is obtained in a setup which utilizes no stabilization techniques. The dissertation demonstrates the flexibility of the VECSEL in achieving broad spectral coverage and thus its potential for a wide range of applications.

  12. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  13. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    NASA Astrophysics Data System (ADS)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  14. Mushrooms as Efficient Solar Steam-Generation Devices.

    PubMed

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of peak current in conversion of patients with ventricular fibrillation.

    PubMed

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-07-01

    Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15-20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. Copyright: © Singapore Medical Association

  16. Role of peak current in conversion of patients with ventricular fibrillation

    PubMed Central

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-01-01

    INTRODUCTION Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. METHODS Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). RESULTS Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15–20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). CONCLUSION For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. PMID:28741007

  17. Discrete parametric band conversion in silicon for mid-infrared applications.

    PubMed

    Tien, En-Kuang; Huang, Yuewang; Gao, Shiming; Song, Qi; Qian, Feng; Kalyoncu, Salih K; Boyraz, Ozdal

    2010-10-11

    Silicon photonics has great potential for mid-wave-infrared applications. The dispersion of waveguide can be manipulated by waveguide dimension and cladding materials. Simulation shows that <3 μm wide conversion can be achieved by tuning the pump wavelength.

  18. Infrared Signal Detection by Upconversion Technique

    NASA Technical Reports Server (NTRS)

    Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.

    2014-01-01

    We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.

  19. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  20. Heterogeneous Photocatalytic Oxidation of Atmospheric Trace Contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.

    1996-01-01

    Heterogeneous photocatalysis involves the use of a light-activated catalyst at room temperature in order to carry out a desired reaction. In the presence of molecular oxygen, illumination of the n-type semiconductor oxide titanium dioxide (TiO2) provides for production of highly active forms of oxygen, such as hydroxyl radicals, which are able to carry out the complete oxidative destruction of simple hydrocarbons such as methane, ethane, ethylene, propylene, and carbon monoxide. This broad oxidation potential, coupled with the ability with sufficient residence time to achieve complete oxidation of simple hydrocarbon contaminants to carbon dioxide and water, indicated that heterogeneous photocatalysis should be examined for its potential for purification of spacecraft air. If a successful catalyst and photoreactor could be demonstrated at the laboratory level, such results would allow consideration of photocatalysts as a partial or complete replacement of adsorption systems, thereby allowing for reduction in lift-off weight of a portion of the life support system for the spacecraft, or other related application such as a space station or a conventional commercial aircraft. The present research was undertaken to explore this potential through achievement of the following plan of work: (a) ascertain the intrinsic kinetics of conversion of pollutants of interest in spacecraft, (b) ascertain the expected lifetime of catalysts through examination of most likely routes of catalyst deactivation and regeneration, (c) model and explore experimentally the low pressure drop catalytic monolith, a commercial configuration for automotive exhaust control, and (d) examine the kinetics of multicomponent conversions. In the recent course of this work, we have also discovered how to increase catalyst activity via halide promotion which has allowed us to achieve approximately 100% conversion of an aromatic contaminant (toluene) in a very short residence time of 5-6 milliseconds.

  1. Heterogeneous Photocatalytic Oxidation of Atmospheric Trace Contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.

    1996-01-01

    Heterogeneous photocatalysis involves the use of a light-activated catalyst at room temperature in order to carry out a desired reaction. In the presence of molecular oxygen, illumination of the n-type semiconductor oxide titanium dioxide (TiO2) provides for production of highly active forms of oxygen, such as hydroxyl radicals, which are able to carry out the complete oxidative destruction of simple hydrocarbons such as methane, ethane, ethylene, propylene, and carbon monoxide. This broad oxidation potential, coupled with the ability with sufficient residence time to achieve complete oxidation of simple hydrocarbon contaminants to carbon dioxide and water, indicated that heterogeneous photocatalysis should be examined for its potential for purification of spacecraft air. If a successful catalyst and photoreactor could be demonstrated at the laboratory level, such results would allow consideration of photocatalysts as a partial or complete replacement of adsorption systems, thereby allowing for reduction in lift-off weight of a portion of the life support system for the spacecraft, or other related application such as a space station or a conventional commercial aircraft. The present research was undertaken to explore this potential through achievement of the following plan of work: (a) ascertain the intrinsic kinetics of conversion of pollutants of interest in spacecraft, (b) ascertain the expected lifetime of catalysts through examination of most likely routes of catalyst deactivation and regeneration (c) model and explore experimentally the low pressure drop catalytic monolith, a commercial configuration for automotive exhaust control (d) examine the kinetics of multicomponent conversions. In the recent course of this work, we have also discovered how to increase catalyst activity via halide promotion which has allowed us to achieve approximately 100% conversion of an aromatic contaminant (toluene) in a very short residence time of 5-6 milliseconds.

  2. Immobilization of R-ω-transaminase on MnO2 nanorods for catalyzing the conversion of (R)-1-phenylethylamine.

    PubMed

    Sun, Jian; Cui, Wen-Hui; Du, Kun; Gao, Qian; Du, Mengmeng; Ji, Peijun; Feng, Wei

    2017-03-10

    R-ɷ-transaminases transfer an amino group from an amino donor (e.g. (R)-1-phenylethylamine) onto an amino acceptor (e.g. pyruvate), resulting a co-product (e.g. d-alanine). This work intends to immobilize R-ɷ-Transaminase on MnO 2 nanorods to achieve multienzyme catalysis. R-ɷ-Transaminase (RTA) and d-amino acid oxidase (DAAO) have been fused to an elastin-like polypeptide (ELP) separately through genetic engineering of the enzymes. ELP-RTA and ELP-DAAO have been separately immobilized on polydopamine-coated MnO 2 nanorods. When the two immobilized enzymes were used together in one pot, the transformation of (R)-1-phenylethylamine was catalyzed by the immobilized ELP-RTA, and the co-product d-alanine was converted back to pyruvate under the catalysis of the immobilized ELP-DAAO, achieving the recycling of pyruvate in situ. Thus pyruvate was maintained at a low concentration in order to reduce its negative effect. On the other hand, the generated H 2 O 2 of ELP-DAAO was decomposed by the MnO 2 nanorods, and the evolved oxygen oxidized the reduced cofactors of ELP-DAAO. Forming the circles of hydrogen peroxide→oxygen→hydrogen peroxide accelerated the deamination reaction. The highly efficient conversion of the co-product d-alanine back to pyruvate accelerated the forming of the pyruvate→d-alanine→pyruvate cycle between the two immobilized enzymes. The coordination of the pyruvate→d-alanine→pyruvate and hydrogen peroxide→oxygen→hydrogen peroxide cycles accelerated the transformation of (R)-1-phenylethylamine. As a result, As a result, the immobilized enzymes achieved a conversion of 98±1.8% in comparison to 69.6±1.2% by free enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    PubMed Central

    Mustafa, Farahiyah; Hashim, Abdul Manaf

    2014-01-01

    We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector. PMID:24561400

  4. Towards cell-free isobutanol production: Development of a novel immobilized enzyme system.

    PubMed

    Grimaldi, Joseph; Collins, Cynthia H; Belfort, Georges

    2016-01-01

    Producing fuels and chemical intermediates with cell cultures is severely limited by low product concentrations (≤0.2%(v/v)) due to feedback inhibition, cell instability, and lack of economical product recovery processes. We have developed an alternate simplified production scheme based on a cell-free immobilized enzyme system. Two immobilized enzymes (keto-acid decarboxylase (KdcA) and alcohol dehydrogenase (ADH)) and one enzyme in solution (formate dehydrogenase (FDH) for NADH recycle) produced isobutanol titers 8 to 20 times higher than the highest reported titers with S. cerevisiae on a mol/mol basis. These high conversion rates and low protein leaching were achieved by covalent immobilization of enzymes (ADH) and enzyme fusions (fKdcA) on methacrylate resin. The new enzyme system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.135 (mole isobutanol produced for each mole ketoisovaleric acid consumed). Further increasing titer will require continuous removal of the isobutanol using an in situ recovery system. © 2015 American Institute of Chemical Engineers.

  5. Acidic processing of hemicellulosic saccharides from pine wood: product distribution and kinetic modeling.

    PubMed

    Rivas, Sandra; González-Muñoz, María Jesús; Santos, Valentín; Parajó, Juan Carlos

    2014-06-01

    Water soluble compounds were removed from Pinus pinaster wood by a mild aqueous extraction, and the treated wood was subjected to hydrothermal processing to convert most hemicelluloses into soluble saccharides (including low molecular weight polymers, oligomers and monosaccharides). The liquid phase containing hemicellulose-derived saccharides was acidified with sulfuric acid and heated up to 130-250°C to obtain furans and levulinic acid as major products. The concentration profiles of the major compounds participating in the reactions were interpreted by a kinetic model. A maximum conversion of pentoses into furfural near 80% was predicted at high temperature and short time, conditions leading to 24% conversion of hexoses into HMF. Production of levulinic acid was favored at low temperatures. Maximum molar conversion of hexoses into levulinic acid (66.7% at 130°C) needed a long reaction time (235 h). A value of 53.0% can be achieved at 170°C after 5 h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    PubMed

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nonreciprocal State Conversion between Microwave and Optical Photons

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Li, Zhen

    Nonreciprocal devices are of critical importance in the realization of noiseless and lossless quantum networks. Despite previous efforts, it is still challenging to implement nonreciprocal devices that connect distinctively different frequency scales. Optomechanical quantum interfaces can be utilized to connect systems with different frequencies in hybrid quantum networks. Here we present a scheme of nonreciprocal quantum state conversion between microwave and optical photons via an optomechanical interface. By introducing an auxiliary cavity and manipulating the phase differences between the linearized optomechanical couplings, uni-directional state transmission can be achieved. The interface can function as an isolator, a circulator, and a two-way switch that routes the input states to a selected output channel. We show that under a generalized impedance matching condition, the state conversion can reach high fidelity and is robust against the thermal fluctuations in the mechanical mode. This work is supported by the National Science Foundation under Award Number 0956064. Z. Li is also supported by a fellowship from the China Scholarship Council.

  8. All-Solid-State UV Transmitter Development for Ozone Sensing Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Armstrong, Darrell Jr.

    2009-01-01

    In this paper, recent progress made in the development of an all-solid-state UV transmitter suitable for ozone sensing applications from space based platforms is discussed. A nonlinear optics based UV setup based on Rotated Image Singly Resonant Twisted Rectangle (RISTRA) optical parametric oscillator (OPO) module was effectively coupled to a diode pumped, single longitudinal mode, conductively cooled, short-pulsed, high-energy Nd:YAG laser operating at 1064 nm with 50 Hz PRF. An estimated 10 mJ/pulse with 10% conversion efficiency at 320 nm has been demonstrated limited only by the pump pulse spatial profile. The current arrangement has the potential for obtaining greater than 200 mJ/pulse. Previously, using a flash-lamp pumped Nd:YAG laser with round, top-hat profile, up to 24% IR-UV conversion efficiency was achieved with the same UV module. Efforts are underway to increase the IR-UV conversion efficiency of the all solid-state setup by modifying the pump laser spatial profile along with incorporating improved OPO crystals.

  9. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  10. Peracetic acid-ionic liquid pretreatment to enhance enzymatic saccharification of lignocellulosic biomass.

    PubMed

    Uju; Abe, Kojiro; Uemura, Nobuyuki; Oshima, Toyoji; Goto, Masahiro; Kamiya, Noriho

    2013-06-01

    To enhance enzymatic saccharification of pine biomass, the pretreatment reagents peracetic acid (PAA) and ionic liquid (IL) were validated in single reagent pretreatments or combination pretreatments with different sequences. In a 1h saccharification, 5-25% cellulose conversion was obtained from the single pretreatment of PAA or IL. In contrast, a marked enhancement in conversion rates was achieved by PAA-IL combination pretreatments (45-70%). The PAA followed by IL (PAA+IL) pretreatment sequence was the most effective for preparing an enzymatic digestible regenerated biomass with 250-fold higher glucose formation rates than untreated biomass and 2- to 12-fold higher than single pretreatments with PAA or IL alone. Structural analysis confirmed that this pretreatment resulted in biomass with highly porous structural fibers associated with the reduction of lignin content and acetyl groups. Using the PAA+IL sequence, biomass loading in the pretreatment step can be increased from 5% to 15% without significant decrease in cellulose conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    PubMed

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Advanced laser architectures for high power eyesafe illuminators

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  13. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  14. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  15. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less

  17. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  18. Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion.

    PubMed

    Wang, Jin; Lin, Yaochen; Pinault, Mathieu; Filoramo, Arianna; Fabert, Marc; Ratier, Bernard; Bouclé, Johann; Herlin-Boime, Nathalie

    2015-01-14

    This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

  19. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate. Electronic supplementary information (ESI) available: FE-SEM images of Ar plasma-treated PET surfaces, curve deconvolution of XPS Ag 3d5/2 spectra, refractive indices and extinction coefficients of the Ag and AgOx (O/Ag = 10 at%), changes in the specular reflections of the IAOI-NPA and IAI-NPA electrodes for different O/Ag atomic ratios and thicknesses of the AgOx layer, and comparisons between the Jsc values determined from simulated AM 1.5G illumination and IPCE spectra. See DOI: 10.1039/c3nr06755f

  20. Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization.

    PubMed

    Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C

    2013-12-28

    Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.

  1. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  2. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.

    PubMed

    Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V

    2014-02-12

    Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.

  3. Abstract - Cooperative Research and Development Agreement between Penn State University and National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickner, Michael A.; Matranga, Christopher S.

    This project will use bipolar membranes to produce efficient vapor-phase electrolysis cells for splitting CO 2 to CO and oxygen. CO is a valuable chemical feedstock that can be combined catalytically with hydrogen in the Fischer-Tropsch process to make liquid fuels. CO is arguably the best target for CO 2 reduction since, as a gaseous product, it is easily collected and is relatively immune to membrane crossover losses. The keys to success in this project are to design and synthesize hydrophilic, low resistance bipolar membranes and to create optimized electrode/catalyst/ electrolyte architectures based on these new membranes and advanced catalystsmore » in order to achieve high current density at low overpotentials for CO 2 conversion. High current density is key to achieving industrially-relevant throughput for the process and low overpotentials maintain high overall efficiency for the process.« less

  4. Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion

    PubMed Central

    Li, Han; Liu, Yashu; Gong, Pinghua; Zhang, Changshui; Ye, Jieping

    2014-01-01

    Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called stable expectation scores. We have used 293 MCI subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using interaction features. PMID:24416143

  5. SO2-tolerant and H2O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H2-SCR.

    PubMed

    Tu, Baosheng; Shi, Nian; Sun, Wei; Cao, Limei; Yang, Ji

    2017-01-01

    In this paper, Pt supports on carbon black powder (Vulcan XC-72) were synthesized via a hydrothermal method for selective catalytic reduction (SCR) of NO with H 2 in the presence of 2 vol% O 2 over a wide temperature of 20-300 °C. The results showed that the 3 and 5 wt% Pt/C catalysts resulted in high NO conversion (>90 %) over a temperature range of 120 to 300 °C, and the maximum NO conversion of 98.6 % was achieved over 5 wt% Pt/C at 120 °C. Meanwhile, the influence of SO 2 and H 2 O on the catalyst performance of 3 wt% Pt/C was investigated. The catalysts exhibited good SO 2 poisoning resistance when the SO 2 concentration was lower than 260 ppm. Moreover, a positive effect on NO conversion was detected with the addition of 3 and 5 vol% H 2 O in the feed gas stream. Graphical abstract TEM image and good NO conversion performance of the Pt/C catalysts.

  6. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understandingmore » the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.« less

  7. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  8. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  9. LYSO based precision timing calorimeters

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Duarte, J.; Spiropulu, M.; Trevor, J.; Anderson, D.; Pena, C.; Hassanshahi, M. H.

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beams for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.

  10. A molecular nematic liquid crystalline material for high-performance organic photovoltaics

    PubMed Central

    Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.

    2015-01-01

    Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307

  11. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    PubMed

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  12. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    NASA Astrophysics Data System (ADS)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  13. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.

    PubMed

    Ilic, Ognjen; Jablan, Marinko; Joannopoulos, John D; Celanovic, Ivan; Soljacić, Marin

    2012-05-07

    Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 – 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14 W/cm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120) W/cm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to-electricity conversion devices.

  14. Midinfrared wavelength conversion in hydrogenated amorphous silicon waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Wang, Zhaolu; Huang, Nan; Han, Jing; Li, Yongfang; Liu, Hongjun

    2017-10-01

    Midinfrared (MIR) wavelength conversion based on degenerate four-wave mixing is theoretically investigated in hydrogenated amorphous silicon (a-Si:H) waveguides. The broadband phase mismatch is achieved in the normal group-velocity dispersion regime. The conversion bandwidth is extended to 900 nm, and conversion efficiency of up to -14 dB with a pump power of 70 mW in a 2-mm long a-Si:H rib waveguides is obtained. This low-power on-chip wavelength converter will have potential for application in a wide range of MIR nonlinear optic devices.

  15. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide

    PubMed Central

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  16. Design of PH sensor signal acquisition and display system

    NASA Astrophysics Data System (ADS)

    Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong

    2017-06-01

    With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.

  17. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  18. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol

    PubMed Central

    2014-01-01

    Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041

  19. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  20. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  1. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    PubMed

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-12-01

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga 2 O 3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga 2 O 3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO 2 within the 50-90% range, by contrast to conventional TiO 2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO 2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga 2 O 3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO 2 strongly overcoming those obtained on commercial β-Ga 2 O 3 . They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga 3+ units. In the degradation of hydrogen sulfide, PEG-derived β-Ga 2 O 3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga 2 O 3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga 2 O 3 in environmental photocatalysis for gas-phase depollution applications.

  2. Dye-sensitized solar cells for efficient power generation under ambient lighting

    NASA Astrophysics Data System (ADS)

    Freitag, Marina; Teuscher, Joël; Saygili, Yasemin; Zhang, Xiaoyu; Giordano, Fabrizio; Liska, Paul; Hua, Jianli; Zakeeruddin, Shaik M.; Moser, Jacques-E.; Grätzel, Michael; Hagfeldt, Anders

    2017-06-01

    Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4‧,6,6‧-tetramethyl-2,2‧-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 μW cm-2 at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.

  3. Efficient yellow-green light generation at 561 nm by frequency-doubling of a QD-FBG laser diode in a PPLN waveguide.

    PubMed

    Fedorova, Ksenia A; Sokolovskii, Grigorii S; Khomylev, Maksim; Livshits, Daniil A; Rafailov, Edik U

    2014-12-01

    A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.

  4. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    PubMed

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells.

    PubMed

    Masi, Sofia; Mastria, Rosanna; Scarfiello, Riccardo; Carallo, Sonia; Nobile, Concetta; Gambino, Salvatore; Sibillano, Teresa; Giannini, Cinzia; Colella, Silvia; Listorti, Andrea; Cozzoli, P Davide; Rizzo, Aurora

    2018-04-25

    Thanks to their high stability, good optoelectronic and extraordinary electrochromic properties, tungsten oxides are among the most valuable yet underexploited materials for energy conversion applications. Herein, colloidal one-dimensional carved nanocrystals of reduced tungsten trioxide (WO3-x) are successfully integrated, for the first time, as a hole-transporting layer (HTL) into CH3NH3PbI3 perovskite solar cells with a planar inverted device architecture. Importantly, the use of such preformed nanocrystals guarantees the facile solution-cast-only deposition of a homogeneous WO3-x thin film at room temperature, allowing achievement of the highest power conversion efficiency ever reported for perovskite solar cells incorporating raw and un-doped tungsten oxide based HTL.

  6. Photo-induced-heat localization on nanostructured metallic glasses

    NASA Astrophysics Data System (ADS)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  7. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  8. Conversion of Sleeve Gastrectomy to Roux-en-Y Gastric Bypass is Effective for Gastro-Oesophageal Reflux Disease but not for Further Weight Loss.

    PubMed

    Parmar, Chetan D; Mahawar, Kamal K; Boyle, Maureen; Schroeder, Norbert; Balupuri, Shlok; Small, Peter K

    2017-07-01

    Inadequate weight loss (IWL)/weight regain (WR) and gastro-esophageal reflux disease (GERD), unresponsive to medical management, are two most common indications for conversion of sleeve gastrectomy (SG) to Roux-en-Y gastric bypass (RYGB). This study reports detailed outcomes of conversion of SG to RYGB for these two indications separately. We interrogated our prospectively maintained database to identify patients who underwent a conversion of their SG to RYGB in our unit. Outcomes in patients converted for IWL/WR and those converted for GERD were evaluated separately. We carried out 22 SG to RYGB in our unit between Aug 2012 and April 2015 with a mean follow-up of 16 months. Indication for conversion was GERD in 10/22 (45.5%) patients and IWL/WR in 11/22 (50.0%) patients. Patients undergoing conversion for GERD were significantly lighter (BMI 30.5) than those converted for IWL/WR (BMI 43.3) at the time of conversion. The conversion was very effective for GERD with 100% patients reporting improvement in symptoms, and 80% patients were able to stop their antacid medications. IWL/WR group achieved a further BMI drop of 2.5 points 2 years after surgery (final BMI 40.8) in comparison with 2.0 points BMI drop achieved by the GERD group (final BMI 28.5). This study demonstrates that conversion of SG to RYGB is effective for GERD symptoms but not for further weight loss, which was modest in both groups. Future studies need to examine the best revisional procedure for IWL/WR after SG.

  9. The Development of Teacher Assessment Identity through Participation in Online Moderation

    ERIC Educational Resources Information Center

    Adie, Lenore

    2013-01-01

    Teachers' professional conversations regarding the qualities evidenced in student work provide opportunities to develop a shared understanding of achievement standards. This research investigates social moderation conducted in a synchronous online mode as a specific form of professional conversation. The discussion considers the different factors…

  10. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    PubMed

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  11. Starbon/High-Amylose Corn Starch-Supported N-Heterocyclic Carbene-Iron(III) Catalyst for Conversion of Fructose into 5-Hydroxymethylfurfural.

    PubMed

    Matharu, Avtar S; Ahmed, Suleiman; Almonthery, Badriya; Macquarrie, Duncan J; Lee, Yoon-Sik; Kim, Yohan

    2018-02-22

    Iron-N-heterocyclic carbene complexes (Fe-NHCs) have come to prominence because of their applicability in diverse catalytic reactions, ranging from C-C cross-coupling and C-X bond formation to substitution, reduction, polymerization, and dehydration reactions. The detailed synthesis, characterization, and application of novel heterogeneous Fe-NHC catalysts immobilized on mesoporous expanded high-amylose corn starch (HACS) and Starbon 350 (S350) for facile fructose conversion into 5-hydroxymethylfurfural (HMF) is reported. Both catalyst types showed good performance for the dehydration of fructose to HMF when the reaction was tested at 100 °C with varying time (10 min, 20 min, 0.5 h, 1 h, 3 h and 6 h). For Fe-NHC/S350, the highest HMF yield was 81.7 % (t=0.5 h), with a TOF of 169 h -1 , fructose conversion of 95 %, and HMF selectivity of 85.7 %, whereas for Fe-NHC/expanded HACS, the highest yield was 86 % (t=0.5 h), with a TOF of 206 h -1 , fructose conversion of 87 %, and HMF selectivity of 99 %. Iron loadings of 0.26 and 0.30 mmol g -1 were achieved for Fe-NHC/expanded starch and Fe-NHC/S350, respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy in Vitro and in Vivo

    PubMed Central

    Zhang, Jinfeng; Zhang, Jun; Li, Wenyue; Chen, Rui; Zhang, Zhenyu; Zhang, Wenjun; Tang, Yongbing; Chen, Xiaoyuan; Liu, Gang; Lee, Chun-Sing

    2017-01-01

    The development of nanoscaled theranostic agents for cancer combination therapies has received intensive attention in recent years. In this report, a degradable hollow mesoporous PEG-Si/C-DOX NP is designed and fabricated for pH-responsive, photoacoustic imaging-guided highly effective chemo-thermal combination therapy. The intrinsic hollow mesoporous structure endows the as-synthesized nanoparticles (NPs) with a high drug loading capacity (31.1%). Under NIR (808 nm) irradiation, the photothermal conversion efficiency of the Si/C NPs is as high as 40.7%. Preferential accumulation of the PEG-Si/C-DOX NPs around tumor tissue was demonstrated with photoacoustic images. Cellular internalization of the NPs and release of the DOX in nuclei are shown with fluorescent images. With efficient NIR photothermal conversion and high DOX loading capacity, the PEG-Si/C-DOX NPs are demonstrated to have remarkable cancer-cell-killing ability and to achieve complete in vivo tumor elimination via combinational chemo-thermal therapy. Last but not least, the NPs show good biodegradability and biosafety, making them a promising candidate for multifunctional drug delivery and cancer theranostic. PMID:28839460

  13. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  14. DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells.

    PubMed

    Wu, Jionghua; Xu, Xin; Zhao, Yanhong; Shi, Jiangjian; Xu, Yuzhuan; Luo, Yanhong; Li, Dongmei; Wu, Huijue; Meng, Qingbo

    2017-08-16

    DMF as an additive has been employed in FAI/MAI/IPA (FA= CH 2 (NH 2 ) 2 , MA = CH 3 NH 3 , IPA = isopropanol) solution for a two-step multicycle spin-coating method in order to prepare high-quality FA x MA 1-x PbI 2.55 Br 0.45 perovskite films. Further investigation reveals that the existence of DMF in the FAI/MAI/IPA solution can facilitate perovskite conversion, improve the film morphology, and reduce crystal defects, thus enhancing charge-transfer efficiency. By optimization of the DMF amount and spin-coating cycles, compact, pinhole-free perovskite films are obtained. The nucleation mechanisms of perovskite films in our multicycle spin-coating process are suggested; that is, the introduction of DMF in the spin-coating FAI/MAI/IPA solution can lead to the formation of an amorphous phase PbX 2 -AI-DMSO-DMF (X = I, Br; A = FA, MA) instead of intermediate phase (MA) 2 Pb 3 I 8 ·2DMSO. This amorphous phase, similar to that in the one-step method, can help FAI/MAI penetrate into the PbI 2 framework to completely convert into the perovskite. As high as 20.1% power conversion efficiency (PCE) has been achieved with a steady-state PCE of 19.1%. Our work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also help further understand the perovskite-crystallization process.

  15. Coupling of exothermic and endothermic reactions in oxidative conversion of natural gas into ethylene/olefins over diluted SrO/La{sub 2}O{sub 3}/SA5205 catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.

    1997-09-01

    In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less

  16. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.

    2008-07-01

    The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  17. Simultaneous enzymatic synthesis of FAME and triacetyl glycerol from triglycerides and methyl acetate.

    PubMed

    Usai, E M; Gualdi, E; Solinas, V; Battistel, E

    2010-10-01

    In the presence of methyl acetate triglycerides such as vegetable oils are transformed simultaneously into the corresponding fatty acid methyl esters and triacetyl glycerol (triacetin). The reaction, catalyzed by lipases, was studied as a function of some critical parameters, such as type of catalyst, enzyme hydration and immobilization support. The aim of the work was to achieve a conversion of the triglyceride as high as possible and to maximize the yield of the triacetin, the reaction end point. It was found that by using the immobilized lipase from Candida antarctica yields as high as 80% of both fatty acid esters and triacetin could be achieved. These results were obtained by carefully controlling the amount of water present in the reaction medium and the hydration level of the enzyme macromolecule. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  19. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.

    PubMed

    Iverson, Andrew; Garza, Erin; Manow, Ryan; Wang, Jinhua; Gao, Yuanyuan; Grayburn, Scott; Zhou, Shengde

    2016-04-16

    Anaerobic rather than aerobic fermentation is preferred for conversion of biomass derived sugars to high value redox-neutral and reduced commodities. This will likely result in a higher yield of substrate to product conversion and decrease production cost since substrate often accounts for a significant portion of the overall cost. To this goal, metabolic pathway engineering has been used to optimize substrate carbon flow to target products. This approach works well for the production of redox neutral products such as lactic acid from redox neutral sugars using the reducing power NADH (nicotinamide adenine dinucleotide, reduced) generated from glycolysis (2 NADH per glucose equivalent). Nevertheless, greater than two NADH per glucose catabolized is needed for the production of reduced products (such as xylitol) from redox neutral sugars by anaerobic fermentation. The Escherichia coli strain AI05 (ΔfrdBC ΔldhA ΔackA Δ(focA-pflB) ΔadhE ΔptsG ΔpdhR::pflBp 6-(aceEF-lpd)), previously engineered for reduction of xylose to xylitol using reducing power (NADH equivalent) of glucose catabolism, was further engineered by 1) deleting xylAB operon (encoding for xylose isomerase and xylulokinase) to prevent xylose from entering the pentose phosphate pathway; 2) anaerobically expressing the sdhCDAB-sucABCD operon (encoding for succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase) to enable an anaerobically functional tricarboxcylic acid cycle with a theoretical 10 NAD(P)H equivalent per glucose catabolized. These reducing equivalents can be oxidized by synthetic respiration via xylose reduction, producing xylitol. The resulting strain, AI21 (pAI02), achieved a 96 % xylose to xylitol conversion, with a yield of 6 xylitol per glucose catabolized (molar yield of xylitol per glucose consumed (YRPG) = 6). This represents a 33 % improvement in xylose to xylitol conversion, and a 63 % increase in xylitol yield per glucose catabolized over that achieved by AI05 (pAI02). Increasing reducing power (NADH equivalent) output per glucose catabolized was achieved by anaerobic expression of both the pdh operon (pyruvate dehydrogenase) and the sdhCDAB-sucABCD operon, resulting in a strain capable of generating 10 NADH equivalent per glucose under anaerobic condition. The new E. coli strain AI21 (pAI02) achieved an actual 96 % conversion of xylose to xylitol (via synthetic respiration), and 6 xylitol (from xylose) per glucose catabolized (YRPG = 6, the highest known value). This strategy can be used to engineer microbial strains for the production of other reduced products from redox neutral sugars using glucose as a source of reducing power.

  20. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  1. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  2. Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to Naïve Conversion

    PubMed Central

    Honda, Arata; Kawano, Yoshihiro; Izu, Haruna; Choijookhuu, Narantsog; Honsho, Kimiko; Nakamura, Tomonori; Yabuta, Yukihiro; Yamamoto, Takuya; Takashima, Yasuhiro; Hirose, Michiko; Sankai, Tadashi; Hishikawa, Yoshitaka; Ogura, Atsuo; Saitou, Mitinori

    2017-01-01

    Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics. PMID:28349944

  3. kW-class diode laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.

    2017-02-01

    Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.

  4. Integrated Microphotonic Receiver for Ka-Band

    NASA Technical Reports Server (NTRS)

    Levi, A. F. J.

    2005-01-01

    This report consists of four main sections. Part I: LiNbO3 microdisk resonant optical modulator. Brief review of microdisk optical resonator and RF ring resonator. Microwave and photonic design challenges for achieving simultaneous RF-optical resonance are addressed followed by our solutions. Part II: Experimental demonstration of LiNbO3 microdisk modulator performance in wired and wireless RF-optical links. Part III: Microphotonic RF receiver architecture that exploits the nonlinear modulation in the LiNbO3 microdisk modulator to achieve direct photonic down-conversion from RF carrier without using any high-speed electronic elements. Part IV: Ultimate sensitivity of the microdisk photonic receiver and the future road map toward a practical device.

  5. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under write/read cycles for a practical silicon-based device. NanoThermoMechanical rectification is achieved experimentally--for the first time--with measurements at a high temperature of 600 K, demonstrating the feasibility of NanoThermoMechanical to operate in harsh environments. The proof-of-concept device has shown a maximum rectification of 10.9%. This dissertation proposes using meshed photonic crystal structures to enhance NFTR between surfaces. Numerical results show thermal rectification as high as 2500%. Incorporating these structures in thermal memory and rectification devices will significantly enhance their functionality and performance.

  6. Orienting to Topic in Clinical Discourse Elicitation of Everyday Conversation

    ERIC Educational Resources Information Center

    Fond, Marissa Joanne

    2013-01-01

    Talking topically, as it is understood intuitively and evoked metadiscursively, requires constructing an intersubjective orientation to talk that must be continually renewed. Analysis of interactants' ability to orient to topic emergence provides evidence of what is achieved in interaction, as well as why conversational coordination can lapse…

  7. The Caring Approach and Social Issues in Management Education

    ERIC Educational Resources Information Center

    Burton, Brian K.; Dunn, Craig P.

    2005-01-01

    Most of the conversation, in both research and teaching circles, regarding stakeholder theory has been conducted in the language of absolute principles, of outcomes, and of responding to stakeholders to achieve organizational outcomes. More recently, conversations have occurred that have a different perspective on social issues in management…

  8. High-power single-pass pumped diamond Raman oscillator

    NASA Astrophysics Data System (ADS)

    Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.

  9. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  10. Development of a breadboard design of a high-performance, high-reliability switching regulator

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1975-01-01

    A comparison of two potential conversion methods, the series inverter and the inductive energy transfer (IET) conversion technique, is presented. The investigations showed that a characteristic of the series inverter circuit (high equalizing current values in each half cycle) could not be accomplished with available components, and the investigations continued with the IET circuit only. An IET circuit system was built with the use of computer-aided design in a 2, 4, and 8 stage configuration, and these stages were staggered 180, 90, and 45 degrees, respectively. All stages were pulsewidth modulated to regulate over an input voltage range from 200 to 400 volts dc at a regulated output voltage of 56 volts. The output power capability was 100 to 500 watts for the 2 and 8 stage configuration and 50 to 250 watts for the 4 stage configuration. Equal control of up to eight 45 degree staggered stages was accomplished through the use of a digital-to-analog control circuit. Equal power sharing of all stages was achieved through a new technique using an inductively coupled balancing circuit. Conclusions are listed.

  11. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    DOE PAGES

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; ...

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M 1 yM 2 1-yF x: M 1, M 2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution Cu yFe 1-yF 2, reversible Cu and Fe redox reactionsmore » are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu + dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.« less

  12. Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons

    DOE PAGES

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; ...

    2015-10-15

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn 0.5Ce 0.5O x solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn 0.5Ce 0.5O xmore » solid solution with an ultrahigh manganese doping concentration in the CeO 2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn 4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less

  13. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons

    PubMed Central

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; Zhang, Li; Wu, Zili; Yang, Shize; Shi, Hongliang; Zhu, Qiulian; Chen, Yinfei; Dai, Sheng

    2015-01-01

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn0.5Ce0.5Ox solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). The high activity can be attributed to the formation of a Mn0.5Ce0.5Ox solid solution with an ultrahigh manganese doping concentration in the CeO2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface. PMID:26469151

  14. Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching

    NASA Astrophysics Data System (ADS)

    Zhu, Danfeng; Zhang, Jinqiannan; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2018-07-01

    We propose a design of reciprocal optical diode based on asymmetric spatial mode conversion in multimode silicon waveguide on the silicon-on-insulator platform. The design possesses large bandwidth, high contrast ratio and high fabrication tolerance. The forward even-to-odd mode conversion and backward blockade of even mode are achieved by partial depth etching in the functional region. Simulated by three-dimension finite-difference time-domain method, the forward transmission efficiency is about -2.05 dB while the backward transmission efficiency is only -22.68 dB, reaching a highest contrast ratio of 0.983 at the wavelength of 1550 nm. The operational bandwidth is up to 200 nm (from 1450 nm to 1650 nm) with contrast ratio higher than 0.911. The numerical analysis also demonstrates that the proposed optical diode possesses high tolerance for geometry parameter errors which may be introduced in fabrication. The design based on partial depth etching is compatible with CMOS process and is expected to contribute to the silicon-based all-optical circuits.

  15. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    PubMed Central

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-01-01

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470

  16. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  17. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    PubMed Central

    Li, Ji-Guang; Sakka, Yoshio

    2015-01-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out. PMID:27877750

  18. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors

    PubMed Central

    Perenzoni, Matteo; Pancheri, Lucio; Stoppa, David

    2016-01-01

    This paper reviews the state of the art of single-photon avalanche diode (SPAD) image sensors for time-resolved imaging. The focus of the paper is on pixel architectures featuring small pixel size (<25 μm) and high fill factor (>20%) as a key enabling technology for the successful implementation of high spatial resolution SPAD-based image sensors. A summary of the main CMOS SPAD implementations, their characteristics and integration challenges, is provided from the perspective of targeting large pixel arrays, where one of the key drivers is the spatial uniformity. The main analog techniques aimed at time-gated photon counting and photon timestamping suitable for compact and low-power pixels are critically discussed. The main features of these solutions are the adoption of analog counting techniques and time-to-analog conversion, in NMOS-only pixels. Reliable quantum-limited single-photon counting, self-referenced analog-to-digital conversion, time gating down to 0.75 ns and timestamping with 368 ps jitter are achieved. PMID:27223284

  19. Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage.

    PubMed

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping

    2016-09-28

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS 2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-Li x MoS 2 , a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS 2 . Transmission electron microscopy studies reveal that the interconnected MoS 2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. These studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.

  20. Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers.

    PubMed

    Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo

    2017-10-25

    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.

  1. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    PubMed

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Electrical efficiency and droop in MQW LEDs

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.

    2014-02-01

    It is believed that low power conversion efficiency in commercial MQW LEDs occurs as a result of efficiency droop, current-induced dynamic degradation of the internal quantum efficiency, injection efficiency, and extraction efficiency. Broadly speaking, all these "quenching" mechanisms could be referred to as the optical losses. The vast advances of high-power InGaN and AlGaInP MQW LEDs have been achieved by addressing these losses. In contrast to these studies, in this paper we consider an alternative approach to make high-power LEDs more efficient. We identify current-induced electrical efficiency degradation (EED) as a strong limiting factor of power conversion efficiency. We found that EED is caused by current crowding followed by an increase in current-induced series resistance of a device. By decreasing the current spreading length, EED also causes the optical efficiency to degrade and stands for an important aspect of LED performance. This paper gives scientists the opportunity to look for different attributes of EED.

  3. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.

    PubMed

    Tran, Dang-Thuan; Yeh, Kuei-Ling; Chen, Ching-Lung; Chang, Jo-Shu

    2012-03-01

    An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp. C20. The conversion of the microalgae oil to biodiesel was conducted by transesterification of the extracted microalgal oil (M-I) and by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol to oil molar ratio (>67.93) when using the M-II approach, and can be repeatedly used for six cycles (or 288 h) without significant loss of its original activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Defining the optimal dose of rifapentine for pulmonary tuberculosis: Exposure–response relations from two phase II clinical trials

    PubMed Central

    Savic, RM; MacKenzie, WR; Engle, M; Whitworth, WC; Johnson, JL; Nsubuga, P; Nahid, P; Nguyen, NV; Peloquin, CA; Dooley, KE; Dorman, SE

    2017-01-01

    Rifapentine is a highly active antituberculosis antibiotic with treatment‐shortening potential; however, exposure–response relations and the dose needed for maximal bactericidal activity have not been established. We used pharmacokinetic/pharmacodynamic data from 657 adults with pulmonary tuberculosis participating in treatment trials to compare rifapentine (n = 405) with rifampin (n = 252) as part of intensive‐phase therapy. Population pharmacokinetic/pharmacodynamic analyses were performed with nonlinear mixed‐effects modeling. Time to stable culture conversion of sputum to negative was determined in cultures obtained over 4 months of therapy. Rifapentine exposures were lower in participants who were coinfected with human immunodeficiency virus, black, male, or fasting when taking drug. Rifapentine exposure, large lung cavity size, and geographic region were independently associated with time to culture conversion in liquid media. Maximal treatment efficacy is likely achieved with rifapentine at 1,200 mg daily. Patients with large lung cavities appear less responsive to treatment, even at high rifapentine doses. PMID:28124478

  5. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    NASA Astrophysics Data System (ADS)

    Li, Ji-Guang; Sakka, Yoshio

    2015-02-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.

  6. Attempted - to -Phase Conversion of Croconic Acid via Ball Milling

    DTIC Science & Technology

    2017-05-18

    extended milling times may degrade the material. 15. SUBJECT TERMS ball milling, croconic acid, Hertzian stress , C5H2O5, extended solid 16. SECURITY...the motion of the Wig-L-Bug ball mill; from this motion it was possible to determine the velocity parameters needed for Hertzian stress ...Milling Pressures The high pressures achievable in this type of mill result from stresses that develop in the milled material as it is trapped between

  7. In-depth analysis of chloride treatments for thin-film CdTe solar cells

    PubMed Central

    Major, J. D.; Al Turkestani, M.; Bowen, L.; Brossard, M.; Li, C.; Lagoudakis, P.; Pennycook, S. J.; Phillips, L. J.; Treharne, R. E.; Durose, K.

    2016-01-01

    CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies. PMID:27775037

  8. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less

  9. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less

  10. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  11. Retrofit Weight-Loss Outcomes at 6, 12, and 24 Months and Characteristics of 12-Month High Performers: A Retrospective Analysis.

    PubMed

    Painter, Stefanie; Ditsch, Gary; Ahmed, Rezwan; Hanson, Nicholas Buck; Kachin, Kevin; Berger, Jan

    2016-08-22

    Obesity is the leading cause of preventable death costing the health care system billions of dollars. Combining self-monitoring technology with personalized behavior change strategies results in clinically significant weight loss. However, there is a lack of real-world outcomes in commercial weight-loss program research. Retrofit is a personalized weight management and disease-prevention solution. This study aimed to report Retrofit's weight-loss outcomes at 6, 12, and 24 months and characterize behaviors, age, and sex of high-performing participants who achieved weight loss of 10% or greater at 12 months. A retrospective analysis was performed from 2011 to 2014 using 2720 participants enrolled in a Retrofit weight-loss program. Participants had a starting body mass index (BMI) of >25 kg/m² and were at least 18 years of age. Weight measurements were assessed at 6, 12, and 24 months in the program to evaluate change in body weight, BMI, and percentage of participants who achieved 5% or greater weight loss. A secondary analysis characterized high-performing participants who lost ≥10% of their starting weight (n=238). Characterized behaviors were evaluated, including self-monitoring through weigh-ins, number of days wearing an activity tracker, daily step count average, and engagement through coaching conversations via Web-based messages, and number of coaching sessions attended. Average weight loss at 6 months was -5.55% for male and -4.86% for female participants. Male and female participants had an average weight loss of -6.28% and -5.37% at 12 months, respectively. Average weight loss at 24 months was -5.03% and -3.15% for males and females, respectively. Behaviors of high-performing participants were assessed at 12 months. Number of weigh-ins were greater in high-performing male (197.3 times vs 165.4 times, P=.001) and female participants (222 times vs 167 times, P<.001) compared with remaining participants. Total activity tracker days and average steps per day were greater in high-performing females (304.7 vs 266.6 days, P<.001; 8380.9 vs 7059.7 steps, P<.001, respectively) and males (297.1 vs 255.3 days, P<.001; 9099.3 vs 8251.4 steps, P=.008, respectively). High-performing female participants had significantly more coaching conversations via Web-based messages than remaining female participants (341.4 vs 301.1, P=.03), as well as more days with at least one such electronic message (118 vs 108 days, P=.03). High-performing male participants displayed similar behavior. Participants on the Retrofit program lost an average of -5.21% at 6 months, -5.83% at 12 months, and -4.09% at 24 months. High-performing participants show greater adherence to self-monitoring behaviors of weighing in, number of days wearing an activity tracker, and average number of steps per day. Female high performers have higher coaching engagement through conversation days and total number of coaching conversations.

  12. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.

    PubMed

    Wang, Wei; Feng, Wenliang; Du, Jun; Xue, Weinan; Zhang, Linlin; Zhao, Leilei; Li, Yan; Zhong, Xinhua

    2018-03-01

    The improvement of sunlight utilization is a fundamental approach for the construction of high-efficiency quantum-dot-based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn-Cu-In-Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO 2 films via the control of the interactions between QDs and TiO 2 films using 3-mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe-alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon-to-electron conversion efficiency is significantly improved over single QD-based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (V oc = 0.752 V, J sc = 27.39 mA cm -2 , FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid-junction QD-based solar cells reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Durga, Ikkurthi Kanaka; Rao, S. Srinivasa; Reddy, Araveeti Eswar; Gopi, Chandu V. V. M.; Kim, Hee-Je

    2018-03-01

    Copper sulfide is an important multifunctional semiconductor that has attracted considerable attention owing to its outstanding properties and multiple applications, such as energy storage and electrochemical energy conversion. This paper describes a cost-effective and simple low-temperature solution approach to the preparation of copper sulfide for supercapacitors (SCs) and quantum-dot sensitized solar cells (QDSSCs). X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy confirmed that the nickel foam with a coriander leaf like nanostructure had been coated successfully with copper sulfide. As an electrode material for SCs, the CC-3 h showed excellent specific capacitance (5029.28 at 4 A g-1), energy density (169.73 W h kg-1), and superior cycling durability with 107% retention after 2000 cycles. Interestingly, the QDSSCs equipped with CC-2 h and CC-3 h counter electrodes (CEs) exhibited a maximum power conversion efficiency of 2.52% and 3.48%, respectively. The improved performance of the CC-3 h electrode was attributed mainly to the large surface area (which could contribute sufficient electroactive species), good conductivity, and high electrocatalytic activity. Overall, this work delivers novel insights into the use of copper sulfide and offers an important guidelines for the fabrication of next level energy storage and conversion devices.

  14. Current status and future prospects of power generators using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2011-12-01

    Electroactive polymer artificial muscle (EPAM), known collectively as dielectric elastomers in the literature, has been shown to offer unique capabilities as an actuator and is now being developed for a wide variety of generator applications. EPAM has several characteristics that make it potentially well suited for wave, water current, wind, human motion, and other environmental energy harvesting systems including a high energy density allowing for minimal EPAM material quantities, high energy conversion efficiency independent of frequency of operation and non-toxic and low-cost materials not susceptible to corrosion. Experiments have been performed on push-button and heel-mounted generator devices powered by human motion, ocean wave power harvesters mounted on buoys and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of EPAM. For example, an electrical energy conversion efficiency of over 70% was achieved with small wave heights. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely independent of size and it should eventually be possible to scale up EPAM generators to the megawatt level to address a variety of electrical power needs.

  15. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  16. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  17. Elucidation of conditions allowing conversion of penicillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Streptomyces clavuligerus NP1

    PubMed Central

    Cho, Hiroshi; Adrio, José L.; Luengo, José M.; Wolfe, Saul; Ocran, Simeon; Hintermann, Gilberto; Piret, Jacqueline M.; Demain, Arnold L.

    1998-01-01

    Using resting cells and extracts of Streptomyces clavuligerus NP1, we have been able to convert penicillin G (benzylpenicillin) to deacetoxycephalosporin G. Conversion was achieved by increasing by 45× the concentration of FeSO4 (1.8 mM) and doubling the concentration of α-ketoglutarate (1.28 mM) as compared with standard conditions used for the normal cell-free conversion of penicillin N to deacetoxycephalosporin C. ATP, MgSO4, KCl, and DTT, important in cell-free expansion of penicillin N, did not play a significant role in the ring expansion of penicillin G by resting cells or cell-free extracts. When these conditions were used with 14 other penicillins, ring expansion was achieved in all cases. PMID:9751702

  18. ATR technique, an appropriate method for determining the degree of conversion in dental giomers

    NASA Astrophysics Data System (ADS)

    Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara

    2016-12-01

    Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the ATR technique.

  19. Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

    PubMed

    Hengartner, M P; Heekeren, K; Dvorsky, D; Walitza, S; Rössler, W; Theodoridou, A

    2017-09-01

    The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics. A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23). Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, P<.05), whereas BS did not predict psychosis beyond mere chance (AUC=0.52, P=.730). Sensitivity and specificity were 0.83 and 0.47 for UHR, and 0.96 and 0.09 for BS. UHR plus BS achieved an AUC=0.66, with sensitivity and specificity of 0.75 and 0.56. In comparison, baseline antipsychotic medication yielded a predictive accuracy of AUC=0.62 (sensitivity=0.42; specificity=0.82). A multivariable prediction model comprising continuous measures of positive symptoms and verbal IQ achieved a substantially improved prognostic accuracy (AUC=0.85; sensitivity=0.86; specificity=0.85; positive predictive value=0.54; negative predictive value=0.97). We showed that BS have no predictive accuracy beyond chance, while UHR criteria poorly predict conversion to psychosis. Combining BS with UHR criteria did not improve the predictive accuracy of UHR alone. In contrast, dimensional measures of both positive symptoms and verbal IQ showed excellent prognostic validity. A critical re-thinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  1. Processing technology for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.

    1985-01-01

    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.

  2. High linearity current communicating passive mixer employing a simple resistor bias

    NASA Astrophysics Data System (ADS)

    Rongjiang, Liu; Guiliang, Guo; Yuepeng, Yan

    2013-03-01

    A high linearity current communicating passive mixer including the mixing cell and transimpedance amplifier (TIA) is introduced. It employs the resistor in the TIA to reduce the source voltage and the gate voltage of the mixing cell. The optimum linearity and the maximum symmetric switching operation are obtained at the same time. The mixer is implemented in a 0.25 μm CMOS process. The test shows that it achieves an input third-order intercept point of 13.32 dBm, conversion gain of 5.52 dB, and a single sideband noise figure of 20 dB.

  3. A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells.

    PubMed

    Loser, Stephen; Bruns, Carson J; Miyauchi, Hiroyuki; Ortiz, Rocío Ponce; Facchetti, Antonio; Stupp, Samuel I; Marks, Tobin J

    2011-06-01

    We report the synthesis, characterization, and first implementation of a naphtho[2,3-b:6,7-b']dithiophene (NDT)-based donor molecule in highly efficient organic photovoltaics (OPVs). When NDT(TDPP)(2) (TDPP = thiophene-capped diketopyrrolopyrrole) is combined with the electron acceptor PC(61)BM, a power conversion efficiency (PCE) of 4.06 ± 0.06% is achieved-a record for a PC(61)BM-based small-molecule OPV. The substantial PCE is attributed to the broad, high oscillator strength visible absorption, the ordered molecular packing, and an exceptional hole mobility of NDT(TDPP)(2). © 2011 American Chemical Society

  4. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer.

    PubMed

    Kim, Jong H; Liang, Po-Wei; Williams, Spencer T; Cho, Namchul; Chueh, Chu-Chen; Glaz, Micah S; Ginger, David S; Jen, Alex K-Y

    2015-01-27

    An effective approach to significantly increase the electrical conductivity of a NiOx hole-transporting layer (HTL) to achieve high-efficiency planar heterojunction perovskite solar cells is demonstrated. Perovskite solar cells based on using Cu-doped NiOx HTL show a remarkably improved power conversion efficiency up to 15.40% due to the improved electrical conductivity and enhanced perovskite film quality. General applicability of Cu-doped NiOx to larger bandgap perovskites is also demonstrated in this study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.

  6. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    PubMed

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has been demonstrated to be effective on hardwood and herbaceous biomass, making it truly feedstock flexible. Different options exist for integrating lignocellulosic sugar into sugar-using operations. A sugar conversion plant may be adjacent to a CLE Sugar plant, and the CLE Sugar can be concentrated from the initial 10% sugar as needed. Concentrated sugars, however, can be shipped to remote sites such as ethanol plants or other sugar users. In such cases, options for shipping a dense form of sugars include (1) pretreated biomass with enzyme addition, (2) lignocellulosic sugar syrup, and (3) lignocellulosic sugar solid. These could provide the advantage of maximizing the use of existing assets.

  7. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators

    NASA Astrophysics Data System (ADS)

    Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko

    2017-10-01

    We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.

  8. New yellow Ba 0.93Eu 0.07Al 2O 4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Budai, John D.; Liu, Feng

    2013-01-01

    Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba 0.93Eu 0.07Al 2O 4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80more » were readily achieved when combining the Ba 0.93Eu 0.07Al 2O 4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.« less

  9. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    PubMed

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  11. Zr-ZrO2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.

    2003-03-01

    High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.

  12. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    PubMed

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  13. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  14. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  15. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    PubMed

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Novel Solid-State Solar Cell Based on Hole-Conducting MOF-Sensitizer Demonstrating Power Conversion Efficiency of 2.1.

    PubMed

    Ahn, Do Young; Lee, Deok Yeon; Shin, Chan Yong; Bui, Hoa Thi; Shrestha, Nabeen K; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan

    2017-04-19

    This work reports on designing of first successful MOF-sensitizer based solid-state photovoltaic device, perticularly with a meaningful output power conversion efficiency. In this study, an intrinsically conductive cobalt-based MOFs (Co-DAPV) formed by the coordination between Co (II) ions and a redox active di(3-diaminopropyl)-viologen (i.e., DAPV) ligand is investigated as sensitizer. Hall-effect measurement shows p-type conductivity of the Co-DAPV film with hole mobility of 0.017 cm 2 V -1 s -1 , suggesting its potential application as hole transporting sensitizer. Further, the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of Co-DAPV are well-matched to be suitably employed for sensitizing TiO 2 . Thus, by layer-by-layer deposition of hole conducting MOF-sensitizer onto mesoporous TiO 2 film, a power conversion efficiency of as high as 2.1% is achieved, which exceeds the highest efficiency values of MOF-sensitized liquid-junction solar cells reported so far.

  17. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    PubMed

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  19. Efficient and Selective Electrochemical and Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan using Water as the Hydrogen Source

    DOE PAGES

    Roylance, John J.; Kim, Tae Woo; Choi, Kyoung-Shin

    2016-02-17

    Reductive biomass conversion has been conventionally conducted using H 2 gas under high-temperature and-pressure conditions. Here, efficient electrochemical reduction of 5-hydroxymethylfurfural (HMF), a key intermediate for biomass conversion, to 2,5-bis(hydroxymethyl)furan (BHMF), an important monomer for industrial processes, was demonstrated using Ag catalytic electrodes. This process uses water as the hydrogen source under ambient conditions and eliminates the need to generate and consume H 2 for hydrogenation, providing a practical and efficient route for BHMF production. By systematic investigation of HMF reduction on the Ag electrode surface, BHMF production was achieved with the Faradaic efficiency and selectivity nearing 100%, and plausiblemore » reduction mechanisms were also elucidated. Furthermore, construction of a photoelectrochemical cell (PEC) composed of an n-type BiVO 4 semiconductor anode, which uses photogenerated holes for water oxidation, and a catalytic Ag cathode, which uses photoexcited electrons from BiVO 4 for the reduction of HMF to BHMF, was demonstrated to utilize solar energy to significantly decrease the external voltage necessary for HMF reduction. This shows the possibility of coupling electrochemical HMF reduction and solar energy conversion, which can provide more efficient and environmentally benign routes for reductive biomass conversion.« less

  20. Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging

    PubMed Central

    Deng, Kerong; Hou, Zhiyao; Li, Xuejiao; Li, Chunxia; Zhang, Yuanxin; Deng, Xiaoran; Cheng, Ziyong; Lin, Jun

    2015-01-01

    Multifunctional nanocarriers for targeted bioimaging and drug delivery have attracted much attention in early diagnosis and therapy of cancer. In this work, we develop a novel aptamer-guided nanocarrier based on the mesoporous metal-organic framework (MOF) shell and up-conversion luminescent NaYF4:Yb3+/Er3+ nanoparticles (UCNPs) core for the first time to achieve these goals. These UCNPs, chosen as optical labels in biological assays and medical imaging, could emit strong green emission under 980 nm laser. The MOF structure based on iron (III) carboxylate materials [MIL-100 (Fe)] possesses high porosity and non-toxicity, which is of great value as nanocarriers for drug storage/delivery. As a unique nanoplatform, the hybrid inorganic-organic drug delivery vehicles show great promising for simultaneous targeted labeling and therapy of cancer cells. PMID:25597762

  1. All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1.

    PubMed

    Lee, Ju Han; Kikuchi, Kazuro; Nagashima, Tatsuo; Hasegawa, Tomoharu; Ohara, Seiki; Sugimoto, Naoki

    2005-04-18

    We experimentally demonstrate the use of our fabricated 1-m-long Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal.

  2. Let Us Talk about Our Rights.

    ERIC Educational Resources Information Center

    Seleoane, Mandla

    This monograph attempts to familiarize people with their constitutional rights through the use of a playlet presented as a conversation among three people. The conversation points out that many rights stand in conflict with one another and how a balancing act must be achieved to carry out the enjoyment of one's rights. The monograph proceeds on…

  3. Opportunities Lost: Local Translations of Advocacy Policy Conversations

    ERIC Educational Resources Information Center

    Ares, Nancy; Buendia, Edward

    2007-01-01

    Background/Context: Policy documents such as Title I of the No Child Left Behind Act [NCLB] (2001) direct schools and school systems to funnel resources to students based on their socioeconomic and linguistic status, as well as according to performance on standardized measures of achievement. Such conversations in the US about serving "at…

  4. 12 CFR 563b.105 - What information must I include in my business plan?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... achieve your planned deployment of conversion proceeds in your proposed market areas, and how your... lending needs in your proposed market areas. OTS strongly discourages business plans that provide for a... properly managed leverage strategy. (3) The risks associated with your plan for deployment of conversion...

  5. Robust and efficient enzymatic saccharification of softwoods by SPORL

    Treesearch

    J.Y. Zhu; X.J. Pan; W. Zhu; G.S. Wang; R. Gleisner

    2009-01-01

    This study demonstrated Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) for robust conversion of softwood through enzymatic hydrolysis. At a sodium bisulfite charge around 9%, over 90% cellulose conversion could be achieved when spruce wood chips were pretreated at 180°C with pH near 2. For lodgepole pine, pretreatment liquor initial...

  6. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  7. Three-Dimensional Array of TiN@Pt3Cu Nanowires as an Efficient Porous Electrode for the Lithium-Oxygen Battery.

    PubMed

    Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue

    2017-02-28

    The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.

  8. Experimental study of cavity configurations for dye lasers pumped by a copper vapor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Chaunshun; Sun Wei

    1988-04-01

    Four cavity configurations are considered for dye lasers pumped transversely by a CuBr laser at high pulse repetition frequencies. Their operating characteristics are compared. Optimum performance is found for a double-prism expander cavity equipped with a Littrow mounted grating. A single longitudinal mode lasing in the 598--640 nm range was achieved with a linewidth of 0.0012 nm and a conversion of efficiency of 7.5%, respectively. The amplified spontaneous emission was 1.5%.

  9. Compact and efficient blue laser sheet for measurement

    NASA Astrophysics Data System (ADS)

    Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia

    2017-10-01

    Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    RF Kristensen; JF Beausang; DM DePoy

    Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

  11. Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V.

    PubMed

    Liu, Wenqing; Li, Shuixing; Huang, Jiang; Yang, Shida; Chen, Jiehuan; Zuo, Lijian; Shi, Minmin; Zhan, Xiaowei; Li, Chang-Zhi; Chen, Hongzheng

    2016-11-01

    Small-molecule nonfullerene-based tandem organic solar cells (OSCs) are fabricated for the first time by utilizing P3HT:SF(DPPB) 4 and PTB7-Th:IEIC bulk heterojunctions as the front and back subcells, respectively. A power conversion efficiency of 8.48% is achieved with an ultrahigh open-circuit voltage of 1.97 V, which is the highest voltage value reported to date among efficient tandem OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  13. Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1975-01-01

    An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.

  14. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    PubMed Central

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-01-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466

  15. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Anthony H.

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  16. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu

    Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less

  18. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  19. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    PubMed

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Fundamental limits of ultrathin metasurfaces

    PubMed Central

    Arbabi, Amir; Faraon, Andrei

    2017-01-01

    We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739

  1. Application of Fenton oxidation to cosmetic wastewaters treatment.

    PubMed

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  2. LYSO based precision timing calorimeters

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beamsmore » for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.« less

  3. [Development of chlorophyll concentration nondestructive measurement instrument based on spectral analysis technology].

    PubMed

    Li, Qing-Bo; Xu, Yu-Po; Zhang, Chao-Hang; Zhang, Guang-Jun; Wu, Jin-Guang

    2009-10-01

    A portable nondestructive measuring instrument for plant chlorophyll was developed, which can perform real-time, quick and nondestructive measurement of chlorophyll. The instrument is mainly composed of four parts, including leaves clamp, driving circuit of light source, photoelectric detection and signal conditioning circuit and micro-control system. A new scheme of light source driving was proposed, which can not only achieve constant current, but also control the current by digital signal. The driving current can be changed depending on different light source and measurement situation by actual operation, which resolves the matching problem of output intensity of light source and input range of photoelectric detector. In addition, an integrative leaves clamp was designed, which simplified the optical structure, enhanced the stability of apparatus, decreased the loss of incident light and improved the signal-to-noise ratio and precision. The photoelectric detection and signal conditioning circuit achieve the conversion between optical signal and electrical signal, and make the electrical signal meet the requirement of AD conversion, and the photo detector is S1133-14 of Hamamatsu Company, with a high detection precision. The micro-control system mainly achieves control function, dealing with data, data storage and so on. As the most important component, microprocessor MSP430F149 of TI Company has many advantages, such as high processing speed, low power, high stability and so on. And it has an in-built 12 bit AD converter, so the data-acquisition circuit is simpler. MSP430F149 is suitable for portable instrument. In the calibration experiment of the instrument, the standard value was measured by chlorophyll meter SPAD-502, multiple linear calibration models were built, and the instrument performance was evaluated. The correlation coefficient between chlorophyll prediction value and standard value is 0.97, and the root mean square error of prediction is about 1.3 SPAD. In the evaluation experiment of the instrument repeatability, the root mean square error is 0.1 SPAD. Results of the calibration experiment show that the instrument has high measuring precision and high stability.

  4. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannone, Greg; Thomas, John F; Reale, Michael

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less

  5. 980 nm tapered lasers with photonic crystal structure for low vertical divergence

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua

    2016-10-01

    High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.

  6. AMTEC: Current status and vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, G.C.; Hunt, T.K.; Sievers, R.K.

    1997-12-31

    The recent history of alkali metal thermal-to-electric conversion (AMTEC) has been tantalizing as technical advances have struck down most of the remaining barriers for realization of practical applications. AMTEC has always offered promise with its inherently noise-free, vibration-free, and high efficiency operation. Today`s AMTEC cells are also compact, lightweight and reliable, achieving near 20% conversion efficiency. Pathways have been defined that should lead to efficiencies of 30% or higher within two years. Prototype AMTEC devices are being built today for applications ranging from powering deep space probes (100--150 W) to residential appliance cogeneration (350--500 W) to remote and portable powermore » units (10--500 W). Multi-kilowatt systems may be only two years away. Current designs have power densities of 100--200 W/kg. Where is AMTEC technology at the start of the new millennium? Performance will exceed the numbers given above with the power capacity reaching 10 kW or more. These high power systems will also provide 100 volts or more when desired. Some AMTEC devices may be designed to operate at input temperatures well below that required today (800--900 C), providing more flexibility on the choice of heat source. Realization of industrial and consumer applications for AMTEDC will depend on manufacturing economies achieved through simplification of cell fabrication and high volume production. Advanced Modular Power Systems, Inc. is developing AMTEC manufacturing technology which may lead to costs under $25/watt within two years and under $1/watt eventually. At this cost, AMTEC devices will find broad consumer, and industrial applications.« less

  7. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  8. Conversion efficiency of skutterudite-based thermoelectric modules.

    PubMed

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

  9. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  10. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  11. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckel, E. R.; Berchtold, K. A.; Nie, J.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less

  12. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    NASA Astrophysics Data System (ADS)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-11-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  13. Dopant-Free Tetrakis-Triphenylamine Hole Transporting Material for Efficient Tin-Based Perovskite Solar Cells.

    PubMed

    Ke, Weijun; Priyanka, Pragya; Vegiraju, Sureshraju; Stoumpos, Constantinos C; Spanopoulos, Ioannis; Soe, Chan Myae Myae; Marks, Tobin J; Chen, Ming-Chou; Kanatzidis, Mercouri G

    2018-01-10

    Developing dopant-free hole transporting layers (HTLs) is critical in achieving high-performance and robust state-of-the-art perovskite photovoltaics, especially for the air-sensitive tin-based perovskite systems. The commonly used HTLs require hygroscopic dopants and additives for optimal performance, which adds extra cost to manufacturing and limits long-term device stability. Here we demonstrate the use of a novel tetrakis-triphenylamine (TPE) small molecule prepared by a facile synthetic route as a superior dopant-free HTL for lead-free tin-based perovskite solar cells. The best-performing tin iodide perovskite cells employing the novel mixed-cation ethylenediammonium/formamidinium with the dopant-free TPE HTL achieve a power conversion efficiency as high as 7.23%, ascribed to the HTL's suitable band alignment and excellent hole extraction/collection properties. This efficiency is one of the highest reported so far for tin halide perovskite systems, highlighting potential application of TPE HTL material in low-cost high-performance tin-based perovskite solar cells.

  14. Planar heterojunction perovskite solar cells with superior reproducibility

    PubMed Central

    Jeon, Ye-Jin; Lee, Sehyun; Kang, Rira; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Seung-Hoon; Kim, Seok-Soon; Yun, Jin-Mun; Kim, Dong-Yu

    2014-01-01

    Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method. PMID:25377945

  15. Study of series-connected polymer tandem solar cells based on a highly efficient donor material of PTB7-Th

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Gao, Xiumin; Xin, Qing; Lin, Jun; Zhao, Jufeng

    2017-06-01

    A highly efficient donor polymer, PTB7-Th, combined with acceptor fullerene PC71BM was introduced as the subcell in the series-connected tandem devices to achieve high-performance polymer tandem solar cells. Design of the device architecture was investigated using modeling and simulation methods to identify the optimal structure and to predict performance of the tandem cells. To address the challenge of current matching between the constituent subcells, the effect of active layer thickness, different device structure, and use of ultrathin Ag film were analyzed. It was found that the distribution of optical intensity in the tandem structure can be optimized through the optical spacer effect of interfacial layers and micro-cavity effect derived from the embedded ultrathin Ag film. Our results indicate that the efficient light utilization with appropriate subcells can allow achievement of power conversion efficiency of 12%, which can be 25% higher than that of a single cell of PTB7-Th.

  16. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass.

    PubMed

    Gräsvik, John; Winestrand, Sandra; Normark, Monica; Jönsson, Leif J; Mikkola, Jyri-Pekka

    2014-04-30

    Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance.

  17. Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass

    PubMed Central

    2014-01-01

    Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378

  18. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  19. Engineering yeasts for raw starch conversion.

    PubMed

    van Zyl, W H; Bloom, M; Viktor, M J

    2012-09-01

    Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10 % of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.

  20. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belfort, Georges; Grimaldi, Joseph J.

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), andmore » (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the presence of glycocalyx filaments coating the luminal surface of our vasculature and represent a new class of synthetic membranes. They thus meet the requirements/scope of the Bimolecular Materials program, Materials Science and Engineering Div., Office of Science, US DOE.« less

Top