Science.gov

Sample records for achieving highly efficient

  1. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  2. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    PubMed

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented. PMID:24973297

  3. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites.

    PubMed

    Vankayala, Raviraj; Chiang, Chi-Shiun; Chao, Jui-I; Yuan, Chiun-Jye; Lin, Shyr-Yeu; Hwang, Kuo Chu

    2014-09-01

    Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented.

  4. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  5. Achieving high performance polymer optoelectronic devices for high efficiency, long lifetime and low fabrication cost

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C

  6. Progress toward achieving high power and high efficiency semipolar LEDs and their characterization

    NASA Astrophysics Data System (ADS)

    Zhong, Hong

    Performance of current commercially available wurtzite nitride based light-emitting diodes (LEDs), grown along the polar (0001) c-plane orientation, is limited by the presence of polarization-related electric fields inside multi-quantum wells (MQWs). The discontinuities in both spontaneous and piezoelectric polarization at the heterointerfaces result in internal electric fields in the quantum wells. These electric fields cause carrier separation [quantum confined Stark effect (QCSE)] and reduce the radiative recombination rate within the quantum wells. One approach to reduce and possibly eliminate the polarization-related effects is to grow III-nitride devices on crystal planes that are inclined with respect to the c-axis, i.e., on semipolar planes. In this dissertation, metalorganic chemical vapor deposition (MOCVD) has been employed for the homoepitaxial growth of GaN based LEDs on semipolar orientations. As a consequence of growing on high-quality bulk GaN substrates, the LEDs have significantly reduced threading dislocation and stacking fault densities, resulting in remarkable improvements in EQE and output power. High efficiency semipolar (1011) violet-blue and blue LEDs have been demonstrated without any intentional effort to enhance the light extraction from those devices. Optimizations of epitaxial structures have led to increased output power and external quantum efficiency. A silicone encapsulated single quantum well blue LED with peak wavelength of 444 nm with output power of 24.3 mW, external quantum efficiency of 43% and luminous efficacy of 75 lm/W (with phosphorescent coating) at 20 mA has been demonstrated. Polarization fields in strained (1011) and (112¯2) InGaN quantum wells have been experimentally determined through bias-dependent optical studies. Our results show that the polarization field flips its direction in semipolar InGaN quantum wells with large inclination angles (i.e. around 60°). This suggests that there exists a polarization

  7. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.

    PubMed

    Wu, Jingjie; Yadav, Ram Manohar; Liu, Mingjie; Sharma, Pranav P; Tiwary, Chandra Sekhar; Ma, Lulu; Zou, Xiaolong; Zhou, Xiao-Dong; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2015-05-26

    The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed COOH and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

  8. Controlling surface enrichment in polymeric hole extraction layers to achieve high-efficiency organic photovoltaic cells.

    PubMed

    Kim, Dong-Hun; Lim, Kyung-Geun; Park, Jong Hyeok; Lee, Tae-Woo

    2012-10-01

    Hole extraction in organic photovoltaic cells (OPVs) can be modulated by a surface-enriched layer formed on top of the conducting polymer-based hole extraction layer (HEL). This tunes the surface work function of the HEL to better align with the ionization potential of the polymeric photoactive layer. Results show noticeable improvement in device power conversion efficiencies (PCEs) in OPVs. We achieved a 6.1 % PCE from the OPV by optimizing the surface-enriched layer.

  9. Swine herds achieve high performance by culling low lifetime efficiency sows in early parity.

    PubMed

    Takanashi, Ariko; McTaggart, Iain; Koketsu, Yuzo

    2011-11-01

    Sow lifetime performance and by-parity performance were analyzed using a 3 by 3 factorial design, comprising 3 herd productivity groups and 3 sow efficiency groups. Data was obtained from 101 Japanese herds, totaling 173,526 parity records of 34,929 sows, for the years 2001 to 2006. Sows were categorized into 3 groups based on the lower and upper 25th percentiles of the annualized lifetime pigs born alive: low lifetime efficiency sows (LE sows), intermediate lifetime efficiency sows or high lifetime efficiency sows. Herds were grouped on the basis of the upper and lower 25th percentiles of pigs weaned per mated female per year, averaged over 6 years: high-, intermediate- or low-performing herds. Mixed-effects models were used for comparisons. LE sows in high-performing herds had 57.8 fewer lifetime nonproductive days and 0.5 earlier parity at removal than those in low-performing herds (P<0.05). The number of pigs born alive of LE sows continuously decreased from parity 1 to 5, whereas those of high lifetime efficiency sows gradually increased from parity 1 to 4 before decreasing up to parity ≥ 6 (P<0.05). In conclusion, the LE sows have a performance pattern of decreasing number of pigs born alive across parity. The present study also indicates that high-performing herds culled potential LE sows earlier than the other herds.

  10. A Strategy to Achieve High-Efficiency Organolead Trihalide Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Andalibi, Shabnam; Rostami, Ali; Darvish, Ghafar; Moravvej-Farshi, Mohammad Kazem

    2016-11-01

    Recent theoretical and experimental reports have shown that organometal lead halide perovskite solar cells have attracted attention as a low-cost photovoltaic technology offering high power conversion efficiency. However, the photovoltaic efficiency of these materials is still limited by poor chemical and structural stability in the case of methylammonium lead triiodide and by large bandgap in the case of methylammonium lead tribromide or trichloride. To obtain high-performance devices, we have investigated the computationally optimal efficiency for these materials using the detailed-balance method and present optimal intermediate-band perovskite solar cells with high open-circuit voltage. We model different halide perovskites using density function theory calculations and study their bandgap and absorption coefficient. Based on calculation results, surprisingly Hg doping in different halide perovskites introduces a narrow partially filled intermediate band in the forbidden bandgap. We investigate electrical and optical properties of MAPb0.97Hg0.03I3, MAPb0.96Hg0.04Br3, and MAPb0.96Hg0.04Cl3 and calculate the high absorption efficiency of the different perovskite structures to create thin films suitable for photovoltaic devices.

  11. A Strategy to Achieve High-Efficiency Organolead Trihalide Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Andalibi, Shabnam; Rostami, Ali; Darvish, Gafar; Moravvej-Farshi, Mohammad Kazem

    2016-07-01

    Recent theoretical and experimental reports have shown that organometal lead halide perovskite solar cells have attracted attention as a low-cost photovoltaic technology offering high power conversion efficiency. However, the photovoltaic efficiency of these materials is still limited by poor chemical and structural stability in the case of methylammonium lead triiodide and by large bandgap in the case of methylammonium lead tribromide or trichloride. To obtain high-performance devices, we have investigated the computationally optimal efficiency for these materials using the detailed-balance method and present optimal intermediate-band perovskite solar cells with high open-circuit voltage. We model different halide perovskites using density function theory calculations and study their bandgap and absorption coefficient. Based on calculation results, surprisingly Hg doping in different halide perovskites introduces a narrow partially filled intermediate band in the forbidden bandgap. We investigate electrical and optical properties of MAPb0.97Hg0.03I3, MAPb0.96Hg0.04Br3, and MAPb0.96Hg0.04Cl3 and calculate the high absorption efficiency of the different perovskite structures to create thin films suitable for photovoltaic devices.

  12. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, L.

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  13. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect

    Brand, Larry

    2012-03-01

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit (PARR) team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  14. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology

    SciTech Connect

    Hollomon, Brad

    2003-08-01

    The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of energy-efficient, packaged unitary ''rooftop'' air conditioners. The procurement encouraged air conditioner manufacturers to produce equipment that exceeded US energy efficiency standards by at least 25% at a lower life-cycle cost. An outgrowth of the project, a web-based cost estimator tool is now available to help consumers determine the cost-effectiveness of purchasing energy-efficient air conditioners based on climate conditions and other factors at their own locations.

  15. Combination of molecular, morphological, and interfacial engineering to achieve highly efficient and stable plastic solar cells.

    PubMed

    Chang, Chih-Yu; Cheng, Yen-Ju; Hung, Shih-Hsiu; Wu, Jhong-Sian; Kao, Wei-Shun; Lee, Chia-Hao; Hsu, Chain-Shu

    2012-01-24

    A flexible solar device showing exceptional air and mechanical stability is produced by simultaneously optimizing molecular structure, active layer morphology, and interface characteristics. The PFDCTBT-C8-based devices with inverted architecture exhibited excellent power conversion efficiencies of 7.0% and 6.0% on glass and flexible substrates, respectively.

  16. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.

    PubMed

    Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae

    2016-09-26

    Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours. PMID:27604172

  17. Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite.

    PubMed

    Jun, Areum; Kim, Junyoung; Shin, Jeeyoung; Kim, Guntae

    2016-09-26

    Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site-specific and weather-dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni-YSZ (yttria-stabilized zirconia) and LSM (strontium-doped lanthanum manganites)-YSZ as electrodes. These electrodes, however, suffer from redox-instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2 O5+δ (PBM) and PrBa0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both-side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours.

  18. Poor Results for High Achievers

    ERIC Educational Resources Information Center

    Bui, Sa; Imberman, Scott; Craig, Steven

    2012-01-01

    Three million students in the United States are classified as gifted, yet little is known about the effectiveness of traditional gifted and talented (G&T) programs. In theory, G&T programs might help high-achieving students because they group them with other high achievers and typically offer specially trained teachers and a more advanced…

  19. An approach for an advanced anode interfacial layer with electron-blocking ability to achieve high-efficiency organic photovoltaics.

    PubMed

    Yeo, Jun-Seok; Yun, Jin-Mun; Kang, Minji; Khim, Dongyoon; Lee, Seung-Hoon; Kim, Seok-Soon; Na, Seok-In; Kim, Dong-Yu

    2014-11-26

    The interfacial properties of PEDOT:PSS, pristine r-GO, and r-GO with sulfonic acid (SR-GO) in organic photovoltaic are investigated to elucidate electron-blocking property of PEDOT:PSS anode interfacial layer (AIL), and to explore the possibility of r-GO as electron-blocking layers. The SR-GO results in an optimized power conversion efficiency of 7.54% for PTB7-th:PC71BM and 5.64% for P3HT:IC61BA systems. By combining analyses of capacitance-voltage and photovoltaic-parameters dependence on light intensity, it is found that recombination process at SR-GO/active film is minimized. In contrast, the devices using r-GO without sulfonic acid show trap-assisted recombination. The enhanced electron-blocking properties in PEDOT:PSS and SR-GO AILs can be attributed to surface dipoles at AIL/acceptor. Thus, for electron-blocking, the AIL/acceptor interface should be importantly considered in OPVs. Also, by simply introducing sulfonic acid unit on r-GO, excellent contact selectivity can be realized in OPVs.

  20. Highly Functional TNTs with Superb Photocatalytic, Optical, and Electronic Performance Achieving Record PV Efficiency of 10.1% for 1D-Based DSSCs.

    PubMed

    Qadir, Muhammad Bilal; Li, Yuewen; Sahito, Iftikhar Ali; Arbab, Alvira Ayoub; Sun, Kyung Chul; Mengal, Naveed; Memon, Anam Ali; Jeong, Sung Hoon

    2016-09-01

    Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices. PMID:27432775

  1. Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device.

    PubMed

    Huang, Jau-Jiun; Leung, Man-Kit; Chiu, Tien-Lung; Chuang, Ya-Ting; Chou, Pi-Tai; Hung, Yu-Hsiang

    2014-10-17

    The development of benzimidazole substituted biphenyls as electron-transporting hosts for bis[2-(4,6-difluorophenyl)pyridinato-C(2),N](picolinato)iridium(III) is reported. Under the optimized conditions, the organic light-emitting diode (OLED) achieves the maximum current efficiency of 57.2 cd/A, power efficiency of 50.4 lm/W, and external quantum efficiency 25.7%. PMID:25296531

  2. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect

    Wang, Qi; Ma, Dongge Ding, Junqiao; Wang, Lixiang; Leo, Karl; Qiao, Qiquan; Jia, Huiping; Gnade, Bruce E.

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  3. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability. PMID:26575476

  4. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability.

  5. Achieving energy efficiency during collective communications

    SciTech Connect

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run

  6. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  7. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating.

    PubMed

    Chann, B; Goyal, A K; Fan, T Y; Sanchez-Rubio, A; Volodin, B L; Ban, V S

    2006-05-01

    We report a method of scaling the spatial brightness from commercial off-the-shelf diode laser stacks through wavelength beam combining, by use of a linearly wavelength-chirped volume Bragg grating (VBG). Using a three-bar commercial stack of broad-area lasers and a VBG, we demonstrate 89.5 W cw of beam-combined output with a beam-combining efficiency of 75%. The output beam has a propagation factor M2 approximately 26 on the slow axis and M2 approximately 21 on the fast axis. This corresponds to a brightness of approximately 20 MW/cm2 sr. To our knowledge, this is the highest brightness broad-area diode laser system. We achieve 81% coupling efficiency into a 100 microm, 0.22 N.A. fiber.

  8. Mathematics Achievement in High- and Low-Achieving Secondary Schools

    ERIC Educational Resources Information Center

    Mohammadpour, Ebrahim; Shekarchizadeh, Ahmadreza

    2015-01-01

    This paper identifies the amount of variance in mathematics achievement in high- and low-achieving schools that can be explained by school-level factors, while controlling for student-level factors. The data were obtained from 2679 Iranian eighth graders who participated in the 2007 Trends in International Mathematics and Science Study. Of the…

  9. Achieving Energy Efficiency Through Real-Time Feedback

    SciTech Connect

    Nesse, Ronald J.

    2011-09-01

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  10. Using the network to achieve energy efficiency

    SciTech Connect

    Giglio, M.

    1995-12-01

    Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997. Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.

  11. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  12. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency

  13. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.

    PubMed

    Ayán-Varela, M; Paredes, J I; Guardia, L; Villar-Rodil, S; Munuera, J M; Díaz-González, M; Fernández-Sánchez, C; Martínez-Alonso, A; Tascón, J M D

    2015-05-20

    The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications. PMID:25915172

  14. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.

    PubMed

    Ayán-Varela, M; Paredes, J I; Guardia, L; Villar-Rodil, S; Munuera, J M; Díaz-González, M; Fernández-Sánchez, C; Martínez-Alonso, A; Tascón, J M D

    2015-05-20

    The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications.

  15. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  16. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  17. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.7 Water used to achieve energy efficiency....

  18. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  19. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    PubMed

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance.

  20. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  1. Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

  2. Self Regulated Learning of High Achievers

    ERIC Educational Resources Information Center

    Rathod, Ami

    2010-01-01

    The study was conducted on high achievers of Senior Secondary school. Main objectives were to identify the self regulated learners among the high achievers, to find out dominant components and characteristics operative in self regulated learners and to compare self regulated learning of learners with respect to their subject (science and non…

  3. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  4. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  5. Grades--Scores--Predictions: A Study of the Efficiency of High School Grades and American College Test Scores in Predicting Academic Achievement at Montgomery College.

    ERIC Educational Resources Information Center

    Gell, Robert L.; Bleil, David F.

    This report analyzes the relationship between high school grades, American College Test (ACT) scores, and first-semester college grades. Based on the Standard Research Service of the ACT program, 1,379 students in the fall 1969 freshman class of Montgomery College (Maryland) were studied. Measures of academic background used ACT scores in English,…

  6. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  7. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  8. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  9. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  10. High Stakes Testing and Student Achievement.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The effects of high stakes testing may be critical in the lives of public school students and may have many consequences for schools and teachers. There are no easy answers in measuring student achievement and in holding teachers accountable for learner progress. High stakes testing also involves responsibilities on the part of the principal who…

  11. Student Perceptions of High-Achieving Classmates

    ERIC Educational Resources Information Center

    Händel, Marion; Vialle, Wilma; Ziegler, Albert

    2013-01-01

    The reported study investigated students' perceptions of their high-performing classmates in terms of intelligence, social skills, and conscientiousness in different school subjects. The school subjects for study were examined with regard to cognitive, physical, and gender-specific issues. The results show that high academic achievements in…

  12. High Achievers: 23rd Annual Survey. Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This report presents data from an annual survey of high school student leaders and high achievers. It is noted that of the nearly 700,000 high achievers featured in this edition, 5,000 students were sent the survey and 2,092 questionnaires were completed. Subjects were high school juniors and seniors selected for recognition by their principals or…

  13. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  14. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  15. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  16. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  17. The efficient algorithms for achieving Euclidean distance transformation.

    PubMed

    Shih, Frank Y; Wu, Yi-Ta

    2004-08-01

    Euclidean distance transformation (EDT) is used to convert a digital binary image consisting of object (foreground) and nonobject (background) pixels into another image where each pixel has a value of the minimum Euclidean distance from nonobject pixels. In this paper, the improved iterative erosion algorithm is proposed to avoid the redundant calculations in the iterative erosion algorithm. Furthermore, to avoid the iterative operations, the two-scan-based algorithm by a deriving approach is developed for achieving EDT correctly and efficiently in a constant time. Besides, we discover when obstacles appear in the image, many algorithms cannot achieve the correct EDT except our two-scan-based algorithm. Moreover, the two-scan-based algorithm does not require the additional cost of preprocessing or relative-coordinates recording.

  18. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  19. Early predictors of high school mathematics achievement.

    PubMed

    Siegler, Robert S; Duncan, Greg J; Davis-Kean, Pamela E; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Chen, Meichu

    2012-07-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics achievement. Analyses of large, nationally representative, longitudinal data sets from the United States and the United Kingdom revealed that elementary school students' knowledge of fractions and of division uniquely predicts those students' knowledge of algebra and overall mathematics achievement in high school, 5 or 6 years later, even after statistically controlling for other types of mathematical knowledge, general intellectual ability, working memory, and family income and education. Implications of these findings for understanding and improving mathematics learning are discussed.

  20. Attitudes and Opinions from the Nation's High Achieving Teens. 18th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Educational Communications, Inc., Lake Forest, IL.

    This document contains factsheets and news releases which cite findings from a national survey of 1,985 high achieving high school students. Factsheets describe the Who's Who Among American High School Students recognition and service program for high school students and explain the Who's Who survey. A summary report of this eighteenth annual…

  1. Achieving High-Temperature Ferromagnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Katmis, Ferhat

    Topological insulators (TIs) are insulating materials that display conducting surface states protected by time-reversal symmetry, wherein electron spins are locked to their momentum. This unique property opens new opportunities for creating next-generation electronic and spintronic devices, including TI-based quantum computation. Introducing ferromagnetic order into a TI system without compromising its distinctive quantum coherent features could lead to a realization of several predicted novel physical phenomena. In particular, achieving robust long-range magnetic order at the TI surface at specific locations without introducing spin scattering centers could open up new possibilities for devices. Here, we demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (FMI) to a TI (Bi2Se3); this interfacial ferromagnetism persists up to room temperature, even though the FMI (EuS) is known to order ferromagnetically only at low temperatures (<17 K). The induced magnetism at the interface resulting from the large spin-orbit interaction and spin-momentum locking feature of the TI surface is found to greatly enhance the magnetic ordering (Curie) temperature of the TI/FMI bilayer system. Due to the short range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a TI, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered TI could allow for an efficient manipulation of the magnetization dynamics by an electric field, providing an energy efficient topological control mechanism for future spin-based technologies. Work supported by MIT MRSEC through the MRSEC Program of NSF under award number DMR-0819762, NSF Grant DMR-1207469, the ONR Grant N00014-13-1-0301, and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

  2. 21st Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted by Who's Who Among American High School Students during the spring of 1990, to determine the attitudes of student leaders in U.S. high schools. A survey of high achievers sent to 5,000 students was completed and returned by approximately 2,000 students. All students were members of the junior or senior class during the…

  3. 22nd Annual Survey of High Achievers: Attitudes and Opinions from the Nation's High Achieving Teens.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Northbrook, IL.

    This study surveyed high school students (N=1,879) who were student leaders or high achievers in the spring of 1991 for the purpose of determining their attitudes. Students were members of the junior or senior high school class during the 1990-91 academic year and were selected for recognition by their principals or guidance counselors, other…

  4. Attitudes and Opinions from the Nation's High Achieving Teens: 26th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    A national survey of 3,351 high achieving high school students (junior and senior level) was conducted. All students had A or B averages. Topics covered include lifestyles, political beliefs, violence and entertainment, education, cheating, school violence, sexual violence and date rape, peer pressure, popularity, suicide, drugs and alcohol,…

  5. Attitudes and Opinions from the Nation's High Achieving Teens. 24th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey represents information compiled by the largest national survey of adolescent leaders and high achievers. Of the 5,000 students selected demographically from "Who's Who Among American High School Students," 1,957 responded. All students surveyed had "A" or "B" averages, and 98% planned on attending college. Questions were asked about…

  6. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  7. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  8. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  9. Laboratory 2000--the challenge of achieving efficiency and compliance.

    PubMed

    Potter, J A

    2001-01-01

    Significant advances within the field of laboratory automation and instrumentation have greatly benefited the pharmaceutical industry in its quest to discover, develop and monitor the quality of its products. Necessitated by the need for efficiency and greater productivity, faster and more cost-effective means of analyses exist in the form of devices made up of complex electromechanical components, all logically controlled and most with the capability to interface with sophisticated information systems. This benefit does come with a price, a greater responsibility to ensure data quality while complying with increased regulatory requirements. Commitment to this responsibility presents a substantial challenge to scientists and managers throughout the industry. Due diligence must be demonstrated. A comprehensive evaluation of every laboratory system utilized, a solid plan of action for correcting any known deficiencies including upgrades or complete replacement, and an accurate monitoring procedure with the ability to measure progress are all absolute necessities to ensure success. Crossfunctional team effort and communication must transpire with full managerial support. Vendors need to be audited, made aware of any functional or quality inadequacies they possess as well as the pharmaceutical industry's expectation for these shortcomings to be rapidly corrected. Suppliers of these systems should also be encouraged to provide complete 'off-the-shelf solutions' to eliminate the need for in-house customization. The requirements for regulatory compliance in today's electronic environment have been well publicized. The players involved are not only listening, but also taking the necessary steps to retain and improve efficiency without sacrificing quality. With the proper measures, planning and action, a highly automated, cost-effective and compliant laboratory operation can become a reality.

  10. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  11. High Involvement Mothers of High Achieving Children: Potential Theoretical Explanations

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.

    2013-01-01

    In American society, parents who have high aspirations for the achievements of their children are often viewed by others in a negative light. Various pejoratives such as "pushy parent," "helicopter parent," "stage mother," and "soccer mom" are used in the common vernacular to describe these parents. Multiple…

  12. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  13. High Ability Readers and the Achievement Gap

    ERIC Educational Resources Information Center

    Hunsaker, Scott L.; Parke, Cynthia J.; Bramble, Joan G.

    2004-01-01

    To close the achievement gap, the "No Child Left Behind" law calls for all students to make appropriate yearly progress. This presumably means that progress is being made by capable readers at the same time progress is being made by struggling readers. However, there appear to be unintended effects of "No Child Left Behind" that may impede the…

  14. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  15. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  16. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  17. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  18. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  19. High-Achieving Students in the Era of NCLB

    ERIC Educational Resources Information Center

    Loveless, Tom; Parkas, Steve; Duffett, Ann

    2008-01-01

    This report contains two separate studies examining the status of high-achieving students in the No Child Left Behind (NCLB) era. Part I, An Analysis of NAEP Data, authored by Brookings Institution scholar Tom Loveless, examines achievement trends for high-achieving students (defined, like low-achieving students, by their performance on the…

  20. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  1. Improving Student Achievement: A Study of High-Poverty Schools with Higher Student Achievement Outcomes

    ERIC Educational Resources Information Center

    Butz, Stephen D.

    2012-01-01

    This research examined the education system at high-poverty schools that had significantly higher student achievement levels as compared to similar schools with lower student achievement levels. A multischool qualitative case study was conducted of the educational systems where there was a significant difference in the scores achieved on the…

  2. High School Employment and Youths' Academic Achievement

    ERIC Educational Resources Information Center

    Rothstein, Donna S.

    2007-01-01

    This paper asks whether employment during high school impacts youths' grade point average. Unlike much of the prior literature, it allows for the endogeneity of the hours and dropout decisions, uses ASVAB test scores, and tests whether youth employment is dynamic. The results indicate that high school employment and its lag have small, negative…

  3. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  4. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  5. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  6. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.7 Water used to achieve energy efficiency. ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 435.7 Section...

  7. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  8. 10 CFR 433.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 433.7 Section 433.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... achieve energy efficiency....

  9. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  10. Achieving strategic surety for high consequence software

    SciTech Connect

    Pollock, G.M.

    1996-09-01

    A strategic surety roadmap for high consequence software systems under the High Integrity Software (HIS) Program at Sandia National Laboratories guides research in identifying methodologies to improve software surety. Selected research tracks within this roadmap are identified and described detailing current technology and outlining advancements to be pursued over the coming decade to reach HIS goals. The tracks discussed herein focus on Correctness by Design, and System Immunology{trademark}. Specific projects are discussed with greater detail given on projects involving Correct Specification via Visualization, Synthesis, & Analysis; Visualization of Abstract Objects; and Correct Implementation of Components.

  11. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1998-01-01

    As a guide to attaining this optimal performance for general CFD problems, the table below lists every foreseen kind of computational difficulty for achieving that goal, together with the possible ways for resolving that difficulty, their current state of development, and references. Included in the table are staggered and nonstaggered, conservative and nonconservative discretizations of viscous and inviscid, incompressible and compressible flows at various Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemically reacting flows. The listing of associated computational barriers involves: non-alignment of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points; discretization and relaxation on and near shocks and boundaries; far-field artificial boundary conditions; small-scale singularities (meaning important features, such as the complete airplane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary layer resolution; and grid adaption.

  12. Early Predictors of High School Mathematics Achievement

    ERIC Educational Resources Information Center

    Siegler, Robert S.; Duncan, Greg J.; Davis-Kean, Pamela E.; Duckworth, Kathryn; Claessens, Amy; Engel, Mimi; Susperreguy, Maria Ines; Meichu, Chen

    2012-01-01

    Identifying the types of mathematics content knowledge that are most predictive of students' long-term learning is essential for improving both theories of mathematical development and mathematics education. To identify these types of knowledge, we examined long-term predictors of high school students' knowledge of algebra and overall mathematics…

  13. Norview High School: Leadership Fosters Achievment

    ERIC Educational Resources Information Center

    Principal Leadership, 2013

    2013-01-01

    Often little unsaid things demonstrate what is truly important in a school. When teachers have common planning time and all of the department chairs share a single space as they do at Norview High School in Norfolk, VA, the unmistakable message is that instructional collaboration and leadership are expected and valued. Norview, an urban,…

  14. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  15. Highly efficient charged particle veto detector CUP

    NASA Astrophysics Data System (ADS)

    Palacz, M.; Nyberg, J.; Bednarczyk, P.; Dworski, J.; Górska, M.; Iwanicki, J.; Kapusta, M.; Kownacki, J.; Kulczycka, E.; Lagergren, K.; Moszyński, M.; Pieńkowski, L.; Stolarz, A.; Wolski, D.; Ziębliński, M.

    2005-09-01

    A novel, highly efficient, plastic scintillator detector has been constructed. The primary application of the detector is to act as a veto device in heavy-ion-induced fusion-evaporation reactions, in which the structure of proton-rich nuclides is investigated by γ-ray spectroscopy methods. The detector rejects events in which light charged particles, like protons and α particles, are emitted in the evaporation process, facilitating selection of reaction channels associated with emission of only neutrons. The detector was used in a EUROBALL experiment, with achieved efficiencies of 80% and 63% for protons and α particles, respectively. The design of the detector, its performance and limitations are discussed.

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. Self-Concept and Achievement Motivation of High School Students

    ERIC Educational Resources Information Center

    Lawrence, A. S. Arul; Vimala, A.

    2013-01-01

    The present study "Self-concept and Achievement Motivation of High School Students" was investigated to find the relationship between Self-concept and Achievement Motivation of High School Students. Data for the study were collected using Self-concept Questionnaire developed by Raj Kumar Saraswath (1984) and Achievement Motive Test (ACMT)…

  18. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  19. High efficiency novel window air conditioner

    DOE PAGES

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  20. High efficiency silicon concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua

    1990-06-01

    Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

  1. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  2. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  3. Scientific Temper among Academically High and Low Achieving Adolescent Girls

    ERIC Educational Resources Information Center

    Kour, Sunmeet

    2015-01-01

    The present study was undertaken to compare the scientific temper of high and low achieving adolescent girl students. Random sampling technique was used to draw the sample from various high schools of District Srinagar. The sample for the present study consisted of 120 school going adolescent girls (60 high and 60 low achievers). Data was…

  4. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  5. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  6. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    NASA Astrophysics Data System (ADS)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at < 200 W/m2 irradiation; 0.99 power factor, 87% efficiency and 0.088 distortion factor for dc supplies; 1 ns synchronization resolution via Ethernet; database accelerators allowing 85% energy savings for servers; adaptive software yielding energy reduction of 73% for e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  7. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  8. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  9. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  10. 10 CFR 435.7 - Water used to achieve energy efficiency. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Water used to achieve energy efficiency. 435.7 Section 435.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  11. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  12. Smart and Bored: Are We Failing Our High Achievers?

    ERIC Educational Resources Information Center

    Cleaver, Samantha

    2008-01-01

    Some high achievers are not as easy to engage. Sometimes motivating high achievers is "a matter of being more sensitive to what they are interested in," says Don Ambrose, a professor of education at Rider University in New Jersey. But too often classrooms are not set up for that kind of sensitivity. Research shows that schools are consistently…

  13. Perspectives of High-Achieving Women on Teaching

    ERIC Educational Resources Information Center

    Snodgrass, Helen

    2010-01-01

    High-achieving women are significantly less likely to enter the teaching profession than they were just 40 years ago. Why? While the social and economic reasons for this decline have been well documented in the literature, what is lacking is a discussion with high-achieving women, as they make their first career decisions, about their perceptions…

  14. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  15. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  16. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  17. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  18. Breeding for high water-use efficiency.

    PubMed

    Condon, A G; Richards, R A; Rebetzke, G J; Farquhar, G D

    2004-11-01

    There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may

  19. Test-Taking Strategies of High and Low Mathematics Achievers

    ERIC Educational Resources Information Center

    Hong, Eunsook; Sas, Maggie; Sas, John C.

    2006-01-01

    The authors explored test-preparation and test-taking strategies that high school students used in algebra tests. From a pool of high school students (N = 156), 61 students participated in interviews, and of those interviewed, 26 represented those who were high achieving as well as highly interested in mathematics (n = 15) vs. those who were low…

  20. Effectiveness of High Schools in Australia: Holding Power and Achievement.

    ERIC Educational Resources Information Center

    Ainley, John; Sheret, Michael

    High schools in Australia are increasingly expected to be effective in holding students at school to year 12 as well as in promoting achievement. Analysis of quantitative data gathered as part of a longitudinal study of 22 New South Wales (Australia) schools shows that schools differ in their holding power as well as in the achievement levels of…

  1. Tracking and Detracking: High Achievers in Massachusetts Middle Schools

    ERIC Educational Resources Information Center

    Loveless, Tom

    2009-01-01

    This study examines tracking--the practice of grouping students into separate classes or courses based on their prior academic achievement--at the middle-school level, and the percentage of high-achieving students in tracked and untracked schools. It focuses on Massachusetts, a leader in "reforming" tracking, and the changes that have…

  2. Some Correlates of High School Foreign Language Achievement.

    ERIC Educational Resources Information Center

    Beanblossom, Gary F.

    This paper investigates the influences of traditional kinds of verbal and quantitative achievement and aptitude variables on high school foreign language achievement, as measured by Modern Language Association and University of Washington tests of language skills administered to entering college students. The report focuses on: (1) the sample and…

  3. Biculturalism and Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Rust, Jonathan P.; Jackson, Margo A.; Ponterotto, Joseph G.; Blumberg, Fran C.

    2011-01-01

    Biculturalism was examined as a factor that may positively affect the academic achievement of African American high school students, beyond cultural identity and self-esteem. Hierarchical regression analyses determined that cultural identity and academic self-esteem were important factors for academic achievement, but not biculturalism.…

  4. Mobility and Student Achievement in High Poverty Schools

    ERIC Educational Resources Information Center

    Dalton, Janet Denise

    2013-01-01

    Student mobility is an issue for high poverty schools in the shadow of increased rigor and accountability for student performance. Whereas mobility is not a sole cause for poor achievement, it is a contributing factor for students in poverty who are already considered to be at risk of low achievement. Student mobility creates a hardship for…

  5. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  6. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  7. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  8. Attitudes and Opinions from the Nation's High Achieving Teens: 29th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report presents the 1998 statistical findings of the annual survey to determine the attitudes of national high school student leaders. Questionnaires were completed by 3,123 high school juniors and seniors, all of whom were selected for recognition in "Who's Who among American High School Students." In addition to demographic information, the…

  9. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  10. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  11. The "Renaissance Child": High Achievement and Gender in Late Modernity

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky

    2012-01-01

    This paper draws on the concept of the "Renaissance Child" to illustrate the ways in which gender influences the opportunities and possibilities of high-achieving pupils. Using data from a study of 12-13-year high-achieving boys and girls based in schools in England, the paper considers the ways in which a group of popular boys was able to show an…

  12. Attitudes and Opinions from the Nation's High Achieving Teens: 27th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 27th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,370 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1996 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  13. Attitudes and Opinions from the Nation's High Achieving Teens: 28th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This report details the 28th annual study to examine the attitudes of student leaders in U.S. high schools. Participating in the survey were 3,210 adolescents, primarily 16- and 17-year-olds, who had been featured in the 1997 edition of "Who's Who Among American High School Students." The report presents demographic information on the survey…

  14. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  15. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  16. Development of an Improved High Efficiency Thin Solar Cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C.; Storti, G.

    1979-01-01

    High efficiency cells (up to 14 AMO at 25 C)were fabricated from 10 - 15 ohm-cm silicon by using screen printed aluminum paste as the alloy source for the production of back surface fields. Thick consistency pastes that have been cured prior to a short heat treatment at 850 C were most effective in achieving these efficiency levels.

  17. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  18. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  19. Attitudes and Opinions from the Nation's High Achieving Teens. 25th Annual Survey of High Achievers.

    ERIC Educational Resources Information Center

    Who's Who among American High School Students, Lake Forest, IL.

    This survey was conducted during the spring of 1994 for the purpose of determining the attitudes of student leaders in the nation's high schools. Eight thousand surveys were sent out to students, of which 3177 were returned. All students surveyed were members of the junior or senior class during the 1993-94 academic year. They were selected for…

  20. Student Achievement for Whom? High-Performing and Still "Playing the Game," the Meaning of School Achievement among High Achieving African American Students

    ERIC Educational Resources Information Center

    Wiggan, Greg

    2014-01-01

    The preponderance of the research on African American students has generally focused on issues of school failure and underperformance. While the literature on high achieving Black students is sparse, very little is known about these students' school experiences and the meanings that they assign to achievement. Using student-based inquiry…

  1. High School Employment and Academic Achievement: A Note for Educators

    ERIC Educational Resources Information Center

    Keister, Mary; Hall, Joshua

    2010-01-01

    Educators are often in a position to affect student decisions to work during the school term. This study reviews and summarizes the literature on the effect that employment during high school has on academic achievement. The available evidence suggests that part-time jobs for high school students are beneficial as long as the number of hours…

  2. Exploring High-Achieving Students' Images of Mathematicians

    ERIC Educational Resources Information Center

    Aguilar, Mario Sánchez; Rosas, Alejandro; Zavaleta, Juan Gabriel Molina; Romo-Vázquez, Avenilde

    2016-01-01

    The aim of this study is to describe the images that a group of high-achieving Mexican students hold of mathematicians. For this investigation, we used a research method based on the Draw-A-Scientist Test (DAST) with a sample of 63 Mexican high school students. The group of students' pictorial and written descriptions of mathematicians assisted us…

  3. Brain Hemisphericity and Mathematics Achievement of High School Students

    ERIC Educational Resources Information Center

    Fernandez, Sanny F.

    2011-01-01

    This study aimed to find out the brain hemisphericity and mathematics achievement of high school students. The respondents of the study were the 168 first year high school students of Colegio de San Jose, during school year 2010-2011 who were chosen through stratified random sampling. The descriptive and interview methods of research were used in…

  4. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  5. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  6. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  7. An Analysis of High School Mathematics Achievement and English Language Arts Achievement as Predictors of Science Achievement

    ERIC Educational Resources Information Center

    Edwards, Anthony C.

    2012-01-01

    Science assessments require students to read and comprehend questions and to solve mathematical problems. The purpose of this study is to determine whether the following variables can be used to predict science achievement: English language arts achievement, mathematics achievement, socioeconomic status (SES), limited English proficiency (LEP)…

  8. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  9. Behind the High Achievement of East Asian Students.

    ERIC Educational Resources Information Center

    Leung, Frederick K. S.

    2002-01-01

    Studied reasons for the high achievement students from Hong Kong, Japan, South Korea, and Singapore on the Third International Mathematics and Science Study (TIMSS). Questionnaire data provided by students participating show that the superior results of these students may have come at the expense of other aspects of student development. Results…

  10. Progress Lags in High School, Especially for Advanced Achievers

    ERIC Educational Resources Information Center

    Education Digest: Essential Readings Condensed for Quick Review, 2012

    2012-01-01

    This report by the Center on Education Policy (CEP), an independent nonprofit organization, examines trends in the achievement of high school students on the state reading/English language arts (ELA) and mathematics tests used for accountability under the No Child Left Behind Act (NCLB). This study confirms that there is reason for concern about…

  11. Learning Environment, Motivation, and Achievement in High School Science.

    ERIC Educational Resources Information Center

    Nolen, Susan Bobbitt

    2003-01-01

    Examines the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement. Discusses the focus of shared perceptions and instruction and indicates that shared perceptions focused on understanding and independent thinking positively predicted students'…

  12. High Achieving Girls in Mathematics: What's Wrong with Working Hard?

    ERIC Educational Resources Information Center

    Howe, Ann C.; Berenson, Sarah B.

    2003-01-01

    The participation of women in graduate studies and mathematics-related careers remains a social and economic problem in the United States. Part of a larger study to understand this lack of participation, here we present preliminary findings of girls who are high achievers in middle grades mathematics. This interpretive study documents girls'…

  13. Relationship between High School Leadership Team Practices and Student Achievement

    ERIC Educational Resources Information Center

    McInnis, Timothy M.

    2009-01-01

    This study investigated if a relationship existed between student achievement in 10th grade Missouri Assessment Program mathematics and 11th grade communication arts scores in 2007 and high school leadership team perceptions of the extent to which they demonstrated leadership practices. The secondary purpose was to compare perceptional…

  14. Improving Student Achievement in Today's High Schools: What Works.

    ERIC Educational Resources Information Center

    Shields, Marie S.

    This paper is based on a study of two high schools in Maine that achieved outstanding and consistent gains in English, math, and science over a 5-year period. Three strands of inquiry were used for the study: surveys, interviews, and observations. A multiple-perspective approach was used to integrate the information so as to evaluate the…

  15. Mercer Middle School Case Study: High Science and Math Achievement

    ERIC Educational Resources Information Center

    Washington State Board of Education, 2010

    2010-01-01

    To spotlight effective practices, the Washington State Board of Education (SBE) is highlighting schools that are closing achievement gaps and performing at high levels. In 2009, the SBE partnered with the Office of Superintendent of Public Instruction (OSPI) to create the Washington Accountability Index. The Index is a new way to measure schools'…

  16. Supplementary Education: The Hidden Curriculum of High Academic Achievement

    ERIC Educational Resources Information Center

    Gordon, Edmund W., Ed.; Bridglall, Beatrice L., Ed.; Meroe, Aundra Saa, Ed.

    2004-01-01

    In this book, the editors argue that while access to schools that enable and expect academic achievement is a necessary ingredient for the education of students, schools alone may not be sufficient to ensure universally high levels of academic development. Supplemental educational experiences may also be needed. The idea of supplementary education…

  17. Analysis of Three High-Achieving Young Adolescent Girls

    ERIC Educational Resources Information Center

    Lim, Jae Hoon; Chae, Jeong-Lim; Schinck-Mikel, Amelie G.; Watson, Jimmy

    2013-01-01

    This paper presents an in-depth cross-case analysis of three high-achieving young adolescent girls who had contrasting mathematics learning experiences during the first year of middle school. In particular, this study examines the foundation for their motivation, as well as the dominant mode of learning and academic engagement in relation to three…

  18. Test Score Decline Among High Achievers: Policy Implications.

    ERIC Educational Resources Information Center

    Goldman, Jerrold; Hsia, Jayjia

    Since 1967, the mean Scholastic Aptitude Test (SAT) score has declined. Likewise, the numbers of candidates receiving high SAT scores have been decreasing steadily. The same downward trend in student achievement can be seen among student groups from grade 4 through post graduate studies. In recent years, policy has been directed towards making…

  19. Student Achievement through the Development of Complete High School Culture

    ERIC Educational Resources Information Center

    Lamphere, Michael Frederick, Jr.

    2012-01-01

    This dissertation undertook an investigation of school culture and achievement in the high school setting. The national data set ELS:2002 was used as the pool of variables because it allows for a complete picture of school culture comprising students, parents, administrators, and teachers. The data were selected based on current literature and…

  20. The High Trust Classroom: Raising Achievement from the Inside Out

    ERIC Educational Resources Information Center

    Moore, Lonnie

    2009-01-01

    This book provides a roadmap to developing a high-trust classroom, a classroom: (1) With increased student achievement; (2) With few discipline problems; (3) Where students are intrinsically motivated; and (4) Where the teacher can confidently use creative lesson planning. The author presents a simple step by step approach to earning the trust of…

  1. Self-Esteem and Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Moradi Sheykhjan, Tohid; Jabari, Kamran; Rajeswari, K.

    2014-01-01

    The primary purpose of this study was to determine the influence of self-esteem on academic achievement among high school students in Miandoab City of Iran. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society includes male and female high…

  2. Calibration of STUD+ parameters to achieve optimally efficient broadband adiabatic decoupling in a single transient

    PubMed

    Bendall; Skinner

    1998-10-01

    for a single sech/tanh pulse. Residual splitting of the centerband, normally associated with incomplete or inefficient decoupling, is not seen in sech/tanh decoupling and therefore cannot be used as a measure of adiabatic decoupling efficiency. The calibrated experimental performance levels achieved in this study are within 20% of theoretical performance levels derived previously for ideal sech/tanh decoupling at high power, indicating a small scope for further improvement at practical RF power levels. The optimization procedures employed here will be generally applicable to any good combination of adiabatic inversion pulse and phase cycle. Copyright 1998 Academic Press. PMID:9761708

  3. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  4. High-efficiency silicon concentrator solar cell research

    NASA Astrophysics Data System (ADS)

    Greene, M. A.; Blakers, A. W.; Zhao, Jianhua; Wang, Ahua; Milne, A. M.; Ximing, Dai; Chong, C. M.

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells.

  5. High-efficiency silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Blakers, A.W.; Jianhua, Zhao; Aihua, Wang; Milne, A.M.; Dai, Ximing; Chong, C.M. . Solar Photovoltaic Lab.)

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready'' cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells. 22 refs., 23 figs., 9 tabs.

  6. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  7. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  8. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  9. Learning environment, motivation, and achievement in high school science

    NASA Astrophysics Data System (ADS)

    Bobbitt Nolen, Susan

    2003-04-01

    In a study of the relationship between high school students' perceptions of their science learning environments and their motivation, learning strategies, and achievement, 377 students in 22 introductory science classrooms completed surveys in the fall and spring of their ninth-grade year. Hierarchical linear regression was used to model the effects of variables at both the classroom and individual level simultaneously. High intraclass agreement (indicated by high parameter reliability) on all classroom environment measures indicated that students shared perceptions of the classroom learning environment. Controlling for other factors, shared perceptions that only the most able could succeed in science classrooms and that instruction was fast-paced and focused on correct answers negatively predicted science achievement, as measured on a districtwide curriculum-linked test. Shared perceptions that classrooms focused on understanding and independent thinking positively predicted students' self-reported satisfaction with learning. Implications of these results for both teaching and research into classroom environments are discussed.

  10. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  11. Parent Involvement Practices of High-Achieving Elementary Science Students

    NASA Astrophysics Data System (ADS)

    Waller, Samara Susan

    This study addressed a prevalence of low achievement in science courses in an urban school district in Georgia. National leaders and educators have identified the improvement of science proficiency as critical to the future of American industry. The purpose of this study was to examine parent involvement in this school district and its contribution to the academic achievement of successful science students. Social capital theory guided this study by suggesting that students achieve best when investments are made into their academic and social development. A collective case study qualitative research design was used to interview 9 parent participants at 2 elementary schools whose children scored in the exceeds category on the Science CRCT. The research questions focused on what these parents did at home to support their children's academic achievement. Data were collected using a semi-structured interview protocol and analyzed through the categorical aggregation of transcribed interviews. Key findings revealed that the parents invested time and resources in 3 practices: communicating high expectations, supporting and developing key skills, and communicating with teachers. These findings contribute to social change at both the local and community level by creating a starting point for teachers, principals, and district leaders to reexamine the value of parent input in the educational process, and by providing data to support the revision of current parent involvement policies. Possibilities for further study building upon the findings of this study may focus on student perceptions of their parents' parenting as it relates to their science achievement.

  12. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  13. The Will to Achieve: A Phenomenological Study of the Experiences of African American High Achieving Students and Their Parents

    ERIC Educational Resources Information Center

    Spencer, Natalie Faye

    2012-01-01

    The purpose of this research study was to understand the experiences of high achieving African American students and their parents. The experiences of high achieving African American students and their parents have been missing from literature on the academic achievement of African American students. Much of the literature that has been published…

  14. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  15. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  16. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  17. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  18. Achieving High Performance on the i860 Microprocessor

    NASA Technical Reports Server (NTRS)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  19. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  20. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  1. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  2. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  3. High efficiency inorganic/organic hybrid tandem solar cells.

    PubMed

    Seo, Ji Hoon; Kim, Dong-Ho; Kwon, Se-Hun; Song, Myungkwan; Choi, Min-Seung; Ryu, Seung Yoon; Lee, Hyung Woo; Park, Yun Chang; Kwon, Jung-Dae; Nam, Kee-Seok; Jeong, Yongsoo; Kang, Jae-Wook; Kim, Chang Su

    2012-08-28

    Hybrid tandem solar cells comprising an inorganic bottom cell and an organic top cell have been designed and fabricated. The interlayer combination and thickness matching were optimized in order to increase the overall photovoltaic conversion efficiency. A maximum power conversion efficiency of 5.72% was achieved along with a V(oc) of 1.42 V, reaching as high as 92% of the sum of the subcell V(oc) values. PMID:22807214

  4. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  5. Experiences of High-Achieving High School Students Who Have Taken Multiple Concurrent Advanced Placement Courses

    ERIC Educational Resources Information Center

    Milburn, Kristine M.

    2011-01-01

    Problem: An increasing number of high-achieving American high school students are enrolling in multiple Advanced Placement (AP) courses. As a result, high schools face a growing need to understand the impact of taking multiple AP courses concurrently on the social-emotional lives of high-achieving students. Procedures: This phenomenological…

  6. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    PubMed

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed.

  7. Device engineering of perovskite solar cells to achieve near ideal efficiency

    SciTech Connect

    Agarwal, Sumanshu E-mail: prnair@ee.iitb.ac.in; Nair, Pradeep R. E-mail: prnair@ee.iitb.ac.in

    2015-09-21

    Despite the exciting recent research on perovskite based solar cells, the design space for further optimization and the practical limits of efficiency are not well known in the community. In this letter, we address these aspects through theoretical calculations and detailed numerical simulations. Here, we first provide the detailed balance limit efficiency in the presence of radiative and Auger recombination. Then, using coupled optical and carrier transport simulations, we identify the physical mechanisms that contribute towards bias dependent carrier collection, and hence low fill factors of current perovskite based solar cells. Our detailed simulations indicate that it is indeed possible to achieve efficiencies and fill factors greater than 25% and 85%, respectively, with near ideal super-position characteristics even in the presence of Auger recombination.

  8. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  9. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  10. Unlocking Emergent Talent: Supporting High Achievement of Low-Income, High Ability Students

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula; Clarenbach, Jane

    2012-01-01

    This report takes a comprehensive look at achievement for low-income promising learners--past, present, and future. At its core, it challenges the nation to move beyond its near-singular focus of achieving minimum performance for all students, to identifying and developing the talent of all students who are capable of high achievement, including…

  11. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  12. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  13. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  14. High efficiency advanced absorption heat pump

    NASA Astrophysics Data System (ADS)

    Reid, E. A., Jr.

    1982-03-01

    A high efficiency absorption heat pump for the residential market is investigated. The performance targets established for this high efficiency absorption heat pump are a heating coefficient of performance of 1.5 and a cooling coefficient of performance of 0.8 at rating conditions, including parasitic electric power consumption. The resulting heat pump would have a space heating capacity of 68,000 BTU/hour, and a space cooling capacity of 36,000 BTU/hour at rating conditions. A very simplified schematic block diagram of the high efficiency absorption heat pump cycle is shown. High temperature, high pressure, refrigerant vapor is produced in the refrigerant generator and heat exchange system, is condensed to a liquid in the condenser, expanded to a low pressure vapor in the evaporator, and mixed with and reabsorbed into the weakened solution returned from the refrigerant generator and heat exchange system in the absorber.

  15. Achievement-Relevant Personality: Relations with the Big Five and Validation of an Efficient Instrument.

    PubMed

    Briley, Daniel A; Domiteaux, Matthew; Tucker-Drob, Elliot M

    2014-05-01

    Many achievement-relevant personality measures (APMs) have been developed, but the interrelations among APMs or associations with the broader personality landscape are not well-known. In Study 1, 214 participants were measured on 36 APMs and a measure of the Big Five. Factor analytic results supported the convergent and discriminant validity of five latent dimensions: performance, mastery, self-doubt, effort, and intellectual investment. Conscientiousness, neuroticism, and openness to experience had the most consistent associations with APMs. We constructed a more efficient scale- the Multidimensional Achievement-Relevant Personality Scale (MAPS). In Study 2, we replicated the factor structure and external correlates of the MAPS in a sample of 359 individuals. Finally, we validated the MAPS with four indicators of academic performance and demonstrated incremental validity.

  16. Achievement-Relevant Personality: Relations with the Big Five and Validation of an Efficient Instrument

    PubMed Central

    Briley, Daniel A.; Domiteaux, Matthew; Tucker-Drob, Elliot M.

    2014-01-01

    Many achievement-relevant personality measures (APMs) have been developed, but the interrelations among APMs or associations with the broader personality landscape are not well-known. In Study 1, 214 participants were measured on 36 APMs and a measure of the Big Five. Factor analytic results supported the convergent and discriminant validity of five latent dimensions: performance, mastery, self-doubt, effort, and intellectual investment. Conscientiousness, neuroticism, and openness to experience had the most consistent associations with APMs. We constructed a more efficient scale– the Multidimensional Achievement-Relevant Personality Scale (MAPS). In Study 2, we replicated the factor structure and external correlates of the MAPS in a sample of 359 individuals. Finally, we validated the MAPS with four indicators of academic performance and demonstrated incremental validity. PMID:24839374

  17. Achieving high energy absorption capacity in cellular bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-05-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed.

  18. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  19. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  20. Achieving High Resolution Timer Events in Virtualized Environment.

    PubMed

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  1. Design considerations for achieving high vacuum integrity in fusion devices

    SciTech Connect

    Fuller, G.M.; Haines, J.R.

    1983-01-01

    Achieving high vacuum integrity in fusion devices requires close attention to both the overall system configuration and the design details of joints and seals. This paper describes the factors in selecting the system configuration, from a vacuum standpoint, for the Princeton Plasma Physics Laboratory (PPPL) DCT-8 Tokamak device. The DCT-8 (driven current tokamak) is the eighth design in a series of tokamak concepts defined to cover the magnetic confinement and development gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor (ETR). Leak detection concept development is considered a vital activity, as well as the definition of a configuration that minimizes the consequences of leaks. A major part of the vacuum boundaries of the magnet system and the plasma system is common. For the major penetrations, primary and secondary seals are provided with vacuum control over the region between seals. The intent is to instrument these cavities and provide automated recordings of these measurements for leak maintenance.

  2. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  3. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  4. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  5. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures.

    PubMed

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  6. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  7. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  8. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  9. How to achieve high-level expression of microbial enzymes

    PubMed Central

    Liu, Long; Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field. PMID:23686280

  10. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  11. FEMP's O & M Best Practices Guide: A Guide to Achieving Operational Efficiency

    SciTech Connect

    Sullivan, Gregory P. ); Melendez, Aldo P. ); Pugh, Ray )

    2002-10-01

    FEMP's O & M Best Practices Guide (O & M BPG) highlights O & M programs targeting energy efficiency that are estimated to save between 5% and 20% on energy bills without a significant capital investment. Depending on the Federal site, these savings can represent thousands to hundreds-of-thousands of dollars each year, and many can be achieved with minimal cash outlays. In addition to energy/resource savings, a well-run O & M program will (1)increase the safety of all staff because properly maintained equipment is safer equipment; (2)ensure the comfort, health and safety of building occupants through properly functioning equipment providing a healthy indoor environment; (3)confirm the design life expectancy of equipment is achieved; and (4)facilitate the compliance with Federal legislation such as the Clean Air Act and the Clean Water Act. The focus of this guide is to provide the Federal O & M/Energy manager and practitioner with information and actions aimed at achieving these savings and benefits. The O & M BPG was developed under the direction of the Department of Energy's Federal Energy Management Program (FEMP).

  12. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    SciTech Connect

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

  13. Comparison of the Level of Using Metacognitive Strategies during Study between High Achieving and Low Achieving Prospective Teachers

    ERIC Educational Resources Information Center

    Doganay, Ahmet; Demir, Ozden

    2011-01-01

    The main purpose of this study is to compare the level of using metacognitive strategies during study between high achieving and low achieving prospective classroom teachers. This study was designed as a mixed method study. Metacognitive Learning Strategies Scale developed by Namlu (2004) was used to measure the use of metacognitive strategies…

  14. Effects of Partner's Ability on the Achievement and Conceptual Organization of High-Achieving Fifth-Grade Students.

    ERIC Educational Resources Information Center

    Carter, Glenda; Jones, M. Gail; Rua, Melissa

    2003-01-01

    Investigates high-achieving fifth-grade students' achievement gains and conceptual reorganization on convection. Features an instructional sequence of three dyadic inquiry investigations related to convection currents as well as pre- and post-assessment consisting of a multiple-choice test, a card sorting task, construction of a concept map, and…

  15. Gender Differences in Attitudes toward Mathematics between Low-Achieving and High-Achieving Fifth Grade Elementary Students.

    ERIC Educational Resources Information Center

    Rathbone, A. Sue

    Possible gender differences in attitudes toward mathematics were studied between low-achieving and high-achieving fifth-grade students in selected elementary schools within a large, metropolitan area. The attitudes of pre-adolescent children at an intermediate grade level were assessed to determine the effects of rapidly emerging gender-related…

  16. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  17. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  18. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  19. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  20. Highly efficient heralding of entangled single photons.

    PubMed

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  1. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  2. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process.

    PubMed

    Wang, Hui-Yuan; Yu, Zhao-Peng; Zhang, Lei; Liu, Chun-Guo; Zha, Min; Wang, Cheng; Jiang, Qi-Chuan

    2015-11-25

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  3. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    PubMed Central

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-01-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30–60 μm, exhibiting a typical basal texture, fine grains of 1–5 μm and ultrafine (sub) grains of 200–500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application. PMID:26603776

  4. Achieving High Throughput for Data Transfer over ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.; Townsend, Jeffrey N.

    1996-01-01

    File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.

  5. Fabrication of High power, High-Efficiency Linear Array Diode Lasers by Pulse Anodic Oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Jing; Li, Hui; Qu, Yi; Bo, Baoxue

    2006-09-01

    InGaAlAs/AlGaAs/GaAs double-quantum-well (DQW) linear array diode lasers with asymmetric wide waveguide have been successfully fabricated by pulse anodic oxidation upon molecular beam epitaxy material growth. High-efficiency and high-power quasi-continuous-wave (QCW) output has been realized at 808 nm wavelength. The threshold current and slope efficiency of the prepared high-fill-factor QCW devices are 24 A and 1.25 A/W, respectively, and a maximum wall-plug efficiency of 51% has been achieved.

  6. Student Perception of Academic Achievement Factors at High School

    ERIC Educational Resources Information Center

    Bahar, Mustafa

    2016-01-01

    Measuring the quality of the "product" is elemental in education, and most studies depend on observational data about student achievement factors, focusing overwhelmingly on quantitative data namely achievement scores, school data like attendance, facilities, expenditure class size, etc. But there is little evidence of learner…

  7. Learning Styles and High School Students' Chemistry Achievement

    ERIC Educational Resources Information Center

    Uzuntiryaki, Esen

    2007-01-01

    The aim of the present study was to investigate the effects of students' learning styles on their chemistry achievement, and whether matching between teaching and learning styles also affects students' chemistry achievement. Two hundred and sixty-five tenth-grade students enrolled in a chemistry course and seven chemistry teachers participated in…

  8. Does Recreational Computer Use Affect High School Achievement?

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Berland, Matthew

    2013-01-01

    Historically, the relationship between student academic achievement and use of computers for fun and video gaming has been described from a multitude of perspectives, from positive, to negative, to neutral. However, recent research has indicated that computer use and video gaming may be positively associated with achievement, yet these studies…

  9. High-Achieving High School Students and Not so High-Achieving College Students: A Look at Lack of Self-Control, Academic Ability, and Performance in College

    ERIC Educational Resources Information Center

    Honken, Nora B.; Ralston, Patricia A. S.

    2013-01-01

    This study investigated the relationship among lack of self-control, academic ability, and academic performance for a cohort of freshman engineering students who were, with a few exceptions, extremely high achievers in high school. Structural equation modeling analysis led to the conclusion that lack of self-control in high school, as measured by…

  10. Achievement of Hispanic Students in American High Schools: Background Characteristics and Achievement. Contractor Report.

    ERIC Educational Resources Information Center

    Nielsen, Francois; Fernandez, Roberto M.

    Presenting data and analyses from the first wave of the study "High School and Beyond" (HS&B), a longitudinal study of United States high school sophomores and seniors, the report focuses on the composition of the Hispanic tenth and twelfth grade student population with respect to various characteristics; i.e., language use and proficiency, length…

  11. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  12. High-efficiency heteroepitaxial solar cells for space power applications

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Keavney, C. J.; Wojtczuk, S. J.

    1989-01-01

    The experimental results for several technical approaches aimed at achieving highly efficient solar cells for space-power applications are reported. Efficiencies of up to 24.5 percent (170X, AM0) and 21.7 percent (1X, AM0) have been achieved with homoepitaxial GaAs p/n cells. This one-sun AM0 efficiency value is believed to be the highest reported to date. Tandem solar cells utilizing GaAs-on-Ge structures have been fabricated and shown to have efficiencies up to 21.3 percent (1X, AM0), and a GaAs-on-Si cell at 15.2 percent (1X, AM0) is reported. Homoepitaxial n/p InP cells with an efficiency of 18.8 percent (1X, AM0) are also reported. The fabrication of heteroepitaxial InP solar cells with one-sun AM0 efficiency values of 9.4 percent (on GaAs) and 7.2 percent (on Si) is described.

  13. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  14. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  15. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  16. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  17. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  18. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  19. Advanced liquid cooling in HCPVT systems to achieve higher energy efficiencies

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Helmers, H.; Tiwari, M. K.; Escher, W.; Paredes, S.; Neves, P.; Poulikakos, D.; Wiesenfarth, M.; Bett, A. W.; Michel, B.

    2013-09-01

    The benefits of advanced thermal packaging are demonstrated through a receiver package consisting of a monolithic interconnected module (MIM) which is directly attached to a high performance microchannel heat sink. Those packages can be applied in high-concentration photovoltaic systems and the generated heat can be used in addition to the electrical power output (CPVT systems). Thus, the total energy efficiency of the system increases significantly. A detailed exergy analysis of the receiver power output underscores the advantages of the new cooling approach.

  20. Preferences of High Achieving High School Students in Their Career Development

    ERIC Educational Resources Information Center

    Kim, Mihyeon

    2010-01-01

    The intent of this study was to identify the needs and preference of high-achieving high school students. In terms of career related programs in high school, students listed AP courses and mentoring as their preferred career-related programs. Also, students stated that career guidance by counselors, workshops or sessions, and tech prep were the…

  1. Threatened and Placed at Risk: High Achieving African American Males in Urban High Schools

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2013-01-01

    This study investigated the risk and protective factors of 11 high-achieving African American males attending 4 urban charter high schools in a Midwestern city to determine what factors account for their resilience and success in mathematics courses, and in high school more generally. This research was guided by a Phenomenological Variant of…

  2. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  3. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  4. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  5. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  6. Overview of SERI's high efficiency solar cell research

    NASA Technical Reports Server (NTRS)

    Benner, J. P.; Cole, L. A.; Leboeuf, C. M.

    1985-01-01

    The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process.

  7. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  8. Multiple Exciton Generation for Highly Efficient Solar Cells

    NASA Astrophysics Data System (ADS)

    Nozik, Arthur

    2007-03-01

    In order to utilize solar power for the production of electricity and fuel on a massive scale, it will be necessary to develop solar photon conversion systems that have an appropriate combination of high efficiency and low capital cost (/m^2). One new potential approach to high solar cell efficiency is to utilize the unique properties of semiconductor quantum dot nanostructures to control the relaxation dynamics of photogenerated carriers to produce either enhanced photocurrent through efficient multiple exciton generation (MEG) or enhanced photopotential through hot electron transport and transfer processes. To achieve these desirable effects it is necessary to understand and control the dynamics of electron relaxation, cooling, multiple exciton generation , transport, and interfacial electron transfer of the photogenerated carriers with fs to ns time resolution. We have been studying these fundamental dynamics in bulk and nanoscale semiconductors (quantum dots, quantum wires, and quantum wells) using femtosecond transient absorption, photoluminescence, and THz spectroscopy. This work will be summarized and recent advances in creating multiple excitons from a single photon will be discussed, including a unique model to explain efficient MEG based on the coherent superposition of multiple excitonic states. Various possible configurations for quantum dot solar cells that could produce ultra-high conversion efficiencies for the production of electricity, as well as for producing solar fuels (for example, hydrogen from water splitting), will be discussed, along with associated thermodynamic calculations that show the increase in the maximum theoretical gain in solar photon conversion efficiency for both electricity and fuel production.

  9. The Effect of Music Participation on Mathematical Achievement and Overall Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Cox, H. A.; Stephens, L. J.

    2006-01-01

    A study was conducted on high school students, comparing those with some music credits to those with none. No statistically significant difference was found in their mean math grade point averages (GPA) or their mean cumulative GPAs. Students were then separated into two groups based on the number of music credits. Students who had earned at least…

  10. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  11. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  12. Gettering and passivation of high efficiency multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Narasimha, S.; Cai, L.

    1997-02-01

    A detailed study was conducted on aluminum and phosphorus gettering in HEM mc-Si and defect passivation by PECVD SiN in EFG mc-Si to achieve high efficiency solar cells on these promising photovoltaic materials. Solar cells with efficiencies as high as 18.6% (1 cm2 area) were achieved on multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM) by a process which implements impurity gettering, an effective back surface field, front surface passivation, and forming gas annealing. This represents the highest reported solar cell efficiency on mc-Si to date. PCD analysis revealed that the bulk lifetime in certain HEM samples after phosphorus gettering can be as high as 135 μs. By incorporating a deeper aluminum back surface field (Al-BSF), the back surface recombination velocity (Sb) for 0.65 Ω-cm HEM mc-Si solar cells was lowered from 10,000 cm/s to 2,000 cm/s resulting in the 18.6% efficient device. It was also observed that a screen-printed/RTP alloyed Al-BSF process could raise the efficiency of both float zone and relatively defect-free mc-Si solar cells by lowering Sb. However, this process was found to increase the electrical activity of extended defects so that mc-Si devices with a significant defect density showed an overall degradation in performance. In the case of EFG mc-Si, neural network modeling in conjunction with a study of post deposition annealing was used to provide guidelines for effective defect passivation by PECVD SiN films. Appropriate deposition and annealing conditions resulted in a 45% increase in cell efficiency due to AR coating and another 25-30% increase due to defect passivation by atomic hydrogen.

  13. "Brains before "Beauty"?" High Achieving Girls, School and Gender Identities

    ERIC Educational Resources Information Center

    Skelton, Christine; Francis, Becky; Read, Barbara

    2010-01-01

    In recent years educational policy on gender and achievement has concentrated on boys' underachievement, frequently comparing it with the academic success of girls. This has encouraged a perception of girls as the "winners" of the educational stakes and assumes that they no longer experience the kinds of gender inequalities identified in earlier…

  14. High-Achieving Middle Schools for Latino Students in Poverty

    ERIC Educational Resources Information Center

    Jesse, Dan; Davis, Alan; Pokorny, Nancy

    2004-01-01

    This study was conducted to examine the characteristics of middle schools in which Latino students from low-income families made substantial achievement gains. Nine schools in Texas were selected where Latino students had shown strong gains in the Texas Assessment of Academic Skills. Data from onsite interviews, focus groups, and documents were…

  15. Dominant Achievement Goals across Tracks in High School

    ERIC Educational Resources Information Center

    Scheltinga, Peter A. M.; Kuyper, Hans; Timmermans, Anneke C.; van der Werf, Greetje P. C.

    2016-01-01

    The dominant achievement goals (DAGs) of 7,008 students in the third grade of Dutch secondary education (US grade 9) were investigated, based on Elliot & McGregors' 2 × 2 framework (2001), in relation to track-level and motivational variables. We found the mastery-approach goal and the performance-approach goal, generally considered adaptive,…

  16. Autostereoscopic display with high brightness and power efficiency

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1994-04-01

    Dimension Technologies Inc. has experimentally demonstrated an optical system that produces autostereoscopic images and also allows very high brightness and power efficiency to be achieved using off the shelf color LCDs. This capability is important in applications such as cockpit displays or mobile, portable, or laptop systems where brightness must be maximized but power conserved as much as possible. The effects are achieved through the creation of light line illumination, by means of which autostereoscopic images are produced, and by simultaneously concentrating the light emitted by the display toward the area the viewer's head is. By turning different illumination sources on and off, it is possible to aim both the concentration area and the 3D viewing area at the observer's head as the observer moves. A variation on the system allows two or more persons to be tracked independently. Cross talk (ghosting) can be reduced to the point that imperceptibility can be achieved.

  17. Success Despite Socioeconomics: A Case Study of a High-Achieving, High-Poverty School

    ERIC Educational Resources Information Center

    Tilley, Thomas Brent; Smith, Samuel J.; Claxton, Russell L.

    2012-01-01

    This case study of a high-achieving, high-poverty school describes the school's leadership, culture, and programs that contributed to its success. Data were collected from two surveys (the School Culture Survey and the Vanderbilt Assessment of Leadership in Education), observations at the school site, and interviews with school personnel. The…

  18. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    ERIC Educational Resources Information Center

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  19. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  20. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  1. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  2. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  3. Novel Bridgeless PFC Converters with Low Inrush Current Stress and High Efficiency

    NASA Astrophysics Data System (ADS)

    Mino, Kazuaki; Matsumoto, Hiroyuki; Fujita, Satoru; Nemoto, Yuji; Kawasaki, Daisuke; Yamada, Ryuji; Tawada, Nobuyuki

    This paper presents novel bridgeless power factor correction circuits that achieve both high reliability and high efficiency. The proposed circuits can protect silicon carbide Schottky barrier diodes, MOSFETs, and body diodes against flowing high inrush current without impairing efficiency. This paper introduces the principle of operation including the control scheme and the simulation and experimental results.

  4. Invited Article: Broadband highly efficient dielectric metadevices for polarization control

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (˜90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ˜99% polarization conversion efficiency.

  5. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  6. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  7. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    PubMed

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

  8. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    PubMed

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively. PMID:26820247

  9. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  10. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

  11. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  12. Achieving High Performance in AC-Field Driven Organic Light Sources.

    PubMed

    Xu, Junwei; Carroll, David L; Smith, Gregory M; Dun, Chaochao; Cui, Yue

    2016-04-11

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m(2) with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today's OLEDs in performance.

  13. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. New line of high efficiency turbochargers

    SciTech Connect

    Chellini, R,

    1994-11-01

    The French firm Hispano Suiza has recently introduced the first of a new family of high-efficiency turbochargers. The design objectives for these turbochargers is to combine the most advanced technology in both the compressor and turbine components. The HS 5800 New Generation Turbocharger is suited for diesel engines in the 1700-3000 kW power range for a single turbocharger unit. When the HS 4800 and HS 6800 sizes are introduced the line will cover a range of engines from 1200 to 9000 kW. 5 figs.

  15. Design strategies for achieving high triplet energy electron transporting host materials for blue electrophosphorescence

    SciTech Connect

    Sapochak, Linda S.; Padmaperuma, Asanga B.; Vecchi, Paul A.; Qiao, Hong; Burrows, Paul E.

    2006-12-01

    High efficiency small molecule organic light emitting devices (OLEDs) based on light emission from an electrophosphorescent dopant dispersed in an organic host matrix are well known. Achieving blue phosphorescent OLEDs is particularly challenging because the host triplet energy should ideally be > 2.8 eV to prevent back-transfer of energy from the dopant to the host matrix resulting in loss of efficiency. A design strategy for developing new host materials with high triplet energies by using phosphine oxide (P=O) moieties as points of saturation in order to build sublimable, electron transporting host materials starting from small, wide bandgap molecular building blocks (i.e., biphenyl, phenyl, naphthalene, octafluorobiphenyl, and N-ethylcarbazole) is described. Electrophosphorescent OLEDs using the organic phosphine oxide compounds as host materials for the sky blue organometallic phosphor, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic) give maximum external quantum efficiencies of ~ 8% and maximum luminance power efficiencies up to 25 lm/W.

  16. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect

    Lowes, Ted

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today's commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  17. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  18. Development of high-efficiency Stirling cryocoolers for high temperature superconducting motors

    NASA Astrophysics Data System (ADS)

    Nakano, K.; Yumoto, K.; Hiratsuka, Y.

    2015-12-01

    For wide spread high-temperature superconductor (HTS) devices, a cryocooler having COP of >0.1, with a compact size, light weight, high efficiency and high reliability is required. For practical use of superconductive devices, Sumitomo Heavy Industries, Ltd. (SHI) developed a high-efficiency Stirling type pulse tube cryocooler (STPC). The STPC had high reliability and low vibration. However, its efficiency was not enough to meet the demands of an HTS motor. To further improve the efficiency, we reconsidered the expander of cryocooler and developed a Stirling cryocooler (STC). Two prototype units of a compact, high-efficiency split Stirling cryocooler were designed, built and tested. With the second prototype unit, a cooling capacity of 151 W at 70 K and a minimum temperature of 33 K have been achieved with a compressor input power of 2.15 kW. Accordingly, COP of about 0.07 has been achieved. The detailed design of the prototype units and the experimental results will be reported in this paper.

  19. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  20. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.

    PubMed

    Mathew, Simon; Yella, Aswani; Gao, Peng; Humphry-Baker, Robin; Curchod, Basile F E; Ashari-Astani, Negar; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Md Khaja; Grätzel, Michael

    2014-03-01

    Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC of 0.91 V, short-circuit current density JSC of 18.1 mA cm(-2), fill factor of 0.78 and a power conversion efficiency of 13%.

  1. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers

    NASA Astrophysics Data System (ADS)

    Mathew, Simon; Yella, Aswani; Gao, Peng; Humphry-Baker, Robin; Curchod, Basile F. E.; Ashari-Astani, Negar; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Md. Khaja; Grätzel, Michael

    2014-03-01

    Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC of 0.91 V, short-circuit current density JSC of 18.1 mA cm-2, fill factor of 0.78 and a power conversion efficiency of 13%.

  2. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  3. Relationship between High School Mathematical Achievement and Quantitative GPA

    ERIC Educational Resources Information Center

    Brown, Jennifer L.; Halpin, Glennelle; Halpin, Gerald

    2015-01-01

    The demand for STEM graduates has increased, but the number of incoming freshmen who declare a STEM major has remained stagnant. High school courses, such as calculus, can open or close the gate for students interested in careers in STEM. The purpose of this study was to determine if high school mathematics preparation was a significant…

  4. Relationships among Stress, Coping, and Mental Health in High-Achieving High School Students

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Shaunessy, Elizabeth; Hardesty, Robin

    2008-01-01

    This study investigates the relationships among stress, coping, and mental health in 139 students participating in an International Baccalaureate (IB) high school diploma program. Mental health was assessed using both positive indicators (life satisfaction, academic achievement, academic self-efficacy) and negative indicators (psychopathology) of…

  5. The Information Search Process of High-, Middle-, and Low-Achieving High School Seniors.

    ERIC Educational Resources Information Center

    Kuhlthau, Carol C.

    1989-01-01

    Presents a model of the information search process as a complex series of stages involving thoughts and feelings as well as actions. A study that sought to verify the model using high school seniors from three different achievement levels is described, and the implications for library instruction are discussed. (five references) (CLB)

  6. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  7. Examining Organizational Practices That Predict Persistence among High-Achieving Black Males in High School

    ERIC Educational Resources Information Center

    Anderson, Kenneth Alonzo

    2016-01-01

    Background/Context: This article summarizes an increasing trend of antideficit Black male research in mathematics and highlights opportunities to add to the research. A review of the literature shows that antideficit researchers often examine relationships between individual traits and persistence of high-achieving Black males in mathematics.…

  8. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  9. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  10. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  11. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  12. Japanese High School Entrance Examinations and Scholastic Achievement.

    ERIC Educational Resources Information Center

    Togashi, Yutaka

    1985-01-01

    The Japanese high school entrance examinations were examined in detail for social studies, mathematics, and science test items. Most items measured knowledge and comprehension rather than synthesis, analysis, or scientific thinking. Implications for middle school instruction were discussed. (GDC)

  13. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Chapsal, Bruno D.; Ojima, Iwao

    2008-01-01

    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  14. Practically Perfect in Every Way: Can Reframing Perfectionism for High-Achieving Undergraduates Impact Academic Resilience?

    ERIC Educational Resources Information Center

    Dickinson, Mary J.; Dickinson, David A. G.

    2015-01-01

    This study focuses on a pan-disciplinary scheme that targeted high-achieving undergraduate students. Earlier research from the scheme argued that high achievers have discernibly different learning and personal development support needs. One of the most frequent self-reported challenges within this high-achieving group is perfectionism. This…

  15. Superlattices and multilayer structures for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Possible applications of superlattices to photovoltaic structures are discussed. A new concept based on doping superstructures (NIPI) can be exploited to significantly reduce recombination losses in III-V compound solar cells. A novel multijunction structure with lateral current transport is proposed. A computer simulation has been performed which shows that by optimizing the multilayer structure, short circuit current is substantially increased with minimum drop in open circuit voltage. An additional advantage of the structure is enhanced radiation tolerance. It is anticipated that this multilayer structure can be incorporated in multibandgap cells to achieve high efficiencies.

  16. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    SciTech Connect

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N.

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  17. Achieving high-value cardiac imaging: challenges and opportunities.

    PubMed

    Wiener, David H

    2014-01-01

    Cardiac imaging is under intense scrutiny as a contributor to health care costs, with multiple initiatives under way to reduce and eliminate inappropriate testing. Appropriate use criteria are valuable guides to selecting imaging studies but until recently have focused on the test rather than the patient. Patient-centered means are needed to define the true value of imaging for patients in specific clinical situations. This article provides a definition of high-value cardiac imaging. A paradigm to judge the efficacy of echocardiography in the absence of randomized controlled trials is presented. Candidate clinical scenarios are proposed in which echocardiography constitutes high-value imaging, as well as stratagems to increase the likelihood that high-value cardiac imaging takes place in those circumstances.

  18. Achieving high CRI from warm to super white

    NASA Astrophysics Data System (ADS)

    Bailey, Edward; Tormey, Ellen S.

    2007-09-01

    Light sources which produce a high color rendering index (CRI) have many applications in the lighting industry today. High color rendering accents the rich color which abounds in nature, interior design, theatrical costumes and props, clothing and fabric, jewelry, and machine vision applications. Multi-wavelength LED sources can pump phosphors at multiple stokes shift emission regimes and when combined with selected direct emission sources can allow for greater flexibility in the production of warm-white and cool white light of specialty interest. Unique solutions to R8 and R14 CRI >95 at 2850K, 4750K, 5250K, and 6750K presented.

  19. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive.

  20. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. )

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  1. Community Schools Seek to Improve High School Achievement, College Readiness

    ERIC Educational Resources Information Center

    Gilroy, Marilyn

    2011-01-01

    The Coalition for Community Schools, an alliance of more than 150 national, state, and local organizations, is bringing public schools in partnership with community resources to improve student success. While that might seem like an abstract idea, it has very concrete goals, such as boosting high school graduation rates and college readiness.…

  2. High-Achieving Schools Put Equity Front and Center

    ERIC Educational Resources Information Center

    Gleason, Sonia Caus; Gerzon, Nancy

    2014-01-01

    How does professional learning look and feel in high-poverty schools where every student makes at least one year's worth of progress every year? How do schools and leaders put all the varied components of professional learning together so that they support all students learning every day? What professional learning grounds and sustains…

  3. Organizational Citizenship of Faculty and Achievement of High School Students

    ERIC Educational Resources Information Center

    DiPaola, Michael F.; Hoy, Wayne K.

    2005-01-01

    All successful organizations, including successful high schools, have employees who go beyond their formal job responsibilities and freely give of their time and energy to succeed. Organ was the first to use the phrase "organizational citizenship behavior" (OCB) to denote organizationally beneficial behavior of workers that was not prescribed but…

  4. Academic Dishonesty among Gifted and High-Achieving Students

    ERIC Educational Resources Information Center

    Geddes, Kimberly A.

    2011-01-01

    Gifted high school students are essentially absent in the research concerning academic integrity; however, over the past few years, educators of gifted students have noticed an increase in the occurrences of academic dishonesty among students in gifted classrooms (Abilock, 2009). This research may be analyzed to provide some insight into the…

  5. Vocational Interests of Intellectually Gifted and Highly Achieving Young Adults

    ERIC Educational Resources Information Center

    Vock, Miriam; Koller, Olaf; Nagy, Gabriel

    2013-01-01

    Background: Vocational interests play a central role in the vocational decision-making process and are decisive for the later job satisfaction and vocational success. Based on Ackerman's (1996) notion of "trait complexes," specific interest profiles of gifted high-school graduates can be expected. Aims: Vocational interests of gifted and highly…

  6. Common Core and America's High-Achieving Students

    ERIC Educational Resources Information Center

    Plucker, Jonathan A.

    2015-01-01

    While the merit and politics of the Common Core State Standards (CCSS) have been much debated and discussed, one topic has been virtually ignored: What do the standards portend for America's high-ability students? This brief addresses that question and provides guidance for CCSS-implementing districts and schools as they seek to help these…

  7. The Relationship between Highly Qualified Teachers and Student Academic Achievement

    ERIC Educational Resources Information Center

    Macken, Sherry Lou

    2013-01-01

    This study examined the relationship between the percentage of highly qualified teachers and standardized measures of student proficiency in the core academic subjects of mathematics, reading, science, social studies, and writing. Signed into law in January of 2002 by President George W. Bush, the No Child Left Behind (NCLB) Act requires teachers…

  8. More High-Achieving Students Are Choosing Community Colleges First

    ERIC Educational Resources Information Center

    Pluviose, David

    2008-01-01

    Certainly, "Tonight Show" host Jay Leno has nurtured the perception that community colleges are a punishment for underperforming high school students by joking that community colleges aren't "real colleges." This article shows that this perception belies the reality that contemporary community colleges serve students seeking trade skills but also…

  9. Park View High School: A World of Achievement

    ERIC Educational Resources Information Center

    Principal Leadership, 2010

    2010-01-01

    Entering the lobby of Park View High School in Sterling, VA, is like entering another world. The diversity in the student body is reflected in flags from 63 of the 80 countries that are represented in the student population, and in a special project for Hispanic Heritage Month, which covers the walls of an entire hallway. The school walls,…

  10. Testing Theories of Learning: Effects on High School Achievement.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; Cool, Valerie A.

    Theories of school learning consistently point to variables such as ability, time (e.g., homework), quality of instruction, motivation, and academic coursework as important influences on learning. In this study, path analysis was used to test the direct and indirect effects of these variables on high school learning, with learning measured by both…

  11. Gender, Student Motivation and Academic Achievement in a Midsized Wisconsin High School

    ERIC Educational Resources Information Center

    Lutzke, Steven Ronald

    2013-01-01

    This mixed-methods study investigated relationships among gender, academic motivation and achievement in a mid-sized Wisconsin high school. A questionnaire was developed that focused on perceived ability, achievement motives and achievement goals. Interviews with teachers focused on relationships among academic motivation and gender achievement.…

  12. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  13. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  14. High efficiency francium trap for precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Aubin, Seth Andre Morgan

    We cooled and trapped francium in a high efficiency magneto-optical trap. The francium is produced artificially in a nuclear fusion reaction using the Stony Brook superconducting LINAC. We observed an average trap population of 50,000 210Fr, corresponding to a trapping efficiency of 1.2%. The trapped atoms are cooled to a temperature of 75 muK. We used the new trapping apparatus for spectroscopic studies of the 9S 1/2 level of 210Fr to test the precision of atomic theory. We measured the hyperfine splitting of the 9S1/2 level, and with time-correlated single photon counting, we measured its radiative lifetime. We found a lifetime of 107.53 +/- 0.80 ns and a hyperfine splitting of 4045.1 +/- 1.1 MHz. We characterized the optical properties of a dipole trap based on an axicon lens to provide a low perturbation environment for precision spectroscopy. The axicon generates a region of darkness surrounded by light. For blue-detuned light, cold atoms are trapped in the dark region and experience almost no perturbing fields. This work continues the spectroscopic studies of francium for tests of atomic theory and opens the way for nuclear anapole moment measurements.

  15. Impact of learning orientation on African American children's attitudes toward high-achieving peers.

    PubMed

    Marryshow, Derrick; Hurley, Eric A; Allen, Brenda A; Tyler, Kenneth M; Boykin, A Wade

    2005-01-01

    This study examined Ogbu's widely accepted thesis that African American students reject high academic achievement because they perceive its limited utility in a world where their upward mobility is constrained by racial discrimination. Boykin's psychosocial integrity model contends that Black students value high achievement but that discrepancies between their formative cultural experiences and those imposed in school lead them to reject the modes of achievement available in classrooms. Ninety Black children completed a measure of attitudes toward students who achieve via mainstream or African American cultural values. Participants rejected the mainstream achievers and embraced the African American cultural achievers. Moreover, they expected their teachers to embrace the mainstream achievers and reject those who achieved through high-verve behavior. Results suggest that Boykin's thesis is a needed refinement to Ogbu's ideas. They indicate that Black children may reject not high achievement but some of the mainstream cultural values and behaviors on which success in mainstream classrooms is made contingent.

  16. Principals’ Perception of Influence on Factors Affecting Student Achievement in Low- and High-Achieving Urban High Schools

    ERIC Educational Resources Information Center

    Bloom, Collette M.; Owens, Emiel W.

    2013-01-01

    The purpose of the study was to compare and contrast influences principals have on staffing, curriculum issues, and discipline policies in high- and low-performing urban high schools. The data for the present study were drawn from the first year follow up of the Educational Longitudinal Survey of 2002-2004 (ELS: 02), administered by the National…

  17. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  18. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  19. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  20. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  1. Achieving High Reliability Operations Through Multi-Program Integration

    SciTech Connect

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  2. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method.

  3. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  4. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  5. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  6. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  7. Advancing Minority High Achievement: National Trends and Promising Programs and Practices. A Report Prepared for the National Task Force on Minority High Achievement, the College Board.

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Stringfield, Sam; Rachuba, Laura

    This report documents recent national progress in advancing the achievements of elementary-aged minority children, the potential for replicable whole-school reform designs to contribute to this advancement, and the individual, classroom, and school characteristics that distinguish those minority students who attain high levels of achievement. The…

  8. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode.

  9. High efficiency silicon nanohole/organic heterojunction hybrid solar cell

    SciTech Connect

    Hong, Lei; Wang, Xincai; Zheng, Hongyu; He, Lining; Wang, Hao; Rusli E-mail: erusli@ntu.edu.sg; Yu, Hongyu E-mail: erusli@ntu.edu.sg

    2014-02-03

    High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1 μm. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

  10. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode. PMID:24977887

  11. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  12. A 12%-efficient upgraded metallurgical grade silicon-organic heterojunction solar cell achieved by a self-purifying process.

    PubMed

    Zhang, Jie; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan

    2014-11-25

    Low-quality silicon such as upgraded metallurgical-grade (UMG) silicon promises to reduce the material requirements for high-performance cost-effective photovoltaics. So far, however, UMG silicon currently exhibits the short diffusion length and serious charge recombination associated with high impurity levels, which hinders the performance of solar cells. Here, we used a metal-assisted chemical etching (MACE) method to partially upgrade the UMG silicon surface. The silicon was etched into a nanostructured one by the MACE process, associated with removing impurities on the surface. Meanwhile, nanostructured forms of UMG silicon can benefit improved light harvesting with thin substrates, which can relax the requirement of material purity for high photovoltaic performance. In order to suppress the large surface recombination due to increased surface area of nanostructured UMG silicon, a post chemical treatment was used to decrease the surface area. A solution-processed conjugated polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on UMG silicon at low temperature (<150 °C) to form a heterojunction to avoid any impurity diffusion in the silicon substrate. By optimizing the thickness of silicon and suppressing the charge recombination at the interface between thin UMG silicon/PEDOT:PSS, we are able to achieve 12.0%-efficient organic-inorganic hybrid solar cells, which are higher than analogous UMG silicon devices. We show that the modified UMG silicon surface can increase the minority carrier lifetime because of reduced impurity and surface area. Our results suggest a design rule for an efficient silicon solar cell with low-quality silicon absorbers.

  13. The Relationship between Parental Involvement and Student Achievement in a Rural Florida High School

    ERIC Educational Resources Information Center

    Jackson, Willie A.

    2011-01-01

    Parental involvement is viewed as critical to the development of effective schools and student achievement. The relationship between parental involvement and achievement test scores at a rural high school in Florida was not known. This high school has not met the state standards as determined by the Florida Comprehensive Achievement Test (FCAT)…

  14. High Achievement in Mathematics Education in India: A Report from Mumbai

    ERIC Educational Resources Information Center

    Raman, Manya

    2010-01-01

    This paper reports a study aimed at characterizing the conditions that lead to high achievement in mathematics in India. The study involved eight schools in the greater Mumbai region. The main result of the study is that the notion of high achievement itself is problematic, as reflected in the reports about mathematics achievement within and…

  15. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  16. High-efficiency heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Coutts, T. J.; Ward, J. S.; Emery, K. A.

    1991-01-01

    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet

  17. Holey graphene frameworks for highly efficient capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Yuxi; Lin, Zhaoyang; Zhong, Xing; Huang, Xiaoqing; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2014-08-01

    Supercapacitors represent an important strategy for electrochemical energy storage, but are usually limited by relatively low energy density. Here we report a three-dimensional holey graphene framework with a hierarchical porous structure as a high-performance binder-free supercapacitor electrode. With large ion-accessible surface area, efficient electron and ion transport pathways as well as a high packing density, the holey graphene framework electrode can deliver a gravimetric capacitance of 298 F g-1 and a volumetric capacitance of 212 F cm-3 in organic electrolyte. Furthermore, we show that a fully packaged device stack can deliver gravimetric and volumetric energy densities of 35 Wh kg-1 and 49 Wh l-1, respectively, approaching those of lead acid batteries. The achievement of such high energy density bridges the gap between traditional supercapacitors and batteries, and can open up exciting opportunities for mobile power supply in diverse applications.

  18. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  19. Predicting delay in reading achievement in a highly transparent language.

    PubMed

    Holopainen, L; Ahonen, T; Lyytinen, H

    2001-01-01

    A random sample of 91 preschool children was assessed prior to receiving formal reading instruction. Verbal and nonverbal measures were used as predictors for the time of instruction required to accurately decode pseudowords in the highly orthographically regular Finnish language. After 2 years, participants were divided into four groups depending on the duration of instruction they had required to reach 90 % accuracy in their reading of pseudowords. Participants were classified as precocious decoders (PD), who could read at school entry; early decoders (ED), who learned to read within the first 4 months of Grade 1; ordinary decoders (OD), who learned to read within 9 months; and late decoders (LD), who failed to reach the criterion after 18 months of reading instruction at Grade 2. Phonological awareness played a significant role only in differentiating PD from ED and OD. However, phonological awareness failed to predict the delayed learning process of LD. LD differed from all other groups in visual analogical reasoning in an analysis not containing phonological awareness measures. Letter knowledge and visual analogical reasoning explained above 90% of the PD-LD difference. Preschool composite (objects, colors, and digits) naming speed measures best predicted reading fluency at the end of Grade 2. The supportive role of orthographic knowledge in phonological awareness, the role of visual analogical reasoning, and the inability of phonological measures to discriminate late decoders are discussed.

  20. Achieving High-Frequency Optical Control of Synaptic Transmission

    PubMed Central

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  1. The Effect of Curriculum for Developing Efficient Studying Skills on Academic Achievements and Studying Skills of Learners

    ERIC Educational Resources Information Center

    Demir, Semra; Kilinc, Mehmet; Dogan, Ali

    2012-01-01

    Purpose of this study is to examine the effect of "Development of Efficient Studying Skills Curriculum" on academic achievements and studying skills of 7th grade primary school students. In this study, pre-test post-test from experiment models and semi-experimental model with control group were preferred. The reason for the preference is…

  2. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  3. Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management.

    PubMed

    Tan, Hairen; Furlan, Alice; Li, Weiwei; Arapov, Kirill; Santbergen, Rudi; Wienk, Martijn M; Zeman, Miro; Smets, Arno H M; Janssen, René A J

    2016-03-16

    Highly efficient hybrid multijunction solar cells are constructed with a wide-bandgap amorphous silicon for the front subcell and a low-bandgap polymer for the back subcell. Power conversion efficiencies of 11.6% and 13.2% are achieved in tandem and triple-junction configurations, respectively. The high efficiencies are enabled by deploying effective optical management and by using photoactive materials with complementary absorption. PMID:26780260

  4. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications.

    PubMed

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E; Kavaldzhiev, Mincho; Contreras, Maria F; Thoroddsen, Sigurdur T; Khashab, Niveen M; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  5. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    NASA Astrophysics Data System (ADS)

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-06-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  6. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    PubMed Central

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  7. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    SciTech Connect

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  8. A high-efficiency aerothermoelastic analysis method

    NASA Astrophysics Data System (ADS)

    Wan, ZhiQiang; Wang, YaoKun; Liu, YunZhen; Yang, Chao

    2014-06-01

    In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier's law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

  9. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  10. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  11. Cascaded parametric amplification for highly efficient terahertz generation.

    PubMed

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  12. Proceedings of the Flat-plate Solar Array Project Research Forum on High-efficiency Crystalline Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    The high-efficiency crystalline silicon solar cells research forum addressed high-efficiency concepts, surface-interface effects, bulk effects, modeling and device processing. The topics were arranged into six interactive sessions, which focused on the state-of-the-art of device structures, identification of barriers to achieve high-efficiency cells and potential ways to overcome these barriers.

  13. High efficiency transformation of E. coli by high voltage electroporation.

    PubMed

    Dower, W J; Miller, J F; Ragsdale, C W

    1988-07-11

    E. coli can be transformed to extremely high efficiencies by subjecting a mixture of cells and DNA to brief but intense electrical fields of exponential decay waveform (electroporation). We have obtained 10(9) to 10(10) transformants/micrograms with strains LE392 and DH5 alpha, and plasmids pUC18 and pBR329. The process is highly dependent on two characteristics of the electrical pulse: the electric field strength and the pulse length (RC time constant). The frequency of transformation is a linear function of the DNA concentration over at least six orders of magnitude; and the efficiency of transformation is a function of the cell concentration. Most of the surviving cells are competent with up to 80% transformed at high DNA concentration. The mechanism does not appear to include binding of the DNA to the cells prior to entry. Possible mechanisms are discussed and a simple procedure for the practical use of this technique is presented. PMID:3041370

  14. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  15. Student Achievement and Efficiency in Missouri Schools and the No Child Left Behind Act

    ERIC Educational Resources Information Center

    Primont, Diane F.; Domazlicky, Bruce

    2006-01-01

    The 2001 No Child Left Behind Act requires that schools make ''annual yearly progress'' in raising student achievement, or face possible sanctions. The No Child Left Behind Act places added emphasis on test scores, such as scores from the Missouri Assessment Program (MAP), to evaluate the performance of schools. In this paper, we investigate…

  16. A Thorough and Efficient Education: School Funding, Student Achievement and Productivity

    ERIC Educational Resources Information Center

    Ahlgrim, Richard W.

    2010-01-01

    Many school districts are facing stagnant or reduced funding (input) concurrent with demands for improved student achievement (output). In other words, there is pressure for all schools, even those schools with student populations of low socioeconomic status, to improve academic results (accountability for output) without a directly proportionate…

  17. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  18. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    Gravel, Roland; Maronde, Carl; Gehrke, Chris; Fiveland, Scott

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  19. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining

    SciTech Connect

    Yang, Ying-Ying E-mail: yangyy@semi.ac.cn; Zhao, Ya-Ping; Wang, Li-Rong; Zhang, Ling; Lin, Xue-Chun E-mail: yangyy@semi.ac.cn

    2015-03-14

    A highly efficient nano-periodical grating is theoretically investigated for spectral beam combining (SBC) and is experimentally implemented for attaining high-brightness laser from a diode laser array. The rigorous coupled-wave analysis with the S matrix method is employed to optimize the parameters of the grating. According the optimized parameters, the grating is fabricated and plays a key role in SBC cavity. The diffraction efficiency of this grating is optimized to 95% for the output laser which is emitted from the diode laser array. The beam parameter product of 3.8 mm mrad of the diode laser array after SBC is achieved at the output power of 46.3 W. The optical-to-optical efficiency of SBC cavity is measured to be 93.5% at the maximum operating current in the experiment.

  20. The Chinese High School Student's Stress in the School and Academic Achievement

    ERIC Educational Resources Information Center

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  1. The Effects of Magnet Schools on Neighborhood High Schools: An Examination of Achievement among Entering Freshmen

    ERIC Educational Resources Information Center

    Neild, Ruth Curran

    2004-01-01

    Magnet schools have been criticized for intensifying the concentration of disadvantaged, low-achieving students at neighborhood high schools. This article investigates the impact of academically selective magnet high schools on the average achievement of ninth graders enrolling in neighborhood high schools in a large urban school district. The…

  2. Beyond Academic Reputation: Factors that Influence the College of First Choice for High Achieving Students

    ERIC Educational Resources Information Center

    Schoenherr, Holly J.

    2009-01-01

    Studies that have investigated college choice factors for high-achieving students repeatedly cite academic reputation as one of the top indicators of choice but have not indicated why some high-achieving students choose to attend universities with a less prestigious reputation than the more highly prestigious options available to them. The purpose…

  3. Preferred Homework Style and Homework Environment in High- versus Low-Achieving Chinese Students.

    ERIC Educational Resources Information Center

    Hong, Eunsook; Lee, Kit-hung

    This study compared preferred homework styles of Chinese students who were characterized by: (1) high versus low self-perceived homework achievement and attitude; (2) high versus low teacher-rated homework completion and quality; (3) high versus low academic achievement in mathematics. Gender differences in homework styles were also examined.…

  4. A COMPREHENSIVE STUDY OF THE MOTIVATIONAL FACTORS UNDERLYING ACHIEVEMENT OF ELEVENTH-GRADE HIGH SCHOOL STUDENTS.

    ERIC Educational Resources Information Center

    FARQUHAR, WILLIAM W.

    ACHIEVEMENT MOTIVATION WAS STUDIED BETWEEN OVER- AND UNDER-ACHIEVING STUDENTS IN THE ELEVENTH-GRADE TO DEVELOP AN OBJECTIVE MEASURE OF MOTIVATION FOR USE IN PREDICTING ACADEMIC SUCCESS OR FAILURE. APPROXIMATELY 800 STUDENTS IN PUBLIC HIGH SCHOOLS WERE SELECTED FOR VALIDATION AND CROSS-VALIDATION SAMPLES. THEY WERE DIVIDED BY SEX AND ACHIEVEMENT.…

  5. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  6. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  7. High Efficiency Submillimeter-Wave Imaging Array

    NASA Technical Reports Server (NTRS)

    Llombart, Nuria; Skalare, Anders; Gill, John J.; Siegel, Peter H.

    2008-01-01

    The period of a focal array is limited by the angular sampling and the f number of the system. This fact will limit the efficiency of imaging array systems to around 50%. Recently it been demonstrated that the use of a dielectric layer on top of an array of apertures can improve this efficiency limit. In this paper, we describe a similar structure that improves the efficiency in imaging applications and that it is easy to manufacture due to its compatibility with planar lithographic techniques.

  8. Achieving strategic cost advantages by focusing on back-office efficiency.

    PubMed

    McDowell, Jim

    2010-06-01

    A study of more than 270 hospitals over a four-year period highlighted a number of investments that can reduce hospitals' costs and improve efficiency, including the following: E-procurement systems. Electronic exchange of invoices and payments (and electronic receipt of payments). Human resources IT systems that reduce the need for manual entry of data. Shared services deployment.

  9. The Effects of Web-Based/Non-Web-Based Problem-Solving Instruction and High/Low Achievement on Students' Problem-Solving Ability and Biology Achievement

    ERIC Educational Resources Information Center

    Yu, Wen-Feng; She, Hsiao-Ching; Lee, Yu-Mei

    2010-01-01

    This study investigates the effects of two factors: the mode of problem-solving instruction (i.e. Web-based versus non-Web-based) and the level of academic achievement (i.e. high achievers versus low achievers) on students' problem-solving ability and biology achievement. A quasi-experimental design was used, in which the experimental group…

  10. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  11. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  12. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  13. Identification of Energy Efficiency Opportunities through Building Data Analysis and Achieving Energy Savings through Improved Controls

    SciTech Connect

    Katipamula, Srinivas; Taasevigen, Danny J.; Koran, Bill

    2014-09-04

    This chapter will highlight analysis techniques to identify energy efficiency opportunities to improve operations and controls. A free tool, Energy Charting and Metrics (ECAM), will be used to assist in the analysis of whole-building, sub-metered, and/or data from the building automation system (BAS). Appendix A describes the features of ECAM in more depth, and also provide instructions for downloading ECAM and all resources pertaining to using ECAM.

  14. High-efficiency multilayer-dielectric diffraction gratings

    SciTech Connect

    Perry, M.D.; Boyd, R.D.; Britten, J.A.

    1996-06-01

    The ability to produce short laser pulses of extremely high power and high irradiance, as is needed for fast ignitor research in inertial confinement fusion, places increasing demands on optical components such as amplifiers, lenses, and mirrors that must remain undamaged by the radiation. The higher refractive index in the center of an intense laser beam acts as a focusing lens. The resulting wavefront distortion, left uncorrected, eventually leads to catastrophic filamentation. Major advances in energy extraction and resulting increases in focused irradiance have been made possible by the use of chirped-pulse amplification (CPA), long used in radar applications and newly applied to optical frequencies. Optical-frequency CPA systems begin with a mode-locked oscillator that produces low-energy seed pulses with durations of ten to a few hundred femtoseconds. As a result of the classical uncertainty relation between time and frequency, these short pulses have a very broad frequency distribution. A pair of diffraction gratings (or other dispersive elements) lengthens the laser pulse and induces a time-varying frequency (or chirp). Following amplification, diffraction gratings compress the pulse back to nearly the original duration. Typically a nanojoule, femtosecond pulse is stretched by a factor of several thousand and is amplified by as much as 12 orders of magnitude before recompression. By producing the short pulse only after amplification, this technique makes possible efficient extraction of energy from a variety of broadband solid state materials. Achieving high focused irradiance from a pulse ultimately requires both high peak power and excellent beam quality. There is therefore a demand for diffraction gratings that produce a high-quality diffracted wavefront, have high diffraction efficiency, and exhibit a high threshold for laser damage.

  15. Stable, high efficiency gyrotron backward-wave oscillator

    SciTech Connect

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-15

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3 GHz with a peak power of 149 kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  16. Stable, high efficiency gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Fan, C. T.; Chang, T. H.; Pao, K. F.; Chu, K. R.; Chen, S. H.

    2007-09-01

    Stability issues have been a major concern for the realization of broadband tunability of the gyrotron backward-wave oscillator (gyro-BWO). Multimode, time-dependent simulations are employed to examine the stability properties of the gyro-BWO. It is shown that the gyro-BWO is susceptible to both nonstationary oscillations and axial mode competition in the course of frequency tuning. Regions of nonstationary oscillations and axial mode competition are displayed in the form of stability maps over wide-ranging parameter spaces. These maps serve as a guide for the identification and optimization of stable windows for broadband tuning. Results indicate that a shorter interaction length provides greater stability without efficiency degradation. These theoretical predictions have been verified in a Ka-band gyro-BWO experiment using both short and long interaction lengths. In the case of a short interaction length, continuous and smooth tunability, in magnetic field and in beam voltage, was demonstrated with the high interaction efficiency reported so far. A maximum 3-dB tuning range of 1.3GHz with a peak power of 149kW at 29.8% efficiency was achieved. In a comparative experiment with a longer interaction length, the experimental data are characterized by piecewise-stable tuning curves separated by region(s) of nonstationary oscillations, as predicted by theory.

  17. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  18. Features of photoconversion in highly efficient silicon solar cells

    SciTech Connect

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, N. R.; Sokolovskyi, I. O.

    2015-02-15

    The photoconversion efficiency η in highly efficient silicon-based solar cells (SCs) is analyzed depending on the total surface-recombination rate S{sub s} on illuminated and rear surfaces. Solar cells based on silicon p-n junctions and α-Si:H or α-SiC:H-Si heterojunctions (so-called HIT structures) are considered in a unified approach. It is shown that a common feature of these SCs is an increased open-circuit voltage V{sub oc} associated with an additional contribution of the rear surface. Within an approach based on analysis of the physical features of photoconversion in SCs, taking into account the main recombination mechanisms, including Shockley-Read-Hall recombination, radiative recombination, surface recombination, recombination in the space-charge region, and band-to-band Auger recombination, expressions for the photoconversion efficiency of such SCs are obtained. The developed theory is compared with experiments, including those for SCs with record parameters, e.g., η = 25% and 24.7% for SCs with a p-n junction for HIT structures, respectively, under AM1.5 conditions. By comparing theory and experiment, the values of S{sub s} achieved as a result of recombination-loss minimization by various methods are determined. The results of calculations of the maximum possible value η{sub max} in silicon SCs are compared with the data of other papers. Good agreement is observed.

  19. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  20. [Bariatric surgery is more efficient than medical treatment in achieving remission in diabetes mellitus type 2].

    PubMed

    Klein, Mads; Rosenberg, Jacob; Gögenur, Ismail

    2013-04-01

    Observational studies have shown that bariatric surgery can lead to remission of diabetes mellitus type 2 (DMII), but randomized controlled trials have been lacking. Recently, randomized controlled trials comparing bariatric surgery with optimal medical treatment in patients suffering from poorly controlled DMII, have been performed. These trials show that bariatric surgery in general, and the malabsorptive procedures in particular, are more effective than medical treatment in achieving remission of DMII. These procedures should therefore be considered in the treatment of patients with DMII and obesity.

  1. An Analysis of Java Programming Behaviors, Affect, Perceptions, and Syntax Errors among Low-Achieving, Average, and High-Achieving Novice Programmers

    ERIC Educational Resources Information Center

    Rodrigo, Ma. Mercedes T.; Andallaza, Thor Collin S.; Castro, Francisco Enrique Vicente G.; Armenta, Marc Lester V.; Dy, Thomas T.; Jadud, Matthew C.

    2013-01-01

    In this article we quantitatively and qualitatively analyze a sample of novice programmer compilation log data, exploring whether (or how) low-achieving, average, and high-achieving students vary in their grasp of these introductory concepts. High-achieving students self-reported having the easiest time learning the introductory programming…

  2. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  3. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    PubMed

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.

  4. Optimal thickness of silicon membranes to achieve maximum thermoelectric efficiency: A first principles study

    NASA Astrophysics Data System (ADS)

    Mangold, Claudia; Neogi, Sanghamitra; Donadio, Davide

    2016-08-01

    Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ˜7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.

  5. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  6. International Note: Between-Domain Relations of Chinese High School Students' Academic Achievements

    ERIC Educational Resources Information Center

    Yangyang, Liu

    2012-01-01

    The present study examined the between-domain relations of Chinese high school students' academic achievements. In a sample of 1870 Chinese 10th grade students, the results indicated that Chinese high school students' academic achievements were correlated across nine subjects. In line with the previous Western findings, the findings suggested that…

  7. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan

    ERIC Educational Resources Information Center

    Al-Zoubi, Maysoon

    2016-01-01

    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  8. High-Achieving and Average Students' Reading Growth: Contrasting School and Summer Trajectories

    ERIC Educational Resources Information Center

    Rambo-Hernandez, Karen E.; McCoach, D. Betsy

    2015-01-01

    Much is unknown about how initially high-achieving students grow academically, especially given the measurement issues inherent in assessing growth for the highest performing students. This study compared initially high-achieving and average students' growth in reading (in a cohort of third-grade students from 2,000 schools) over 3 years.…

  9. A Longitudinal Investigation of Project-Based Instruction and Student Achievement in High School Social Studies

    ERIC Educational Resources Information Center

    Summers, Emily J.; Dickinson, Gail

    2012-01-01

    This longitudinal study focused on how project-based instruction (PBI) influenced secondary social studies students' academic achievement and promoted College and Career Readiness (CCR). We explored and compared student achievement in a PBI high school versus a traditional instruction high school within the same rural school district. While…

  10. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  11. Efficient Method of Achieving Agreements between Individuals and Organizations about RFID Privacy

    NASA Astrophysics Data System (ADS)

    Cha, Shi-Cho

    This work presents novel technical and legal approaches that address privacy concerns for personal data in RFID systems. In recent years, to minimize the conflict between convenience and the privacy risk of RFID systems, organizations have been requested to disclose their policies regarding RFID activities, obtain customer consent, and adopt appropriate mechanisms to enforce these policies. However, current research on RFID typically focuses on enforcement mechanisms to protect personal data stored in RFID tags and prevent organizations from tracking user activity through information emitted by specific RFID tags. A missing piece is how organizations can obtain customers' consent efficiently and flexibly. This study recommends that organizations obtain licenses automatically or semi-automatically before collecting personal data via RFID technologies rather than deal with written consents. Such digitalized and standard licenses can be checked automatically to ensure that collection and use of personal data is based on user consent. While individuals can easily control who has licenses and license content, the proposed framework provides an efficient and flexible way to overcome the deficiencies in current privacy protection technologies for RFID systems.

  12. Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles.

    PubMed

    Kim, Cheonghee; Jeon, Hyo Sang; Eom, Taedaehyeong; Jee, Michael Shincheon; Kim, Hyungjun; Friend, Cynthia M; Min, Byoung Koun; Hwang, Yun Jeong

    2015-11-01

    Selective electrochemical reduction of CO2 is one of the most sought-after processes because of the potential to convert a harmful greenhouse gas to a useful chemical. We have discovered that immobilized Ag nanoparticles supported on carbon exhibit enhanced Faradaic efficiency and a lower overpotential for selective reduction of CO2 to CO. These electrocatalysts were synthesized directly on the carbon support by a facile one-pot method using a cysteamine anchoring agent resulting in controlled monodispersed particle sizes. These synthesized Ag/C electrodes showed improved activities, specifically decrease of the overpotential by 300 mV at 1 mA/cm(2), and 4-fold enhanced CO Faradaic efficiency at -0.75 V vs RHE with the optimal particle size of 5 nm compared to polycrystalline Ag foil. DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectively lowers the overpotential. PMID:26447349

  13. High efficiency GaP power conversion for Betavoltaic applications

    NASA Technical Reports Server (NTRS)

    Sims, Paul E.; Dinetta, Louis C.; Barnett, Allen M.

    1994-01-01

    AstroPower is developing a gallium phosphide (GaP) based energy converter optimized for radio luminescent light-based power supplies. A 'two-step' or 'indirect' process is used where a phosphor is excited by radioactive decay products to produce light that is then converted to electricity by a photovoltaic energy converter. This indirect conversion of beta-radiation to electrical energy can be realized by applying recent developments in tritium based radio luminescent (RL) light sources in combination with the high conversion efficiencies that can be achieved under low illumination with low leakage, gallium phosphide based devices. This tritium to light approach is inherently safer than battery designs that incorporate high activity radionuclides because the beta particles emitted by tritium are of low average energy and are easily stopped by a thin layer of glass. GaP layers were grown by liquid phase epitaxy and p/n junction devices were fabricated and characterized for low light intensity power conversion. AstroPower has demonstrated the feasibility of the GaP based energy converter with the following key results: 23.54 percent conversion efficiency under 968 muW/sq cm 440 nm blue light, 14.59 percent conversion efficiency for 2.85 muW/sq cm 440 nm blue light, and fabrication of working 5 V array. We have also determined that at least 20 muW/sq cm optical power is available for betavoltaic power systems. Successful developments of this device is an enabling technology for low volume, safe, high voltage, milliwatt power supplies with service lifetimes in excess of 12 years.

  14. The Meaning High-Achieving African-American Males in an Urban High School Ascribe to Mathematics

    ERIC Educational Resources Information Center

    Thompson, LaTasha; Davis, Julius

    2013-01-01

    Many researchers, educators, administrators, policymakers and members of the general public doubt the prevalence of high-achieving African-American males in urban high schools capable of excelling in mathematics. As part of a larger study, the current study explored the educational experiences of four high-achieving African-American males…

  15. Achieving Internet-based efficiencies in a rural IDS: a case study.

    PubMed

    Bacus, R; Zunke, R

    2001-09-01

    After suffering payment cuts resulting from the Balanced Budget Act of 1997, Colorado-Fayette Medical Center (CFMC), a not-for-profit, rural integrated delivery system in Texas, wanted to reduce costs by gaining systemwide Internet access for its internal information system at a reasonable price. An application service provider affiliated with the Texas Hospital Association, helped CFMC achieve its goals for the project by performing a needs assessment, installing a wide-area network (WAN) with Internet access, and training staff. The new WAN enabled CFMC to improve its Web presence, allow radiologic image viewing at all sites, negotiate more favorable prices from vendors, implement electronic communication for staff members, and take advantage of on-line education opportunities. CFMC has found that the monthly fee paid to THN is offset by savings on long-distance calls, Internet service provider fees, and marketing and advertising costs. PMID:11552587

  16. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  17. High efficiency triple-junction amorphous solar cells

    NASA Astrophysics Data System (ADS)

    Ishihara, T.; Terazono, S.; Sasaki, H.; Kawabata, K.; Itagaki, T.

    A fabrication technique for high-efficiency triple-junction a-SiGe:H and a-Si:H pin solar cells is described. The interfacial characteristics of the a-SiGe:H pin cell, which is used for the bottom cell, have been improved by inserting graded bandgap layers at both p/i and n/i interfaces. The photoconductivity of the a-SiGe:H film, prepared by diluting the silane and germane discharge with a large amount of H2 gas, has also been improved. For the a-Si:H pin cell, Vocs as high as 0.99 V have been achieved by optimizing deposition conditions for the microc-Si:H p-layer and a-Si:H i-layer. Thickness of each layer in the triple-junction cell has been adjusted to get maximum output current. A cell with conversion efficiency of 10.6 percent has been obtained for a cell size of 100 sq cm.

  18. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  19. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    SciTech Connect

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2010-08-04

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

  20. Highly Efficient Self-Replicating RNA Enzymes

    PubMed Central

    Robertson, Michael P.; Joyce, Gerald F.

    2014-01-01

    SUMMARY An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic efficiency of the enzyme. Directed evolution was used to improve the efficiency of the enzyme and increase its exponential growth rate to 0.14 min−1, corresponding to a doubling time of 5 min. This is close to the limit of 0.21 min−1 imposed by the rate of product release, but sufficient to enable more than 80 logs of growth per day. PMID:24388759

  1. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  2. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  3. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  4. A Highly Efficient Neutron Veto Using Boron-Loaded Liquid Scintillator

    SciTech Connect

    Wright, A.; Mosteiro, P.; Loer, B.; Calaprice, F.

    2011-04-27

    By surrounding a dark matter detector with a layer of boron-loaded liquid scintillator, a highly efficient neutron veto can be produced. In Monte Carlo studies, a one meter thick layer of scintillator has a veto efficiency greater than 99.5% for nuclear recoil events induced by radiogenic neutrons, and a veto efficiency of more than 95% for nuclear recoil events produced by cosmogenic neutrons. The use of boron-loaded scintillator both reduces the veto-induced dead time by decreasing the neutron capture time and allows high neutron detection efficiency to be achieved in a relatively compact geometry.

  5. The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index

    NASA Astrophysics Data System (ADS)

    Acomi, N.; Acomi, O. C.; Stanca, C.

    2015-11-01

    To reduce air pollution produced by ships, the International Maritime Organization has developed a set of technical, operational and management measures. The subject of our research addresses the operational measures for minimizing CO2 air emissions and the way how the emission value could be influenced by external factors regardless of ship-owners’ will. This study aims to analyse the air emissions for a loaded voyage leg performed by an oil tanker. The formula that allows us to calculate the predicted Energy Efficiency Operational Index involves the estimation of distance and fuel consumption, while the quantity of cargo is known. The electronic chart display and information system, ECDIS Simulation Software, will be used for adjusting the passage plan in real time, given the predicted severe environmental conditions. The distance will be determined using ECDIS, while the prediction of the fuel consumption will consider the sea trial and the vessel experience records. That way it will be possible to compare the estimated EEOI value in the case of great circle navigation in adverse weather condition with the estimated EEOI value for weather navigation.

  6. High Efficiency Hybrid Silicon Nanopillar-Polymer Solar Cells

    PubMed Central

    Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Sharma, Manisha; Elam, David; Ponce, Arturo; Ayon, Arturo A

    2014-01-01

    Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly (3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ~10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell. PMID:24032746

  7. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers

    PubMed Central

    Buyel, Johannes F.; Gruchow, Hannah M.; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m−2 when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre–coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m−2 with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins. PMID:26734037

  8. Depth Filters Containing Diatomite Achieve More Efficient Particle Retention than Filters Solely Containing Cellulose Fibers.

    PubMed

    Buyel, Johannes F; Gruchow, Hannah M; Fischer, Rainer

    2015-01-01

    The clarification of biological feed stocks during the production of biopharmaceutical proteins is challenging when large quantities of particles must be removed, e.g., when processing crude plant extracts. Single-use depth filters are often preferred for clarification because they are simple to integrate and have a good safety profile. However, the combination of filter layers must be optimized in terms of nominal retention ratings to account for the unique particle size distribution in each feed stock. We have recently shown that predictive models can facilitate filter screening and the selection of appropriate filter layers. Here we expand our previous study by testing several filters with different retention ratings. The filters typically contain diatomite to facilitate the removal of fine particles. However, diatomite can interfere with the recovery of large biopharmaceutical molecules such as virus-like particles and aggregated proteins. Therefore, we also tested filtration devices composed solely of cellulose fibers and cohesive resin. The capacities of both filter types varied from 10 to 50 L m(-2) when challenged with tobacco leaf extracts, but the filtrate turbidity was ~500-fold lower (~3.5 NTU) when diatomite filters were used. We also tested pre-coat filtration with dispersed diatomite, which achieved capacities of up to 120 L m(-2) with turbidities of ~100 NTU using bulk plant extracts, and in contrast to the other depth filters did not require an upstream bag filter. Single pre-coat filtration devices can thus replace combinations of bag and depth filters to simplify the processing of plant extracts, potentially saving on time, labor and consumables. The protein concentrations of TSP, DsRed and antibody 2G12 were not affected by pre-coat filtration, indicating its general applicability during the manufacture of plant-derived biopharmaceutical proteins.

  9. Energy Efficient High-Pressure Turbine Leakage Technology Report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1980-01-01

    The leakage test program was one of such supporting technology programs structured to provide guidance to the Energy Efficient Engine High Pressure Turbine Component Design Effort. Leakage reduction techniques were identified and evaluated. Test models were used to simulate component leak paths and to evaluate leakage reduction techniques. These models simulated the blade/disk attachment, the vane inner platform attachment, and the vane outer platform attachment combined with the blade outer airseal. Disk blade attachment testing indicated that leakage in this area could be reduced to very low levels by paying careful attention to the tolerances along the contact surface between the blade vibration damper and the blade platform contact surface. The aim of feather seal testing was to achieve a goal for an effective leakage gap of one mil (.001 inch) per inch of feather seal length. Results indicated that effective gaps even below the goal level were achievable by (1) maintaining close tolerances between feather seals and their slots to minimize end gaps and limit seal rotation, (2) avoiding feather seal overlap, and (3) minimizing feather seal intersections. W seals were shown to be effective leakage control devices. Wire rope, in its present state of development, was shown not to be an effective sealing concept for application to the component design.

  10. Lipid target achievement among patients with very high and high cardiovascular risk in a lipid clinic.

    PubMed

    Barkas, Fotios; Liberopoulos, Evangelos N; Kostapanos, Michael S; Liamis, George; Tziallas, Dimitrios; Elisaf, Moses

    2015-04-01

    This was a retrospective study that assessed achievement of lipid-lowering treatment targets in the setting of a University Hospital Lipid Clinic. Low-density lipoprotein cholesterol (LDL-C) goal attainment according to National Cholesterol Education Program-Adult Treatment Panel III (NCEP ATP III) and European Society of Cardiology/European Atherosclerosis Society (ESC/EAS) guidelines was recorded in 1000 consecutive adult patients followed for ≥3 years (mean 8 years). The LDL-C targets according to the NCEP ATP III were attained by 66% and 86% of patients with "very high" (n = 477) and "high" (n = 408) cardiovascular risk, respectively. Fewer patients were within LDL-C goals according to the ESC/EAS guidelines: 25% and 42%. Overall, 92% of the patients were on statins: 67% were on statin monotherapy, while 33% were on combinations with ezetimibe (25%), ω-3 fatty acids (5%), fibrates (4%), or colesevelam (2%). Even in a specialist lipid clinic, a large proportion of patients are not at goal according to the recent ESC/EAS guidelines. PMID:24830420

  11. Evaluation of Small Molecules as Front Cell Donor Materials for High-Efficiency Tandem Solar Cells.

    PubMed

    Zhang, Qian; Wan, Xiangjian; Liu, Feng; Kan, Bin; Li, Miaomiao; Feng, Huanran; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-08-01

    Three small molecules as front cell donors for tandem cells are thoroughly evaluated and a high power conversion efficiency of 11.47% is achieved, which demonstrates that the oligomer-like small molecules offer a good choice for high-performance tandem solar cells.

  12. Evaluation of Small Molecules as Front Cell Donor Materials for High-Efficiency Tandem Solar Cells.

    PubMed

    Zhang, Qian; Wan, Xiangjian; Liu, Feng; Kan, Bin; Li, Miaomiao; Feng, Huanran; Zhang, Hongtao; Russell, Thomas P; Chen, Yongsheng

    2016-08-01

    Three small molecules as front cell donors for tandem cells are thoroughly evaluated and a high power conversion efficiency of 11.47% is achieved, which demonstrates that the oligomer-like small molecules offer a good choice for high-performance tandem solar cells. PMID:27214707

  13. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).

  14. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  15. Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  16. A high-efficiency mode coupler autotracking feed

    NASA Astrophysics Data System (ADS)

    Cipolla, Frank; Seck, Gerry

    The design, construction, and installation of high-efficiency autotracking feeds using a tracking mode coupler at both S, C, and X band are presented. These feeds have shown greater than 65 percent efficiencies when mounted in a doubly shaped dual reflector antenna. The mode coupler feed attributes include high-efficiency in both the data and track channels, full waveguide bandwidth operation, good feed error gradients, high-power handling, and active cross talk correction.

  17. Processes for producing low cost, high efficiency silicon solar cells

    DOEpatents

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  18. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  19. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  20. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  1. Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals.

    PubMed

    Carson, Shelley H; Peterson, Jordan B; Higgins, Daniel M

    2003-09-01

    Reductions in latent inhibition (LI), the capacity to screen from conscious awareness stimuli previously experienced as irrelevant, have been generally associated with the tendency towards psychosis. However, "failure" to screen out previously irrelevant stimuli might also hypothetically contribute to original thinking, particularly in combination with high IQ. Meta-analysis of two studies, conducted on youthful high-IQ samples. demonstrated that high lifetime creative achievers had significantly lower LI scores than low creative achievers (r(effect size) = .31, p = .0003, one-tailed). Eminent creative achievers (participants under 21 years who reported unusually high scores in a single domain of creative achievement) were 7 times more likely to have low rather than high LI scores, chi2 (1, N = 25) = 10.69, phi = .47. p = .003.

  2. Understanding and Reversing Underachievement, Low Achievement, and Achievement Gaps among High-Ability African American Males in Urban School Contexts

    ERIC Educational Resources Information Center

    Ford, Donna Y.; Moore, James L., III

    2013-01-01

    This article focuses on the achievement gap, with attention devoted to underachievement and low achievement among African American males in urban school contexts. More specifically, the article explains problems and issues facing or confronting these Black male students in urban education settings. A central part of this discussion is grounded in…

  3. Instructional, Transformational, and Managerial Leadership and Student Achievement: High School Principals Make a Difference

    ERIC Educational Resources Information Center

    Valentine, Jerry W.; Prater, Mike

    2011-01-01

    This statewide study examined the relationships between principal managerial, instructional, and transformational leadership and student achievement in public high schools. Differences in student achievement were found when schools were grouped according to principal leadership factors. Principal leadership behaviors promoting instructional and…

  4. Low and High Mathematics Achievement in Japanese, Chinese, and American Elementary-School Children.

    ERIC Educational Resources Information Center

    Uttal, David H.; And Others

    1988-01-01

    First and fifth grade students who scored high or low on a mathematics test were tested for intellectual ability and reading achievement. Students and their mothers were interviewed. Results indicated that factors associated with levels of achievement in mathematics operate in a similar fashion across three cultures that differ greatly in their…

  5. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  6. A Quantitative Comparison of Pennsylvania High School Student Achievement by Middle States Association's Accreditation Status

    ERIC Educational Resources Information Center

    Johnson, Christopher A.

    2012-01-01

    As public school accountability for student achievement has continued to increase, prior to and as a result of the No Child Left Behind Act of 2001, schools have sought ways of bringing new instructional services to their students to raise their levels of achievement. Some Pennsylvania public high schools have attempted to improve student…

  7. Achievement Motivation in High School: Contrasting Theoretical Models in the Classroom.

    ERIC Educational Resources Information Center

    Garcia-Celay, I. Montero; Tapia, J. Alonso

    1992-01-01

    Three models of achievement motivation in the classroom are contrasted. Results with 155 high school students suggest that the model of C. S. Dweck and E. S. Elliott offers a better explanation of the relationships among achievement motivation, attributions, emotional reactions, expectancies, and performance than do the other models. (SLD)

  8. The Effects of Cooperative Learning on Student Achievement and Motivation in a High School Geometry Class.

    ERIC Educational Resources Information Center

    Nichols, Joe D.; Hall, Neff

    In this study, the effects of a form of cooperative group instruction (Student Teams Achievement Divisions) on student motivation and achievement in a high school geometry class were examined. Ninety (mostly 10th-grade) students were randomly assigned to either a control group receiving traditional instruction or one of two treatment groups…

  9. Early Reading Skills and Academic Achievement Trajectories of Students Facing Poverty, Homelessness, and High Residential Mobility

    ERIC Educational Resources Information Center

    Herbers, Janette E.; Cutuli, J. J.; Supkoff, Laura M.; Heistad, David; Chan, Chi-Keung; Hinz, Elizabeth; Masten, Ann S.

    2012-01-01

    This investigation tested the importance of early academic achievement for later achievement trajectories among 18,011 students grouped by level of socioeconomic risk. Students considered to be at highest risk were those who experienced homelessness or high residential mobility (HHM). HHM students were compared with students eligible for free…

  10. Intergenerational Closure and Academic Achievement in High School: A New Evaluation of Coleman's Conjecture

    ERIC Educational Resources Information Center

    Morgan, Stephen L.; Todd, Jennifer J.

    2009-01-01

    This article reexamines the conjecture of James S. Coleman that intergenerational social closure promotes student achievement in high schools, analyzing the best national data on academic achievement and social networks: the 2002 and 2004 waves of the Education Longitudinal Study. The results show that within the Catholic school sector, schools…

  11. Unforgiving Confucian Culture: A Breeding Ground for High Academic Achievement, Test Anxiety and Self-Doubt?

    ERIC Educational Resources Information Center

    Stankov, Lazar

    2010-01-01

    This paper reviews findings from several studies that contribute to our understanding of cross-cultural differences in academic achievement, anxiety and self-doubt. The focus is on comparisons between Confucian Asian and European regions. Recent studies indicate that high academic achievement of students from Confucian Asian countries is…

  12. Gender and High School Chemistry: Student Perceptions on Achievement in a Selective Setting

    ERIC Educational Resources Information Center

    Cousins, Andrew; Mills, Martin

    2015-01-01

    This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students' engagement with high school chemistry. Achievement data from many OECD [Organisation for Economic Co-operation and Development] countries suggest that middle-class girls are achieving equally…

  13. Parental Involvement, Homework, and TV Time: Direct and Indirect Effects on High School Achievement.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.; And Others

    1986-01-01

    A set of High School and Beyond data was used to study the effect of three variables on academic achievement. Homework had a positive effect, TV a negative, and parental involvement no direct effect on seniors' achievement scores, but influenced the amount of time students spent on homework. (Author/JAZ)

  14. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  15. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.

    PubMed

    Gan, Lizhen; Ye, Lingting; Tao, Shanwen; Xie, Kui

    2016-01-28

    Ionic conduction in perovskite oxide is commonly tailored by element doping in lattices to create charge carriers, while few studies have been focused on ionic conduction enhancement through tailoring microstructures. In this work, remarkable enhancement of ionic conduction in titanate has been achieved via in situ growing active nickel nanoparticles on an oxide surface by controlling the oxide material nonstoichiometry. The combined use of XRD, SEM, XPS and EDS indicates that the exsolution/dissolution of the nickel nanoparticles is completely reversible in redox cycles. With the synergetic effect of enhanced ionic conduction of titanate and the presence of catalytic active Ni nanocatalysts, significant improvement of electrocatalytic performances of the titanate cathode is demonstrated. A current density of 0.3 A cm(-2) with a Faradic efficiency of 90% has been achieved for direct carbon dioxide electrolysis in a 2 mm-thick YSZ-supported solid oxide electrolyzer with the modified titanate cathode at 2 V and 1073 K. PMID:26743799

  16. Highly efficient photodimerization of olefins in a nanotemplate on HOPG by scanning tunneling microscopy.

    PubMed

    Xue, JinDong; Xu, Jing; Hu, FangYun; Liao, LingYan; Li, Min; Duan, WuBiao; Zeng, QingDao; Wang, Chen

    2014-12-21

    Efficient photochemical reactions on a surface are of great importance for their potential applications in optoelectronic devices. In this work, a highly efficient photodimerization reaction of an olefin cocrystal built from two trans-1,2-bis(4-pyridyl)ethylenes (4,4'-bpe) and two isophthalic acid molecules via N···H-O hydrogen bonds in between was achieved in a nanotemplate on a highly oriented pyrolytic graphite (HOPG) surface. 4,4'-Bpe molecules first undergo the trans-cis isomerization followed by [2+2] photodimerization in the nanotemplate on HOPG upon UV irradiation. The efficiency of the isomerization as well as the photodimerization in the presence of the nanotemplate is much higher than that in its absence. These results provide a facile way to achieve highly efficient photodimerization of olefins on a large scale on surfaces.

  17. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers

    SciTech Connect

    Yoo, Hyung Keun; Kang, Chul; Hwang, In-Wook; Yoon, Youngwoon; Lee, Kiejin; Kee, Chul-Sik; Lee, Joong Wook

    2014-07-07

    Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C{sub 60}/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C{sub 60} layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

  18. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  19. Design requirements for high-efficiency high concentration ratio space solar cells

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  20. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  1. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  2. Impacts of comprehensive reading instruction on diverse outcomes of low- and high-achieving readers.

    PubMed

    Guthrie, John T; McRae, Angela; Coddington, Cassandra S; Lutz Klauda, Susan; Wigfield, Allan; Barbosa, Pedro

    2009-01-01

    Low-achieving readers in Grade 5 often lack comprehension strategies, domain knowledge, word recognition skills, fluency, and motivation to read. Students with such multiple reading needs seem likely to benefit from instruction that supports each of these reading processes. The authors tested this expectation experimentally by comparing the effects of Concept-Oriented Reading Instruction (CORI) with traditional instruction (TI) on several outcomes in a 12-week intervention for low achievers and high achievers. Low achievers in the CORI group were afforded explicit instruction, leveled texts, and motivation support. Compared with TI students, CORI students scored higher on posttest measures of word recognition speed, reading comprehension on the Gates-MacGinitie Reading Test, and ecological knowledge. CORI was equally effective for lower achievers and higher achievers. Explicitly supporting multiple aspects of reading simultaneously appeared to benefit diverse learners on a range of reading outcomes.

  3. Understanding the Elements of Operational Reliability: A Key for Achieving High Reliability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2010-01-01

    This viewgraph presentation reviews operational reliability and its role in achieving high reliability through design and process reliability. The topics include: 1) Reliability Engineering Major Areas and interfaces; 2) Design Reliability; 3) Process Reliability; and 4) Reliability Applications.

  4. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

  5. Studies of basic mechanisms in high pressure gases: Applications to high efficiency high power lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Cherrington, B. E.; Leslie, S. G.; Millar, W. S.; Edwards, B. E.

    1976-01-01

    A high power pulsed dye laser was used to optically excite high pressure cesium-xenon mixtures and the resulting measurements are presented. A microwave discharge in rubidium at relatively high xenon pressure was achieved. Preliminary studies of cadium-rare gas mixtures are discussed and a detailed description of the entire experimental apparatus is given.

  6. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  7. Do Peers Influence Achievement in High School Economics? Evidence from Georgia's Economics End of Course Test

    ERIC Educational Resources Information Center

    Clark, Christopher; Scafidi, Benjamin; Swinton, John R.

    2011-01-01

    The authors provide the first estimates of the impact of peers on achievement in high school economics. The estimates are obtained by analyzing three years of data on all high school students who take Georgia's required economics course and its accompanying high-stakes End of Course Test (Georgia Department of Education). They use an instrumental…

  8. A Study of Professional Learning Communities and Science Achievement in Large High Schools

    ERIC Educational Resources Information Center

    Kincannon, Susan D.

    2010-01-01

    The purpose of this study was to compare the science achievement and high school completion rates of students in a large high school implementing professional learning community concepts and practices with two large high schools not participating in professional learning community concepts and practices. The primary methodology employed was a…

  9. The Outward Bound Bridging Course for Low-Achieving High School Males: Effect on Academic Achievement and Multidimensional Self-Concepts.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Richards, Garry

    The Outward Bound Bridging Course is a 6-week residential program designed to improve academic achievement and self-concepts in low-achieving high school males. During 1980-1984, five courses were conducted for 66 Australian high school males. Most of them were ninth grade students, chosen on the basis of poor academic performance, an apparent…

  10. A Comparison of Emotional-Motivational (A-R-D Theory) Personality Characteristics in Learning Disabled, Normal Achieving, and High Achieving Children.

    ERIC Educational Resources Information Center

    Hufano, Linda D.

    The study examined emotional-motivational personality characteristics of 15 learning disabled, 15 normal achieving, and 15 high achieving students (grades 3-5). The study tested the hypothesis derived from the A-R-D (attitude-reinforcer-discriminative) theory of motivation that learning disabled (LD) children differ from normal and high achieving…

  11. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  12. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  13. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  14. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  15. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  16. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  17. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments.

  18. Small molecule semiconductors for high-efficiency organic photovoltaics.

    PubMed

    Lin, Yuze; Li, Yongfang; Zhan, Xiaowei

    2012-06-01

    Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

  19. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  20. New III-V cell design approaches for very high efficiency

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O'Bradovich, G.J.; Young, M.P. )

    1993-01-01

    This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

  1. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  2. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1986-01-01

    Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.

  3. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  4. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    SciTech Connect

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S; Wong, Franco N. C.

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  5. Design and synthesis of dendritic molecular transporter that achieves efficient in vivo delivery of morpholino antisense oligo.

    PubMed

    Li, Yong-Fu; Morcos, Paul A

    2008-07-01

    Safe and efficient in vivo delivery of Morpholino antisense oligos was probably the last and most difficult challenge for the broad application of antisense in animal research and therapeutics. Several arginine-rich peptides effective for in vivo delivery of Morpholino antisense oligos require rather complex and expensive procedures for synthesis and conjugation. This work describes the design and synthesis of a dendritic transporter in a most concise manner where the selection of the core scaffold, functional group multiplication, orthogonal protecting group manipulation, solid phase conjugation, and off-resin perguanidinylation of the transporter structure are all orchestrated for efficient assembly. We utilized triazine as a core to provide a site for on-column conjugation to the Morpholino oligo and to anchor functional side arms which, after extension, multiplication, and deprotection, are subsequently converted from primary amines to the eight guanidinium headgroups that serve for transport across cell membranes. Intravenous administration of the delivery-enabled Morpholino into a splice-reporter strain of transgenic living mice results in de novo expression of splice-corrected green fluorescent protein in a broad range of tissues and organs in those treated mice. This rigorously demonstrates that this new dendritic transporter achieves effective delivery of a Morpholino oligo into the cytosol/nuclear compartment of cells systemically in vivo. The practical conjugation process may overcome any availability limitation for routine use by the scientific community, and the efficient delivery ability of this transporter may advance the application of Morpholino antisense technology in animals.

  6. High-efficiency silicon solar-cell design and practical barriers

    NASA Technical Reports Server (NTRS)

    Mokashi, A.

    1985-01-01

    A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.

  7. Social Goals, Social Status, and Problem Behavior among Low-Achieving and High-Achieving Adolescents from Rural Schools

    ERIC Educational Resources Information Center

    Ludden, Alison Bryant

    2012-01-01

    The current research examines how social goals and perceptions of what is needed for social status at school relate to school misbehavior and substance use among rural adolescents (N = 683). Results indicate that social goals and perceptions of social status have differential links to problem behaviors depending upon adolescents' achievement.…

  8. Evaluation of English Achievement Test: A Comparison between High and Low Achievers amongst Selected Elementary School Students of Pakistan

    ERIC Educational Resources Information Center

    Haider, Zubair; Latif, Farah; Akhtar, Samina; Mushtaq, Maria

    2012-01-01

    Validity, reliability and item analysis are critical to the process of evaluating the quality of an educational measurement. The present study evaluates the quality of an assessment constructed to measure elementary school student's achievement in English. In this study, the survey model of descriptive research was used as a research method.…

  9. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    SciTech Connect

    Zhang, Yingjie; Aziz, Hany

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  10. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  11. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed Central

    Nelson, Frank E.; Ortega, Justus D.; Jubrias, Sharon A.; Conley, Kevin E.; Kushmerick, Martin J.

    2011-01-01

    Summary Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca2+ cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca2+ cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo. PMID:21795559

  12. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed

    Nelson, Frank E; Ortega, Justus D; Jubrias, Sharon A; Conley, Kevin E; Kushmerick, Martin J

    2011-08-15

    Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.

  13. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  14. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  15. A Bifunctional Interlayer Material for Modifying Both the Anode and Cathode in Highly Efficient Polymer Solar Cells.

    PubMed

    Xu, Bowei; Zheng, Zhong; Zhao, Kang; Hou, Jianhui

    2016-01-20

    A novel polymer-solar-cell architecture using the conjugated polymer PFS as both the anode and cathode interlayers is constructed, and a high power conversion efficiency of 9.48% is achieved using the corresponding photovoltaic device.

  16. High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Xu, Xue-Jun; Li, Zhi-Yong; Zhou, Liang; Han, Wei-Hua; Fan, Zhong-Chao; Yu, Yu-De; Yu, Jin-Zhong

    2010-01-01

    A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss.

  17. Emotional Intelligence as a Predictor of Leadership of Kuwaiti High and Low Achieving 11th Graders

    ERIC Educational Resources Information Center

    Alnabhan, Mousa

    2010-01-01

    The current study examined the association between emotional intelligence (EI) and the Leadership components (L) of high school students in the state of Kuwait. The possibility of predicting each leadership component via emotional intelligence components was investigated for high and low achievers. A sample of 11th grade students from Kuwaiti…

  18. What Works Clearinghouse Quick Review: "Expanding College Opportunities for High-Achieving, Low Income Students"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    This study examined the effects of providing low-income, high-achieving high school seniors with college application guidance and information about the costs of college. The "application guidance" included information about deadlines and requirements for college applications at nearby institutions, at the state's flagship institution, and at in-…

  19. The Effects of Modeling Instruction on High School Physics Academic Achievement

    ERIC Educational Resources Information Center

    Wright, Tiffanie L.

    2012-01-01

    The purpose of this study was to explore whether Modeling Instruction, compared to traditional lecturing, is an effective instructional method to promote academic achievement in selected high school physics classes at a rural middle Tennessee high school. This study used an "ex post facto," quasi-experimental research methodology. The…

  20. Effects of an Elementary Dual Language Immersion School Program on Junior High Achievement

    ERIC Educational Resources Information Center

    Cobb, Brian; Vega, Diego; Kronauge, Cindy

    2006-01-01

    The purpose of this study was to analyze the effects of a two-way immersion elementary school program on academic achievement at the end of the elementary school and the end of the first year of junior high school. Longitudinal high stakes test data in reading, writing, and mathematics were collected on native English speakers and native Spanish…

  1. The Relationship between Self-Efficacy and Achievement in At-Risk High School Students

    ERIC Educational Resources Information Center

    Gold, Jarrett Graham

    2010-01-01

    The focus of this quantitative survey study was the examination of the relationship between self-efficacy and academic achievement in 164 at-risk high school students. The study used Bandura's self-efficacy as the theoretical framework. The research questions involved understanding the levels of self-efficacy in at-risk high school students and…

  2. Small Classes in the Early Grades, Academic Achievement, and Graduating From High School

    ERIC Educational Resources Information Center

    Finn, Jeremy D.; Gerber, Susan B.; Boyd-Zaharias, Jayne

    2005-01-01

    This investigation addressed 3 questions about the long-term effects of early school experiences: (a) Is participation in small classes in the early grades (K-3) related to high school graduation? (b) Is academic achievement in K-3 related to high school graduation? (c) If class size is related to graduation, is the relationship explained by the…

  3. Mathematics Achievement with Digital Game-Based Learning in High School Algebra 1 Classes

    ERIC Educational Resources Information Center

    Ferguson, Terri Lynn Kurley

    2014-01-01

    This study examined the impact of digital game-based learning (DGBL) on mathematics achievement in a rural high school setting in North Carolina. A causal comparative research design was used in this study to collect data to determine the effectiveness of DGBL in high school Algebra 1 classes. Data were collected from the North Carolina…

  4. Towards Promoting Biliteracy and Academic Achievement: Educational Programs for High School Latino English Language Learners

    ERIC Educational Resources Information Center

    Ochoa, Alberto M.; Cadiero-Kaplan, Karen

    2004-01-01

    The Latino student presently faces many obstacles to achieve educational equity and excellence at the high school level. This article examines academic programming for Latino middle and high school English language learners (ELLs) and provides recommendations for addressing programming that promotes biliteracy policy and programming as a valued…

  5. A Case Study of 21st Century Skills in High Achieving Elementary Schools in Pennsylvania

    ERIC Educational Resources Information Center

    Egnor, Gregory P.

    2013-01-01

    This study examines if practices that advocate for 21st century skills are in conflict with the mandates of NCLB. Interviews with influential school leaders of high achieving elementary schools focused on collecting data about 21st century skills. This study was designed to (a) Determine if 21st century skills are addressed in high achieving…

  6. Achieve Scholarship Spending on Expanding Access to Rigorous High School Courses

    ERIC Educational Resources Information Center

    Minnesota Office of Higher Education, 2009

    2009-01-01

    The 2007 Legislature enacted the Achieve Scholarship program, which provides a $1,200 scholarship to high school graduates who took rigorous courses in high school and met certain income and other eligibility criteria. In deliberations about this new program, concerns were expressed that certain rigorous courses like Advanced Placement,…

  7. Study-Orientation of High and Low Academic Achievers at Secondary Level in Pakistan

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Bashir, Muhammad; Khan, Muhammad Naemullah; Khan, Muhammad Saeed

    2009-01-01

    The study orientation of low and high academic achievers was compared, measured through a self-developed study orientation scale (SOS) primarily based on 47 items comparing study habits and attitude. Students' marks obtained in the 10th grade Examination determined the measure of academic performance. The analysis revealed that the high achievers…

  8. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal.

    PubMed

    Yan, Jin; Li, Yan; Wu, Shin-Tson

    2011-04-15

    We demonstrate a tunable phase grating using a polymer-stabilized blue phase liquid crystal. Because of the electric-field-induced rectangularlike phase profile, a high diffraction efficiency of 40% is achieved. Moreover, this device shows submillisecond response time. The proposed tunable phase grating holds great potential for photonics and display applications. PMID:21499371

  9. Highly efficient dielectric gratings for high-power ultrafast femtosecond fiber laser systems

    NASA Astrophysics Data System (ADS)

    Clausnitzer, T.; Schreiber, Thomas; Roeser, Fabian; Limpert, Jens; Fuchs, H.-J.; Kley, Ernst-Bernhard; Tunnermann, Andreas

    2005-03-01

    Micromachining applications require high pulse energy (>1μJ) short pulse (<1ps) laser systems at high repetition rates. Rare-earth doped fibers are attractive to generate these target values by the amplification of ultrafast femtosecond seed sources. Two favored techniques have been used: the chirped pulse amplification (CPA) scheme where the pulses are stretched in the time domain to reduce nonlinearity in the amplifier stage and the parabolic pulse amplification scheme where the combined effect of nonlinearity, normal dispersion and gain in the fiber generate linearly chirped parabolic shaped pulses. Both approaches can be scaled to higher power by reducing the nonlinearity in the amplifiers. To achieve this, we discuss novel photonic crystal fiber designs which allow for larger single-mode core diameter and reduced absorption length and therefore reduced nonlinearity. The so generated high average power of >100 W at repetition rate up to several tens of MHz cannot be compressed by gold gratings to femtosecond pulse duration due to thermal heating. We focus on the development of dielectric gratings in fused silica which can handle this power levels due to their high damage threshold. Two kinds of gratings are discussed. Firstly, the transmission gratings with a period of 800 nm were designed to possess 96% diffraction efficiency over a spectral range from 1.03μm to 1.09μm. The fabrication of the rectangular groove profile was done using electron beam lithography and reactive ion beam etching into the fused silica substrate. The measured diffraction efficiency was 96.5% @ 1060nm. Secondly, dielectric reflection gratings, which consist of a dielectric grating on top of a high-reflective layerstack, can theoretically exhibit a diffraction efficiency of even higher than 99%. To achieve this we chose a period of 1060nm. The fabrication was done similar to the transmission gratings, though a HR-coated substrate had to be used instead of the simple fused substrate

  10. Development of High Efficiency Ventilation Bag Actuated Dry Powder Inhalers

    PubMed Central

    Behara, Srinivas R.B.; Longest, P. Worth; Farkas, Dale R.; Hindle, Michael

    2014-01-01

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70–80% with fine particle fractions <5 μm of 65–85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3 mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15 LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs. PMID:24508552

  11. Development of high efficiency ventilation bag actuated dry powder inhalers.

    PubMed

    Behara, Srinivas R B; Longest, P Worth; Farkas, Dale R; Hindle, Michael

    2014-04-25

    New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 μm of 65-85% and mass median aerodynamic diameters of 1.5 μm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs.

  12. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Astrophysics Data System (ADS)

    Sun, Sam

    2002-07-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  13. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  14. Does Homogeneous Ability Grouping for High School Honors English Instruction Benefit the High Achiever?

    ERIC Educational Resources Information Center

    Hostetter, Douglas Paul

    2013-01-01

    Public schools are examining their policies and instructional practices to address the achievement gap exposed by the reporting requirements of NCLB (Wenglinski, 2004). As accountability measures and stakes rise, there is a call for an improved use of scientific evidence to inform educational policymaking (Wiseman, 2010). In terms of the…

  15. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  16. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    SciTech Connect

    D'Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  17. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission

    PubMed Central

    Chauvin, Alain; Moreau, Emmanuelle; Bonnet, Sarah; Plantard, Olivier; Malandrin, Laurence

    2009-01-01

    Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated. PMID:19379662

  18. From here to efficiency : time lags between the introduction of new technology and the achievement of fuel savings.

    SciTech Connect

    Mintz, M.; Vyas, A.; Wang, M.; Stodolsky, F.; Cuenca, R.; Gaines, L.

    1999-12-03

    In this paper, the energy savings of new technology offering significant improvements in fuel efficiency are tracked for over 20 years as vehicles incorporating that technology enter the fleet and replace conventional light-duty vehicles. Two separate analyses are discussed: a life-cycle analysis of aluminum-intensive vehicles and a fuel-cycle analysis of the energy and greenhouse gas emissions of double vs. triple fuel-economy vehicles. In both efforts, market-penetration modeling is used to simulate the rate at which new technology enters the new fleet, and stock-adjustment modeling is used to capture the inertia in turnover of new and existing current-technology vehicles. Together, these two effects--slowed market penetration and delayed vehicle replacement--increase the time lag between market introduction and the achievement of substantial energy savings. In both cases, 15-20 years elapse, before savings approach these levels.

  19. Patterns of Self-Regulation: Patterns of Self-Regulatory Strategy Use among Low-Achieving and High-Achieving University Students

    ERIC Educational Resources Information Center

    Ruban, Lilia; Reis, Sally M.

    2006-01-01

    The present mixed-methods study attempts to provide insights into the nature, idiosyncrasies, and inter- and intra-individual patterns of academic self-regulatory strategy use among two different populations of university students. Low-achieving (n = 49) and high-achieving students (n = 131) described their self-regulatory strategy use in their…

  20. Factors That Influence School Board Actions to Support Student Achievement: A Multi-Case Study of High-Achieving Rural School Districts

    ERIC Educational Resources Information Center

    Timm, Colleen A.

    2012-01-01

    The purpose of this study is to examine the factors that influence the actions taken by school boards that advance student achievement in high-achieving rural public school districts. Much of what is discussed in the literature on school improvement efforts is centered on the work carried out by school personnel at the school level. What is…